3-thai music - ThaiScience
Transcription
3-thai music - ThaiScience
°“√«‘‡§√“–Àå√–¥—∫‡ ’¬ß¥πµ√’‰∑¬ ƒ¥’ √— µ πå ™‘ 𠇫™°‘ ® «“π‘ ™ ¬å 1*, √“«ÿ ≤‘ ÿ ®‘ µ ®√ 2, °‘ µ µ‘ Õ— µ ∂°‘ ® ¡ß§≈ 3 ·≈– ‡æ’¬√ ‚µ∑à“‚√ß4 Chinvejkitvanich, R.1*, Sujitjorn, S.2, Attakitmongcol, K.3, and Totarong, P.4 (2004). Thai Musical Signal Analysis. Suranaree J. Sci. Technol. 11:179-192. Recieved: Mar 4, 2004; Revised: Aug 10, 2004; Accepted: Aug 14, 2004 Abstract Analysis of Thai principal notes was carried out for the octave referred to as ‘‘Thang Phiang Aw’’. Four different techniques of digital processing, namely discrete Fourier transform (DFT), short-time Fourier transform (STFT), autoregressive model (AR), and modal distribution (MD) werd used. The results indicated that the modal distribution technique was superior to the others. The main Phiang Aw octave covered the frequencies of 465-940 Hz. The pitches were not constant, which was in contrast to the previous hypothesis of Morton’s. Keywords: Musical signal analysis, traditional Thai music ∫∑§—¥¬àÕ °“√«‘‡§√“–Àå√–¥—∫‡ ’¬ß‡ ’¬ß¥πµ√’‰∑¬ ¥”‡π‘πß“π°—∫∑∫‡ ’¬ß°≈“ß∑“ߥπµ√’‰∑¬ ∑’‡Ë √’¬°«à“ ç∑“߇撬ßÕÕé ‰¥âπ”‡∑§π‘§°“√ª√–¡«≈º≈ —≠≠“≥¥‘®‘µÕ≈ ’Ë·∫∫¡“ª√–¬ÿ°µå ‰¥â·°à ‡∑§π‘§°“√·ª≈ßøŸ√‘‡¬√凵Á¡Àπ૬ ‡∑§π‘§°“√·ª≈ßøŸ√‘‡¬√å„π™à«ß‡«≈“ —Èπ ·∫∫®”≈Õ߇ÕÕ“√å ·≈–°“√°√–®“¬‡™‘ß‚¡¥ ‡¡◊ËÕ‡ª√’¬∫‡∑’¬∫º≈æ∫ «à“°“√°√–®“¬‡™‘ß‚¡¥„Àâº≈¥’∑ ’Ë ¥ÿ ‡ ’¬ß‡æ’¬ßÕÕ¢Õ߉∑¬„πÀπ÷ßË ∑∫‡ ’¬ß ¡’§«“¡∂’„Ë π¬à“π 465-940 ‡Œ‘√µ´å ¡’√–¬–摵™å‰¡à§ß∑’Ë¡‘‰¥â‡ªìπ‰ªµ“¡ ¡¡ÿµ‘∞“π¥—È߇¥‘¡¢Õß¡Õ√åµ—π 1 π—°»÷°…“∫—≥±‘µ»÷°…“ “¢“«‘™“«‘»«°√√¡‰øøÑ“ ”π—°«‘™“«‘»«°√√¡»“ µ√å ¡À“«‘∑¬“≈—¬‡∑§‚π‚≈¬’ ÿ√π“√’ Õ”‡¿Õ‡¡◊Õß ®—ßÀ«—¥π§√√“™ ’¡“ 30000 ‚∑√»—æ∑å 0-4422-4400 E-mail: [email protected] 2 Ph.D., √Õß»“ µ√“®“√¬å À—«Àπâ“ “¢“«‘™“«‘»«°√√¡‰øøÑ“ ¡À“«‘∑¬“≈—¬‡∑§‚π‚≈¬’ ÿ√π“√’ 3 Ph.D., ºŸâ™à«¬»“ µ√“®“√¬å “¢“«‘™“«‘»«°√√¡‰øøÑ“ ¡À“«‘∑¬“≈—¬‡∑§‚π‚≈¬’ ÿ√π“√’ 4 æ≈Õ“°“»µ√’ ºŸâÕ”π«¬°“√ ∂“∫—π¡“µ√«‘∑¬“·Ààß™“µ‘ * ºŸâ‡¢’¬π∑’Ë„Àâ°“√µ‘¥µàÕ «“√ “√‡∑§‚π‚≈¬’ ÿ√π“√’ 11:179-192 180 °“√«‘‡§√“–Àå√–¥—∫‡ ’¬ß¥πµ√’‰∑¬ ∫∑π” ‡ ’¬ß‡√‘¡Ë ‡°‘¥¢÷πÈ ‡¡◊ÕË «—µ∂ÿÀ√◊Õ·À≈àß°”‡π‘¥‡ ’¬ß¡’°“√ —πË àߺ≈µàÕ°“√‡§≈◊ÕË π∑’¢Ë Õß‚¡‡≈°ÿ≈Õ“°“»∑’ÕË ¬Ÿ‚à ¥¬√Õ∫ ‡°‘¥°“√‡§≈◊ÕË π∑’‡Ë ¢â“™π°—π·≈–·¬°ÕÕ°®“°°—π ∑”„Àâ §«“¡¥—π¢ÕßÕ“°“»‡æ‘Ë¡¢÷Èπ·≈–≈¥≈ß®“°ª°µ‘ ´÷Ëß °“√‡§≈◊ËÕπ∑’Ëπ’ȇ°‘¥ ≈—∫°—π‰ª¡“ °àÕ°”‡π‘¥‡ªìπ §≈◊Ëπ‡ ’¬ß¢÷Èπ (Alten, 1999) ¡πÿ…¬å‰¥â¬‘π‡ ’¬ß∑’Ë¡’ §«“¡∂’ËÕ¬Ÿà„π™à«ßª√–¡“≥ 20 ∂÷ß 20,000 ‡Œ‘√µ´å ·≈–√—∫√Ÿâ≈—°…≥–¢Õ߇ ’¬ß¥â«¬§«“¡∑ÿâ¡·À≈¡¢Õß ‡ ’ ¬ ßÀ√◊ Õ æ‘ µ ™å (pitch) ·≈–§«“¡¥— ß ¢Õ߇ ’ ¬ ß (loudness) (∫√‘…∑— √’¥‡¥Õ√å ‰¥‡® ∑å (ª√–‡∑»‰∑¬) ®”°—¥, 2541) ‡ ’¬ß¥πµ√’‡ªìπ‡ ’¬ß™π‘¥Àπ÷Ë߇°‘¥®“° °“√ —Ëπ‡™‘ß°≈¢Õßµ—« —Ëπ (oscillator) ´÷Ë߉¥â√—∫°“√ °√–µÿâ π „π√Ÿ ª ·∫∫„¥√Ÿ ª ·∫∫Àπ÷Ë ß à ß º≈∑”„Àâ à«πµà“ß Ê ¢Õ߇§√◊ËÕߥπµ√’ —Ëπ (Mitra, 2001) ”À√—∫‡§√◊ËÕߥπµ√’ª√–‡¿∑‡§√◊ËÕ߇ªÉ“ ‡™àπ ¢≈ÿଠ∑—ßÈ ¢Õßµà“ߪ√–‡∑»·≈–¢Õ߉∑¬ ‡¡◊ÕË ‡ªÉ“≈¡‡¢â“‰ª„π ™àÕß«à“ß¿“¬„π°√–∫Õ° ‚¡‡≈°ÿ≈¢ÕßÕ“°“»∑’ËÕ¬Ÿà ¿“¬„π®–‡§≈◊ËÕπ∑’˰≈—∫‰ª°≈—∫¡“µ“¡§«“¡¬“«¢Õß °√–∫Õ°‡°‘¥‡ªìπ‡ ’¬ß ´÷Ë߇ ’¬ß¥—ß°≈à“«π’ÈÀ“°«—¥√Ÿª §≈◊πË ‰¥â ®–æ∫«à“¡’≈°— …≥–„°≈⇧’¬ß°—∫√Ÿª§≈◊πË ‰´πå (Cannon, 1976) ‡ ’¬ß¥πµ√’®÷߇°‘¥®“°°“√ —Ëπ ∑—ÈßÀ¡¥∑’Ë√«¡°—πÕ¬Ÿà„π‡§√◊ËÕߥπµ√’™‘Èππ—Èπ Ê ∑”„Àâ ‡ ’¬ß¥πµ√’ª√–°Õ∫¥â«¬À≈“¬§«“¡∂’∑Ë À’Ë ‰Ÿ ¡à “¡“√∂ ·¬°·¬–‰¥â«à“¡’§à“§«“¡∂’Ë„¥∫â“ß ·µà®–‰¥â¬‘π‡ ’¬ß ‚¥¬√«¡∑’ˇªìπº≈¢ÕßÀ≈“¬§«“¡∂’Ëæ√âÕ¡ Ê °—π ‡ ’¬ß¥πµ√’‡ªìπ‡ ’¬ß∑’Ë¡πÿ…¬å„Àâ§«“¡ π„® »÷°…“√“¬≈–‡Õ’¬¥ ß“π«‘®—¬∑’Ë∑”°“√«‘‡§√“–Àå‡ ’¬ß ¥πµ√’ ∑’Ë ◊ ∫ §â π ‰¥â ‡ ªì π ¢Õߥπµ√’ µ –«— π µ°‡°◊ Õ ∫ ∑—ÈßÀ¡¥ ¥πµ√’‰∑¬·≈–¥πµ√’ “°≈¡’§«“¡∂’Ë¢Õß ·µà≈–‡ ’¬ßµ—«‚πⵉ¡à‡∑à“°—π ‡π◊ËÕß®“°¥πµ√’ “°≈ ·∫àßÀπ÷Ëß∑∫‡ ’¬ß (octave) ÕÕ°‡ªìπÀⓇ ’¬ß‡µÁ¡ (whole tone) ·≈– Õß§√÷Ë߇ ’¬ß (semi tone) à«π¥πµ√’‰∑¬π—Èπ ·∫àßÀπ÷Ëß∑∫‡ ’¬ßÕÕ°‡ªìπ‡®Á¥ ‡ ’¬ß‡µÁ¡ ´÷Ëß¡’§«“¡‡™◊ËÕ«à“‚πâµ·µà≈–‡ ’¬ß¡’√–¬– Àà“ß∑“ß§«“¡∂’ˇ∑à“ Ê °—πÀ¡¥ ( —≥∑—¥ µ—≥±π—π∑å, 2542) ¥πµ√’‰∑¬¬—߉¡à¡°’ “√ª√–°“»√–¥—∫‡ ’¬ß∑’‡Ë ªìπ ¡“µ√∞“π„π‡™‘ß«‘∑¬“»“ µ√å∑”πÕ߇¥’¬«°—∫¢Õß ¥πµ√’ “°≈ ”À√—∫°“√‡∑’¬∫‡ ’¬ß ·µà¡’°“√°≈à“«∂÷ß ‚¥¬ Õÿ∑‘» π“§ «— ¥‘Ï (2514) «à“ Õ—µ√“ à«π§«“¡∂’Ë √–À«à“߇ ’¬ß‚πâµ∑’˵‘¥°—π (√“¬≈–‡Õ’¬¥ª√“°Ø„π º≈°“√∑¥≈Õß·≈–«‘®“√≥å) ¡’§à“‡∑à“°—∫ 1.09745 ·µà ¡‘‰¥âÕ∏‘∫“¬∑’Ë¡“¢Õßµ—«‡≈¢¥—ß°≈à“« Õ¬à“߉√°Áµ“¡ À“°„™â°“√ª√–¡“≥Õ“®æ‘®“√≥“«à“§à“¥—ß°≈à“«‡∑à“°—∫ 1.1 ‚¥¬ª√–¡“≥ (ºŸâ‡¢’¬π) πÕ°®“°π—Èπ„π‡Õ° “√ ¥— ß °≈à “ «°Á ‰ ¥â 𔇠πÕ§à “ §«“¡∂’Ë „ π‡™‘ ß ∑ƒ…Æ’ ´÷Ë ß Õâ“ßÕ‘ß®“°§«“¡∂’Ë¢Õ߇ ’¬ß‡ªï¬‚π (µ“√“ß∑’Ë 1) ‚¥¬ ¡‘‰¥â· ¥ß∑’Ë¡“ µ“¡ª°µ‘·≈â«¥πµ√’‰∑¬‡∑’¬∫‡ ’¬ß ¥â«¬§«“¡§ÿâπ‡§¬·≈–§«“¡™”π“≠¢ÕߺŸâ‡ªìπÀ≈—° ¢Õ߫ߥπµ√’ °“√‡∑’¬∫‡ ’¬ß¢Õ߇§√◊ËÕߥπµ√’∑’Ë®– º ¡‡ªìπ«ß‡¥’¬«°—ππ—Èπ ¬÷¥‡ ’¬ß¢Õ߇§√◊ËÕߥπµ√’„π «ß∑’ˇ≈◊ËÕπ≈¥‡ ’¬ß‰¡à‰¥â‡ªìπÀ≈—°‡æ◊ËÕ‡∑’¬∫‡ ’¬ß ‡™àπ ¢≈ÿ¬à ªïò √–𓥇À≈Á° ‡ªìπµâπ (¡πµ√’ µ√“‚¡∑, 2540) ·≈–‰¥â¡’°“√„™â âÕ¡‡ ’¬ß (turning fork) ‡™àπ‡¥’¬« °—∫¥πµ√’ “°≈ ∫∑§«“¡π’πÈ ”‡ πÕ«‘∏°’ “√«‘‡§√“–Àå√–¥—∫‡ ’¬ß ¢Õß —≠≠“≥‡ ’¬ß¥πµ√’‰∑¬ ‚¥¬¡ÿà߉ª∑’ˇ ’¬ß‚πâµ À≈—°¢Õߢ≈ÿଇ撬ßÕÕ·≈–√–π“¥‡Õ°‡À≈Á° ´÷Ë߇ªì𠇧√◊Ë Õ ß¥πµ√’ À ≈— ° ”À√— ∫ °“√‡∑’ ¬ ∫‡ ’ ¬ ߫߇§√◊Ë Õ ß “¬‰∑¬·≈–¡‚À√’ ¥â«¬‡∑§π‘§°“√·ª≈ßøŸ√‘‡¬√凵Á¡ Àπ૬ (discrete Fourier transform À√◊Õ DFT) ‡∑§π‘§°“√·ª≈ßøŸ√‘‡¬√å„π™à«ß‡«≈“ —Èπ (short-time Fourier transform À√◊ Õ STFT) ‡∑§π‘ § °“√ «‘‡§√“–Àå —≠≠“≥¥â«¬·∫∫®”≈Õ߇ÕÕ“√å (autoregressive model À√◊Õ AR) ·≈–‡∑§π‘§°“√°√–®“¬ ‡™‘ß‚¡¥ (modal distribution À√◊Õ MD) ·≈â«π” º≈∑’ˉ¥â®“°°“√§”π«≥¡“‡ª√’¬∫‡∑’¬∫°—π‡æ◊ËÕ§«“¡ ∂Ÿ°µâÕß·¡à𬔠‡π◊ËÕß®“°‡ ’¬ß¥πµ√’‡ªìπ —≠≠“≥∑’Ë º—π·ª√µ“¡‡«≈“·≈–‰¡à¡√’ “¬§“∫™—¥‡®π ‡∑§π‘§ DFT ®÷ßÕ“®‰¡à‡À¡“–∑’Ë®–„™â°—∫ —≠≠“≥‡ ’¬ßª√–‡¿∑π’È (Pielemeier et al., 1996) ·µà∂â“°“√‡≈àπ‡§√◊ËÕߥπµ√’ ºŸâ ‡ ≈à π ®ß„®∑”„Àâ ‡ °‘ ¥ ‡ ’ ¬ ß‚πâ µ ‡¥’Ë ¬ «Õ¬à “ ßµà Õ ‡π◊Ë Õ ß ¡Ë”‡ ¡Õ ‡ ’¬ßπ—ÈπÕ“®· ¥ß§«“¡‡ªìπ√“¬§“∫ ‡∑§π‘§ DFT ®÷ßÕ“®π”¡“ª√–¬ÿ°µå‰¥â„π‡∫◊ÈÕßµâπ ‡∑§π‘§ STFT ‡ªìπ«‘∏’æ◊Èπ∞“π„π°“√«‘‡§√“–Àå 181 «“√ “√‡∑§‚π‚≈¬’ ÿ√π“√’ ªï∑’Ë 11 ©∫—∫∑’Ë 3, °√°Æ“§¡-°—𬓬π 2547 —≠≠“≥∑’Ë·ª√µ“¡‡«≈“·≈–§«“¡∂’Ë (Cohen, 1989) ‚¥¬®–π”øíß°å™—πÀπ⓵à“ß (window function) ¡“ §Ÿ≥°—∫ —≠≠“≥‡æ◊ËÕ·∫àß —≠≠“≥ÕÕ°‡ªìπ™à«ß °“√ ‡≈◊Õ°øíß°å™π— Àπ⓵à“ß„Àâ‡À¡“– ¡¬—ߧ߇ªìπªí≠À“Õ¬Ÿà ‡æ√“–µâÕ߇≈◊Õ°√–À«à“ß§«“¡ “¡“√∂·¬°‡«≈“ (time resolution) °—∫§«“¡ “¡“√∂·¬°§«“¡∂’Ë (frequency resolution) °≈à“«§◊Õ∂⓵âÕß°“√§«“¡ “¡“√∂∑’Ë¥’„π °“√·¬°§«“¡∂’Ë ®”‡ªìπµâÕß„™âøíß°å™—πÀπ⓵à“ß∑’Ë¡’ §«“¡°«â“ß¡“° Ê ®–∑”„Àâ‡∑§π‘§ STFT ¡’§«“¡ “¡“√∂·¬°‡«≈“‰¥â‰¡à¥π’ °— (Pielemeier et al., 1996) ‡∑§π‘§ MD ‰¥â√—∫°“√æ—≤π“¢÷Èπ‡æ◊ËÕ≈¥¢âÕ®”°—¥ ¢Õ߇∑§π‘§ STFT ·≈–‡∑§π‘§°“√°√–®“¬«‘°‡πÕ√å (Wigner distribution À√◊Õ WD) ·≈– “¡“√∂ µ√«®®— ∫ Õß§å ª √–°Õ∫∑“ß§«“¡∂’Ë ∑’Ë ‡ ª≈’Ë ¬ π·ª≈ß µ“¡‡«≈“Õ¬à “ ß√«¥‡√Á « ¢Õß — ≠ ≠“≥‡ ’ ¬ ߥπµ√’ ‰¥â¥’ (Pielemeier and Wakefield, 1996) à«π‡∑§π‘§ AR π—Èπ¡’§«“¡ “¡“√∂„π°“√µ√«®®—∫§«“¡∂’Ë∑’Ë ‡ª≈’¬Ë π·ª≈ßµ“¡‡«≈“Õ¬à“ß√«¥‡√Á«¢Õß —≠≠“≥‡ ’¬ß 查‰¥â¥’ (Totarong, 1983) ´÷ËßÕ“®„Àâº≈¥’µàÕ°“√ «‘‡§√“–Àå‡ ’¬ß¥πµ√’‰¥â Õ¬à“߉√°Áµ“¡ °“√‡≈◊Õ° Õ—π¥—∫¢Õß·∫∫®”≈Õß AR „Àâ‡À¡“– ¡¬—߉¡à¡’ À≈—°‡°≥±å∑’Ë·πàπÕπ º≈∑’ˉ¥â®“°°“√«‘®—¬π’È®–™à«¬ „Àâ∑√“∫‰¥â«à“‡∑§π‘§°“√«‘‡§√“–Àå√Ÿª·∫∫„¥®–„Àâ º≈¥’°«à“·∫∫Õ◊Ëπ Ê ´÷Ëß®–‡ªìπª√–‚¬™πåµàÕ°“√π” ‰ªª√–¬ÿ°µå‡æ◊ËÕ«‘‡§√“–Àå‡ ’¬ß¥πµ√’‰∑¬∑’Ë´—∫´âÕ𠬑Ëߢ÷È𠇙àπ ‡ ’¬ß°“√∫√√‡≈ߥ⫬‡∑§π‘§æ‘‡»…µà“ß Ê ‡ªìπµâπ πÕ°®“°π—Èπº≈«‘®—¬®–„Àâ¢âÕ¡Ÿ≈√“¬≈–‡Õ’¬¥ ¢Õß§«“¡∂’Ë „ πÀπ÷Ë ß ∑∫‡ ’ ¬ ß µ≈Õ¥®π≈— ° …≥– ‡©æ“–¢Õ߇ ’¬ß¥πµ√’‰∑¬∑’Ë∫√√‡≈ß‚πⵇ¥’ˬ« «— ¥ÿ Õÿª°√≥å ·≈–«‘∏’°“√ Õÿª°√≥å∑’Ë„™â„π°“√‡°Á∫¢âÕ¡Ÿ≈¡’¥—ßπ’È ● ¢≈ÿଇ撬ßÕÕ 1 ‡≈“ (‰¡â¡–√‘¥) ● √–π“¥‡Õ°‡À≈Á° 1 √“ß (‡§√◊ËÕߪ√–®”«ß¥πµ√’ ‰∑¬ ¡À“«‘∑¬“≈—¬‡∑§‚π‚≈¬’ ÿ√π“√’) ● ‰¡‚§√‚øπ AV-JFET √ÿàπ AVL110EM ● ÕÕ ´‘≈‚≈ ‚§ª Tektronic √ÿàπ TDS 420A ● ‡∑Õ√å‚¡¡‘‡µÕ√å (thermometer) ● ‰Œ‚°√¡‘‡µÕ√å (hygrometer) ● ¡‘‡µÕ√å«¥ — √–¥—∫‡ ’¬ß¥‘®µ‘ Õ≈ (digital sound level meter) √ÿàπ TES-1352 ¥”‡π‘π°“√‡°Á∫¢âÕ¡Ÿ≈∑’ËÀâÕߥπµ√’‰∑¬ Õ“§“√ à«π°‘®°“√π—°»÷°…“ ¡À“«‘∑¬“≈—¬‡∑§‚π‚≈¬’ √ÿ π“√’ ´÷Ë߇ªìπÀâÕߪæ◊ËÕªÑÕß°—π‡ ’¬ß√∫°«π Õÿ≥À¿Ÿ¡‘ ¿“¬„πÀâÕ߇©≈’ˬլŸà∑’Ë 27 Õß»“‡´≈‡´’¬ §«“¡™◊Èπ —¡æ—∑∏åª√–¡“≥ 67 ‡ªÕ√凴Áπµå §«“¡¥—ߢÕ߇ ’¬ß ¢≥–∫√√‡≈ߢ≈ÿà ¬ ‡æ’ ¬ ßÕÕ·≈–√–π“¥‡Õ°‡À≈Á ° §«∫§ÿ¡‰«â„ÀâÕ¬Ÿà∑’˪√–¡“≥ 76 ‡¥´‘‡∫≈ ·≈– 80 ‡¥´‘‡∫≈ µ“¡≈”¥—∫ °“√‡ªÉ“¢≈ÿ଄™â°“√√—°…“§«“¡ µà Õ ‡π◊Ë Õ ß¢Õß≈¡ ·≈–√— ° …“§«“¡ ¡Ë” ‡ ¡Õ¢Õß §«“¡·√ß≈¡ ‚¥¬‰¡à®”‡ªìπµâÕß ç√–∫“¬≈¡é °“√µ’ Table 1. Comparison of Thai and Western notes in one octave (previous results). (Õÿ∑‘» π“§ «— ¥‘Ï, 2514) One octave of Thai musical notes do rae mee fa sol la tee do' Frequency of piano (Hz) 524 587 659 698 784 880 988 1,048 Frequency of Thai music (Hz) 524 579 639 705 779 860 949 1,048 182 °“√«‘‡§√“–Àå√–¥—∫‡ ’¬ß¥πµ√’‰∑¬ √–𓥇À≈Á°„™â°“√ ç√—«é √—°…“§«“¡ ¡Ë”‡ ¡Õ ¢Õß·√ß‚¥¬√—«‰≈à‰ª∑’≈–≈Ÿ°√–π“¥®π§√∫∑∫‡ ’¬ß „π¢≥–∑”°“√‡°Á ∫ ¢â Õ ¡Ÿ ≈ µ”·Àπà ß ¢Õß°“√«“ß Õÿª°√≥å §ß∑’Ë (√Ÿª∑’Ë 1) ‰¡‚§√‚øπ∑’Ë„™â‡ªìπ ™π‘¥Õ‘‡≈Á°‡∑√¥ (electret) ¡’·∫∫√Ÿª°“√·ºàæ≈—ßß“π (radiation pattern) √Õ∫∑‘»∑“ß (omnidirection) ¡’§à“§«“¡‰« -52 ‡¥´‘‡∫≈ ·≈–¡’º≈µÕ∫ πÕß∑“ß §«“¡∂’Ë„π™à«ß 50 ‡Œ‘√µ´å ∂÷ß 18,000 ‡Œ‘√µ´å ´÷Ëß¡’ ≈—°…≥– ¡∫—µ‘„°≈⇧’¬ß°—∫‰¡‚§√‚øπ∑’Ë ◊∫§âπ‰¥â «à“‡À¡“– ”À√—∫„™â«¥— ‡ ’¬ß¥πµ√’ª√–‡¿∑‡§√◊ÕË ß≈¡‰¡â (woodwind instrument) ( √“«ÿ≤‘ ÿ®‘µ®√, 2545) °√≥’∫π— ∑÷°‡ ’¬ß¢≈ÿ¬à ‡æ’¬ßÕÕ ‰¡‚§√‚øπ®–«“ß∑”¡ÿ¡ 50 Õß»“°—∫·∑àπ®—∫ Õ¬ŸàÀà“ß®“°¢≈ÿଠ3 π‘È« ·≈– °√≥’∫π— ∑÷°‡ ’¬ß√–π“¥‡Õ°‡À≈Á° ‰¡‚§√‚øπ®–«“ß ∑”¡ÿ¡ 80 Õß»“°—∫·∑àπ®—∫·≈–Õ¬Ÿàµ√ßµ”·Àπàß ≈Ÿ°´Õ≈ Àà“ß®“°µ—«√–π“¥ 5 π‘È« °“√«“ßµ”·Àπàß ¢Õ߉¡‚§√‚øπ„π≈— ° …≥–¥— ß °≈à “ «°Á ‡ æ◊Ë Õ „Àâ ‰¡‚§√‚øπÕ¬Ÿà °÷Ë ß °≈“ߢÕß·À≈à ß °”‡π‘ ¥ ‡ ’ ¬ ß à«πÕÕ ´‘≈‚≈ ‚§ª«“ßÀà“߇ªìπ√–¬– ÿ¥§«“¡¬“« “¬¢Õ߉¡‚§√‚øπ‡æ◊ËÕªÑÕß°—π°“√‡°‘¥ —≠≠“≥ √∫°«π√–À«à“ß “¬ ·≈–ªÑÕß°—π‰¡à„Àâ§«“¡¥—ß ¢Õ߇ ’¬ß‡§√◊ËÕßÕÕ ´‘≈‚≈ ‚§ª¢≥–∑”ß“π·∑√° Õ¥≈߉¡‚§√‚øπ‰¥â °“√∫—π∑÷°√Ÿª§≈◊Ëπ‡ ’¬ß‚πâµ ‡¥’ˬ«¢Õߢ≈ÿଇ撬ßÕÕ ·≈–√–π“¥‡Õ°‡À≈Á°∑—Èß·ª¥ ' „π°√≥’π’È∂◊Õ ‡ ’¬ß (‚¥ ‡√ ¡’ ø“ ´Õ≈ ≈“ ∑’ ‚¥) ‰¥â«à“ ‡ ’¬ß∑’ˇ°‘¥¢÷Èπ¡’§«“¡ ¡Ë”‡ ¡Õ °“√∫—π∑÷°‰¥â „™âÕÕ ´‘≈‚≈ ‚§ª∑”°“√‡°Á∫¢âÕ¡Ÿ≈®”π«π 2,500 ®ÿ¥ ∑’ËÕ—µ√“°“√™—°µ—«Õ¬à“ß (sampling rate) 250 °‘‚≈·´¡‡ªîô≈µàÕ«‘π“∑’ (kS/sec) ¢âÕ¡Ÿ≈∑’Ë∫—π∑÷°‰¥âπ’È π”‰ªª√–¡«≈º≈‚¥¬Õ“»—¬‚ª√·°√¡ MATLABTM √Ÿª∑’Ë 2 (a) · ¥ß¿“æ√Ÿª§≈◊Ëπ‡ ’¬ß´Õ≈¢Õß ¢≈ÿ¬à ‡æ’¬ßÕÕ∑’∫Ë π— ∑÷°‰¥â ®– —߇°µ‡ÀÁπ«à“√Ÿª§≈◊πË ‡Õ’¬ß ≈“¥≈ß ª√“°Ø°“√·∑√° Õ¥®“° —≠≠“≥√∫°«π æ◊πÈ À≈—ß (background noise) §«“¡∂’µË Ë”„π™à«ß 0 ∂÷ß Voltage (mV) Voltage (mV) Figure 1. Instruments setup. Time (ms) Time (ms) (a) (b) Figure 2. Signal of “sol” note played by a middle pitch Thai flute recorded signal (a) and filtered signal (b). 183 «“√ “√‡∑§‚π‚≈¬’ ÿ√π“√’ ªï∑’Ë 11 ©∫—∫∑’Ë 3, °√°Æ“§¡-°—𬓬π 2547 150 ‡Œ‘√µ´å ·≈–§«“¡∂’Ë Ÿß‡°‘π 20,000 ‡Œ‘√µ´å (æ‘®“√≥“®“°º≈°“√·ª≈ßøŸ√‘‡¬√å) ¥—ßπ—Èπ°àÕπ∑’Ë®– ∑”°“√«‘ ‡ §√“–Àå · µà ≈ –‡ ’ ¬ ß ®÷ ß µâ Õ ßπ”¢â Õ ¡Ÿ ≈ ∑’Ë ∫—π∑÷°‰¥â‰ªºà“π°“√°√Õß —≠≠“≥·∫∫∫—µ‡µÕ√凫‘√∏å ºà“π·∂∫ (bandpass Butterworth filtering) ¡’§à“ §«“¡∂’µË ¥— (cutoff frequency) Õ¬Ÿ∑à ’Ë 175 ·≈– 25,000 ‡Œ‘ √ µ´å — ≠ ≠“≥‡ ’ ¬ ßÀ≈— ß ®“°∑’Ë ºà “ π°“√°√Õß —≠≠“≥√∫°«π∑‘Èß·≈â« ¡’√Ÿª≈—°…≥–§ß∑’Ë (√Ÿª∑’Ë 2 (b)) ‡∑§π‘§°“√«‘‡§√“–Àå —≠≠“≥ ‡∑§π‘§°“√«‘‡§√“–Àå —≠≠“≥∑’Ë®–°≈à“«∂÷ßµàÕ‰ªπ’È µâÕß°“√§à“æ“√“¡‘‡µÕ√åµà“ß Ê ∑’Ë∂Ÿ°°”Àπ¥¢÷ÈπÕ¬à“ß ‡À¡“– ¡ §«“¡‡À¡“– ¡π—Èπ¥Ÿ‰¥â®“°º≈«‘‡§√“–Àå ∑’Ë®–„Àâ§à“øÕ√å·¡π∑å¢Õ߇ ’¬ß‚¥·≈–‚¥' ¡’ —¥ à«π ‡ªìπ Õ߇∑à“·°à°—πµ“¡§«“¡À¡“¬¢ÕßÀπ÷Ëß∑∫‡ ’¬ß ‡∑§π‘§ DFT (Oppenheim and Schafer, 1989) —≠≠“≥‡µÁ¡Àπ૬∑’ˇªìπ√“¬§“∫ ¡’≈—°…≥– ¢ÕߢâÕ¡Ÿ≈‡ªìπ≈”¥—∫·≈–¡’§“∫‡∑à“°—∫ N xƒ(n)) Õ“®‡¢’¬π·∑π‰¥â¥«â ¬º≈√«¡¢Õß≈”¥—∫‡Õ°´å‚æ‡ππ‡™’¬≈‡™‘ß´âÕπ ek (n) ´÷Ëß e k (n) = e j(2π / N)kn ‡¡◊ËÕ k ‡ªìπ®”π«π‡µÁ¡ ¥—ß ¡°“√ (1) º≈√«¡π’ȇ√’¬°«à“ Õπÿ°√¡øŸ√‡‘ ¬√凵Á¡Àπ૬ (discrete Fourier series À√◊Õ DFS) Xƒ ( k ) §◊Õ§à“ —¡ª√– ‘∑∏åÕπÿ°√¡øŸ√‘‡¬√凵Á¡ Àπ૬ ‚¥¬§”π«≥‰¥â®“° xƒ(n) „π√Ÿª·∫∫§«“¡ —¡æ—π∏嵓¡ ¡°“√ (2) 2π N −1 ƒ x(n) = j( )kn 1 ƒ e N X(k) N k =0 ∑ N −1 ƒ (k) = X ∑ xƒ( n ) e − j( 2π ) kn N (1) (2) n=0 ‡¡◊ËÕæ‘®“√≥“ —≠≠“≥‡µÁ¡Àπ૬∑’Ë¡’≈—°…≥– ¢ÕߢâÕ¡Ÿ≈‡ªìπ≈”¥—∫ x(n) ·≈–¡’®”π«π N ¢âÕ¡Ÿ≈ ´÷Ëß∂Ÿ°°”Àπ¥„À⇪ìπÀπ÷Ëß§“∫¢Õß xƒ(n) ·≈– x(n) ¡’§à“Õ¬Ÿà„π™à«ß 0 < n < N-1 §à“ —¡ª√– ‘∑∏‘Ï¢Õß x(n) ®÷ßÀ“‰¥â®“°°“√ª√–¬ÿ°µå DFS ¢Õß xƒ(n) ‚¥¬ §”π«≥ ‡æ’¬ßÀπ÷Ëß§“∫ · ¥ß¥—ß ¡°“√ (3) N-1 X(k) = ∑ -j( x(n)e 2π ) kn N ,0 ≤ k ≤ N −1 (3) n=0 ‡√’¬°«à“°“√·ª≈ßøŸ√‘‡¬√凵Á¡Àπ૬ (discrete Fourier transform À√◊Õ DFT) X(k) ‡ªìπª√‘¡“≥‡™‘ß´âÕ𠇪°µ√—¡¢π“¥¢Õß X(k) „Àâ¢âÕ¡Ÿ≈§à“ x(n) ´÷Ëß · ¥ß∂÷ß§«“¡∂’Ë‚πâµÀ≈—°¢Õ߇ ’¬ß¥πµ√’ ´÷Ë߇√’¬° °—π«à“ øÕ√å·¡π∑å (formant) ( √“«ÿ≤‘ ÿ®µ‘ ®√, 2545) °√“ø¢Õß ‡ª°µ√— ¡ ¢π“¥¢Õß X(k) ®÷ ß µ’ · ºà øÕ√å·¡π∑å¢Õß‚πâµ·µà≈–‡ ’¬ß °“√§”π«≥¥â«¬ ‚ª√·°√¡ MATLABTM °”Àπ¥®”π«π®ÿ¥„π°“√ §”π«≥ DFT ‡∑à“°—∫ 17,500 ®ÿ¥ ´÷Ë߇ªìπ°“√‡æ‘Ë¡ ®”π«π®ÿ¥„π°“√§”π«≥ DFT „Àâ¡“°°«à“®”π«π ¢ÕߢâÕ¡Ÿ≈‚¥¬®”π«π®ÿ¥∑’ˇæ‘Ë¡¢÷Èπ§◊Õ§à“»Ÿπ¬å ∑”„Àâ µ”·ÀπàߢÕ߇ â𠇪°µ√—¡¡’§«“¡∂Ÿ°µâÕß·¡à𬔠¡“°¢÷Èπ ®”π«π 17,500 ®ÿ¥π’È¡“®“°°“√ ÿࡇ≈◊Õ° §à“µà“ß Ê ‡™àπ 5,000 7,500 8,192 10,000 ·≈– 16,384 ‡ªìπµâπ π”¡“∑¥≈Õß§”π«≥ DFT ¢Õß ‚πâ µ ∑—È ß ·ª¥‡ ’ ¬ ß ·≈–‡≈◊ Õ °®”π«π®ÿ ¥ ∑’Ë „ Àâ §à “ §«“¡∂’Ë¢Õ߇ ’¬ß‚¥' „°≈⇧’¬ßÀ√◊Õ‡ªìπ Õ߇∑à“¢Õß ‡ ’¬ß‚¥ ‡∑§π‘§ STFT (Mitra, 2001) ‡ ¡◊Ë Õ ∑” ° “ √ «‘ ‡ § √ “ – Àå — ≠ ≠ “ ≥ ∑’Ë ‰ ¡à π‘Ë ß (stationary signal) °“√·ª≈ß∑’ËÕ“®π”¡“„™â‡æ◊ËÕ «‘‡§√“–À凪ìπ°“√·ª≈ßøŸ√‡‘ ¬√剡àÕ ‘ √–∑“߇«≈“ (timedependent Fourier transform) À√◊Õ∑’ËÕ“®‡√’¬°«à“ °“√·ª≈ßøŸ√‘‡¬√å„π™à«ß‡«≈“ —Èπ (short-time Fourier transform À√◊Õ STFT) °“√·ª≈ߥ—ß°≈à“«®–·∫àß —≠≠“≥ x(n) ÕÕ°‡ªìπ à«π —Èπ Ê ´÷Ëß·µà≈– à«π¡’ ™à«ß‡«≈“∑’ˇ∑à“°—π ‚¥¬π”øíß°å™—πÀπ⓵à“ß w(n) ¡“ §Ÿ≥°—∫ x(n) ·µà≈– à«π∑’Ë·¬°ÕÕ°¡“π’È®–æ‘®“√≥“ «à“‡ªìπ —≠≠“≥∑’ˉ¡à·ª√µ“¡‡«≈“ ®“°π—Èπ§”π«≥ DFT ¢Õß —≠≠“≥·µà≈– à«π µ”·ÀπàߢÕß w(n) „π™à«ß‡«≈“µà“ß Ê —¡æ—π∏å°∫— x(n) ·≈–§«“¡∂’·Ë ¥ß ¥—ß ¡°“√ (4) ∞ X STFT (e jω , n ) = ∑ x( n − m )w( m )e − jωm (4) m =−∞ 184 °“√«‘‡§√“–Àå√–¥—∫‡ ’¬ß¥πµ√’‰∑¬ n §◊Õµ—«·ª√‡«≈“‡ªìπ®”π«π‡µÁ¡ ·≈– ω §◊ Õ µ— « ·ª√§«“¡∂’Ë µà Õ ‡π◊Ë Õ ß ∑”°“√™— ° µ— « Õ¬à “ ß X STFT (e jω , n ) ¥â«¬§«“¡∂’Ë∑’Ë¡’√–¬–Àà“߇∑à“ Ê °—π N ®”π«π ®–‰¥â ωk = 2πk / N ·≈– w(n) ¡’ §«“¡¬“« R ®”π«π ´÷Ëß N > R ‰¥â‡ªìπ XSTFT(k, n) ¥—ß ¡°“√ (5) R −1 X STFT ( k, n ) = ∑ x ( n − m ) w( m ) e − j( 2π ) km N ∫√‘‡«≥∑’Ë ‡ª°‚µ√·°√¡¡’¢π“¥ Ÿß ÿ¥ ‡∑§π‘§ AR °“√®”≈ÕߢâÕ¡Ÿ≈ x(n) ´÷ßË ¡’®”π«π¢âÕ¡Ÿ≈‡∑à“°—∫ N ¥â«¬·∫∫®”≈Õß AR (À√◊Õ all pole model) ®–æ‘®“√≥“®“°°“√ª√–¡“≥§à“ x(n) °≈à“«§◊Õ°“√ ª√–¡“≥§à“ªí®®ÿ∫—π¢Õß x(n) Õ“»—¬º≈√«¡‡™‘߇ âπ ¢ÕߢâÕ¡Ÿ≈ M ®”π«π∑’˪√“°Ø¢÷Èπ°àÕπÀπâ“ ‡¢’¬π (5) · ¥ß‰¥â¥—ß ¡°“√ (6) (Totarong, 1983) m=0 XSTFT(k, n) °Á§◊Õ DFT ¢Õß x(n-m)w(m) ·≈– k ¡’ §à“Õ¬Ÿà„π™à«ß 0 < k < N-1 °“√‡≈◊Õ°„™â w(n) „Àâ‡À¡“– ¡¡’§«“¡ ”§—≠°≈à“«§◊Õ ∂â“ —≠≠“≥¡’ æ“√“¡‘‡µÕ√å¢Õß ‡ª°µ√—¡∑’Ë·ª√º—π„π™à«ß°«â“ß Ê §«√≈¥®”π«π§«“¡¬“«¢Õß w(n) ≈߇æ◊ËÕ‡æ‘Ë¡§«“¡ “¡“√∂·¬°‡«≈“ ·µà„π¢≥–‡¥’¬«°—π°“√‡æ‘Ë¡§«“¡ ¬“«¢Õß w(n) ®–∑”„Àâ§«“¡ “¡“√∂·¬°§«“¡∂’Ë ‡æ‘Ë¡¢÷Èπ °“√§”π«≥¥â«¬‚ª√·°√¡ MATLABTM °”Àπ¥®”π«π¢âÕ¡Ÿ≈„π°“√§”π«≥ DFT ‡∑à“°—∫ 17,500 ®ÿ¥ w(n) ∑’ˇ≈◊Õ°„™â‡ªìπ·∫∫ ’ˇÀ≈’ˬ¡º◊πºâ“ ®”π«π 2,000 ®ÿ¥ π—Ëπ§◊Õ x(n) ®–‰¡à∂Ÿ°¢¬“¬·≈– ≈¥∑Õπ „π°“√§”π«≥¥—ß°≈à“«π’È w(n) ®–‡≈◊ËÕ𠉪®π ÿ¥§«“¡¬“«¢ÕߢâÕ¡Ÿ≈ ´÷Ëß°”Àπ¥„Àâ¡’°“√ ‡À≈◊ËÕ¡ (overlap) °—π 1,950 ®ÿ¥ §à“æ“√“¡‘‡µÕ√å ¥—ß°≈à“«¡“®“°°“√∑¥≈Õß§”π«≥ STFT ¢Õß‚πâµ ∑—ßÈ ·ª¥‡ ’¬ß‚¥¬‡ª≈’¬Ë π§à“®”π«π§«“¡¬“«¢Õß w(n) ·≈–®”π«π°“√‡À≈◊ËÕ¡ ‡™àπ 500 °—∫ 25 500 °—∫ 450 1,000 °—∫ 500 ·≈– 1,500 °—∫ 1,000 ‡ªìπµâπ ´÷ßË ®”π«π°“√‡À≈◊ÕË ¡∑’¡Ë §’ “à ¡“°®– àߺ≈„Àâ¢π“¥¢Õß XSTFT(k, n) ¡’§à“¡“°‰ª¥â«¬ ®“°π—Èπ®–æ‘®“√≥“ ' ‡§’¬ß ‡≈◊Õ°§à“æ“√“¡‘‡µÕ√å∑„’Ë Àâ§«“¡∂’¢Ë Õ߇ ’¬ß‚¥„°≈â À√◊Õ‡ªìπ Õ߇∑à“¢Õ߇ ’¬ß‚¥' XSTFT(k, n) ‡ªìπ øíß°å™—π Õßµ—«·ª√ ¡’§à“∑—Èß„π‚¥‡¡π‡«≈“ (n) ·≈– ‚¥‡¡π§«“¡∂’Ë (k) °“√· ¥ß¢π“¥¢Õß XSTFT(k, n) ‡√’¬°«à“ ‡ª°‚µ√·°√¡ (spectrogram) ¡’≈—°…≥– ‡ªì π ¿“æ “¡¡‘ µ‘ · ¥ß„Àâ ‡ ÀÁ π Õß§å ª √–°Õ∫ ∑“ß§«“¡∂’Ë¢Õß x(n) ∑’Ë·ª√µ“¡‡«≈“ ´÷Ëß¢π“¥¢Õß X STFT(k, n) Õ¬Ÿà „ π∑‘ » ∑“ß z ∫π√–π“∫ x-y øÕ√å · ¡π∑å ¢ Õ߇ ’ ¬ ߥπµ√’ ®÷ ß ª√“°Ø‡¥à π ™— ¥ µ√ß ) x( n ) = − M ∑ a x( n − i ) (6) i i =1 ) x( n ) §◊Õ§à“ª√–¡“≥¢Õß x(n) M §◊ÕÕ—π¥—∫¢Õß ·∫∫®”≈Õß ·≈– ai §◊Õ§à“ —¡ª√– ‘∑∏‘¢Ï Õß·∫∫®”≈Õß º≈µà“ߢÕß x(n) ·≈– x) (n) §◊Õ§à“º‘¥æ≈“¥®“° °“√ª√–¡“≥‡™‘߇ âπ (linear prediction error, en) · ¥ß¥—ß ¡°“√ (7) (Totarong, 1983) ) x( n ) − x( n ) = M ∑ a x( n − i ) i = en (7) i=0 º≈°“√·ª≈ß z ¢Õß ¡°“√ (7) ‚¥¬„Àâ a0 = 1 ®–‰¥â∑√“π ‡øÕ√åøíß°å™—π¢Õß·∫∫®”≈Õß AR ¡’ §à“¥—ß ¡°“√ (8) (Totarong, 1983) Z[e n ] X( z ) = (8) M 1+ ∑a z −i i i =1 Z[en] À¡“¬∂÷ߺ≈°“√·ª≈ß z ¢Õß en §à“§«“¡∂’Ë ¢Õß x(n) ª√–¡“≥‰¥â®“° ‡ª°µ√—¡¢π“¥¢Õß