The full report

Transcription

The full report
EUROPEAN ORGANISATION
FOR THE SAFETY OF AIR NAVIGATION
EUROCONTROL
EUROCONTROL EXPERIMENTAL CENTRE
RVSM5
REAL TIME SIMULATION
EEC Report No. 349
Project NAV-2-E4
Issued: July 2000
The information contained in this document is the property of the EUROCONTROL Agency and no part should
be reproduced in any form without the Agency’s permission.
The views expressed herein do not necessarily reflect the official views or policy of the Agency.
REPORT DOCUMENTATION PAGE
Reference:
EEC Report No. 349
Security Classification:
Unclassified
Originator:
EEC - OPS
(ATM Operational & Simulation
Expertise)
Originator (Corporate Author) Name/Location:
EUROCONTROL Experimental Centre
B.P.15
F – 91222 Brétigny-sur-Orge CEDEX
FRANCE
Telephone : +33 (0)1 69 88 75 00
Sponsor:
Sponsor (Contract Authority) Name/Location:
EUROCONTROL
EUROCONTROL HEADQUARTERS - BRUSSELS
TITLE:
RVSM5 REALTIME SIMULATION
Authors
Roger LANE
Robin DERANSY
EATMP Task
Specification
-
Date
07/00
Pages
x + 54
Project
NAV-2-E4
(RVS-5-E2 From
January 2000)
Figures
14
Tables
5
Appendix References
4
5
Task No. Sponsor
Period
-
October/November
1999
Distribution Statement:
(a) Controlled by:
Simulation Service Manager
(b) Special Limitations: None
(c) Copy to NTIS:
YES / NO
Descriptors (keywords):
Real-Time Simulation – RVSM – FLAS – SOFT FLAS – HARD FLAS – Core Area – Sectorisation – Coordination – Controller workload. Inversion UN852/3
Abstract: This report describes a EUROCONTROL Real Time Simulation that studied the impact of the
introduction of RVSM in the core area of Europe with specific reference to the effect on sectorisation
and the use of a Soft and Hard FLAS (Flight Level Allocation scheme).
This document has been collated by mechanical means. Should there be missing pages, please report to:
EUROCONTROL Experimental Centre
Publications Office
B.P. 15
F91222 - BRETIGNY-SUR-ORGE CEDEX
France
RVSM5 Real-Time Simulation
EUROCONTROL
SUMMARY
The RVSM5 Simulation was the final phase of the RVSM Core area study, and was
designed to study the use of Flight Level Allocation Schemes (FLAS) and effects on
sectorisation after the introduction of RVSM Flight Levels.
RVSM5 was the fifth RVSM Real Time Simulation (RTS) commissioned by
EUROCONTROL to be held at the EEC Bretigny. It was one of the largest in terms
of number of controllers involved and also one of the longest having run for seven
weeks during October and November 1999.
The simulation area covered the airspace of five countries and was managed by
eight Air Traffic Control Centres (ACCs). One of the major successes of the study
was the bringing together of operational personnel to work and co-operate on such
an important project. Firstly, during the course of 18 months, representatives from
each administration met regularly to formulate an agreed plan for the study and to
co-ordinate a network for the FLASs. Secondly, about 70 Air Traffic Controllers
took part in the RTS, many experiencing RVSM for the first time and also benefiting
from working alongside and socialising with colleagues from adjacent ACCs.
The participants quickly became confident using RVSM procedures and were able
to see the benefits of the six extra flight levels, especially during busy periods of
traffic.
The testing of a FLAS meant that on certain routes, the use of some flight levels
was restricted. Having seen the benefit of being able to use all the flight levels to
manage traffic, the controllers generally considered that for RVSM implementation,
a fixed FLAS would be too restrictive for both the controller and the pilots. They
preferred to have all the flight levels available to resolve any potential conflicts
themselves.
Despite the strong feeling that all flight levels should be available, many thought
that a FLAS should not be ruled out completely. It was felt that in some areas at
specific times of the day, a FLAS applied on a temporary or flexible basis could
provide potential benefits, such as reducing monitoring tasks and automatically deconflicting traffic.
The implementation of RVSM will have an effect on sectorisation in the future. It is
known that current sector divisions such as FL340 will have to be amended to
either FL335 or FL345, as FL340 will be a useable RVSM flight level. It is difficult to
accurately predict the traffic distribution and route utilisation, post RVSM
implementation but it is certain that there will be a vertical re-distribution of traffic.
This makes the definition of the Division Flight Level (DFL) between upper sectors
the most significant issue for airspace design. The controllers confirmed that this
needs careful consideration as sectors could become overloaded if there are too
many flight levels available and the flow of traffic is not carefully managed.
Project NAV-2-E4 – EEC Report n° 349
v
EUROCONTROL
RVSM5 Real-Time Simulation
ACKNOWLEDGEMENTS
As Project Manager of the RVSM5 RTS, I would like to pass on my gratitude to all the staff (see
Annex C) who participated in the project for their professional approach and opinions, which
make this report possible. Also, to the administrations of the eight ACCs who were kind
enough to supply the controllers during the various stages of the project. We appreciate with
current staff shortages, releasing controllers is always a problem, but projects like this are only
successful with the input and feedback from people with current operational expertise.
In particular, Alain, Kevin, Karin and the EEC Project team deserve a special mention for their
professional attitude, patience and dedication during the project.
5RJHU /DQH
vi
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
TABLE OF CONTENTS
LIST OF FIGURES ................................................................................................................................ix
REFERENCES ......................................................................................................................................ix
ABBREVIATIONS ..................................................................................................................................x
1.
INTRODUCTION...................................................................................................................1
1.1 DEFINITION OF TERMS .............................................................................................................1
1.1.1 Conventional Vertical Separation Minimum (CVSM) ............................................................1
1.1.2 Reduced Vertical Separation Minimum (RVSM)...................................................................1
1.1.3 Flight Level Allocation Scheme (FLAS) ................................................................................1
1.2 RVSM BACKGROUND................................................................................................................2
1.3 CORE AREA STUDY ..................................................................................................................2
1.3.1 Phase 1- System for Assignment and Analysis at a Macroscopic Level (SAAM) ..................2
1.3.2 Phase 2- Fast Time Simulation (FTS-TAAM) ......................................................................3
1.3.3 Phase 3- Real Time Simulation (RTS) .................................................................................3
2.
SIMULATION OBJECTIVES ................................................................................................4
2.1 GENERAL OBJECTIVE...............................................................................................................4
2.2 SPECIFIC OBJECTIVES .............................................................................................................4
2.3 ACHIEVEMENT OF OBJECTIVES ..............................................................................................4
3.
SIMULATION ENVIRONMENT.............................................................................................5
3.1 INTRODUCTION .........................................................................................................................5
3.2 SIMULATION AREA ....................................................................................................................5
3.3 CONTROL CENTRES .................................................................................................................5
3.4 ROUTE STRUCTURE .................................................................................................................5
3.5 OPERATIONS ROOM .................................................................................................................5
3.5.1 Layout..................................................................................................................................5
3.6 SECTORS...................................................................................................................................6
3.6.1 Measured Sectors................................................................................................................6
3.6.2 Feed Sectors .......................................................................................................................6
3.7 ATC SIMULATOR .......................................................................................................................7
3.7.1 Radar Functions ..................................................................................................................7
3.7.2 Flight Strips..........................................................................................................................7
3.7.3 Telecommunications (AUDIOLAN).......................................................................................8
3.7.4 Short Term Conflict Alert (STCA) .........................................................................................8
3.7.5 Meteorological Conditions....................................................................................................8
4.
DESCRIPTION OF THE SCENARIOS .................................................................................9
4.1 RVSM (REFERENCE) SCENARIO 1...........................................................................................9
4.2 HARD FLAS SCENARIO 3 ..........................................................................................................9
4.3 SOFT FLAS SCENARIO 2.........................................................................................................10
4.3.1 Summary of the FLAS Scenarios .......................................................................................11
5.
TRAFFIC SAMPLES ...........................................................................................................13
5.1 INITIAL CREATION ...................................................................................................................13
5.2 CONVERSION FROM CVSM TO RVSM ...................................................................................13
5.3 CHANGES MADE FOR THE REAL TIME SIMULATION ...........................................................13
6.
ATC WORKING PROCEDURES ........................................................................................14
7.
SIMULATION PROGRAMME .............................................................................................14
7.1 PARTICIPANTS ........................................................................................................................14
7.2 EXERCISE SCHEDULE ............................................................................................................14
8.
