Calculus Notes Derivative of an Inverse Given f(a) = b → f
Transcription
Calculus Notes Derivative of an Inverse Given f(a) = b → f-1 (b) = a f '(a) = m The Derivative of the inverse at b is the reciprocal of the derivative of f(x) at a 1 1 1 (f-1 )'(b) = m = f '(a) = f '(f-1 (b)) The Derivative of an inverse at a value is the reciprocal of the derivative of the Original at the pre-image. Proof: f(g(x)) = x f '(g(x)) g'(x) = 1 1 g'(x) = (f-1 )'(x) = f '(g(x)) = 1 f '(f-1 (x)) Inverse Trig Functions: y = arcsin x y = arccos x y = arctan x y = arccot x = π2 - arctan x y = arcsec x = arccos 1x y = arccsc x = arcsin 1x Derivatives of Inverse Trig Functions: 1. y = arcsin x sin y = x → cos y = ± 1 - x2 cos y • dy =1 dx dy dx 1 = cos y = d (arcsin dx 3. 1 1 1 = 2 sec y 1 + x2 1 du d (arctan u) = 2 dx 1 + u dx y = arcsec x sec y = x → tan y = ± x2 - 1 sec y tan y • dy =1 dx dy dx d (arcsec dx u) = 1 |x| 1 |u| x2 - 1 du u2 - 1 dx 1 = - sin y = - d (arccos dx 4. u) = - 1 1 - x2 1 du 1 - u2 dx y = arccot x cot y = x → csc y = ± 1 + x2 -csc y • dy =1 dx 1 1 + x2 1 du d (arccot u) = 2 dx 1 + u dx dy dx = 1 = sec y tan y = y = arccos x cos y = x → sin y = ± 1 - x2 -sin y • dy =1 dx dy dx 1 - x2 1 du 1 - u2 dx y = arctan x tan y = x → sec y = ± x2 + 1 sec2y • dy =1 dx dy dx 5. u) = 2. 6. 1 = - csc y = - y = arccsc x csc y = x → cot y = ± x2 - 1 -csc y cot y • dy =1 dx dy dx 1 = - csc y cot y = - d (arccsc dx u) = - 1 |u| 1 |x| x2 - 1 du u2 - 1 dx Integrals Resulting in Inverse Trig Functions d arcsin dx u= 1 du 1 - u2 dx ⌠ du = arcsin u + C ⌡ 1 - u2 ⌠ ⌡ a2 - u2 du du a =⌠ ⌡ 1- u 2 a () ()+C = arcsin ua --------------------------------------------------------d arctan u = 1 2 du dx 1 + u dx ∫1 + u du 2 ∫ = arctan u + C ⌠ a 1 + u 2 ⌡ (a ) du du a2 + u2 a =⌠ a1 + u 2 ⌡ (a ) du = 1 a = 1 a ()+C arctan ua --------------------------------------------------------d arcsec dx u= 1 |u| du u2 - 1 dx du ⌠ = arcsec u + C ⌡|u| u2 - 1 ⌠ ⌡|u| u2 - a2 du =⌠ |u| ⌡ du a u 2-1 a () = ⌠ u ⌡|a | 1 a du a u 2-1 a () = 1 a |u| arcsec a () Summary: Inverse Trigonometric Functions: Differentiation and Integration ∫ a2 - u2 • du dx ∫ a2 - u2 [arcsin u] = d dx [arccos u] = 3. d dx [arctan u] = 1 +1 u2 • du dx ∫a 4. d dx [arccot u] = 1 +-1u2 • du dx ∫ a -du+ u 5. d dx [arcsec u] = d dx [arccsc u] = 2. 6. 1 • du dx d dx 1. 1 - u2 -1 1 - u2 1 |u| u2 - 1 -1 |u| u2 - 1 du = arcsin ua + C -du du 2 + u2 2 • du dx ∫u • du dx ∫u 2 = arccos ua + C = 1a arctan ua + C = 1a arccot ua + C du u2 - a2 -du u2 - a2 |u| = 1a arcsec a + C |u| = 1a arccsc a + C
Documents pareils
Diff and Integ Rules Final
csc u cot u du csc u C
tan u du ln sec u C ln cos u C
cot u du ln csc u C ln sin u C
sec u du ln sec u tan u C ln sec u tan u C
csc u du ln csc...
DERIVATIVES AND INTEGRALS
cos u sin uu
dx
d
sec u sec u tan uu
dx
d
u
arccos u
dx
1 u2
d
u
arcsec u
dx
u u2 1
d
cosh u sinh uu
dx
d
sech u sech u tanh uu
dx
d
u
cosh1 u ...
Développements en séries entières usuels
( −1) ( 2n )! x 2 n = 1 − x 2 + 3x 4 − 5 x 6 + ...
Algebra Geometry - Stewart Calculus
y csc u cot u du csc u C
12. y tan u du ln sec u C
13. y cot u du ln sin u C
14. y sec u du ln sec u tan u C
15. y csc u du ln csc u cot u C
Preparation for Exam 1
(E) (integrations with trigonometric functions) to be very familiar with the differentiation formulas
related to all six trigonometric functions and with the double angle/half angle formulas, and t...