Quiz No.8 - Boston University
Transcription
Quiz No.8 - Boston University
Summer Term I Kostadinov MA124 Calculus II Boston University Quiz No.8 student: Problem 1: Evaluate the definite integral 1 Z e3x dx 0 Problem 2: Evaluate the indefinite integral Z xex dx Problem 3: Evaluate the indefinite integral Z sin(ln(x)) dx x Problem 4: Evaluate the definite integral Z 1 x − x2 dx 0 Problem 5: Find the area of the region enclosed by the curves y = x and y = x2 from x = 0 to x = 1. Summer Term I Kostadinov MA124 Calculus II Boston University Problem 6: Evaluate the definite integral using the tables. Indicate the number of the formula used, as well as the numeric values of the parameters: Z π/6 e2x cos 3x dx 0 Problem7: Evaluate the definite integral using the tables. Indicate the number of the formula used, as well as the numeric values of the parameters: Z π/3 sin(2y) cos(y) dy π/6 Problem8: Evaluate the definite integral using the tables. Indicate the number of the formula used, as well as the numeric values of the parameters: Z u2 + 3 √ du = u2 u 2 + 1 Problem 9: Evaluate the improper integral R∞ 1 dx 1 x2 Problem 10: Use Fundamental theorem of Calculus to find the derivative of the function: Rx a) F (x) = 0 t2 dt R x2 b) F (x) = 0 tan(t)dt Summer Term I Kostadinov MA124 Calculus II Boston University TABLE OF INTEGRALS √ √ R√ 2 1: a2 + u2 du = u2 a2 + u2 + a2 ln(u + a2 + u2 ) + C √ R du √ 2: = ln(u + a2 + u2 ) + C u2 +a2 R 2 2 √du = − a a+u 3: +C 2u u2 u2 +a2 √ √ R √a2 +u2 a2 +u2 4: du = − + ln(u + a2 + u 2 ) + C 2 u u √ R du √ 5: = ln(u + a2 + u2 ) + C a2 +u2 √ √ R u2 du 2 √ = − u2 u2 − a2 + a2 ln |u + u2 − a2 | + C 6: u2 −a2 √ R u2 du 2 4 2 2 √ 7: = (8a + 3u + 4a u) u − a2 + C 15 u−a2 R 8: sin(au) cos(bu) du = − cos((a−b)u) − cos((a+b)u) +C 2(a−b) 2(a+b) √ √ R u2 du 2 √ 9: = u2 a2 + u2 − a2 ln(u + a2 + u2 ) + C a2 +u2 R 10: u cos(u) du = cos(u) + u sin(u) + C R au au 11: e cos bu du = a2e+b2 (a cos(bu) + b sin(bu)) + C R au 12: ue du = a12 (au − 1)eau + C √ R a+ a2 +u2 1 √ du 13: ln( )+C = − a u u a2 +u2 Values of trigonometric functions, you may find useful: sin(0) = 0 √ π 3 sin = 3 2 sin π =1 2 √ π 3 cos = 6 2 sin π = 0 cos π 1 = 3 2
Documents pareils
Math 220 November 8 I. Evaluate thel indefinite integral. 1. ∫ (e3x +
csc(x)(csc(x) cot(x))dx
u = csc(x)
du = − csc(x) cot(x)dx
Z
Preparation for Exam 1
By working on these and similar exercises, you will become more familiar with the related concepts and skills. It will help to warm you up and prepare well for the coming exam. Please note
that the...
Calculus Notes Derivative of an Inverse Given f(a) = b → f
Derivative of an Inverse
Given f(a) = b → f-1 (b) = a
f '(a) = m
The Derivative of the inverse at b is the reciprocal of the derivative of f(x) at a