RESULTS............................................................................................................................15
8.1 ANALYSIS.................................................................................................................................15
Project NAV-2-E4 – EEC Report n° 349
vii
RVSM5 Real-Time Simulation
EUROCONTROL
8.1.1 Subjective analysis ............................................................................................................15
8.1.2 Objective analysis..............................................................................................................16
8.2 SPECIFIC OBJECTIVE 1 ..........................................................................................................17
8.2.1 Operational advantages/disadvantages .............................................................................17
8.2.2 Management of FL availability on main traffic flows............................................................19
8.2.3 Effect on controller workload and sector throughput ...........................................................21
8.2.4 Effect on Sectorisation.......................................................................................................27
8.2.5 Interface between Two or more ACCs................................................................................31
8.2.6 Evaluate the impact on adjacent sectors preparing the FLAS ............................................32
8.3 SPECIFIC OBJECTIVE 2 ..........................................................................................................35
8.3.1 Brief History.......................................................................................................................35
8.3.2 Results ..............................................................................................................................35
8.4 SPECIFIC OBJECTIVE 3 ..........................................................................................................37
8.4.1 Controller confidence using RVSM.....................................................................................37
8.4.2 Possible benefits of a FLAS ............................................................................................... 38
8.5 SPECIFIC OBJECTIVE 4 ..........................................................................................................39
9.
CONCLUSIONS..................................................................................................................40
9.1
9.2
9.3
9.4
9.5
10.
GENERAL .................................................................................................................................40
SPECIFIC OBJECTIVE 1 ..........................................................................................................40
SPECIFIC OBJECTIVE 2 ..........................................................................................................41
SPECIFIC OBJECTIVE 3 ..........................................................................................................42
SPECIFIC OBJECTIVE 4 ..........................................................................................................42
RECOMMENDATIONS ...................................................................................................43
Green pages : French translation of the summary, the introduction, objectives, conclusions and
recommendations ....................................................................................................................... 45
Pages vertes : Traduction en langue française du résumé, de l'introduction, des objectifs, des conclusions
et recommandations ................................................................................................................... 45
ANNEX A: MAPS
ANNEX B: OPERATIONS ROOM LAYOUT
ANNEX C: SIMULATION PARTICIPANTS
ANNEX D: SIMULATION SCHEDULE
viii
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
LIST OF FIGURES
Figure
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Page
Differences between CVSM and RVSM flight levels. .................................................1
The Reims sector UE .................................................................................................7
Sector equipment (AUDIOLAN left, ISA centre and TID right) ...................................8
Hard FLAS Quadrantral scheme ................................................................................9
Hard FLAS example .................................................................................................10
Soft FLAS example ..................................................................................................11
Effect of a FLAS on FL, route and sector occupancy...............................................12
ISA Workload for the Swiss sectors in Session 4 ....................................................23
ISA Workload for the French sectors in Session 4...................................................24
ISA Workload for the Italian sectors in Session 4 ....................................................24
Screen dump of Sector MOLUU during a Hard FLAS exercise................................30
Flight Level Orders Session 1 for sectors preparing a FLAS ...................................33
Session 2 ISA (Karlsruhe and Munich Sectors) .......................................................34
Session 2 telephone usage. .....................................................................................34
REFERENCES
1)
2)
3)
4)
5)
RVSM5 Project Management Plan –EEC Bretigny – Author: R. Lane.
RVSM5 Facility Specification – EEC Bretigny Authors: R. Lane and C. Chevalier
EATMP ATC Manual for RVSM in Europe – Eurocontrol HQ
EEC Report 315 –3rd Continental RVSM RTS
EEC Report 341 – RVSM4 (Turkey) RTS
Project NAV-2-E4 – EEC Report n° 349
ix
RVSM5 Real-Time Simulation
EUROCONTROL
ABBREVIATIONS
ACC
AIP
ANT
ARN
ATC
ATM
ATS
CFL
CVSM
CWP
DFL
EATMP
ECAC
EEC
EUROCONTROL
EXC
FIR
FL
FLAS
Ft
FTS
HQ
ICAO
N/A
NAT
Nm
PLC
R/T
RFL
RTS
RVSM
SAAM
STCA
TID
UIR
x
Area Control Centre
Aeronautical Information Publication
Airspace and Navigation Team
ATS Route Network
Air Traffic Control
Air Traffic Management
Air Traffic Services
Cleared Flight Level
Conventional Vertical Separation Minimum
Controller Working Position
Division Flight Level
European Air Traffic Management Programme
European Civil Aviation Conference
EUROCONTROL Experimental Centre
European Organisation for the Safety of Air Navigation
Executive
Flight Information Region
Flight Level
Flight Level Allocation Scheme
Feet
Fast Time Simulation
Headquarters
International Civil Aviation Organisation
Non Applicable
North Atlantic
Nautical miles
Planner Controller
Radio & Telephone
Request Flight Level
Real Time Simulation
Reduced Vertical Separation Minimum
System for Assignment at a Macroscopic Level
Short Term Conflict Alert
Touch Input Device
Upper Information Region
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
1. INTRODUCTION
1.1 DEFINITION OF TERMS
1.1.1
Conventional Vertical Separation Minimum (CVSM)
CVSM is the current separation standard where flight levels above FL290 are
vertically separated by 2000 feet.
1.1.2
Reduced Vertical Separation Minimum (RVSM)
RVSM is an approved International Civil Aviation Organisation (ICAO) concept to
reduce aircraft vertical separation from the CVSM 2000’ to 1000’, between flight
levels (FLs) 290-410 inclusive. RVSM introduces 6 additional flight levels
(FL300,320,340,360,380,400) and as a general principle the levels up to FL410
are allocated as ‘even levels – west/north bound and odd levels – east/south
bound’.
Note that FL310/350/390 change parity from even to odd flight levels with
RVSM
EVEN
CVSM
ODD
EVEN
RVSM
410
ODD
410
400
390
390
380
370
370
360
350
350
340
330
330
320
310
310
300
290
280
290
280
Figure 1: Differences between CVSM and RVSM flight levels.
1.1.3
Flight Level Allocation Scheme (FLAS)
A scheme whereby specific flight levels may be assigned to specific route
segments within the route network on a strategic basis (see sections 4.2 & 4.3)
Project NAV-2-E4 – EEC Report n° 349
1
RVSM5 Real-Time Simulation
EUROCONTROL
1.2 RVSM BACKGROUND
In the late 1970s, civil aviation faced both rising fuel costs and fast growing
demand. Consequently, the International Civil Aviation Organisation (ICAO)
initiated an extensive programme of studies to investigate the feasibility of
reducing the 2000ft Vertical Separation Minimum (VSM) to 1000ft above FL290.
These investigations indicated that RVSM (Reduced Vertical Separation
Minimum) between FL290-410 was feasible, safe and cost-beneficial without
imposing massive technical requirements.
RVSM (between FL330-370) became operational in the NAT (North Atlantic)
region on 27 March 1997. This level band was increased to FL310-390 on the 8
October 1998.
Full RVSM implementation within European and NAT airspace will take place on
the 24 January 2002, and is expected to provide considerable benefits.
However, due to the complex nature of the European ATS route structure and
the fact that some 40 countries are participating in the project, European
implementation will be more complicated compared with the NAT region.
1.3 CORE AREA STUDY
EUROCONTROL has sponsored many studies associated with the introduction
of RVSM in European airspace. The RNDSG (Route Network Development
Sub-Group) of the Airspace and Navigation Team (ANT), requested a study in
conjunction with the States concerned, to look at the effect of RVSM on
sectorisation and in particular, the possible benefit of applying different FLASs
(Flight Level Allocation Schemes) within the Core Area of Europe. This
document reports on the third and final phase of the study – the RVSM5 Real
Time Simulation.
1.3.1
Phase 1- System for Assignment and Analysis at a Macroscopic Level (SAAM)
SAAM is a statistical analysis tool developed at EUROCONTROL Headquarters.
The tool is widely used in support of the work of the RNDSG because it permits
large traffic samples to be modeled and evaluated over the entire European
route network. The results are provided in a matter of minutes. These include
traffic loadings on individual segments of the route network, loads on sectors
and conflict counts in any defined volume of airspace. However, SAAM is not
yet able to calculate controller workload. Because the tool has a quick response
time and a user-friendly graphical interface, it is possible to reconfigure airspace
and experiment with new structures without investing too much time in
preparation. This allows for the evaluation of a wide range of scenarios after
which the more promising can be proposed for further development. SAAM was
used in the development of Version 3 of the ARN and therefore already had the
future (planned V3 network) route network instantly available. This enabled a
series of sectorisation options to be investigated so that the two most likely
vertical sector splits could be identified and assessed further in the Fast Time
Simulation.
2
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
1.3.2
EUROCONTROL
Phase 2- Fast Time Simulation (FTS-TAAM)
In October 1998 a request for a fast time simulation was submitted to the EEC
Bretigny. Through the EUROCONTROL Simulation Partnership Scheme the
request was offered to Swisscontrol and the DFS, both of whom use the Total
Airspace and Airport Modeler (TAAM). Initially the two TAAM providers were
expecting to work on elements of the study. However, due to other commitments
the DFS were forced to withdraw from the simulation leaving SWISSCONTROL
as the sole provider.