X(z) ´÷Ëß z = ejω ·≈–‡æ◊ËÕÀ≈’°‡≈’ˬ߰√≥’∑’Ë Z[en] = 0 ®÷ß§”π«≥ ‡ª°µ√—¡¢π“¥¢Õß X(z) µ“¡ ¡°“√ (9) (Griffiths, 1975) 1 X( z ) = (9) M 1+ ∑a z −i i i =1 „π°“√ª√–¡“≥§à“ —¡ª√– ‘∑∏‘Ï¢Õß·∫∫®”≈Õß ®– ‡≈◊Õ°„™âÕ—≈°Õ√‘∑÷¡¢Õ߇∫‘√å° (Burg Algorithm) ´÷Ëß ¡’°“√§”π«≥‡ªìπ°√–∫«π°“√∑”´È”‚¥¬≈¥º≈√«¡ ¢Õß§à “ º‘ ¥ æ≈“¥®“°°“√ª√–¡“≥‡™‘ ß ‡ â π (e m) 185 «“√ “√‡∑§‚π‚≈¬’ ÿ√π“√’ ªï∑’Ë 11 ©∫—∫∑’Ë 3, °√°Æ“§¡-°—𬓬π 2547 ∑—Èß·∫∫¬âÕπ°≈—∫ (backward) ·≈–·∫∫‰ªÀπâ“ (forward) ·≈–¬—ß§ß„Àâ§à“ —¡ª√– ‘∑∏‘Ï¢Õß·∫∫ ®”≈Õ߇ªìπ‰ªµ“¡‡≈ø«‘π —π √’‡§Õ√å™—π (Levinson recursion) µ—Èß·µàÕ—π¥—∫ 1 ∂÷ß M ‡æ◊ËÕ∑”„Àâµ—«°√Õß §«“¡∂’Ë AR ¡’‡ ∂’¬√¿“æ (Marple, 1980) ¡°“√ (10) · ¥ß§«“¡ — ¡ æ— π ∏å ”À√— ∫ §”π«≥ a M,M À√◊Õ‡√’¬°«à“ —¡ª√– ‘∑∏‘ϰ“√ –∑âÕπ (reflection coefficient) ‚¥¬∑’Ë bM,k ·≈– fM,k §◊Õ§à“§«“¡ º‘¥æ≈“¥∑’ˇ°‘¥®“°°“√ª√–¡“≥‡™‘߇ âπ·∫∫¬âÕπ °≈—∫·≈–·∫∫‰ªÀπ⓵“¡≈”¥—∫ ·≈– —≠≈—°…≥å * À¡“¬∂÷ß§à“ —߬ÿ§‡™‘ß´âÕπ „π·µà≈–√Õ∫∑’Ë M ¡’§à“ ‡æ‘Ë¡¢÷Èπ eM ´÷Ëß§”π«≥µ“¡ ¡°“√ (11) ®–¡’¢π“¥ ≈¥≈ß·≈–§à“ —¡ª√– ‘∑∏‘Ï¢Õß·∫∫®”≈Õß§”π«≥ ‰¥â®“° ¡°“√ (12) (Marple, 1980) °√–®“¬«‘°‡πÕ√å‡∑’¬¡‡µÁ¡Àπ૬ (discrete pseudoWigner distribution À√◊Õ DPWD) ‚¥¬‡√‘Ë¡®“° °“√§”π«≥øíß°å™—πÕ—µ À —¡æ—π∏å¢≥–Àπ÷Ëß·∫∫ ‡µÁ¡Àπ૬ (discrete instantaneous autocorrelation function, R s (n, l)) ¢ÕߢâÕ¡Ÿ≈ s(n) · ¥ß¥—ß ¡°“√ (13) R s ( n, l) = s( n + l)s * ( n − l) (13) —≠≈—°…≥å * À¡“¬∂÷ß§à“ —߬ÿ§‡™‘ß´âÕππ” R s (n, l) ºà “ π°“√°√Õß — ≠ ≠“≥¥â « ¬ h LP(n) ®–‰¥â ‡ ªì π R s, t ( n, l) ¡’§à“µ“¡ ¡°“√ (14) P R s, t ( n , l ) = ∑ R (n − p, l)h s LP ( p) (14) p =− P ‚¥¬ —≠≈—°…≥å t À¡“¬∂÷ß°“√°√Õß —≠≠“≥∑“ß ‡«≈“·≈– P ¡’§à“‡∑à“°—∫ 2N µ—«·ª√ l „π ¡°“√ N−M (13) ·≈– (14) ¡’§à“Õ¬Ÿà„π™à«ß 0 < l < L ‡π◊ËÕß®“° 2 ∑ b *M −1, k fM −1, k +1 a M,M = − N − M k =1 (10) R s (n, l) ·≈– R s,t (n, l) ¡’≈—°…≥– ¡¡“µ√ ®÷ß 2 2 §”π«≥·µà‡æ’¬ß¥â“π∫«°‡∑à“π—πÈ l §◊Õ§à“≈â“À≈—ß (lag) b + fM −1, k +1 ∑ M −1, k ·≈–¡’§à“¡“°∑’Ë ÿ¥‡∑à“°—∫ L ®“°π—Èππ” R s,t (n, l) k =1 ºà“π°“√°√Õß —≠≠“≥∑“ß§«“¡∂’˥⫬ gLP(n) ·≈– 2 (11) e M = e M −1[1 − a M,M ] ∑”°“√·ª≈ßøŸ√‡‘ ¬√凵Á¡Àπ૬ ‰¥â‡ªìπ¥—ß ¡°“√ (15) a M, k = a M −1, k + a M,M a *M −1,M − k (12) − j2 πkl L ( ) 2L (15) M ( n , k ) = R ( n , l ) g ( l ) e s s, t LP ∑ TM ‡¡◊ËÕ„™â‚ª√·°√¡ MATLAB x(n) ®–‡ªìπ‡ ¡◊Õπ l =− L ‡Õ“µåæÿµ¢Õß√–∫∫ AR ∑’Ë¡’Õ‘πæÿµ‡ªìπ —≠≠“≥ ´÷Ëß· ¥ß√Ÿª·∫∫‡µÁ¡Àπ૬¢Õß MD (Ms(n,k)) ¢Õß √∫°«π¢“« (white noise) ·≈–°”Àπ¥„ÀâÕ—π¥—∫ ¢âÕ¡Ÿ≈ s(n) k ¡’§à“„π™à«ß 0 < k < L/2 µ—«·ª√ n ¢Õß·∫∫®”≈Õ߇∑à“°—∫ 18 Õ—π¥—∫¢Õß·∫∫®”≈Õß „π ¡°“√ (13) §◊Õ®”π«π¢âÕ¡Ÿ≈∑—ÈßÀ¡¥ à«π„π π’‰È ¥â¡“®“°°“√∑¥≈Õß«‘‡§√“–Àå‡ ’¬ß‚πâµ∑—ßÈ ·ª¥‡ ’¬ß ¡°“√ (14) ·≈– (15) ®–§”π«≥‡©æ“– n ‡æ’¬ß ‚¥¬§”π«≥µ—Èß·µàÕ—π¥—∫ 1, 2, 3, ..., 50 ·≈– ∫“ß§à“∑’µË √ßµ”·Àπàß°“√™—°µ—«Õ¬à“ߢâÕ¡Ÿ≈ s(n) ¥â«¬ ∑¥≈Õß ÿࡇ≈◊Õ°§à“Õ—π¥—∫ ‡™àπ 100, 500, 1,000 §«“¡∂’Ë ° “√™— ° µ— « Õ¬à “ ߇ªì π Õ߇∑à “ ¢Õß ∆ωmin ·≈– 1,500 ‡ªì π µâ π ´÷Ë ß æ∫«à “ Õ— π ¥— ∫ ¢Õß·∫∫ (§◊ Õ º≈µà “ ß∑“ß§«“¡∂’Ë ∑’Ë πâ Õ ¬∑’Ë ÿ ¥ √–À«à “ ß Õß ®”≈Õß∑’Ë¡“°¢÷Èπ·≈–¡“°‡°‘π‰ª‰¡à‰¥â„Àâº≈∑’Ë¥’¢÷Èπ Õß§åª√–°Õ∫„¥ Ê „π —≠≠“≥ Àπ૬‡Œ‘√µ´å) °“√æ‘ ® “√≥“‡≈◊ Õ °Õ— π ¥— ∫ 18 ‡æ√“–„Àâ º ≈°“√ hLP(n) ·≈– gLP(n) §◊Õøíß°å™—πÀπ⓵à“ß·∫∫·Œ¡¡‘Ëß «‘‡§√“–Àå∑’Ë· ¥ß§«“¡‡ªìπ∑∫‡ ’¬ß¢Õß‚¥·≈–‚¥' (Hamming) ´÷Ëß¡’§«“¡¬“«„π™à«ß -N ∂÷ß N ·≈– ‰¥â„°≈⇧’¬ß∑’Ë ÿ¥ Õß§åª√–°Õ∫∑“ß§«“¡∂’Ë¢Õß x(n) -R ∂÷ß R µ“¡≈”¥—∫ ‚¥¬∑’Ë R ‡∑à“°—∫ L/2 §à“§ß∑’Ë · ¥ß¥â«¬°√“ø¢Õß ‡ª°µ√—¡¢π“¥¢Õß X(z) µà “ ß Ê „π°“√§”π«≥‰¥â · °à L = 8,192, ‡∑§π‘§ MD (Pielemeier and Wakefield, 1996) ∆ωmin = 183.11 rad/sec, N = 1,365 ·≈– n ‡æ‘Ë¡ °“√§”π«≥ MD ¡’ æ◊È π ∞“π¡“®“°°“√ ¢÷Èπ¢—Èπ≈– 4 ®”π«π °“√‡≈◊Õ°§à“æ“√“¡‘‡µÕ√åµà“ß Ê 186 °“√«‘‡§√“–Àå√–¥—∫‡ ’¬ß¥πµ√’‰∑¬ ¥—ß°≈à“« æ‘®“√≥“¥—ßπ’È °≈à“«§◊Õ ‡≈◊Õ° L ‡ªìπ §à“°”≈—ߢÕß Õß ∑”„Àâ„™âÕ≈— °Õ√‘∑¡÷ °“√·ª≈ßøŸ√‡‘ ¬√å Õ¬à “ ß√«¥‡√Á « (FFT) §”π«≥ ¡°“√ (15) ‰¥â ∆ω min ¡“®“°º≈ ‡ª°‚µ√·°√¡¢Õß s(n) N ‡°‘¥®“°º≈À“√√–À«à“ßÕ—µ√“°“√™—°µ—«Õ¬à“ߢÕß s(n) °—∫ ∆ωmin ·≈â«ªí¥„À⇪ìπ®”π«π‡µÁ¡ ·≈–‡≈◊Õ° n µ√ßµ”·Àπàß ´÷Ëß¡’§«“¡∂’˰“√™—°µ—«Õ¬à“ß s(n) ¡“° °«à “ Õ߇∑à “ ¢Õß ∆ω min ‡æ◊Ë Õ ®–‰¥â √ “¬≈–‡Õ’ ¬ ¥ ¢Õߺ≈°“√«‘‡§√“–Àå∑“߇«≈“¡“°¢÷Èπ Ms(n,k) „π ¡°“√ (15) ‡ªìπøíß°å™—π Õßµ—«·ª√ ¡’§à“∑—Èß„π ‚¥‡¡π‡«≈“ n ·≈–‚¥‡¡π§«“¡∂’Ë k Õß§åª√–°Õ∫ ∑“ß§«“¡∂’Ë¢Õß s(n) ∑’Ë·ª√µ“¡‡«≈“· ¥ß¥â«¬¿“æ “¡¡‘µ‘ ´÷Ëß¢π“¥¢Õß Ms(n,k) ®–Õ¬Ÿà„π∑‘»∑“ß z ∫π√–π“∫ x-y ·≈–∫√‘‡«≥∑’Ë ‡ª°µ√—¡¢π“¥¢Õß Ms(n,k) ¡’§à“ Ÿß ÿ¥®–· ¥ß∂÷ßøÕ√å·¡π∑å¢Õ߇ ’¬ß ¥πµ√’ º≈°“√∑¥≈Õß·≈–«‘®“√≥å ‡¡◊ËÕ∑”°“√ª√–¡«≈º≈ —≠≠“≥‡ ’¬ß¢≈ÿଇ撬ßÕÕ ¥â«¬‡∑§π‘§µà“ß Ê ∑’ˉ¥â𔇠πÕ‰ª·≈â« º≈°“√ ¥”‡π‘πß“π∫“ß à«πÕ“®π”¡“· ¥ß‰¥â¥—ß√Ÿª∑’Ë 3, 4, 5 ·≈– 6 µ“¡≈”¥—∫ ∑—Èß ’Ë√Ÿª· ¥ßøÕ√å·¡π∑å¢Õß ‡ ’¬ß ‚¥ ¡’ ´Õ≈ ·≈– ‚¥' Õ¬à“ß™—¥‡®π øÕ√å·¡π∑å ¢Õ߇ ’ ¬ ߥπµ√’ ‰ ∑¬„π™à « ßÀπ÷Ë ß ∑∫‡ ’ ¬ ߢÕß ¢≈ÿ¬à ‡æ’¬ßÕÕ ‰¥â√∫— °“√𔉪 √ÿª√«¡‰«â„πµ“√“ß∑’Ë 2 ¢âÕ¡Ÿ≈∑’‰Ë ¥â®“°°“√«‘‡§√“–Àå‡ ’¬ß®√‘ߥ—ßµ“√“ß∑’Ë 2 π’È ‡ªìπ‡§√◊ËÕ߬◊π¬—π«à“§à“§«“¡∂’Ë¢Õ߇ ’¬ß¥πµ√’‰∑¬¥—ß µ“√“ß∑’Ë 1 §≈“¥‡§≈◊ÕË π‰ª®“°§«“¡‡ªìπ®√‘ß¡“° ·≈– ¬—ßÕ“® —߇°µ‰¥â«à“‡ ’¬ß¥πµ√’‰∑¬π—ÈπµË”°«à“‡ ’¬ß ¥πµ√’ “°≈ «‘∏’ DFT ·≈– STFT „Àâ§à“§«“¡∂’Ë øÕ√å·¡π∑å·µ°µà“ß°—π‡æ’¬ß∫“߇ ’¬ß‡∑à“π—Èπ´÷Ë߉¡à ¡“°π—°·≈–¡’§«“¡∂’ˇæ‘Ë¡¢÷Èπ®“°‡ ’¬ßµË”‰ª¬—߇ ’¬ß Ÿß‡ªìπ≈”¥—∫ ‡æ’¬ß·µà«à“º≈°“√«‘‡§√“–À宓° Õß«‘∏’ π’È„Àâ§«“¡∂’Ë∫“ß‚πⵇªìπ‡≈¢≈ßµ—« ‰¥â·°à 500, 600 ·≈– 900 ‡Œ‘√µ´å π—∫«à“‡ªìπ ‘ßË º‘¥ª°µ‘∑“ß∏√√¡™“µ‘ ¢Õߥπµ√’ ‰ ∑¬‡ªì π Õ¬à “ ߬‘Ë ß ‡æ√“–°“√µ—È ß ‡ ’ ¬ ß ‡§√◊ËÕߥπµ√’‰∑¬‡¡◊ËÕº≈‘µ ‰¡à¡’°“√„™â‡∑§‚π‚≈¬’ ‡§√◊ËÕß¡◊Õ«—¥≈–‡Õ’¬¥Õ¬à“߇™àπ°“√º≈‘µ‡§√◊ËÕߥπµ√’ ¢Õßµ–«—πµ° À“°·µà¥πµ√’‰∑¬„™â∏√√¡™“µ‘¢Õß °“√øí߇∑’¬∫‡§√◊ËÕߥπµ√’ Õß™‘Èπ¥â«¬°—π·≈–ª√—∫ µ—È߇ ’¬ß º≈®“°«‘∏’ AR π—Èπ §à“§«“¡∂’Ë¢Õ߇ ’¬ß¡’ (657.14 ‡Œ‘√µ´å) Ÿß°«à“‡ ’¬ßø“ (650 ‡Œ‘√µ´å) ´÷Ëß ‰¡à‡ªìπ‰ªµ“¡°“√‰≈à√–¥—∫‡ ’¬ß «‘∏’ AR ·≈– Õ—≈°Õ√‘∑÷¡µ≈Õ¥®πæ“√“¡‘‡µÕ√å∑’ˇ≈◊Õ°„™â ®÷߬—ß ‰¡à‡À¡“– ¡ ”À√—∫°“√«‘‡§√“–Àå‡ ’¬ß¥πµ√’‰∑¬ «‘∏’ MD ®÷ß„Àâº≈°“√«‘‡§√“–Àå∑’Ëπà“‡™◊ËÕ∂◊Õ¡“°°«à“ ‡æ√“–øÕ√å·¡π∑å∑’ˉ¥â¡’°“√‰≈à‡√’¬ß‰ªµ“¡≈”¥—∫ µË” Ÿß¢Õ߇ ’¬ß ·≈–Àπ÷Ëß∑∫‡ ’¬ß°Áª√“°Ø§«“¡∂’Ë „°≈⇧’¬ß Õ߇∑à“µàÕ°—π ®“°°“√∑’Ë«‘∏’ MD „Àâº≈≈—æ∏å∑’Ë¥’∑’Ë ÿ¥ ®÷߉¥â §”π«≥Õ—µ√“ à«π§«“¡∂’Ë (frequency ratio) ·≈– √–¬–摵™å (pitch interval) ¢Õߺ≈¥—ß°≈à“« · ¥ß ¢âÕ¡Ÿ≈∑’˧”π«≥‰¥â‡ª√’¬∫‡∑’¬∫‰«â„πµ“√“ß∑’Ë 3 Table 2. Formants of the Thai notes played by a middle pitch Thai flute. One octave of Frequency (Hz) Thai musical notes DFT STFT AR MD do rae mee fa sol la tee do 457.14 514.29 557.14 600.00 657.14 714.29 814.29 900.00 457.14 500.00 557.14 600.00 657.14 714.29 814.29 900.00 442.86 557.14 657.14 650.00 700.00 785.71 864.29 914.29 465.39 511.17 556.95 602.72 663.76 717.16 816.35 892.64 ' 187 Magnitude (unitless) Magnitude (unitless) «“√ “√‡∑§‚π‚≈¬’ ÿ√π“√’ ªï∑’Ë 11 ©∫—∫∑’Ë 3, °√°Æ“§¡-°—𬓬π 2547 Frequency (Hz) Magnitude (unitless) Magnitude (unitless) Frequency (Hz) Frequency (Hz) Frequency (Hz) Soectrogram (uniless) Soectrogram (uniless) Figure 3. Formants of the notes (a) “do” (b) “mee” (c) “sol” (d) “do'” obtained from DFT (original sound played by a middle pitch Thai flute). Frequency (Hz) Soectrogram (uniless) Soectrogram (uniless) Frequency (Hz) Frequency (Hz) Frequency (Hz) Figure 4. Formants of the notes (a) “do” (b) “mee” (c) “sol” (d) “do'” obtained from STFT (original sound played by a middle pitch Thai flute). 188 Magnitude (unitless) Magnitude (unitless) °“√«‘‡§√“–Àå√–¥—∫‡ ’¬ß¥πµ√’‰∑¬ Frequency (Hz) Magnitude (unitless) Magnitude (unitless) Frequency (Hz) Frequency (Hz) Frequency (Hz) Magnitude (unitless) Magnitude (unitless) Figure 5. Formants of the notes (a) “do” (b) “mee” (c) “sol” (d) “do'” obtained from AR (original sound played by a middle pitch Thai flute). Time (ms) Time (ms) Frequency (Hz) Magnitude (unitless) Magnitude (unitless) Frequency (Hz) Time (ms) Frequency (Hz) Time (ms) Frequency (Hz) Figure 6. Formants of the notes (a) “do” (b) “mee” (c) “sol” (d) “do'” obtained from MD (original sound played by a middle pitch Thai flute). 189 «“√ “√‡∑§‚π‚≈¬’ ÿ√π“√’ ªï∑’Ë 11 ©∫—∫∑’Ë 3, °√°Æ“§¡-°—𬓬π 2547 Pitch interval (cent) Õ—µ√“ à«π§«“¡∂’Ë∑’˰≈à“«∂÷ßπ’ȧ”π«≥‰¥â‚¥¬π”§à“ · ¥ß§à“§«“¡∂’Ë¢Õ߇ ’¬ß‡ªï¬‚π „π™à«ß∑’Ë„°≈⇧’¬ß §«“¡∂’¢Ë Õ߇ ’¬ß∑’µË ¥‘ °—π¡“À“√°—𠇙àπ ¡’ : ‡√ ‡ªìπµâπ °—∫§«“¡∂’Ë¢Õߢ≈ÿଇ撬ßÕÕ∑’Ë«‘‡§√“–À剥⠮– —߇°µ ®“°π—Èπ§”π«≥√–¬–摵™å µ“¡ ¡°“√ (16) ‰¥â«à“√–¬–摵™å‡¡◊ËÕ‡ ’¬ß‚¥‡∑’¬∫°—∫‡ ’¬ß‚¥ ¡’§à“ ‡∑à “ °— ∫ 1,200 ‡´πµå æ Õ¥’ ∑’Ë ‡ ªì 𠇙à π π’È ‡ æ√“– (16) √–¬–摵™å = K log 2 f1 f2 ‡∑§‚π‚≈¬’°“√ √â“߇§√◊ËÕߥπµ√’ “°≈„πªí®®ÿ∫—π ¡’ √–¬–摵™å®–¡’Àπ૬‡ªìπ‡´πµå (cent) ‡¡◊ÕË K = 1,200 °“√„™â‡§√◊ÕË ß¡◊Õ«—¥≈–‡Õ’¬¥™à«¬„π°“√ª√—∫µ—ßÈ ‡ ’¬ß (Wood, 1975) f1 ·≈– f2 §◊Õ§«“¡∂’Ë∑’Ë®–π”¡“ ·≈–¬— ß · ¥ß„Àâ ‡ ÀÁ π «à “ ¥πµ√’ “°≈·∫à ß ÕÕ°‡ªì π §”π«≥‡ª√’¬∫‡∑’¬∫°—π ¡’Àπ૬‡Œ‘√µ´å (Hz) ´÷Ëß ÀⓇ ’¬ß‡µÁ¡ ·≈– Õß§√÷Ë߇ ’¬ß™—¥‡®π (À¡“¬∂÷ß f1 / f2 „π∑’Ëπ’ȰÁ§◊Õ§à“Õ—µ√“ à«π§«“¡∂’Ëπ—Ëπ‡Õß √–¬– Õ—µ√“ à«π‡∑à“°—∫ 1.12 ·≈– 1.06 √–¬–摵™å‡∑à“°—∫ ' ¬∫°—∫‡ ’¬ß‚¥ (À√◊Õ‡¡◊ËÕ§√∫ 200 ‡´πµå ·≈– 100 ‡´πµå µ“¡≈”¥—∫) 摵™å‡¡◊ËÕ‡ ’¬ß‚¥‡∑’ Àπ÷Ëß∑∫‡ ’¬ß) „π∑“ß∑ƒ…Æ’®–‡∑à“°—∫ 1,200 ‡´πµå æÕ¥’ ¢âÕ¡Ÿ≈„πµ“√“ß∑’Ë 3 · ¥ßÕ—µ√“ à«π§«“¡∂’Ë ·≈–√–¬–摵™å∑’˧”π«≥‰¥â®“°¢âÕ¡Ÿ≈øÕ√å·¡π∑å∑’Ë ‡ªìπº≈≈—æ∏å¢Õß«‘∏’ MD Õ—µ√“ à«π§«“¡∂’¡Ë §’ “à ‡∑à“ Ê ' °—π ª√–¡“≥ 1.10 ¡’‡æ’¬ßÕ—µ√“ à«π¢Õß ∑’ : ≈“ ´÷ßË ‡∑à“°—∫ 1.14 ·≈–√–¬–摵™å¡§’ “à ‡©≈’¬Ë ‡∑à“°—∫ 161.08 ‡´πµå Õ¬à“߉√°Áµ“¡ √–¬–摵™å∑’˧”π«≥‰¥âª√“°Ø Õ“°“√·°«àß®π‰¡àÕ“®¬Õ¡√—∫„π ¡¡µ‘∞“π§à“√–¬– æ‘™µå§ß∑’ˉ¥â (Morton, 1976) πÕ°®“°π—Èπ√–¬– 摵™å‡¡◊ÕË §√∫Àπ÷ßË ∑∫‡ ’¬ß¡’§“à ‡∑à“°—∫ 1,127.57 ‡´πµå ´÷ßË √Ÿª∑’Ë 7 · ¥ß°“√‡ª√’¬∫‡∑’¬∫√–À«à“ß§à“√–¬–摵™å One octave of Thai musicalnotes ∑’˧”π«≥®“°º≈¢Õß«‘∏’ MD ·≈–§à“µ“¡ ¡¡µ‘∞“π ¢Õß Morton ∑’˰”Àπ¥„Àâ‡∑à“°—∫ 171.43 ‡´πµå Figure 7. Pitch intervals analyzed by MD (original sound played by a middle ‡¡◊ËÕæ‘®“√≥“Õ—µ√“ à«π§«“¡∂’Ë·≈–√–¬–摵™å¢Õß pitch Thai flute ana a metal tenor ‡ ’¬ß¢≈ÿଇ撬ßÕÕ‡∑’¬∫°—∫¥πµ√’ “°≈ ´÷Ëßµ“√“ß∑’Ë 4 xylophone). Table 3. Frequency ratios and pitch intervals by MD (middle pitch Thai flute). One octave of Thai musical notes Frequency (Hz) Frequency ratio (unitless) Pitch interval (cent) do rae mee fa sol la tee do 465.39 511.17 556.95 602.72 663.76 717.16 816.35 892.64 1.10 1.09 1.08 1.10 1.08 1.14 1.09 162.44 148.49 136.73 167.01 133.96 224.27 154.67 ' 190 °“√«‘‡§√“–Àå√–¥—∫‡ ’¬ß¥πµ√’‰∑¬ ”À√— ∫ º≈Õ’ ° à « πÀπ÷Ë ß ‡ªì π ¢Õß°√≥’ ° “√ «‘ ‡ §√“–Àå ‡ ’ ¬ ß√–π“¥‡Õ°‡À≈Á ° °“√¥”‡π‘ π ß“π °√–∑”„π≈—°…≥–‡¥’¬«°—π°—∫°√≥’°“√¥”‡π‘πß“π «‘‡§√“–Àå‡ ’¬ß¢≈ÿଇ撬ßÕÕ µ—Èß·µà°“√∫—π∑÷°‡ ’¬ß π”¢âÕ¡Ÿ≈¡“ºà“π°“√°√Õß —≠≠“≥ µ≈Õ¥®π‡∑§π‘§ ∑’Ë„™â„π°“√«‘‡§√“–Àå º≈°“√«‘‡§√“–Àå„π¢—Èπµâπ ª√“°Ø≈—°…≥–∑’˧≈⓬§≈÷ß°—π°—∫°√≥’¢≈ÿଇ撬ßÕÕ ®÷ß𔇠πÕº≈∑’ˉ¥â®“°«‘∏’ MD ·≈–º≈°“√§”π«≥ ∑’Ë —¡æ—π∏å°—π¥—ß· ¥ß‰«â„πµ“√“ß∑’Ë 5 ®– —߇°µ‰¥â «à“Õ—µ√“ à«π§«“¡∂’¡Ë §’ “à ‡∑à“ Ê °—πÕ¬Ÿ∑à ª’Ë √–¡“≥ 1.11 √–¬–摵™å¢Õ߇ ’¬ß°Áª√“°ØÕ“°“√·°«àß™—¥‡®π √–¬– ' ¬∫°—∫‡ ’¬ß‚¥¡’§“à ‡∑à“°—∫ 1,214.15 摵™å‡¡◊ÕË ‡ ’¬ß‚¥‡∑’ ‡´πµå ·≈–®“°¢âÕ¡Ÿ≈„πµ“√“ß∑’Ë 5 ¬—ßæ∫«à“ §à“‡©≈’¬Ë ¢Õß√–¬–摵™å‡∑à“°—∫ 173.45 ‡´πµå Õ¬à“߉√°Áµ“¡ º≈®“°¢âÕ¡Ÿ≈°“√∑¥≈Õß∑’Ëπ”¡“§”π«≥√–¬–摵™å ¥—ß∑’Ë· ¥ß¥â«¬°√“ø„π√Ÿª∑’Ë 7 ∫àß™’È«à“√–¬–摵™å ¢Õ߇ ’¬ß‚πâµ¥πµ√’‰∑¬ ¡’·π«‚πâ¡≈¥≈ß„π™à«ß ¢Õ߇ ’ ¬ ß‚¥∂÷ ß ø“ µà Õ ®“°π—È π ·≈â « √–¬–æ‘ µ ™å ¡’ Õ“°“√·°«àߢ÷Èπ≈߉ª®π‡ ’¬ß‚¥' πÕ°®“°π—Èπ °“√∑’Ë §«“¡∂’Ë¢Õ߇ ’¬ß√–π“¥‡Õ°‡À≈Á°‰¡à‡∑à“°—πæÕ¥’°—∫ §à “ §«“¡∂’Ë ¢ Õ߇ ’ ¬ ߢ≈ÿà ¬ ‡æ’ ¬ ßÕÕ ‡æ’ ¬ ß·µà ¡’ §à “ „°≈â ‡ §’ ¬ ß°— π ‡π◊Ë Õ ß¡“®“°°“√¥”‡π‘ π ß“π„π °√–∫«π°“√º≈‘ µ à « πÀπ÷Ë ß ·≈–§«“¡∂’Ë ‡ ’ ¬ ß∑’Ë µà“ß°—π‡æ’¬ß‡≈Á°πâÕ¬‡™àππ’È °Á‡°‘π§«“¡ “¡“√∂„π °“√‰¥â¬‘π¢Õß¡πÿ…¬å∑’Ë®–·¬°·¬–§«“¡·µ°µà“߉¥â ·≈–πÕ°®“°π—È π ‡§√◊Ë Õ ß¥πµ√’ ∑—È ß Õ߬— ß ¡’ ∞ “π °”‡π‘¥‡ ’¬ß∑’˵à“ß°—π °≈à“«§◊Õ‡ ’¬ß√–π“¥‡Õ°‡À≈Á° ‡°‘¥®“°°“√°√–∑∫°—π¢ÕߢÕß·¢Áß §◊Õ‰¡â√–π“¥ °—∫≈Ÿ°√–π“¥∑’ˇªìπ‚≈À– ∑”„À⇠’¬ß∑’ˇ°‘¥¢÷Èπ¡’ §«“¡‡¢â¡¢âπ ¡Ë”‡ ¡Õ ¡“°°«à“‡ ’¬ß¢≈ÿà¬∑’ˇ°‘¥®“° °“√ —Ëπ¢Õß≈”Õ“°“»„π°√–∫Õ°¢≈ÿଠՓ°“»π—Èπ¡’ °“√‡ª≈’ˬπ·ª≈ßµ“¡Õÿ≥À¿Ÿ¡‘·≈–§«“¡™◊Èπ‰¥âßà“¬ Table 4. Frequency ratios and pitch intervals (piano). One octave of Thai musical notes do rae mee fa sol la tee do ' Frequency (Hz) 523.25 587.33 659.26 698.46 783.99 880.00 987.77 1,046.50 Frequency ratio (unitless) Pitch interval (cent) 1.12 1.12 1.06 1.12 1.12 1.12 1.06 