MATH 141 Fundamental Theorem of Calculus (FTC) Let f : [a, b] → R
Documents pareils
Recall from Math 141 Integration Basics Fundamental Theorem of
Let f : [a, b] → R be a continuous function. Let F : [a, b] → R be a function. • If F is an antiderivative of f on [a, b] (i.e. F 0 (x) = f (x) for each x ∈ [a, b]), then Z b Z b f (x) dx ≡ F 0 (x)...
Plus en détailCalculus Tables
Extreme Values on a Closed Interval If f (x) is continuous on a closed interval [a, b], then f (x) attains both a minimum and a maximum value on [a, b]. Furthermore, if c ∈ [a, b] and f (c) is an e...
Plus en détailCalculus I Integration: A Very Short Summary Definition
The Riemann Sum is a sum of the areas of n rectangles formed over n subintervals in [a, b] . Here the subintervals are of equal length, but they need not be. The height of the ith rectangle, is the...
Plus en détailIntegral Formulas 1. ∫ u du = 1 n + 1 u + c if n
calculator, find an expression for the age of the tooth.
Plus en détailAP Calculus AB Chapter 6 Worksheet
We have sin udu cos u cos x u tan x ; sec2 x ; du sec 2 x dx
Plus en détail