TAAM enabled a more detailed examination of the scenarios and, in addition to
a more refined calculation of conflict counts, sector and segment traffic loads
than SAAM, also provided controller workload figures throughout the 24 hour
period. It was recognised from the very beginning that the timescales were
extremely tight bearing in mind the scale of the proposed simulation. At least 30
sectors were proposed for examination most of which were simulated with
different vertical splits (FL 325 and FL335) using the 24 hour traffic sample
which included approximately 8000 flights. Wherever possible the traffic
samples and the geographical definition of the airspace (sectors and route
network) were to be transferred from SAAM to TAAM. To an extent this was
achieved but the TAAM providers were still faced with a considerable workload
in getting the data prepared.
1.3.3
Phase 3- Real Time Simulation (RTS)
The RTS was the final phase of the study and simulated 32 sectors from eight
ACCs. The results of the previous phases were used to further study the effects
of the use of a FLAS within the Core Area of Europe, with the additional benefit
of being able to measure the workload and gain feedback from operational Air
Traffic Controller staff. The RTS was held at the EEC Bretigny and due to the
large number of sectors involved, was divided into four sessions (a maximum of
10 sectors at a time). This report details the findings of the RTS.
Project NAV-2-E4 – EEC Report n° 349
3
RVSM5 Real-Time Simulation
EUROCONTROL
2. SIMULATION OBJECTIVES
2.1 GENERAL OBJECTIVE
To evaluate the impact of the introduction of RVSM in the Core Area of
Europe with specific reference to the effect on sectorisation and the use of
a FLAS(s).
Note: The above General objective was made for the three phases of the study.
The specific objectives 3 and 4 were applicable solely to the Real Time
Simulation.
2.2 SPECIFIC OBJECTIVES
1. To compare the use of a Hard and Soft FLAS with the RVSM cruising level
reference, as published by ICAO in Annex 2 (Annex 2 Appendix 3, Table of
cruising Levels, table a.) with particular attention to the following aspects,
•
•
•
•
•
operational advantages/disadvantages
effect on controller workload and sector throughput
effect on sectorisation
the interface between two, or more, ACCs applying a FLAS
evaluate the impact on adjacent sectors (which are not applying a FLAS)
when preparing traffic for and receiving traffic from, sectors which are
applying a FLAS
2. To assess the operational impact of the inversion of the flight direction of the
routes UN852 and UN853 in the airspace of Geneva and Reims.
3. To gain controller confidence in the viability of introducing RVSM in the core
area of Europe and the possible benefit of a FLAS.
4. To further validate the RVSM ATC procedures developed by the ATM
Procedures Development Sub Group (APDSG).
2.3 ACHIEVEMENT OF OBJECTIVES
The objectives were achieved by gathering controller feedback via questionnaires,
debriefs and observations, and by data recordings made during the exercises. A
full description of the analysis can be found in section 8 - Results.
4
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
3. SIMULATION ENVIRONMENT
3.1 INTRODUCTION
This chapter outlines the ATC environment and different Scenarios that were
used for the RVSM5 simulation.
3.2 SIMULATION AREA
The simulation area covered five different countries and included parts of the
Austrian, France, German, Italian and Swiss FIR/UIRs (see Annex A Map 1).
3.3 CONTROL CENTRES
The following eight Air Traffic Control Centres were involved in the Simulation;
Geneva, Karlsruhe, Milan, Munich, Padua, Reims, Vienna and Zurich.
3.4 ROUTE STRUCTURE
The route structure used during the simulation was that planned in the ARN
Version 3 proposal for amendment to the EUR ANP (The structure was that
proposed for Phase 2 implementation for France and Geneva, Phase 3 for
Austria Italy and Zurich). The German route structure generally followed that
planned for Phase 3 with some adaptation as a result of the GE98 Real Time
Simulation. Additional adaptations, proposed by the State experts during the
preparatory stage, were also included.
3.5 OPERATIONS ROOM
3.5.1
Layout
The Operations Room layout was the same for all four sessions. The configuration
and a photograph are shown in Annex B.
Project NAV-2-E4 – EEC Report n° 349
5
RVSM5 Real-Time Simulation
EUROCONTROL
3.6 SECTORS
Due to the size of the airspace to be studied (see Annex A Map 1) it was not
possible to simulate all of the sectors (30 in total) at the same time. Therefore,
the airspace was divided into four areas with a maximum of 10 measured
sectors in each area. The four areas were considered to be ‘four mini
simulations’ and were called SESSIONs. The vertical limits and frequencies
used for each sector can be found on the maps in Annex A. The table below
details the grouping for each session.
SESSION
SESSION 1
Oct. 4-15
SESSION 2
Oct. 18-29
SESSION 3
Nov. 8-12
SESSION 4
Nov. 15-26
ACC involved
Measured Sectors
Munich
Vienna
AYING RIDAR
EST/U, NST/U, SST/U, WST/U
Karlsruhe
Milan
Munich
Padua
Zurich
KARLS/U
EU/EUU
ALGOI/ALPEN
NT/NTU
ZUR/H
Reims
UE/XE, UH/XH
Zurich
ZUR/H
Milan
Geneva
Reims
WU/WUU
MILPA/U, MOLUS/U
UE/XE, UH/XH
3.6.1
Measured Sectors
Measured sectors consisted of two Controller Working Positions (CWP) Executive (EXC) and Planner controller (PLC). Figure 2 shows the Reims sector
‘UE’ with the EXC controller on the left and his PLC on the right.
3.6.2
Feed Sectors
In each Session, up to five feed positions were simulated, to deliver and receive
traffic from the measured position and to respond to coordination requests on
the telephone. Controllers from either the adjacent ACC or the ACC being
simulated were used to staff the feed positions.
6
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
Figure 2: The Reims sector UE
3.7 ATC SIMULATOR
A common HMI (Human Machine Interface) was used for the seven-week period
of Simulation in order to reduce the risk of technical difficulties. The platform
was a proven HMI based on the French Cautra system.
3.7.1
Radar Functions
The following functionality was available to all sectors;
•
•
•
•
•
•
•
•
3.7.2
Sony 28 inch colour Radar screen showing full radar cover from FL000FL460.
Touch Input Device (TID) to change the Planned Flight Level of an aircraft
Standard paper strip containing flight plan information.
Range and Bearing tool
Speed Vector (0-10 minutes)
Minimum separation tool
Height filtering
Short Term Conflict Alert
Flight Strips
Paper flight strips were used on the measured sectors.
Project NAV-2-E4 – EEC Report n° 349
7
RVSM5 Real-Time Simulation
EUROCONTROL
3.7.3
Telecommunications (AUDIOLAN)
All positions used AUDIOLAN telecommunications equipment. This comprised of a
Headset and touch input panel (see Figure 3: sector equipment) with pre-defined
frequencies and landlines according to the sector.
Figure 3: Sector equipment (AUDIOLAN left, ISA centre and TID right)
3.7.4
Short Term Conflict Alert (STCA)
STCA was available within the radar coverage area.
2 volumes were defined and in each case the look ahead time was 2 minutes:
Volume 1 between FL 000 to FL 410:
The minimum horizontal separation = 4.9 Nm.
The minimum vertical separation = 1000 ft.
Volume 2 FL 410 to FL 460:
The minimum horizontal separation =4.9 Nm.
The minimum vertical separation = 2000 ft.
3.7.5
Meteorological Conditions
The direction and strength of the wind was decided as necessary for each exercise
by the simulation team.
8
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
4. DESCRIPTION OF THE SCENARIOS
4.1 RVSM (REFERENCE) SCENARIO 1
The introduction of RVSM results in six extra Flight Levels. Within the area being
simulated these levels were organised according to the direction of the route or
route segment flown. In general this followed a north/south split and the levels
were allocated even/odd accordingly. The purpose of the Scenario RVSM
reference was to simulate the proposed 2001 Airspace plan using RVSM traffic
samples based on the Single Alternate Flight Level Orientation adjusted to levels
of traffic forecast for 2001.
4.2 HARD FLAS SCENARIO 3
The RVSM Scenario can be further subdivided into a ‘Quadrantal‘ scheme and
this is illustrated in the Diagram below.
Figure 4: Hard FLAS Quadrantral scheme
This scheme forms the basis of the two variants of the FLAS simulated. Termed
the ‘Hard’ and ‘Soft FLAS’ by the Working Group they were just two of an infinite
number of possibilities that exist when a FLAS is applied over a large
geographical area.
