syllabus spring 2012 - Knowledge
Transcription
syllabus spring 2012 - Knowledge
BACHELOR EAI SYLLABUS SPRING 2012 CODE DU COURS NOM DU COURS / COURSE NAME CALCULUS III MTH2001 Crédits / Credits EAI Credits 4 / ECTS Credits 8 Face à face / Contact Hours Travail individuel et/ou de groupe / Personal &/or Team Work Evaluation / Evaluation 52.5h 225h 7.5h Charge de travail / Student workload Langue d’enseignement / Teaching Language English Pré-requis / Prerequisite CALCULUS II Période d’enseignement / Teaching period Responsable du cours / Course Coordinator Spring 2012 - Wednesday 8:30 am - 11:30 am and Friday 1:00 pm-2:30 pm Audrey DALMASSO, PhD. [email protected] Intervenant(s) / Instructor(s) Bruno Chastaingt, PhD. Evaluateur(s) / Evaluator(s) Bruno Chastaingt Description du cours / Course description This multivariate Calculus course is the last of the Calculus series. This sophomore course is required in almost all engineering and science majors. It covers cylindrical and spherical coordinates, vectors, functions of several variables, partial derivatives, multiple integrals and vector integral calculus. [email protected] •Connaissances / Knowledge and Understanding (subject specific) Résultats d’apprentissage / Learning Outcomes Three dimensional space; vectors Vectors, dot products, cross product Lines, planes, quadric surfaces Cylindrical and spherical coordinates Vector valued functions Motion along a curve, tangent and normal vectors, curvature Multivariable functions, limits, continuity Partial derivatives, tangent planes, differentials Chain rules, directional derivatives, gradients Maxima and minima, Lagrange multipliers Double integrals in Cartesian and polar coordinates Parametric surfaces and surface areas Triple integrals (Cartesian, cylindrical, spherical coordinates) Mass, center of gravity, theorem of Papus Change of variables in multiple integrals, Jacobians Line integrals, independence of path, Green’s theorem Cours inscrit dans le process Assurance of Learning AACSB No • Devoir surveillé (DS) / Written examination Evaluation des étudiants / Student Assessment % 45% (3 x 15%) 3 midterm tests Final exam 30% • Contrôle continu Quizzes 15% BACHELOR EAI SYLLABUS SPRING 2012 Homeworks 06/01/12 11/01/12 13/01/12 18/01/12 Plan de cours / Course plan 20/01/12 25/01/12 27/01/12 01/02/12 03/02/12 08/02/12 10/02/12 15/02/12 17/02/12 22/02/12 10% 1h30 3h 1h30 3h 1h30 3h 12.1: Rectangular coordinates in 3_space, spheres, cylindrical surface, 12.2: Vectors. 12.3: Dot product, projections. 12.4: Cross product 12.5: Parametric equations of lines. 12.6: Planes in 3_space. 12.7: Quadric surfaces. 12.8: Cylindrical and spherical coordinates. 13.1: Introduction to vector valued functions. 13.2: Calculus of vector valued functions. 13.2: Calculus of vector valued functions. 13.3: Change of parameter; arc length. 13.4: Unit tangent, normal and binormal vectors. 13.5: Curvature. 1h30 3h 1h30 3h 1h30 3h 1h30 3h Midterm n°1 13.5: Curvature. 13.6: Motion along a curve. 13.7: Kepler’s law of planetary motion. 14.1: Functions of two or more variables. 14.2: Limits and continuity. 14.3: Partial derivatives. 14.4: Differentiability, differentials and local linearity. 14.5: The chain rule. 14.6: Directional derivatives and gradients. 14.7: Tangent planes and normal vectors. 14.8: Maxima and minima of functions of two variables. 24/02/12 1h30 Midterm n°2 29/02/12 02/03/12 3h 1h30 No Course No Course 07/03/12 3h 09/03/12 14/03/12 16/03/12 21/03/12 14.9: Lagrange multipliers. 15.1: Double integrals. 1h30 15.2: Double integrals over nonrectangular regions. 3h 15.2: Double integrals over nonrectangular regions. 15.3: Double integrals in polar coordinates. 15.4: Parametric surface, surface area. 15.5: Triple integrals. 15.6: Centroid, center of gravity, theorem of Papus. 1h30 3h 23/03/12 1h30 28/03/12 3h 15.8: Change of variables in multiple integrals, Jacobians. 15.7: Triple integrals in cylindrical and spherical coordinates. 16.1: Vectors fields. 16.2: Line integrals. 16.3: Independence of path; conservative vector fields. BACHELOR EAI SYLLABUS SPRING 2012 30/03/012 04/04/12 Midterm n°3 1h30 3h 06/04/012 1h30 16.4: Green’s theorem. 16.5: Surface integrals. 16.6: Applications of surface integrals , flux. 16.7: The divergence theorem. 16.8: Stokes’ theorem. 11/04/012 1h30 16.8: Stokes’ theorem. Final Exam Obligatoire pour le module / Required for the course Bibliographie / References Site(s) web / Web sites Thomas’ Calculus (12th Ed.), George B. Thomas, Maurice D. Weir, Joel R. Hass None None CAMPUS SOPHIA Nombre et durée des CM 52.5h Nombre et durée des TD Modalités de délivrance du cours (Par campus si différent) Optionnelle pour le module / Recommended references Autres (ex : coaching projets, distance learning, etc.) weekly Préciser les spécificités de programmation (TD en journée complète, cadencement spécifique des séances) CAMPUS LILLE CAMPUS PARIS CAMPUS CHINE CAMPUS US
Documents pareils
MTH1001 Calculus 1 CHASTAINGT - Knowledge
Chapter 6: Applications of the definite integrals
Chapter 6: Applications of the definite integrals
Matrices