AP Calculus AB Chapter 6 Worksheet
Transcription
bnAP Calculus AB Chapter 6 Worksheet 1. Find each antiderivative: Name:SOLUTIONS 11x5 5 x 2 x11/ 2 x5/ 2 9/ 2 3/ 2 (a) dx 11x 5 x dx 11 5 C 11/ 2 5/ 2 x 1 1 (b) 7 dx 7 x C (c) (d) sec2 (3x) dx 1 tan(3x) csc 1 u 1 tan(3x); du 3sec 2 3x dx; du sec 2 3x dx 3 2 sec (3x) 1 1/ 2 1 u1/ 2 2 1/ 2 dx u du 1 tan(3x) C 1 tan(3x) 3 3 1/ 2 3 x cot x dx u x (e) e1/ x x 2 dx csc x ; du 1 1/ 2 1 x dx; 2du dx 2 x x cot x dx 2 x csc u cot udu 2csc u 2csc u 1/ x; du 1/ x 2 dx; du 1 dx; x2 e1/ x u u 1/ x x2 dx e du e e C (f) x (g) x 1 dx 2x 2 cos(2ln( x)) dx x 1 u x 2 2 x; du 2 x 2 dx; du x 1 dx 2 x 1 1 du 1 1 2 x2 2x dx 2 u 2 ln u 2 ln x 2 x C 2 1 1 dx; du dx x 2 x cos(2ln( x)) 1 1 1 dx cos udu sin u sin 2ln x C x 2 2 2 u 2ln x; du x C 2. Evaluate each integral (a) 1 1 1 0 0 0 2x 2x 10e 4dx 10e dx 4dx For the first integral, let u 2 x; We have 1 10e 0 2x (b) du 1 2; du dx dx 2 1 10eu du 5eu ee2 x , so 2 dx 4dx 5e 4 x 5e 4 5 1 0 2x 1 2 0 1 5 dx hint: x 0 5x e x ln5 du 1 ln 5e x ln 5dx; du e x ln 5dx dx ln 5 1 1 u 1 x ln 5 5x u We have e du e e ln 5 ln 5 ln 5 ln 5 u e x ln 5 ; 1 5x 5 1 So 5 dx 0 ln 5 0 ln 5 1 x 3 1 tan ( x) 1 du 1 (c) sin( x)dx . Let u x; (d) dx tan 3 ( x)sec2 ( x)dx . ; du dx 2 1/ 2 3/ 4 3/ 4 dx cos ( x) 1 1 1 du 1 We have sin udu cos u cos x u tan x ; sec2 x ; du sec 2 x dx dx 1 1 1 1 1 3 1 u4 1 So sin( x)dx cos x 1 0 We have u du tan 4 x 1/ 2 4 4 1/ 2 1 So 3. Sketch a slope field for the differential equation 1 3/ 4 tan 3 ( x)sec2 ( x)dx 1 1 0 1 4 4 dy x on the axes below. dx 4 1 1 tan 4 ( x) 3/ 4 4
Documents pareils
Integral Formulas 1. ∫ u du = 1 n + 1 u + c if n
(c) Write down the 3rd Taylor polynomial P3(x) , for xe−2x , at a = 0 .
MATH 141 Fundamental Theorem of Calculus (FTC) Let f : [a, b] → R
If the functions y = f (x) and y = g(x) are differentiable at x and a and b are constants, then:
1. Dx [af (x) + bg(x)] = af 0 (x) + bg 0 (x)
2. Dx [f (x) · g(x)] = f 0 (x) · g(x) + f (x) · g 0 (x)
Recall from Math 141 Integration Basics Fundamental Theorem of
If f is differentiable at x and g is differentiable at f (x), then:
(4) Dx [g(f (x))] = g 0 (f (x)) f 0 (x) .
On this handout, a (∗) means that you do not have to memorize the formula
but should be...
Calculus I Integration: A Very Short Summary Definition
+ C for r 6= −1
r+1
Z
Z
du
= u−1 du = ln |u| + C for r = −1
u
Z
au
au du =
+C
ln a
Z
eu du = eu + C
Z
cos u du = sin u + C
Z
sin u du = − cos u + C
Z
sec2 u du = tan u + C
Z
sec u tan u du = sec u ...
Calculus Tables
If an integrand has the form f (u(x))u (x), then rewrite the entire
integral in terms of u and its differential du = u (x) d x: