Calculus Tables
Transcription
Calculus Tables
ALGEBRA Lines Special Factorizations Slope of the line through P1 = (x 1 , y1 ) and P2 = (x 2 , y2 ): y − y1 m= 2 x2 − x1 Slope-intercept equation of line with slope m and y-intercept b: x 2 − y 2 = (x + y)(x − y) x 3 + y 3 = (x + y)(x 2 − x y + y 2 ) x 3 − y 3 = (x − y)(x 2 + x y + y 2 ) y = mx + b Binomial Theorem Point-slope equation of line through P1 = (x 1 , y1 ) with slope m: (x + y)2 = x 2 + 2x y + y 2 y − y1 = m(x − x 1 ) Point-point equation of line through P1 = (x 1 , y1 ) and P2 = (x 2 , y2 ): y − y1 y − y1 = m(x − x 1 ) where m = 2 x2 − x1 Lines of slope m 1 and m 2 are parallel if and only if m 1 = m 2 . Lines of slope m 1 and m 2 are perpendicular if and only if m 1 = − m12 . (x − y)2 = x 2 − 2x y + y 2 (x + y)3 = x 3 + 3x 2 y + 3x y 2 + y 3 (x − y)3 = x 3 − 3x 2 y + 3x y 2 − y 3 n(n − 1) n−2 2 x (x + y)n = x n + nx n−1 y + y 2 n n−k k + ··· + x y + · · · + nx y n−1 + y n k n n(n − 1) · · · (n − k + 1) where = k 1 · 2 · 3 · ··· · k Circles Equation of the circle with center (a, b) and radius r : (x − a)2 + (y − b)2 = r 2 Distance and Midpoint Formulas Quadratic Formula Distance between P1 = (x 1 , y1 ) and P2 = (x 2 , y2 ): d = (x 2 − x 1 )2 + (y2 − y1 )2 x 1 + x 2 y1 + y2 , Midpoint of P1 P2 : 2 2 If ax 2 + bx + c = 0, then x = −b ± b2 − 4ac . 2a Inequalities and Absolute Value If a < b and b < c, then a < c. Laws of Exponents If a < b, then a + c < b + c. xm x m x n = x m+n xn = x m−n 1 x −n = n x (x y)n = x n y n √ x 1/n = n x √ n x m/n = √ n xm = If a < b and c > 0, then ca < cb. (x m )n = x mn n x xn = n y y √ n x x n = √ n y y √ √ xy = n x n y √ m n x If a < b and c < 0, then ca > cb. |x| = x |x| = −x if x ≥ 0 if x ≤ 0 −a 0 a | x | < a means −a < x < a. c−a c c+a | x − c | < a means c − a < x < c + a. GEOMETRY Formulas for area A, circumference C, and volume V Cone with arbitrary base Triangle Circle Sector of Circle Sphere Cylinder Cone A = 12 bh A = πr 2 C = 2π r A = 12 r 2 θ V = 43 π r 3 V = πr 2 h s = rθ (θ in radians) A = 4π r 2 V = 13 π r 2 h A = πr r 2 + h 2 = 12 ab sin θ a h q b r r s q r r h h r Pythagorean Theorem: For a right triangle with hypotenuse of length c and legs of lengths a and b, c2 = a 2 + b2 . V = 13 Ah where A is the area of the base h TRIGONOMETRY Angle Measurement π Fundamental Identities radians = 180◦ 1◦ = π rad 180 s = rθ s r q 180◦ 1 rad = r π (θ in radians) hyp opp sin θ = hyp adj cos θ = hyp sin θ opp tan θ = = cos θ adj cos θ adj cot θ = = sin θ opp 1 hyp = sec θ = cos θ adj 1 hyp csc θ = = sin θ opp opp q adj csc θ = r y r sec θ = x x cot θ = y sin θ =1 θ →0 θ 1 − cos θ =0 θ θ →0 (− (− 23 , 12 ) 5p 6 (−1, 0) p 7p 6 − θ = cos θ 2 π − θ = sin θ cos 2 π − θ = cot θ tan 2 sin(θ + 2π ) = sin θ cos(θ + 2π ) = cos θ tan(θ + π ) = tan θ B sin B sin C sin A = = a b c P = (r cosq, r sinq ) r a c C q y Addition and Subtraction Formulas x sin(x + y) = sin x cos y + cos x sin y sin(x − y) = sin x cos y − cos x sin y cos(x + y) = cos x cos y − sin x sin y cos(x − y) = cos x cos y + sin x sin y ( 12 , 23 ) ( 22 , 22 ) 3 p 60˚ 4 3 1 45˚ p ( 2 , 2) tan(x + y) = tan x + tan y 1 − tan x tan y tan(x − y) = tan x − tan y 1 + tan x tan y (0, 1) p 2 120˚ 135˚ 150˚ 4 180˚ 210˚ 225˚ 5p 240˚ b A a 2 = b2 + c2 − 2bc cos A lim (− 12 , 23 ) ) 3p 2p3 tan(−θ ) = − tan θ π The Law of Cosines y r x cos θ = r y tan θ = x 2 2 , 2 2 cos(−θ ) = cos θ 1 + cot2 θ = csc2 θ The Law of Sines Trigonometric Functions lim sin(−θ ) = − sin θ 1 + tan2 θ = sec2 θ sin Right Triangle Definitions sin θ = sin2 θ + cos2 θ = 1 90˚ p Double-Angle Formulas 30˚ 6 0˚ 0 360˚ 2p (1, 0) 330˚ 11p 3 1 315˚ 6 ,− 2 2 300˚ 7p sin 2x = 2 sin x cos x cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x (− 23 , − 12 ) ( ) 4 4p 5p 4 2 2 2 2 − − − ( 2 , 2 ) 3 270˚ 3p2 3 ( 2 , 2 ) 1 3 (0, −1) ( 2 , − 2 ) (− 12 , − 23 ) tan 2x = 2 tan x 1 − tan2 x sin2 x = 1 − cos 2x 2 cos2 x = Graphs of Trigonometric Functions y 1 y y y = sin x y = cos x 1 y = tan x 2 x p p 2p −1 2p p −2 2p −1 y y y = csc x 1 −1 x x p x 2p y y = sec x 2 1 −1 y = cot x p x 2p −2 p x 2p 1 + cos 2x 2 ELEMENTARY FUNCTIONS Power Functions f(x) = xa f (x) = x n , n a positive integer y y y = x4 y = x3 y = x2 (−1, 1) 1 (1, 1) (−1, −1) −1 y = x5 2 −1 x 1 −1 −2 x 1 (1, 1) n odd n even Asymptotic behavior of a polynomial function of even degree and positive leading coefficient Asymptotic behavior of a polynomial function of odd degree and positive leading coefficient y y x x n even f (x) = x −n = 1 xn n odd y y y= 1 x3 y= y= 1 −1 1 x x −1 y= 1 −1 1 1 x4 1 x2 x −1 1 Inverse Trigonometric Functions arcsin x = sin−1 x = θ ⇔ sin θ = x, − arccos x = cos−1 x = θ π π ≤θ≤ 2 2 ⇔ cos θ = x, ⇔ p 2 − q = cos−1 x −1 −1 π π <θ< 2 2 q = tan−1 x p 2 1 −p tan θ = x, q q = sin−1 x x −1 0≤θ≤π q q p 2 arctan x = tan−1 x = θ x 1 −p 2 x 1 Exponential and Logarithmic Functions loga x = y loga (a x ) ⇔ ay = x =x =x a loga x loga 1 = 0 ln x = y ln(e x ) loga a = 1 ⇔ =x loga (x y) = loga x + loga y =x x loga = loga x − loga y y eln x ln 1 = 0 y ey = x ln e = 1 loga (x r ) = r loga x y y= ( 12 )x ex 4 e−x ( 14 )x y 10 x 4 x ex y = log2 x 2x y = log x y = log5 x y = log10 x 2 y=x 1.5 x 3 1 2 x 1 −1 −1 y = ln x 1 2 3 1 1 2 3 4 5 x 4 −2 lim a x = ∞, a > 1 −1 1 2 x lim a x = 0, a > 1 x→∞ lim loga x = −∞ x→0+ x→−∞ lim a x = 0, 0 < a < 1 x→∞ lim a x = ∞, 0<a<1 x→−∞ lim loga x = ∞ x→∞ Hyperbolic Functions e x − e−x 2 x e + e−x cosh x = 2 sinh x tanh x = cosh x sinh x = 1 sinh x 1 sech x = cosh x cosh x coth x = sinh x y csch x = y y = coth x 3 y = cosh x 1 2 y = tanh x 1 −2 y = sinh x −1 x −1 1 2 −2 2 −2 −1 −3 Inverse Hyperbolic Functions y = sinh−1 x ⇔ sinh y = x y = cosh−1 x ⇔ cosh y = x and y ≥ 0 y = tanh−1 x ⇔ tanh y = x x sinh(x + y) = sinh x cosh y + cosh x sinh y sinh 2x = 2 sinh x cosh x cosh(x + y) = cosh x cosh y + sinh x sinh y cosh 2x = cosh2 x + sinh2 x sinh−1 x = ln x + x 2 + 1 cosh−1 x = ln x + x 2 − 1 x > 1 1+x 1 tanh−1 x = ln −1 < x < 1 2 1−x y y = sinh−1 x 1 −2 −1 y = cosh−1 x 1 −1 2 x DIFFERENTIATION Differentiation Rules 1. 2. d (c) = 0 dx d x=1 dx 21. d 1 (tan−1 x) = dx 1 + x2 22. d 1 (csc−1 x) = − dx x x2 − 1 d 1 (sec−1 x) = dx x x2 − 1 d 1 (cot−1 x) = − 24. dx 1 + x2 23. 3. d n (x ) = nx n−1 dx 4. d [c f (x)] = c f (x) dx (Power Rule) Exponential and Logarithmic Functions d 5. [ f (x) + g(x)] = f (x) + g (x) dx d [ f (x)g(x)] = f (x)g (x) + g(x) f (x) (Product Rule) dx f (x) d g(x) f (x) − f (x)g (x) (Quotient Rule) 7. = d x g(x) [g(x)]2 6. 25. d x (e ) = e x dx 26. d x (a ) = (ln a)a x dx 27. 1 d ln |x| = dx x 1 d (loga x) = dx (ln a)x 8. d f (g(x)) = f (g(x))g (x) dx (Chain Rule) 28. 9. d f (x)n = n f (x)n−1 f (x) dx (General Power Rule) Hyperbolic Functions 10. d f (kx + b) = k f (kx + b) dx 1 where g(x) is the inverse f −1 (x) f (g(x)) f (x) d ln f (x) = 12. dx f (x) 11. g (x) = Trigonometric Functions 29. d (sinh x) = cosh x dx 30. d (cosh x) = sinh x dx 31. d (tanh x) = sech2 x dx 32. d (csch x) = − csch x coth x dx 13. d sin x = cos x dx 33. d (sech x) = − sech x tanh x dx 14. d cos x = − sin x dx 34. d (coth x) = − csch2 x dx 15. d tan x = sec2 x dx Inverse Hyperbolic Functions 16. d csc x = − csc x cot x dx 35. 17. d sec x = sec x tan x dx 18. d cot x = − csc2 x dx Inverse Trigonometric Functions d 1 (sin−1 x) = dx 1 − x2 d 1 (cos−1 x) = − 20. dx 1 − x2 19. d 1 (sinh−1 x) = dx 1 + x2 d 1 (cosh−1 x) = 36. dx x2 − 1 37. 1 d (tanh−1 x) = dx 1 − x2 38. d 1 (csch−1 x) = − dx |x| x 2 + 1 39. d 1 (sech−1 x) = − dx x 1 − x2 40. d 1 (coth−1 x) = dx 1 − x2 INTEGRATION Substitution Integration by Parts Formula If an integrand has the form f (u(x))u (x), then rewrite the entire integral in terms of u and its differential du = u (x) d x: f (u(x))u (x) d x = u(x)v (x) d x = u(x)v(x) − u (x)v(x) d x f (u) du TABLE OF INTEGRALS Basic Forms u n du = 1. 