It is important to point out that in the simulation the German sectors did not apply
a FLAS within their airspace. However because neighbouring ACCs were
expecting to receive and give traffic at FLAS levels, the Munich (session 1) and
Karlsruhe (session 2) controllers had the additional tasks placed upon them of
preparing the traffic for the correct FLAS levels. This element was tested and
measured in the simulation.
Project NAV-2-E4 – EEC Report n° 349
9
RVSM5 Real-Time Simulation
EUROCONTROL
The Hard FLAS involved a rigid application of the Quadrantal rule on major
routes within the defined airspace. Map 3 in Annex A shows the routes where
the Hard FLAS was applied and the colours of the routes correspond to the
colours and levels shown in Figure 4.
The purpose of the HARD FLAS was to reduce controller workload by
automatically resolving conflicting levels at major crossing points. This was
achieved by allocating specific levels to specific routes, thereby improving the
flow of traffic. Figure 5 below illustrates the general principle of level allocation.
Hard FLAS
Only
FLs 380,340
and 300
available
Only
FLs 400,360
and 320
available
Figure 5: Hard FLAS example
In this example, traffic on two northbound crossing routes was strategically deconflicted. Three northbound levels are made available to each traffic flow and
at the crossing point there is no risk of confliction between aircraft in level flight.
In theory the controllers’ monitoring task would be minimal.
In the simulation the routes on which a Hard FLAS was applied were selected by
the State experts and were designed to accommodate the major traffic flows and
ease the burden on controllers at known choke points.
Due to the complex route network it was impossible to strictly apply the
quadrantal scheme, therefore some routes were allocated levels which did not
necessarily agree with Figure 4.
4.3 SOFT FLAS SCENARIO 2
The Soft FLAS involved a more flexible application of the Quadrantal rule on
some of the major routes within the defined airspace. The intention of the Soft
FLAS was to reduce the controller workload at major crossing points by
strategically resolving some of the conflicts, at selected Flight Levels without
denying the controller tactical freedom. In addition the Soft FLAS offered the
airspace user more flexibility in the choice of the RVSM Flight levels
The Soft FLAS used the same general principle of level application according to
the direction of flight but unlike the Hard FLAS, only one or in some cases two
10
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
Flight Levels were frozen on individual routes (see Annex A- Map 2). Figure 6
below illustrates this principle.
Soft FLAS
FL 320
frozen
FLs 400,380,360
320 and 300
available
FL 340
frozen
FLs 400,380,360
340 and 300
available
Figure 6: Soft FLAS example
In this example the two northbound routes each have five useable Flight Levels
with a single level frozen on each one. FL 320 is not available for northwestbound traffic. FL 320 would therefore become a ‘protected’ or ‘preferred’
level on the other north-eastbound route. As a consequence FLs 320 and 340
are free of conflicts on this pair of routes.
As with the Hard FLAS, the experts from the States selected the routes and FLs
for the Soft FLAS exercises. The general principle was that this would be kept to
the minimum and would only be applied in order to accommodate major flows of
traffic. In addition, wherever a level was frozen, this was co-ordinated along the
length of a route to avoid unnecessary changes of FL for the operators and ATC.
4.3.1
Summary of the FLAS Scenarios
A comparison of the three scenarios simulated is shown in Figure 7. In this
example, two routes that pass through the busy Swiss point MOLUS are used.
The flight levels available to the controller are also shown in each case next to
the routes. The FLs are shown next to each of the six aircraft, and in the Soft
and Hard FLAS examples the modified FLAS FL was chosen at random (the
original FL appears in brackets next to the new FL).
The split between the Upper and Middle sectors was FL335, and it can be seen
that in the No FLAS scenario, the Blue and the Purple aircraft would be in the
Middle sector. However, in the Soft FLAS scenario the Blue and Green aircraft
are in the Middle sector and in the Hard FLAS the Purple and Yellow aircraft.
This diagram is just a demonstration of the way a FLAS can effect levels, routes
and sector occupancy, all of which would be dependent on the FL selected by
the controller at the time. In the Soft FLAS, note that on each of the routes, one
FL is blocked and one is highlighted in bold. This highlighted FL was called a
‘preferred FL’ as it corresponded to the blocked level of the other crossing route.
Project NAV-2-E4 – EEC Report n° 349
11
EUROCONTROL
RVSM5 Real-Time Simulation
Figure 7: Effect of a FLAS on FL, route and sector occupancy
12
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
5. TRAFFIC SAMPLES
5.1 INITIAL CREATION
It was planned to use a common traffic sample for all three phases of the study.
A traffic sample containing 24,000 flights from 26th June 1998 was taken from
the CFMU databank and this was cross-checked with the CRCO data. This
sample was boosted, by the Statistics and Forecasting Unit (STATFOR) of DED
4, to June 2001 levels. STATFOR takes forecast data for each city pair in the
ECAC area into account. This resulted in a new sample with approx. 28,000
flights, (an approximate global increase of 20%). In the simulation window
almost 10,000 flights were captured within the 24-hour period.
The original traffic sample had been based on the 1998 route network, which
was radically different in some regions from that planned for Version 3, and it
was necessary to ‘move’ many of the flights onto the new network. This was
completed using the SAAM tool, which automatically assigns large traffic
samples to the available routes according to certain criteria. In this case the
shortest path available, provided the right connections existed, was selected.
5.2 CONVERSION FROM CVSM TO RVSM
In addition to the lateral change to the traffic a method of distributing flights from
their current (non-RVSM) levels onto the RVSM levels was investigated and
applied to the sample. The following issues were taken into account:
•
•
•
•
•
The two hemispherical (North/South and East/West) methods of allocating
flight Levels in accordance with the direction of flight within Europe will be
retained.
After the implementation of RVSM more flights will operate closer to their
optimum FL, within the level band FL330-370.
60% of flights within the ECAC region are of less than 400nms
‘Capping’ of city pairs is likely to remain in force although it is hoped the
general push up to higher levels by other flights will result in a raising of
these capped levels (probably FL 270/280/290 instead of FL 230/240)
The ATC system will probably ‘spread’ the traffic more evenly than aircraft
performance would demand, either at sector or pre-tactical level
The group preparing the simulation selected a scheme where flight levels were
Harmonised and applied to the 2001 traffic sample. The Harmonisation allowed
a defined proportion of traffic at any given level to be moved to another, provided
the FLs were of the same parity. i.e. N/S or E/W.
5.3 CHANGES MADE FOR THE REAL TIME SIMULATION
The traffic sample was then modified for use in the Real Time Simulator as
follows:
•
•
•
2 x 2 hour periods were identified to form a Morning and Afternoon Traffic
sample.
The periods selected were 0800-1000 and 1600-1800.
The traffic was reviewed by the staff at the EEC and further reduced to make
Project NAV-2-E4 – EEC Report n° 349
13
RVSM5 Real-Time Simulation
EUROCONTROL
•
two traffic samples, each one 80 minutes long (10 minutes lead in, followed
by 60 minutes measured, followed by 10 minutes wind down).
The traffic levels in each sector were adjusted by adding or reducing traffic in
order to achieve a constant load (about 55 per hour) on each sector
concerned during the measured period.
The samples were validated by the experts from each ACC to verify correct
routeings and vertical profiles. The samples were adjusted for the Soft and Hard
FLAS so that aircraft commencing outside of the measured sectors who required
to be at a FL compliant with a FLAS were adjusted accordingly. The new FLs
chosen for use were based upon Departure/Destination, letters of Agreement
and aircraft performance.
A list of the traffic samples used can be found at Annex D Simulation
Schedule.
6. ATC WORKING PROCEDURES
The ATC working procedures used during the simulation were in accordance
with current Letters of Agreement and/or particular Operational Instructions.
All Sessions used SSR where the code was automatically converted to show the
callsign on the radar label.
RVSM Procedures – The reduction of separation from 2000’ to 1000’ between
FL290 and FL410 was applied based on the ICAO recommended Table of
Cruising Levels (ICAO doc Annex 2, Appendix 3, table a).
In order to be able to compare the effect of the different FLASs, it was necessary
to keep the number of variables (outside influences) to a minimum. The working
group agreed that all aircraft would be considered to be RVSM approved.
Specific procedures (Phraseology, Separation, Strip marking) required for
handling non-RVSM approved aircraft were therefore not necessary during the
simulation.
There were no exercises concerning non-RVSM approved aircraft, R/T failure,
failure to maintain altitude or transition between CVSM/RVSM.
7. SIMULATION PROGRAMME
7.1 PARTICIPANTS
A list of the simulation participants can be found in Annex C.
7.2 EXERCISE SCHEDULE
The timetable for the seven weeks of simulation can be found in Annex D.
14
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
8. RESULTS
The description of the methods (Subjective and Objective analysis) used to
collate the results follows this paragraph. The results are then detailed
according to the four Specific Objectives (see section 2.2). The Conclusions of
the results appears at section 9.
