y ysx y4 yt yu yx yx yx
Transcription
y ysx y4 yt yu yx yx yx
SECTION 5.4 5.4 THE FUNDAMENTAL THEOREM OF CALCULUS A Click here for answers. S Click here for solutions. 1. Sketch the area represented by x tx y 2 cos t dt Then find tx in two ways: (a) by using Part 1 of the Fundamental Theorem and (b) by evaluating the integral using Part 2 and then differentiating. ■ Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. 2–12 Copyright © 2013, Cengage Learning. All rights reserved. 3. tx y 1 dt 1 t4 5. tt y 7. hx y 4. tu y 6. Fx y (2 su ) 8. hx y y 12. y y ■ x2 u 4 8 x sx du s2 ds s 1 sin t dt t 1 t 1x 2 y 17 11. y y 5x1 tan x st 3 1 dt sinx 2 dx 0 9. y 2 1 sin x 5 x t 2 1 20 dt y 10. y ■ x 2. tx 1 sin 4 t dt sint 4 dt 0 1 du u2 5 t cost 3 dt ■ ■ THE FUNDAMENTAL THEOREM OF CALCULUS ■ ■ ■ ■ ■ ■ ■ ■ 1 2 ■ SECTION 5.4 THE FUNDAMENTAL THEOREM OF CALCULUS 5.4 ANSWERS E Click here for exercises. (a), (b) 2 + cos x 1. 2. 20 g (x) = x2 − 1 4. g (u) = 6. F (x) = − (2 + 1 1 + u4 √ 8 x) √ x 2 (x + 1) 2 sin x2 dy 10. =− dx x 8. Copyright © 2013, Cengage Learning. All rights reserved. 12. S Click here for solutions. h (x) = √ x3 + 1 3. g (x) = 5. g (t) = sin t2 − sin4 (1/x) x2 dy = − sin tan4 x sec2 x 9. dx 7. h 11. dy = sin x cos x cos sin3 x dx (x) = 5 dy = dx 25x2 + 10x − 4 SECTION 5.4 5.4 THE FUNDAMENTAL THEOREM OF CALCULUS SOLUTIONS E Click here for exercises. 10. 1. Let u = x2 . Then d dy = dx dx (b) g (x) = x ⇒ g (x) = 2 + cos x π (2 + cos t) dt π (2 + cos t) dt = [2t + sin t]xπ x = (2x + sin x) − (2π + 0) = 2x + sin x − 2π 2. 3. 4. 5. 6. 7. so g (x) = 2 + cos x. x 20 20 g (x) = 1 t2 − 1 dt ⇒ g (x) = x2 − 1 x √ √ g (x) = −1 t3 + 1 dt ⇒ g (x) = x3 + 1 u 1 1 g (u) = dt ⇒ g (u) = 4 1 + t 1 + u4 π t 2 g (t) = 0 sin x dx ⇒ g (t) = sin t2 4 x √ 8 √ 8 F (x) = x (2 + u) du = − 4 (2 + u) du ⇒ √ 8 F (x) = − (2 + x) du 1 1 . Then = − 2 , so x dx x 1/x u d d du sin4 t dt = sin4 t dt · dx 2 du 2 dx Let u = Copyright © 2013, Cengage Learning. All rights reserved. = sin4 u − sin4 (1/x) du = dx x2 √ 1 du = √ , so x. Then dx 2 x √x d s2 ds h (x) = 2 dx 1 s +1 u du u2 du d s2 ds · = = du 1 s2 + 1 dx u2 + 1 dx √ 1 x x √ = = x+12 x 2 (x + 1) 8. Let u = 9. Let u = tan x. Then du = sec2 x, so dx 17 tan x d d sin t4 dt = − sin t4 dt dx tan x dx 17 u d du = − sin t4 dt · du 17 dx du = − sin u4 dx = − sin tan4 x sec2 x π d sin t dt = − t dx x2 x2 π sin t dt t u du sin u du sin t dt · =− · t dx u dx 2 2 2 sin x sin x · 2x = − = − x2 x dt 11. Let t = 5x + 1. Then = 5, so dx 5x+1 d t 1 dt 1 d du = du · dx 0 u2 − 5 dt 0 u2 − 5 dx = − (a) g (x) = du = 2x, so dx d du π 1 dt t2 − 5 dx 5 = 25x2 + 10x − 4 = 12. du = cos x, so dx u dy du d du dy = = t cos t3 dt · dx du dx du −5 dx Let u = sin x. Then du = sin x cos sin3 x cos x = u cos u3 dx = sin x cos x cos sin3 x ■ 3
Documents pareils
Parc Materiel Telemark pour 2016 - SCCS
CH01-35
CH02-35
CH03-36
CH04-37
CH05-37
CH06-37
CH07-39
CH08-40
CH09-41
CH10-41
CH11-41
CH12-41
CH13-42
CH14-42
CH15-42
CH16-43
CH17-45
MATH 141 Fundamental Theorem of Calculus (FTC) Let f : [a, b] → R
MATH 141
Fundamental Theorem of Calculus (FTC)