2. u n+1 + C, n+1 n = −1 du = ln |u| + C u eu du = eu + C 3. 4. au a u du = +C ln a sin u du = − cos u + C 5. cos u du = sin u + C 6. sec2 u du = tan u + C 7. csc2 u du = − cot u + C 8. sec u tan u du = sec u + C 9. csc u cot u du = − csc u + C 10. tan u du = ln |sec u| + C 11. cot u du = ln |sin u| + C 12. sec u du = ln |sec u + tan u| + C 13. csc u du = ln |csc u − cot u| + C 14. du u = sin−1 + C a a2 − u 2 du 1 u 16. = tan−1 + C a a a2 + u 2 15. Exponential and Logarithmic Forms 1 ueau du = 2 (au − 1)eau + C a 1 n 18. u n eau du = u n eau − u n−1 eau du a a eau (a sin bu − b cos bu) + C 19. eau sin bu du = 2 a + b2 eau 20. eau cos bu du = 2 (a cos bu + b sin bu) + C a + b2 21. ln u du = u ln u − u + C 17. u n ln u du = 22. 23. u n+1 [(n + 1) ln u − 1] + C (n + 1)2 1 du = ln |ln u| + C u ln u Hyperbolic Forms sinh u du = cosh u + C 24. cosh u du = sinh u + C 25. tanh u du = ln cosh u + C 26. coth u du = ln |sinh u| + C 27. 28. 29. sech u du = tan−1 |sinh u| + C 1 csch u du = ln tanh u + C 2 sech2 u du = tanh u + C 30. csch2 u du = − coth u + C 31. sech u tanh u du = − sech u + C 32. csch u coth u du = − csch u + C 33. Trigonometric Forms 1 1 u − sin 2u + C 2 4 1 1 35. cos2 u du = u + sin 2u + C 2 4 36. tan2 u du = tan u − u + C 37. cot2 u du = − cot u − u + C 1 38. sin3 u du = − (2 + sin2 u) cos u + C 3 1 3 39. cos u du = (2 + cos2 u) sin u + C 3 1 40. tan3 u du = tan2 u + ln |cos u| + C 2 1 3 41. cot u du = − cot2 u − ln |sin u| + C 2 1 1 42. sec3 u du = sec u tan u + ln |sec u + tan u| + C 2 2 34. sin2 u du = 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 1 1 csc3 u du = − csc u cot u + ln |csc u − cot u| + C 2 2 1 n−1 n n−1 u cos u + sinn−2 u du sin u du = − sin n n 1 n−1 cosn−2 u du cosn u du = cosn−1 u sin u + 2 n 1 tann u du = tann−1 u − tann−2 u du n−1 −1 n cotn−1 u − cotn−2 u du cot u du = n−1 1 n−2 tan u secn−2 u + secn−2 u du secn u du = n−1 n−1 −1 n−2 cscn u du = cot u cscn−2 u + cscn−2 u du n−1 n−1 sin(a − b)u sin(a + b)u sin au sin bu du = − +C 2(a − b) 2(a + b) sin(a − b)u sin(a + b)u cos au cos bu du = + +C 2(a − b) 2(a + b) cos(a − b)u cos(a + b)u sin au cos bu du = − − +C 2(a − b) 2(a + b) u sin u du = sin u − u cos u + C 53. Forms Involving 67. 68. 69. 70. 71. 72. 73. 74. 75. u cos u du = cos u + u sin u + C 55. u n sin u du = −u n cos u + n u n−1 cos u du 56. u n cos u du = u n sin u − n u n−1 sin u du 57. sinn u cosm u du sinn−1 u cosm+1 u n−1 =− + sinn−2 u cosm u du n+m n+m sinn+1 u cosm−1 u m −1 = + sinn u cosm−2 u du n+m n+m 54. Inverse Trigonometric Forms 58. 