The results of Session 3 were not taken into account as it was felt that too many
changes to the traffic samples occurred during the first three days of the five day
Session. Also, the exercise schedule included too many variations (RVSM,
FLAS and Inversion) with too few exercises for the controllers to be reasonably
expected to form a subjective opinion. However, the Session was seen to be a
valuable training period for the nine Reims controllers who stayed on to complete
Session 4.
Sessions 1,2 and 4 were analysed individually and then the results were
compared to see if a trend existed between them.
8.1
ANALYSIS
8.1.1
Subjective analysis
The subjective analysis is based on two different sources of information. The first
source is the questionnaires given to the controllers before, during, and after the
simulation. The second source is the Instantaneous Self Assessment method or
ISA. Where appropriate, questions asked on the questionnaires (indicated by a ‘
Q.’ followed by the text in bold italic letters) have been inserted. The
answers appear below the question in normal text.
Questionnaires
The following questionnaires were used during the seven week simulation:
•
•
•
•
•
•
•
Pre-simulation (sent out one month before start of simulation)
Post exercise (short questionnaire after each exercise)
RVSM -No FLAS (given at the end of the Scenario 1 exercises)
RVSM Soft FLAS (given at the end of the Scenario 2 exercises)
RVSM Hard FLAS (given at the end of the Scenario 3 exercises)
Inversion (Session 3 and 4 only)
Final questionnaire (given at the end of each Session)
The Post exercise questionnaire included subjective evaluations on a scale from
1 to 10 of the following elements:
•
•
•
•
the controller overall workload
the R/T loading
the degree of realism of the simulated traffic sample
the difficulty in maintaining situational awareness
For each of these elements, the value 1 was considered to be Very Low, 5 as
Moderate, and 10 as Very High. If a controller answered with a value of 6 or
higher they were asked to give a brief reason why (i.e. traffic density, R/T
Project NAV-2-E4 – EEC Report n° 349
15
RVSM5 Real-Time Simulation
EUROCONTROL
loading, procedures). The value of 6 indicates the point at which the
effort/demand was considered to be higher than moderate. The workload results
on the questionnaires were used as a crosscheck with the ISA and data
recordings, and also as a back up in case of a recording failure.
Instantaneous Self Assessment (ISA)
The ISA method allowed the controller to assess his/her workload during the
course of a simulated exercise. The controller was provided with a warning
(Flashing light) every three minutes and had 30 seconds to register their
perceived workload on a five button box (see Figure 3: sector equipment)
according to the following point scale,
1 - Under-utilised, 2 - Relaxed, 3 - Comfortable, 4 - High, 5 - Excessive.
Experience shows that selection of either button 4 or 5 for more than 40% of an
exercise means that the participant is likely to reject the organisation.
8.1.2
Objective analysis
The Objective analysis is taken from data recordings made for each exercise.
From these recordings the following factors are studied:
•
•
•
•
•
Analysis of the R/T occupancy
Analysis of RFL
Analysis of pilot orders
Level Changes to Solve Conflicts
Analysis of the loss of separation
Most of the objective analysis concerned the controllers workload and is
therefore directed mainly towards Specific Objective 1.
Reference to Controller workload covers the executive and the planning
controller unless specific reference is made to one or the other.
The simulation produced a large amount of data and recordings for analysis. In
order to keep the size of the report reasonable, only the graphs or figures that
show a significant trend have been included, and where possible the results not
showing a clear trend have been summarised as text.
16
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
8.2
SPECIFIC OBJECTIVE 1
To compare the use of a Hard and Soft FLAS with the RVSM cruising level
reference, as published by ICAO (Annex 2 Appendix 3, Table of Cruising
Levels, table a.) with particular attention to the following aspects:
•
•
•
•
•
8.2.1
EUROCONTROL
operational advantages/disadvantages
effect on controller workload and sector throughput
effect on sectorisation
the interface between two, or more, ACCs applying a FLAS
evaluate the impact on adjacent sectors (which are not applying a
FLAS) when preparing traffic for and receiving traffic from, sectors
which are applying a FLAS
Operational advantages/disadvantages
Achievement of RFL (Requested Flight Level)
The table below shows the percentage of flights that reached their RFL during
the three sessions. It can be seen that in the RVSM No FLAS exercises the
percentage of aircraft reaching their RFL was in the high 80s. In all three
sessions this rate was slightly reduced in the Soft FLAS and very much reduced
in the Hard FLAS.
The two traffic samples (morning and afternoon) used in each session were
duplicated throughout the different scenarios, with the exception of the cruising
Flight Level where a FLAS was applicable (the original RFL remained constant).
In reality, if a FLAS was in use and a pilot knew that for example FL340 was not
available on a route, it would be unlikely that the pilot would flight plan an RFL
which was unavailable, instead they would more likely opt for FL320 or FL360.
However, the table below indicates how many flights were disrupted by the two
FLASs.
TRAFFIC SAMPLE
SCENARIO
SESSION 1
SESSION 2
SESSION 4
Afternoon
NO FLAS
Soft
Hard
NO FLAS
Soft
Hard
89%
86%
64%
88%
85%
59%
87%
75%
51%
88%
75%
60%
81%
64%
51%
85%
61%
55%
Morning
Project NAV-2-E4 – EEC Report n° 349
17
RVSM5 Real-Time Simulation
EUROCONTROL
Management of crossing points
It was expected that the main advantage of a FLAS would be the de-confliction
of traffic at crossing points with the aim of reducing the controllers workload and
increasing safety.
Q: Does the Soft FLAS make the management of crossing points easier?
Yes 33
No = 27
The advantage reported was a reduction in the monitoring tasks
Q: Does the Hard FLAS make the management of crossing points easier?
Yes 50
No = 8
The main advantage reported was the reduction in conflicts or potential conflicts,
closely followed by the reduction in monitoring tasks.
From the responses to the above two questions and from debriefings, it was
seen that the Soft and Hard FLAS both offered the controllers some advantages
at busy crossing points. Where traffic was in level flight and required no
preparation for the following sector, the controllers felt that a FLAS could be
beneficial for reducing the planning and monitoring of crossing traffic. This
benefit was greater where a FLAS was concentrated on a point (i.e. where many
routes converged and each one had a level/ or levels restricted).
However, it was felt that the advantage of a FLAS only occurred at certain times
For long periods it was deemed that a FLAS was not required and that aircraft
were being penalised unnecessarily by being descended from their RFL to
conform with the FLAS even though no conflicts along the route were detected.
For this reason it is considered that a temporary/flexible FLAS or a letter of
Agreement would be more appropriate than a permanent FLAS.
In some cases the use of an Opposite Direction Level (ODL) was used, this
occurred in larger sectors where there were few crossing routes of the opposite
parity.
Example: Traffic on the route SUMEK-PUBEG-DETSA at FL330 had to vacate
FL330 at PUBEG to comply with the Soft FLAS. Quite often the traffic was
initially descended to FL320 for transit of the WSU sector, this avoided the traffic
at FL310 on the busy routes ENKUN-TIROL and ENKUN-KFT. The aircraft still
had to be watched carefully to avoid any conflicts with traffic at FL320 routeing
through VIW/KFT northwest bound. When clear of all these routes the aircraft
would be given FL310 (or another level other than 330/350) before hand-over to
Padua Feed sector.
18
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
8.2.2
EUROCONTROL
Management of FL availability on main traffic flows
The biggest disadvantage perceived by the controllers was the fact that they had
been given six extra levels to use, then restricted with the way in which to use
them. Although a FLAS was seen to offer some benefits at busy crossing points,
the controllers felt that the number of levels available without a FLAS was
preferential and offered more flexibility to the controller. They also felt that pilots
may question big level changes in the future when RVSM is supposed to help
them to get closer to their Requested Flight Level. In terms of the controller
workload, although the FLASs might prove beneficial at the crossing point (fewer
conflicts, less monitoring) this was outweighed by the disadvantage of having
fewer FLs available.
Most sectors handled a high density of traffic and this in itself meant an increase
in monitoring tasks. It also showed the controllers that in reality this level of
traffic would be difficult to manage with the sectorisation simulated.
Hard FLAS
The controllers found that the Hard FLAS was more difficult to manage than the
Soft FLAS and RVSM (No FLAS). On the positive side, the traffic was evenly
distributed over routes in a quadrantal system and at crossing points where
traffic was in level flight, this provided a well separated flow. On the negative
side, the level availability on routes went from six to three (similar to CVSM) and
the controllers were working the same volume of traffic. This led to difficulties in
finding an available FL for traffic that was bunching and evolving, and on many
occasions a lack of exit FLs was reported.
Q: Was the integration of evolving traffic made more difficult on a route
with the Hard FLAS?
Yes = 38
No = 27
It was felt that co-ordination also increased between internal sectors as the
distribution of FLs affected the throughput of the lower and upper sectors, often a
sector would end up with only one popular/useable FL available.