200 200 100 200 200 200 100 Table 5. Frequency ratios and pitch intervals by MD (metal tenor xylophone). One octave of Thai musical notes Frequency (Hz) Frequency ratio (unitless) Pitch interval (cent) do rae mee fa sol la tee do 465.39 518.80 572.20 625.61 694.27 762.94 846.86 938.42 1.11 1.10 1.09 1.11 1.10 1.11 1.11 188.09 169.61 154.49 180.28 163.29 180.66 177.73 ' «“√ “√‡∑§‚π‚≈¬’ ÿ√π“√’ ªï∑’Ë 11 ©∫—∫∑’Ë 3, °√°Æ“§¡-°—𬓬π 2547 191 §«“¡∂’Ë ¢ Õ߇ ’ ¬ ߢ≈ÿà ¬ ‡æ’ ¬ ßÕÕ®÷ ß Õ“®µà “ ߉ª®“° π§√√“™ ’¡“, Àπâ“ 5-47. §«“¡∂’¢Ë Õ߇ ’¬ß√–π“¥‡Õ°‡À≈Á°Õ¬Ÿ∫à “â ß·µà‰¡à¡“°π—° —π∑—¥ µ—≥±π—π∑å. (2542). ∫—π∑÷°‡æ≈߉∑¬‡ªìπ ·≈– àߺ≈„Àâ√–¬–摵™åÀπ÷ßË ∑∫‡ ’¬ß¢Õߢ≈ÿ¬à ‡æ’¬ßÕÕ ‚πâµ “°≈Õ¬à“߉√. „π: §√Ÿ¥πµ√’¢Õß·ºàπ¥‘π, ¡’§à“µà“߉ª®“° 1,200 ‡´πµåÕ¬Ÿà∫â“ß ¡™“¬ √—»¡’. §√—Èß∑’Ë 1. ∂“∫—π√“™¿—Ø ∫â“π ¡‡¥Á®‡®â“æ√–¬“, °√ÿ߇∑æœ, Àπâ“ 6-18. Õÿ ∑ ‘ » π“§ «— ¥‘Ï. (2514). ∑ƒ…Æ’·≈–°“√ªØ‘∫—µ‘ √ÿª ¥πµ√’‰∑¬. ®—¥æ‘¡æå„π°“√©≈Õߪﰓ√»÷°…“ °“√¥”‡π‘πß“π«‘‡§√“–Àå‡ ’¬ß¥πµ√’‰∑¬„π∑∫‡ ’¬ß √–À«à “ ß™“µ‘ 2513. ‚√ßæ‘ ¡ æå §ÿ √ÿ ¿“, ‡æ’¬ßÕÕ ¥â«¬‡∑§π‘§ª√–¡«≈º≈ —≠≠“≥¥‘®µ‘ Õ≈π—πÈ °√ÿ߇∑æœ, Àπâ“ 6-11. æ∫«à“ «‘∏’ MD (modal distribution) „Àâº≈¥’∑’Ë ÿ¥ Alten, S.R. (1999). Audio in Media. 5th ed. Wadsworth, USA, p. 12-22. ∑∫‡ ’¬ß‡æ’¬ßÕÕ¢Õ߉∑¬¡’§«“¡∂’Ë„π¬à“π 465-940 Cannon, R.H. (1967). Dynamics of Physical ‡Œ‘√µ´å ´÷Ëߵ˔°«à“‡ ’¬ß¥πµ√’ “°≈„π∑∫‡ ’¬ß∑’Ë„°≈â Systems. 1st ed. McGraw-Hill, New York, °— π (523-1,046 ‡Œ‘ √ µ´å ) ‡ ’ ¬ ߥπµ√’ ‰ ∑¬¡’ p. 475-480. ‡Õ°≈—°…≥å¢Õß§«“¡‡ªìπ∏√√¡™“µ‘Õ¬à“ß¡“°π—Ëπ§◊Õ Cohen, L. (1989). Time-frequency distribution: A review. Proceedings of the IEEE, 77(7): §«“¡∂’Ë ¢ Õß‚πâ µ ·µà ≈ –‡ ’ ¬ ß¡‘ ‰ ¥â · ¥ß¥â « ¬‡≈¢ 941-981. ®”π«π‡µÁ¡≈ßµ—« ‡æ√“–°“√ª√—∫µ—È߇ ’¬ß‡§√◊ËÕß Griffiths, L.J. (1975). Rapid measurement of ¥πµ√’‰∑¬„™â∑—°…–°“√‰¥â¬‘π·≈–∑—°…–°“√ª√—∫ digital instantaneous frequency. IEEE trans. on acoustics, speech and signal ·µà߇ ’¬ß¢Õß𓬙à“ߺŸâº≈‘µ ¡‘‰¥â„™â‡§√◊ËÕß¡◊Õ«—¥ processing, ASSP-23(2):p. 207-222. ≈–‡Õ’¬¥„¥ Ê ‡¢â“™à«¬ √–¬–摵™å„π∑∫‡ ’¬ß‡æ’¬ß Marple, L. (1980). A new autoregressive ÕÕ¡’§à“„π¬à“π 130-230 ‡´πµå ‚¥¬ª√–¡“≥ ™à«ß spectrum analysis algorithm. IEEE trans. ‡ ’¬ß‚¥∂÷ßø“√–¬–摵™å¡’·π«‚πâ¡≈¥≈ß ®“°π—Èπ¡’ on acoustics, speech and signal processing, ASSP-23(4):441-454. Õ“°“√·°«àß„π™à«ß‡ ’¬ß´Õ≈∂÷ß‚¥' ‡ ’¬ß¥πµ√’‰∑¬ Mitra, S.K. (2001). Digital Signal Processing: ®÷ß¡‘‰¥â¡’√–¬–摵™å§ß∑’ˇÀ¡◊Õπ¥—ß ¡¡µ‘∞“π¥—È߇¥‘¡ A Computer-based Approach. 2 nd ed. °‘µµ‘°√√¡ª√–°“» ¢Õ¢Õ∫§ÿ≥¡Ÿ≈π‘∏‘ ‚∑‡√ ‡æ◊ÕË °“√ à߇ √‘¡«‘∑¬“»“ µ√å ª√–‡∑»‰∑¬∑’‰Ë ¥â π—∫ πÿπ∑ÿπ«‘®¬— ·°à‚§√ß°“√«‘®¬— π’È ‡Õ° “√Õâ“ßÕ‘ß ∫√‘…—∑ √’¥‡¥Õ√å ‰¥‡® ∑å (ª√–‡∑»‰∑¬) ®”°—¥. (2541). æ◊Èπ∞“π·Ààß°“¬¡πÿ…¬å. §√—Èß∑’Ë 1. Õ¡√‘π∑√å æ√‘Èπµ‘Èß, °√ÿ߇∑æœ, Àπâ“ 206-211. ¡πµ√’ µ√“‚¡∑. (2540). ¥ÿ√‘¬“ß§»“ µ√å‰∑¬: ¿“§ «‘ ™ “°“√. §√—È ß ∑’Ë 2. ¡µ‘ ™ π, °√ÿ ß ‡∑æœ, Àπâ“ 30-41. √“«ÿ≤‘ ÿ®µ‘ ®√. (2545). °“√«‘‡§√“–Àå‡ ’¬ß¥πµ√’‰∑¬. §√—Èß∑’Ë 1. ¡À“«‘∑¬“≈—¬‡∑§‚π‚≈¬’ ÿ√π“√’, McGraw-Hill/Irwin, Boston, p. 764-771. Morton, D. (1976). The Traditional Music of Thailand. 1st ed. University of California Press, USA, p. 232. Oppenheim, A.V., and Schafer, R.W. (1989). Discrete-time signal processing. International ed. Prentice Hall, Englewood Cliffs, N.J., p. 514-560. Totarong, P. (1983). Frequency tracking and its application in speech analysis [M.S. thesis]. Department of Electrical and Computer Engineering, The College of Engineering and Technology, Ohio University, USA, p. 9-14. Pielemeier, W.J., and Wakefield, G.H. (1996). A high-resolution time-frequency representation for musical instrument signals. The Journal of the Acoustical Society of America, 99(4):2,382-2,396. 192 °“√«‘‡§√“–Àå√–¥—∫‡ ’¬ß¥πµ√’‰∑¬ Pielemeier, W.J., Wakefield, G.H., and Simoni, M.H. (1996). Time-frequency analysis of musical signals. Proceedings of the IEEE, 84(9):1,216-1,229. Wood, A. (1975). The Physics of Music. 7th ed. John Wiley & Son, USA, p. 53.