59. sin−1 u du = u sin−1 u + 1 − u2 + C cos−1 u du = u cos−1 u − 1 − u2 + C 1 ln(1 + u 2 ) + C 2 2u 2 − 1 −1 u 1 − u2 61. u sin−1 u du = sin u + +C 4 4 2u 2 − 1 u 1 − u2 62. u cos−1 u du = cos−1 u − +C 4 4 u2 + 1 u 63. u tan−1 u du = tan−1 u − + C 2 2 n+1 1 u du 64. u n sin−1 u du = u n+1 sin−1 u − , n = −1 n+1 1 − u2 n+1 du 1 u n −1 n+1 −1 cos u + u , n = −1 65. u cos u du = n+1 1 − u2 n+1 du 1 u u n+1 tan−1 u − , n = −1 66. u n tan−1 u du = n+1 1 + u2 60. tan−1 u du = u tan−1 u − √ a2 − u2 , a > 0 u u 2 a2 a 2 − u 2 du = a − u2 + sin−1 + C 2 2 a u u a4 2 2 2 2 2 2 2 u a − u du = (2u − a ) a − u + sin−1 + C 8 8 a 2 2 2 2 a −u a + a − u du = a 2 − u 2 − a ln +C u u 2 1 2 a − u2 u du = − a − u 2 − sin−1 + C 2 u a u u 2 a2 u u 2 du −1 2 =− a −u + sin +C 2 2 a a2 − u 2 du 1 a + a 2 − u 2 = − ln +C a u u a2 − u 2 du 1 2 =− 2 a − u2 + C a u u 2 a2 − u 2 u 3a 4 u (a 2 − u 2 )3/2 du = − (2u 2 − 5a 2 ) a 2 − u 2 + sin−1 + C 8 8 a du u = + C (a 2 − u 2 )3/2 a2 a2 − u 2 Forms Involving √ u2 − a2 , a > 0 u 2 a 2 u 2 − a 2 du = u − a2 − ln u + u 2 − a 2 + C 2 2 77. u 2 u 2 − a 2 du u a 4 = (2u 2 − a 2 ) u 2 − a 2 − ln u + u 2 − a 2 + C 8 8 2 u − a2 a du = u 2 − a 2 − a cos−1 +C 78. u |u| u 2 − a2 u 2 − a2 du = − + ln u + u 2 − a 2 + C 79. u u du 80. = ln u + u 2 − a 2 + C u 2 − a2 u 2 du u 2 a 2 81. = u − a2 + ln u + u 2 − a 2 + C 2 2 u 2 − a2 du u 2 − a2 82. +C = 2 2 2 a2 u u u −a du u 83. =− +C 2 (u 2 − a 2 )3/2 a u 2 − a2 76. Forms Involving a2 + u2 , a > 0 u 2 a2 a 2 + u 2 du = a + u2 + ln u + a 2 + u 2 + C 2 2 85. u 2 a 2 + u 2 du u a4 = (a 2 + 2u 2 ) a 2 + u 2 − ln u + a 2 + u 2 + C 8 8 2 a + a2 + u 2 a + u2 2 2 86. du = a + u − a ln +C u u 2 2 2 2 a +u a +u 87. du = − + ln u + a 2 + u 2 + C u u2 84. 88. 89. du a2 + u 2 u 2 du a2 + u 2 = ln u + a 2 + u 2 + C = u 2 a2 + u 2 − a2 2 ln u + 101. du 1 a 2 + u 2 + a 90. = − ln +C a u u a2 + u 2 du a2 + u 2 91. =− +C 2 2 2 a2 u u a +u u du = +C 92. (a 2 + u 2 )3/2 a2 a2 + u 2 93. 102. 103. 104. Forms Involving a + bu = a2 + u 2 + C 105. u du 1 = 2 a + bu − a ln |a + bu| + C a + bu b u 2 du 1 = 3 (a + bu)2 − 4a(a + bu) + 2a 2 ln |a + bu| + C a + bu 2b du 1 u 95. = ln +C u(a + bu) a a + bu a + bu b 1 du +C ln + = − 96. au u 2 (a + bu) a2 u u du a 1 97. = 2 + 2 ln |a + bu| + C (a + bu)2 b (a + bu) b a + bu 1 1 du +C = ln − 98. a(a + bu) u(a + bu)2 a2 u u 2 du 1 a2 99. = 3 a + bu − − 2a ln |a + bu| + C a + bu (a + bu)2 b √ 2 (3bu − 2a)(a + bu)3/2 + C 100. u a + bu du = 15b2 √ u n a + bu du 106. 94. 