Example: The table below shows the distribution of levels available on the
routes that run from southeast to northwest (FRZ-AOSTA and GEN-AOSTA)
within the WU/WUU Italian sectors.
They were allocated as Even FL’s in the RVSM (No FLAS) scenario. If we
assume that there are few flights at FL400, it can be seen that each sector ends
up with only one useable FL on two very busy routes.
SECTOR
FL’s available in
RVSM (No FLAS )
FL’s available in HARD FLAS
WU (FL285-335)
WUU (FL335-UNLTD)
300 -320
340-360-380-400
320
360/400
Project NAV-2-E4 – EEC Report n° 349
19
RVSM5 Real-Time Simulation
EUROCONTROL
Q: Does the proposed Hard FLAS offer sufficient flexibility between number
of flights and the number of FLs available?
Not at all = 43
Partially = 18
Totally = 2
Example: This situation demonstrates the restriction put on controllers and pilots
for exit FL availability. In Session 1, NSU/NST sectors had FLs 300/340/380
available for the northwest bound traffic on three busy converging routes (GRZSTAUB, PINKA-LALIN and GUSTA-LALIN) going into German airspace (which
was not applying a FLAS). Once these routes had crossed the east-west routes
PRITZ-SNU and TALSA -AW2 they had no other crossing routes to affect the
FLAS and the controllers felt penalised by having only three exit levels available
instead of six. After several exercises it was agreed in this case to make all six
levels available to traffic after crossing the east-west routes.
Summary
The use of a FLAS clearly restricted aircraft from achieving their RFL. At some
crossing points a FLAS was seen at certain times to show some benefits;
reduced monitoring and automatic deconfliction. The management/integration of
traffic was considered to be easier with all FLs available (No FLAS).
On balance, RVSM without a FLAS was operationally the most beneficial,
however, a Soft FLAS or letter of Agreement could be beneficial in certain
circumstances.
20
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
8.2.3
EUROCONTROL
Effect on controller workload and sector throughput
Controller Workload - Method
Controller workload was measured by the following means:
½
½
½
½
ISA - controllers had to assess their workload on a scale of 1-5 every three
minutes during an exercise.
Questionnaires – at the end of each exercise the controllers had to mark
their average workload during the exercise on a scale of 1-10. Also, the
controllers were asked to comment on their workload at the end of each
scenario.
Telephone use- the amount of calls made between sectors
R/T use- the amount of time spent talking on the frequency.
Summary
The recordings from Sessions 1, 2 and 4 show very little difference between
controller workload with RVSM (No FLAS), Soft FLAS and Hard FLAS. The ISA
recordings on most sectors vary between a normal to very high workload. When
this data is compared to the number of aircraft on frequency it is clear that much
of the workload for the Executive controller can be contributed to R/T load and
for the Planning controller the tasks of strip loading/sorting and co-ordination.
These points were confirmed in the debriefings where controllers commented on
the number of aircraft passing through the sector and many felt that although
they were just able to cope in a simulation environment. In real life this amount
of traffic would be unacceptable with the sector dimensions simulated. A FLAS
will not be able to remedy the R/T saturation, which is the major limitation on
controller workload.
Where the controllers believed that there was a difference in workload between
Scenarios, it has been detailed under the appropriate objective.
RVSM NO FLAS
The main comment on workload from Scenario 1 was the fact that the extra FLs
gave the controller the opportunity to use 1000 feet separation on a tactical basis
to resolve conflictions, instead of giving heading or speed restrictions.
Nearly all the controllers felt that as an Executive or Planning controller they
benefited from the extra levels, however the increase in useable FLs within a
sector did lead to an increase in monitoring tasks.
SOFT FLAS
Generally it was considered that workload was not reduced when using a Soft
FLAS. Co-ordination on some sectors became more difficult especially those
preparing the traffic for the FLAS (e.g. EST/U in Session 1). Many of the
controllers (44/61) felt that workload increased on the sectors which had to
prepare or receive the FLAS from adjacent sectors and as result 27 of the
controllers thought this would lead to reduced sector capacity.
Project NAV-2-E4 – EEC Report n° 349
21
RVSM5 Real-Time Simulation
EUROCONTROL
Q: When compared with the RVSM (No FLAS), did the Soft FLAS reduce the
workload:
for the planner?
No = 51
Yes = 7
for the executive?
No = 40
Yes = 20
HARD FLAS
When compared to the No FLAS and Soft FLAS scenarios, the Hard FLAS
Scenario changed the operating practices of the controller the most. It was
similar in many respects to the way that the controllers operate in CVSM i.e.
having three levels available on a route, each separated by 4000’ feet.
However, the main difference was that instead of six FLs being separated in two
directions, 12 FLs were arranged in four directions (see section 4.2). Also, the
volume of traffic was much greater than the present declared capacity.
The workload figures show no global significant difference, some sectors have a
higher workload and some have a lower workload. This is also reflected in the
questionnaire responses below,
Q: When compared with the RVSM (No FLAS), did the Hard FLAS reduce
the workload:
for the planner?
No = 43
Yes = 19
for the executive?
Yes = 32
No = 27
Sector throughput
The traffic samples aimed at simulating about 55 aircraft per hour in each sector,
generally this volume of traffic is much higher than levels normally handled with
CVSM. Achieving an exact balance is often difficult due to variations in aircraft
performance and the difficulty in predicting controllers’ orders. This led to some
sectors having more than the 55 aircraft per hour and some having less than the
55. This variation actually provided a useful guide to the number of aircraft that
a sector could reasonably manage using RVSM in a simulation environment.
The controllers believed that the benefit from six extra RVSM levels would lead
to an increase in the present sector entry rate. In the simulation sectors handling
between 32-50 movements showed an acceptable workload (1-3 on ISA button)
where sectors with over 50 showed an unacceptably high workload (regular use
of the 4-5 ISA button).
22
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
It is important to note that these figures represent a simulation environment, and
all aircraft simulated were RVSM approved. Other simulations have shown that,
½
½
Non-RVSM State aircraft in an RVSM environment do increase
workload/reduce capacity for the executive and planning controller
Sectors generally can cope with more workload due to the fact that the
situation is simulated (e.g. traffic is not real, pilots are more cooperative and
aircraft respond quickly after an input).
The application of a FLAS did create a redistribution of traffic between some
sectors. However, in the sectors where the affect was minimal, the throughput
was similar with or without a FLAS. Therefore, the use of a FLAS did not
increase or decrease the sector throughput.
The following three Figures (8-10) show the ISA workload averages for Session
4. In Figure 8 there is a slight reduction in workload in the MILPU/MOLUU Upper
sectors and a slight increase in workload in the MILPA/ MOLUS sectors. in the
Soft FLAS Scenario. This can be attributed to the imbalance of traffic between
the sectors which is an indirect result of the selection of FLs which can redistribute traffic from one sector to another, either above or below. In Figure 9
and Figure 10 it can be seen that the sectors (XE/XH/WU and WUU) which
generally handled below 50 aircraft an hour have a noticeably reduced workload.
Estimated Workload (ISA)
SESSION 4
%
00
90
80
70
60
50
40
30
20
10
0
1.N 2.S 3.H
MILPA/EX
1.N 2.S 3.H
MILPA/PL
Very
1.N 2.S 3.H
MILPU/EX
1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H
MILPU/PL MOLUS/EX MOLUS/PL MOLUU/EX MOLUU/PL
High
Norma
Low
Very
No
Figure 8: ISA Workload for the Swiss sectors in Session 4
Project NAV-2-E4 – EEC Report n° 349
23
RVSM5 Real-Time Simulation
EUROCONTROL
Estimated Workload (ISA)
SESSION 4
%
00
90
80
70
60
50
40
30
20
10
0
1.N 2.S 3.H
UE/EXC
1.N 2.S 3.H
UE/PLC
Very
1.N 2.S 3.H
UH/EXC
1.N 2.S 3.H
UH/PLC
Norma
High
1.N 2.S 3.H
XE/EXC
1.N 2.S 3.H
XE/PLC
Very
Low
1.N 2.S 3.H
XH/EXC
1.N 2.S 3.H
XH/PLC
No
Figure 9: ISA Workload for the French sectors in Session 4
Estimated Workload (ISA)
SESSION 4
%
100
90
80
70
60
50
40
30
20
10
0
1.N
2.S
3.H
WU/EXC
Very
1.N
High
2.S
3.H
WU/PLC
Norma
1.N
2.S
3.H
WUU/EXC
Low
Very
1.N
2.S
3.H
WUU/PLC
No
Figure 10: ISA Workload for the Italian sectors in Session 4
24
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
The answers to the following questions show that half of the controllers consider
a FLAS would not increase the sector throughput and the majority of the other
half believe a Soft FLAS would help more than a Hard FLAS.
