MTH1001 Calculus 1 CHASTAINGT - Knowledge
Transcription
MTH1001 Calculus 1 CHASTAINGT - Knowledge
BACHELOR EAI SYLLABUS FALL 2011 CODE DU COURS NOM DU COURS / COURSE NAME CALCULUS I MTH1001 Crédits / Credits EAI Credits 4 / ECTS Credits 8 Face à face / Contact Hours Travail individuel et/ou de groupe / Personal &/or Team Work Evaluation / Evaluation 52.5h 225h 7.5h Charge de travail / Student workload Langue d’enseignement / Teaching Language English Pré-requis / Prerequisite French Scientific Baccalaureate Période d’enseignement / Teaching period Responsable du cours / Course Coordinator Fall 2011 - Wednesday 1:00pm - 4:00pm and Friday 1:00pm-2:30pm Audrey DALMASSO, PhD. [email protected] Intervenant(s) / Instructor(s) Bruno Chastaingt, PhD. Evaluateur(s) / Evaluator(s) Bruno Chastaingt Description du cours / Course description This course is the first math course taken by all engineering and science majors. . A quick review of algebra and trigonometry and the idea of limits lead to the study of derivatives and its applications. A final link is made between anti-derivatives and definite integrals. [email protected] •Connaissances / Knowledge and Understanding (subject specific) Résultats d’apprentissage / Learning Outcomes Review of high school algebra and trigonometry. Logarithmic, exponential, inverse trigonometric functions. Limits and continuity. Derivatives as rate of change. Techniques of differentiation, Chain Rule. Differentials, related rates. Implicit differentiation. Derivative of logarithmic, exponential, inverse trigonometric functions. L’hôpital’s Rule and indeterminate forms. Analysis of functions (variation, relative extrema, concavity). Absolute maxima, minima and applications. Newton’s method, Mean Value Theorem. Antidifferentiation. Riemann sums and the definite integral. The First and the Second Fundamental Theorems of Calculus. Rectilinear motion. Logarithms defined as an integral. Matrices: properties of matrices, Determinants, Inverse of a square matrix. Cours inscrit dans le process Assurance of Learning AACSB No • Devoir surveillé (DS) / Written examination Evaluation des étudiants / Student Assessment 3 midterm tests Final exam 30% • Contrôle continu Quizzes Homeworks 15% 10% Cours / Lectures Méthodes d’enseignement / Teaching Methods % 45% (3 x 15%) SYLLABUS FALL 2011 07/09/11 09/09/11 14/09/11 16/09/11 21/09/11 Plan de cours / Course plan 23/09/11 28/09/11 30/09/11 05/10/11 07/10/11 12/10/11 14/10/11 19/10/11 21/10/11 26/10/11 28/10/11 02/11/11 04/11/11 09/11/11 3h Chapter 0: Before Calculus. 1h30 Chapter 0: Before Calculus 3h Chapter 1: Limits and Continuity 1h30 Chapter 1: Limits and Continuity 3h Chapter 1: Limits and Continuity 1h30 Chapter 2: The derivatives 3h Chapter 2: The derivatives 1h30 3h Chapter 2: The derivatives 1h30 Chapter 2: The derivatives 3h Chapter 3: Topics in differentiation 1h30 Chapter 3: Topics in differentiation 3h Chapter 3: Topics in differentiation 1h30 Chapter 3: Topics in differentiation 3h 3h 2/12/11 Chapter 4: The derivative in graphing and applications Chapter 5: Integration 3h Chapter 5: Integration 1h30 23/11/11 3h 30/11/11 Midterm n°2 1h30 16/11/11 3h 25/11/11 Chapter 4: The derivative in graphing and applications 1h30 11/11/11 1h30 18/11/11 Midterm n°1 No course Chapter 6: Applications of the definite integrals Chapter 6: Applications of the definite integrals Matrices 1h30 Midterm n°3 3h Matrices 1h30 Matrices Final Exam SYLLABUS FALL 2011 Obligatoire pour le module / Required for the course Bibliographie / References Site(s) web / Web sites Thomas’ Calculus (12th Ed.), George B. Thomas, Maurice D. Weir, Joel R. Hass None None CAMPUS SOPHIA Nombre et durée des CM 52.5h Nombre et durée des TD Modalités de délivrance du cours (Par campus si différent) Optionnelle pour le module / Recommended references Autres (ex : coaching projets, distance learning, etc.) weekly Préciser les spécificités de programmation (TD en journée complète, cadencement spécifique des séances) CAMPUS LILLE CAMPUS PARIS CAMPUS CHINE CAMPUS US
Documents pareils
syllabus spring 2012 - Knowledge
16.6: Applications of surface integrals , flux.
16.7: The divergence theorem. 16.8: Stokes’ theorem.