107. √ 2 u n (a + bu)3/2 − na u n−1 a + bu du b(2n + 3) √ u du 2 = 2 (bu − 2a) a + bu + C √ 3b a + bu √ n−1 2u n a + bu du u n du 2na u = − √ √ b(2n + 1) b(2n + 1) a + bu a + bu √ a + bu − √a 1 du = √ ln √ √ √ + C, if a > 0 a a + bu + a u a + bu a + bu 2 tan−1 + C, if a < 0 = √ −a −a √ a + bu b(2n − 3) du du =− − √ √ n−1 n 2a(n − 1) a(n − 1)u u a + bu u n−1 a + bu √ √ du a + bu du = 2 a + bu + a √ u u a + bu √ √ a + bu a + bu b du du = − + √ u 2 u2 u a + bu Forms Involving 108. 109. √ 2au − u2 , a > 0 2au − u 2 du = u −a a2 a−u 2au − u 2 + cos−1 +C 2 2 a u 2au − u 2 du 2u 2 − au − 3a 2 a3 2au − u 2 + cos−1 6 2 a−u du = cos−1 +C 110. a 2au − u 2 2au − u 2 du =− +C 111. 2 au u 2au − u = a−u a +C ESSENTIAL THEOREMS Intermediate Value Theorem The Fundamental Theorem of Calculus, Part I If f (x) is continuous on a closed interval [a, b] and f (a) = f (b), then for every value M between f (a) and f (b), there exists at least one value c ∈ (a, b) such that f (c) = M. Assume that f (x) is continuous on [a, b] and let F(x) be an antiderivative of f (x) on [a, b]. Then b Mean Value Theorem If f (x) is continuous on a closed interval [a, b] and differentiable on (a, b), then there exists at least one value c ∈ (a, b) such that f (b) − f (a) f (c) = b−a Extreme Values on a Closed Interval If f (x) is continuous on a closed interval [a, b], then f (x) attains both a minimum and a maximum value on [a, b]. Furthermore, if c ∈ [a, b] and f (c) is an extreme value (min or max), then c is either a critical point or one of the endpoints a or b. a f (x) d x = F(b) − F(a) Fundamental Theorem of Calculus, Part II Assume that f (x)is a continuous function on [a, b]. Then the area function A(x) = x a A (x) = f (x) f (t) dt is an antiderivative of f (x), that is, or equivalently x d f (t) dt = f (x) dx a Furthermore, A(x) satisfies the initial condition A(a) = 0.
Documents pareils
MATH 141 Fundamental Theorem of Calculus (FTC) Let f : [a, b] → R
MATH 141
Fundamental Theorem of Calculus (FTC)
Integral Formulas 1. ∫ u du = 1 n + 1 u + c if n
(10) 1. Carbon extracted from a tooth found at an archaeological dig
contains 15 as much radioactive as is found in teeth of living creatures.
The half-life of 14C is 5700 years. Even though you do...
Algebra Geometry - Stewart Calculus
y csch u du ln tanh u C
109. y sech u du tanh u C
110. y csch u du coth u C
111. y sech u tanh u du sech u C
112. y csch u coth u du csch u C
OFFRES !!! ANNÉE 2016 PNEUS D`ETÉ MARCA DIMENSIÓ
BRAVURIS 3
RSP3
CSC5
PRIMACY3
BRAVURIS 3
RSP3
CPC5
PRIMACY3/SAVER+
BRAVURIS 3
RSP3
CPC5
PRIMACY3
BRAVURIS 2