Quiz No.8 - Boston University

Transcription

Quiz No.8 - Boston University
Summer Term I
Kostadinov
MA124 Calculus II
Boston University
Quiz No.8
student:
Problem 1: Evaluate the definite integral
1
Z
e3x dx
0
Problem 2: Evaluate the indefinite integral
Z
xex dx
Problem 3: Evaluate the indefinite integral
Z
sin(ln(x))
dx
x
Problem 4: Evaluate the definite integral
Z
1
x − x2 dx
0
Problem 5: Find the area of the region enclosed by the curves y = x and
y = x2 from x = 0 to x = 1.
Summer Term I
Kostadinov
MA124 Calculus II
Boston University
Problem 6: Evaluate the definite integral using the tables. Indicate the
number of the formula used, as well as the numeric values of the parameters:
Z
π/6
e2x cos 3x dx
0
Problem7: Evaluate the definite integral using the tables. Indicate the number of the formula used, as well as the numeric values of the parameters:
Z
π/3
sin(2y) cos(y) dy
π/6
Problem8: Evaluate the definite integral using the tables. Indicate the number of the formula used, as well as the numeric values of the parameters:
Z
u2 + 3
√
du =
u2 u 2 + 1
Problem
9: Evaluate the improper integral
R∞ 1
dx
1 x2
Problem 10: Use Fundamental theorem of Calculus to find the derivative of
the function:
Rx
a) F (x) = 0 t2 dt
R x2
b) F (x) = 0 tan(t)dt
Summer Term I
Kostadinov
MA124 Calculus II
Boston University
TABLE OF INTEGRALS
√
√
R√
2
1:
a2 + u2 du = u2 a2 + u2 + a2 ln(u + a2 + u2 ) + C
√
R du
√
2:
=
ln(u
+
a2 + u2 ) + C
u2 +a2
R
2
2
√du
= − a a+u
3:
+C
2u
u2 u2 +a2
√
√
R √a2 +u2
a2 +u2
4:
du
=
−
+
ln(u
+
a2 + u 2 ) + C
2
u
u
√
R du
√
5:
= ln(u + a2 + u2 ) + C
a2 +u2
√
√
R u2 du
2
√
= − u2 u2 − a2 + a2 ln |u + u2 − a2 | + C
6:
u2 −a2
√
R u2 du
2
4
2
2
√
7:
=
(8a
+
3u
+
4a
u)
u − a2 + C
15
u−a2
R
8:
sin(au) cos(bu) du = − cos((a−b)u)
− cos((a+b)u)
+C
2(a−b)
2(a+b)
√
√
R u2 du
2
√
9:
= u2 a2 + u2 − a2 ln(u + a2 + u2 ) + C
a2 +u2
R
10:
u cos(u) du = cos(u) + u sin(u) + C
R au
au
11:
e cos bu du = a2e+b2 (a cos(bu) + b sin(bu)) + C
R au
12:
ue du = a12 (au − 1)eau + C
√
R
a+ a2 +u2
1
√ du
13:
ln(
)+C
=
−
a
u
u a2 +u2
Values of trigonometric functions, you may find useful:
sin(0) = 0
√
π
3
sin =
3
2
sin
π
=1
2
√
π
3
cos =
6
2
sin π = 0
cos
π
1
=
3
2

Documents pareils

Math 220 November 8 I. Evaluate thel indefinite integral. 1. ∫ (e3x +

Math 220 November 8 I. Evaluate thel indefinite integral. 1. ∫ (e3x + csc(x)(csc(x) cot(x))dx u = csc(x) du = − csc(x) cot(x)dx Z

Plus en détail

Preparation for Exam 1

Preparation for Exam 1 By working on these and similar exercises, you will become more familiar with the related concepts and skills. It will help to warm you up and prepare well for the coming exam. Please note that the...

Plus en détail

Calculus Notes Derivative of an Inverse Given f(a) = b → f

Calculus Notes Derivative of an Inverse Given f(a) = b → f Derivative of an Inverse Given f(a) = b → f-1 (b) = a f '(a) = m The Derivative of the inverse at b is the reciprocal of the derivative of f(x) at a

Plus en détail