Chap.1 – Enthalpie libre et potentiel chimique
Transcription
Chap.1 – Enthalpie libre et potentiel chimique
Chap.1 – Enthalpie libre et potentiel chimique 1. 2. 3. Quelques rappels de thermodynamique 1.1. Les deux modélisations simplifiées d’un corps pur 1.2. Variables d’état – Fonctions d’état 1.3. 1er et 2e principe de la thermodynamique L’enthalpie libre : G(T,P) 2.1. Définition 2.2. Relation de Gibbs-Helmholtz 2.3. Travail utile maximum récupérable 2.4. G, un potentiel thermodynamique – Conditions d’évolution et d’équilibre Le potentiel chimique (si composition variable) 3.1. Définition – Expression de dG 3.2. Expressions pour un corps pur 3.3. Expressions pour un mélange Intro : L’enthalpie libre est une nouvelle fonction d’état plus adaptée à l’étude des réactions chimiques. On démontre qu’elle joue le rôle d’un potentiel dans le cas des évolutions non provoquées par une contrainte mécanique ou thermique : les réactions chimiques monothermes et monobares. 1. Quelques rappels de thermodynamique 1.1. Les deux modélisations simplifiées d’un corps pur Rappeler les deux modélisations permettant de décrire tous les corps purs (en première approximation) 1.2. Variables d’état – Fonctions d’état Rappeler la définition de l’état d’équilibre thermodynamique Rappeler ce qu’est une fonction d’état, et une variables d’état Rappeler ce qu’est une variable intensive, un variable extensive Pour un corps pur, combien y-a-t-il de variables indépendantes ? En spé, on ne fera plus de distinction entre fonction d’état et variable d’état. 1.3. 1er et 2e principe de la thermodynamique Enoncer précisément les deux principes de la thermodynamique Interpréter physiquement ces deux principes Rappeler les deux identités thermodynamiques Donner l’interprétation qualitative de l’entropie à l’échelle microscopique 1 Moreggia PSI 2012/2013 2. L’enthalpie libre : G(T,P) 2.1. Définition Définition de l’enthalpie libre (en Joules) On l’appelle aussi énergie de Gibbs. Cette grandeur est-elle extensive ou intensive ? Identité thermodynamique associée à G Pour un système de composition constante : P et T apparaissent comme les variables naturelles de G(T,P) Démontrer cette relation à partir des relations thermodynamiques que vous connaissez 2.2. Relation de Gibbs-Helmholtz Relation de Gibbs-Helmoltz Cette relation est intéressante car elle montre qu’en connaissant la fonction on peut en déduire la fonction enthalpie , et du même coup . La fonction contient (presque) toute l’information sur le système. 2.3. Travail utile maximum récupérable Par la suite, on fera systématiquement la distinction entre le travail des forces de pression de travail (travail électrique par exemple). et les autres formes On considère une situation courante en chimie : un système de composition éventuellement variable (changement d’état ou réaction chimique) en évolution monotherme et monobare avec équilibre mécanique et thermique dans l’état initial et final C’est donc une évolution où l’expérimentateur n’agit pas mécaniquement ou thermiquement pour faire évoluer le système (réaction chimique spontanée, ou réaction chimique forcée par action électrique). Si l’on suppose en outre l’évolution réversible, comment peut-on qualifier l’évolution ? Limite supérieure de la variation de G Pour une évolution monotherme et monobare, avec équilibre mécanique et thermique initial et final, ou pour une évolution isotherme et isobare, la variation d’enthalpie libre est limitée : L’égalité étant réalisée dans le cas réversible. Démontrer cette loi à partir des deux principes de la thermodynamique (1er ppe avec H) 2 Moreggia PSI 2012/2013 Travail maximum récupérable : Dans le cas où l’on souhaite récupérer du travail (électrique par exemple, cas de la pile électrochimique) : la valeur absolue de ce travail ne peut excéder la diminution de 2.4. G, un potentiel thermodynamique – Conditions d’évolution et d’équilibre G est un potentiel thermodynamique à et fixées Pour une évolution monotherme et monobare, avec équilibre mécanique et thermique initial et final, ou pour une évolution isotherme et isobare, s’il n’y a pas de travail autre que celui des forces de pression ( : L’égalité étant réalisée dans le cas réversible Remarque : Une évolution réversible isotherme et isobare se fait à constante. Pour ce type de transformations, l’enthalpie libre apparaît donc comme un potentiel qui diminue spontanément au cours de l’évolution, l’équilibre étant atteint lorsque atteint son minimum (cf. analogie avec l’énergie potentielle d’une bille évoluant dans une cuvette). joue pour les évolutions monoT et monoP le rôle que l’entropie joue pour les systèmes isolés. Condition d’évolution : Condition d’équilibre : 3. Le potentiel chimique (si composition variable) Dans un mélange, un constituant physico-chimique est un constituant chimique dans un état physique donné. Exemple : Des glaçons flottent dans un verre d’eau : deux constituants physico-chimiques. 3.1. Définition – Expression de dG Le potentiel chimique est un concept utile si la composition du système varie : - soit un corps pur changeant d’état - soit un mélange de différents constituants physico-chimiques : réactions chimiques Définition du potentiel chimique Dans le cas d’un mélange, l’enthalpie libre du système total dépend des variables suivantes : . Variation élémentaire de G (cas d’un mélange) 3 Moreggia PSI 2012/2013 Expression de G en fonction des potentiels chimiques Du fait de l’extensivité de l’enthalpie libre : Démontrer cette expression en utilisant l’extensivité de l’enthalpie libre. 3.2. Expressions pour un corps pur Toutes les grandeurs dites standard sont définies pour une pression égale à la pression standard . Potentiel chimique d’un gaz parfait pur Remarque : est appelée l’activité du gaz. Potentiel chimique d’une phase condensée Remarque : En première approximation, le potentiel chimique d’une phase condensée (liquide, solide, supposés indilatable et incompressible) ne dépend pas de la pression. 3.3. Expressions pour un mélange Potentiel chimique d’un constituant Remarque : d’un mélange idéal de gaz parfait est la pression partielle du gaz (i) dans le mélange. Le rapport Potentiel chimique d’un soluté Remarque : d’une solution diluée idéale . Le rapport dans le log est l’activité du soluté dans la solution. Potentiel chimique d’un constituant Remarque : est l’activité de ce constituant. d’un mélange condensé idéal est la fraction molaire du constituant. 4 Moreggia PSI 2012/2013 Notions clefs Savoirs : Définition G + identité thermo associée pour corps pur Relation de Gibbs-Helmoltz Utilité de G pour : travail maximum récupérable + potentiel thermo, réactions pour lesquelles ces propriétés s’appliquent Notion de pression partielle pour un mélange de gaz parfait Formules potentiel chimique (sans démonstration) Savoirs faire : 5 Moreggia PSI 2012/2013
Documents pareils
Plan Enthalpie libre
Pour un corps pur sous deux phases, la condition d’équilibre s’écrit (pour l’équilibre liq/vap
par exemple) : gliq(T, P) = gvap(T, P), où g(T, P) est l’enthalpie libre massique du corps pur
considé...
Potentiels thermodynamiques. Enthalpie libre.
Un système thermodynamique soumis aux seules forces de pression, évoluant de façon
isochore et monotherme avec un thermostat à T0, voit toujours la fonction F* associée à
l’ensemble système + therm...