Q: In your view would the application of a FLAS increase sector throughput
Yes = 31
No = 31
Q: If yes, which FLAS would be the most advantageous
Soft FLAS = 21
Hard FLAS = 14
The table below details the average amount of traffic each sector handled in the
afternoon traffic samples (the morning sample was very similar) and shows the
difference between scenarios. It should be noted that these are average figures
and they are based on the number of aircraft on the sector frequency at the time
of measurement. The majority of the differences between Scenarios can be
attributed to the effect of the FLAS. However, in some cases they are the result
of the traffic being transferred at different times.
Project NAV-2-E4 – EEC Report n° 349
25
RVSM5 Real-Time Simulation
EUROCONTROL
SESSION 1
PM
Sector
AYING
EST
ESU
NST
NSU
RIDAR
SST
SSU
WST
WSU
No
NB Acft
Soft
Hard
61
62
60
10
12
11
50
43
58
51
59
63
52
54
59
49
47
57
60
63
63
52
52
61
45
53
58
61
63
64
46
55
61
17
14
14
13
15
15
11
14
17
15
15
14
14
15
14
12
15
19
14
17
14
15
17
14
10
16
19
NB Acft
Soft
56
54
45
56
66
54
50
61
60
62
Hard
61
53
49
52
70
50
57
48
63
56
No
11
13
14
13
14
10
20
20
11
18
Max Acft
Soft
12
14
10
14
13
11
13
23
12
19
Hard
12
12
14
14
15
11
18
16
12
17
No
Max Acft
Soft
Hard
SESSION 2
PM
Sector
ALGOI
ALPEN
EU
EUU
KARLS
KARLU
NT
NTU
ZUR
ZURH
No
51
59
54
49
70
50
57
56
57
64
SESSION 4
PM
Sector
MILPA
MILPU
MOLUS
MOLUU
UE
UH
WU
WUU
XE
XH
26
No
46
60
52
58
46
56
41
46
41
35
NB Acft
Soft
62
54
63
59
50
63
37
49
42
32
Hard
48
66
61
59
54
61
41
45
37
39
No
10
13
11
12
13
13
14
15
12
9
Max Acft
Soft
Hard
12
13
13
13
14
13
11
16
11
8
10
16
13
11
15
13
13
16
10
10
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
8.2.4
EUROCONTROL
Effect on Sectorisation
The sectorisation (for the full list of sector splits see Annex A– Maps)
selected for the RTS came about as a result of the SAAM and TAAM
simulations, and agreements made between the members of the Working
Group. Many of the geographical limits were unchanged from that in use today,
however, the factor of most interest was which Division Flight Level (DFL) would
be most suited to RVSM operations.
The benefit of simulating 32 sectors is that a wide range of operational
differences can be considered such as, route network, vertical splits, conflict
points and traffic profiles. Although the sectors were all considered to be ‘enroute sectors’ some dealt with predominantly overflying traffic (EST- Vienna) and
some dealt with mainly evolving traffic (UH-Reims).
The most common sector base level was FL285, with FL335 being most
commonly used as the intermediate DFL. Generally these two levels varied by ±
2000’ with the exception of sectors UE and UH which used FL195 as the base
level as they are heavily involved with climbing/descending traffic from several
major airports (e.g. Geneva, Paris, Basel and Zurich). The busy exercise plan
meant that there was no flexibility during the seven week simulation to test
different DFLs (this had been the main objective of the FT Simulations)
The controllers were asked the following question after the RVSM (No FLAS)
exercises in order to get opinions on sectorisation without the influence of a
FLAS.
Q: Do you consider that the vertical splits (DFLs) between the sectors were
appropriate?
Yes = 40
No = 10
Don’t know = 10
In the RTS the DFLs remained the same for the Soft and Hard FLAS exercises.
The FLs chosen for the Soft FLAS were mainly between FL310-340. This meant
that most of the sectors affected were the Middle sectors (e.g. between FL285335). The controllers felt that the choice of FLAS vs DFL needs to be taken into
consideration, as does the ratio of traffic on crossing routes vs the number of
FLs available for use on each route.
The controllers highlighted the following specific points on sectorisation,
Austria There were eight Vienna ACC sectors simulated and a common
DFL of FL285/335 was used between the Upper and Top sectors. Most of the
controllers felt that the DFLs were appropriate with RVSM (No FLAS), but not
when using a FLAS. The Hard FLAS reduced the number of levels from six to
three in a given direction. In some sectors this caused difficulties, for example
the NST/U sectors deal with traffic predominantly northwest bound and the levels
available were 300/340/380. This meant that NSU sector (FL285-335) had only
FL300 available on three routes used by both the overflights and the Vienna
departures towards Germany.
Project NAV-2-E4 – EEC Report n° 349
27
RVSM5 Real-Time Simulation
EUROCONTROL
France The Reims sector layout included the new sector ‘XE” for the
simulation which was situated above the existing sector UE. This sector was
considered to be necessary by the controllers for RVSM implementation in order
to manage traffic levels similar to those experienced in the simulation. The DFL
between the sectors UH/XH was FL325. This meant that traffic at FL320 was in
sector UH which added extra workload. Although not tested, many of the
controllers felt that a DFL of FL315 may have proportioned the workload more
evenly between the two sectors UH/XH, and given the XH controller more
flexibility to resolve conflicts between traffic on UN852/3 crossing UL856.
Germany – The Karlsruhe ‘KARLS’ sector was the only middle sector to have a
base level of FL295, which meant that FL290 was in the feed sector below.
During the RVSM No FLAS exercises this did not cause too many problems for
the controllers. However, during the FLAS exercises (bearing in mind that this
sector had to prepare and deliver the traffic at FLAS levels to the adjacent
Zurich/Munich sectors) the controllers regularly ran out of odd levels and felt that
FL290 would have been useful in the KARLS sector. The integration of Frankfurt
(EDDF) departures was also very difficult without FL290, and many southbound
flights were restricted at FL270/280 and transferred to Zurich.
For the Munich controllers the AYING sector was simulated from FL285 to
Unlimited. This sector had the busy crossing point AYING situated in the middle
of it. The main concern of the controllers was that the sector had too many
levels and was too small geographically. As a result there was little time to
control the aircraft on the frequency, and all level co-ordination had to be done
before sector entry.
Italy – The Milano controllers normally operate with smaller sectors divided on a
north/south basis. For the simulation, the sectors were divided into east /west
with each sector having an upper DFL of FL335. This DFL was considered to be
appropriate, however, it was felt that the Milano sectors were too long and thin.
Switzerland
Zurich – The sectors were split at FL285/FL335 which was felt to be suitable for
the simulation. However, the controllers felt that with this sectorisation and high
traffic levels there would be too much traffic on too many levels to handle safely.
A geographical split of these large sectors should be investigated in the medium
term.
Geneva - The controllers did not like the MILPA and MOLUS sectorisation,
which was very different to the one that they were familiar with in their ACC.
(note: the sectorisation was built on an east/west rather than north/south split.)
For the simulation it was agreed that the military areas would be assumed to be
active, which forced all traffic from the SE towards the point MOLUS to route via
AOSTA.
The following observations were made,
½
28
Poor geographical division between sectors MILPA/U and MOLUS/U - the
two main conflict points MOLUS and MILPA were located in different
sectors. However, two of the three routes converging at each conflict point
were in the adjacent sector e.g. AOSTA-MOLUS controlled by MOLUS
sector, ISOAR-MOLUS and TDP MOLUS controlled by MILPA sector, with
the point MOLUS only about 10nm from the MILPA sector boundary.
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
½
½
½
EUROCONTROL
Positioning of routes in the sectors – MOROK-GILIR-TUROM-MILPA passed
through MOLUS/U for a very short time, and most aircraft were transferred
directly to MILPA/U sector. Overflying traffic from Northeast to Southwest
and vice-versa had to pass through two sectors, resulting in an increase in
co-ordination.
MILPA sector too long – Generally the radar screen range was set at 140nm
diameter for MOLUS/U and 200nm for MILPA/U.
The advantages of the sectorisation were that only one sector (MOLUS)
controlled the traffic from Geneva to Zurich and TONDA-MOLUS-DIJ. Also,
the sectors MILPA/U were the only sectors controlling traffic on the route
MOU-MILPA-TOP.
Figure 11 shows the sector MOLUU and most of the adjacent sector MILPU.
The exercise was a Hard FLAS afternoon sample, and the convergence of the
routes to the points MOLUS and MILPA can be seen. Of particular note is the
flight CFG804 at the boundary of the two sectors heading towards MILPA.
CFG804 is flying at FL360, whereas the Hard FLAS levels for this route and the
converging route TUROM-MILPA were FLs 290/330/370/410. The controller has
used an even flight level (FL360) to avoid the conflict with HLF045, also at
FL370. This is a good example of the tactical use of 1000’ separation instead of
descending CFG804 by 4000’ to FL330. The exercise recording shows that this
flight was descended from FL370 to FL360 about 5nm before the screen dump
was taken and then climbed to FL370 shortly after MILPA (where the two flights
crossed) before exiting the sector towards BOJOL level at FL370.
Project NAV-2-E4 – EEC Report n° 349
29
EUROCONTROL
RVSM5 Real-Time Simulation
Figure 11: Screen dump of Sector MOLUU during a Hard FLAS exercise
30
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
8.2.5
EUROCONTROL
Interface between Two or more ACCs
Under normal circumstances aircraft can be transferred between ACCs at
irregular levels subject to co-ordination. However, in order to reduce coordination and be able to examine the effects of a FLAS along the entire planned
route, within this simulation, the controllers were briefed to strictly apply the
FLAS levels at the boundary between ACCs, in the Soft and Hard FLAS
Scenarios.
The FLAS network was constructed on all major routes and aimed at deconflicting as many points as possible along each route length. It was agreed
that the controllers should have tactical freedom to use Flight Levels as required
within their sector but that the general framework of the FLAS should be
respected. This would mean that a receiving ACC could expect aircraft to arrive
at FLs, which were already de-conflicted at a major conflict point close to the
sector boundary.
An example of this can be found in the Zurich Sector. The point TRA
(Trasadingen) is located close to the boundaries of Reims and Karlsruhe ACCs.
It acts as a crossroad for several major routes and the Hard FLAS in particular,
was intended to automatically de-conflict 4 flows of traffic. Therefore, it was
important to the Zurich controllers that the FLAS was respected as they had
limited levels available and a short period of time to control the traffic before
crossing the conflict point.
The following questionnaire replies show that the controllers considered that a
FLAS had an effect on inter-ACC co-ordination and that the Soft FLAS was less
penalising than the Hard FLAS.
Q: Was co-ordination between neighbouring ACCs affected by the
application of a FLAS
Yes = 47
No = 18
Q: If yes with which FLAS was it easier
Soft FLAS = 27
Hard FLAS = 14
The recorded data from the telephone lines also shows no clear trend for the
number of calls between ACCs. Some sectors show an increase and some
show a decrease. The sector that showed the most noticeable increase was the
KARLS PLC where there were more calls to Zurich and Munich in the FLAS
exercises, but there was no clear difference between the Soft and Hard FLAS.
This increase can be attributed to the addition task of preparing the FLAS, which
the KARLS sector was responsible for.
Project NAV-2-E4 – EEC Report n° 349
31
RVSM5 Real-Time Simulation
EUROCONTROL
8.2.6
Evaluate the impact on adjacent sectors preparing the FLAS
During the preparation phase of the simulation the DFS indicated that they would
be unlikely to implement a FLAS within their airspace in the future.
This
enabled examination of the impact of traffic transferring from a FLAS to non
FLAS environment, and vice versa, in the following sectors:
½
½
½
AYING/RIDAR - Munich ACC sectors in Session 1.
EST/U - Vienna sectors which prepared the SOFT FLAS only for the WST/U
sectors) in Session1.
KARLS/KARLU – Karlsruhe ACC sectors Session 2
This objective was studied using a duplicate of the RVSM exercise traffic
sample, but with the following differences,
½
½
For flights exiting a sector with no FLAS to a sector with a FLAS, the flight
levels were unaltered. In other words, a worst case scenario was
assumed where the last sector prior to a sector with a FLAS, was
responsible for delivering the traffic at the correct level.
The Feed sectors delivering traffic to sectors with a FLAS were assumed to
be part of the FLAS system and flight levels were modified so as to be at a
correct FLAS level prior to sector entry.
RESULTS
The sectors preparing the Soft and Hard FLAS for other sectors found the task to
be very demanding. The controllers reported an increase in co-ordination
between adjacent ACCs and internally between upper and lower sectors (see
Figure 14: telephone use).
In Session 1 the two Munich sectors and the two Austrian ES sectors were
responsible for the FLAS preparation (ES prepared traffic in the Soft FLAS only).
The Munich sectors reported little difference, mainly due to the fact that there
were few aircraft in the traffic sample that transited the sector at the FLAS levels.
However, the ES sectors were affected and the workload associated with coordination and FL orders was increased. In the Hard FLAS the ES sectors did
not have to prepare traffic and the number of telephone calls and flight level
orders were less than the Soft FLAS. Figure 12: Pilot orders shows the
average number of flight level orders given by the controller during the three
Scenarios. There is an increase in the number of instructions in all of the
sectors preparing the FLAS in Session 1, with the Austrian sectors notably
higher than the Munich sectors.
32
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
Flight Level orders by sectors
SESSION 1
40
37
34
32
30
30
28
21
19
20
17
16
16
14
9
10
0
1.N
Figure 12:
2.S 3.H
AYING
1.N
2.S 3.H
RIDAR
1.N
2.S 3.H
EST
1.N
2.S 3.H
ESU
Flight Level Orders Session 1 for sectors preparing a FLAS
The Hard FLAS proved to be the most difficult due to the number of restricted
FLs and in Session 2 the Karlsruhe sectors experienced an extremely high
workload whilst attempting to deal with the dense level of traffic and limited exit
flight levels. The problem of flight level distribution has already been detailed in
section 8.2.2 . The small geographical sector (see 8.2.4 ‘Germany’) added to
the complexity of the task.
It can be seen from Figure 13 that the ISA workload levels for the two Karlsruhe
sectors were already at high levels in the RVSM (No FLAS) Scenario due to the
volume of traffic. With the exception of the Upper sector PLC, there is an
increase in workload with the Soft and Hard FLAS.
During the simulation the automatic transfer of Flight plan information was sent
eight minutes before sector entry. The planned flight level could be changed up
to three minutes before sector exit. However, a PFL change could often mean a
new sector sequence and as a result strips had to be generated on the new
sector and cancelled from a sector if it had already been pre-warned (eight
minutes before entry). To reduce this extra co-ordination the Karlsruhe planning
controllers would attempt to plan the sector exit before the eight minute
notification to Zurich/Munich. This would give them only three to five minutes to
decide on the exit levels and during the FLAS preparation exercises this task
was difficult to achieve due to volume of traffic, lack of available levels and the
time parameters of the system.
Project NAV-2-E4 – EEC Report n° 349
33
RVSM5 Real-Time Simulation
EUROCONTROL
The controllers also had the task of receiving traffic at FLAS levels and where
required, changing the flights back to a No FLAS situation (from three to six
FLs). The controllers had no difficulty with this as the extra three FLs gave them
added flexibility.
Estimated Workload (ISA)
SESSION 2
%
00
90
80
70
60
50
40
30
20
10
0
1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H
ALGOI/EX ALGOI/PL ALPEN/EX ALPEN/PL
Very High
High
1.N 2.S 3.H
KARL/EX
Normal
1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H
KARL/PL KARLU/EX KARLU/PL
Low
Very Low
No Answer
Figure 13: Session 2 ISA (Karlsruhe and Munich Sectors)
Session 2 –Telephone Usage
20
The number on the top of each bar = number of calls made/received
36
31
15
28 27
30
29
m
10
18
18
18 20
18
5
12
12
11
%
10 9
11
7 6
0
1 2 3 1 2 3
. . .
. . .
N S H N S H
ALGOI/PLALPEN/PL
13 13
14 14
14
14
13
12
10
6
5
1 2 3 1 2 3 1 2 3 1 2 3
. . .
. . .
. . .
. . .
N S H N S H N S H N S H
EU/PL EUU/PL KARLS/PL
KARLU/PL
1 2 3 1 2 3 1 2 3 1 2 3
. . .
. . .
. . .
. . .
N S H N S H N S H N S H
NT/PL NTU/PL ZUR/PL ZURH/PL
Figure 14: Session 2 telephone usage.
34
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
8.3 SPECIFIC OBJECTIVE 2
To assess the operational impact of the inversion of the flight direction on
the routes UN852 and UN853 in the airspace of Geneva and Reims.
8.3.1
Brief History
The proposed inversion would mainly affect three ACCs (Maastricht, Reims and
Geneva). Whilst the change in direction might benefit the ATM system in some
areas it may cause problems in others and this needs to be fully addressed
before any change takes place. The dualisation of UN852/53 has been
optimised yearly since 1977 and the Reims controllers are now familiar with this
network. Many procedures would need to be changed to accommodate an
inversion (specifically arrival /departure routes) and unless these issues are
correctly co-ordinated, they could cause serious disruption within Reims airspace
and lead to a reduction in capacity.
8.3.2
Results
The plan in the original exercise schedule was that a FLAS would be tested in
the inversion exercises. This was achieved in three session 3 exercises but only
with the Hard FLAS. However, the traffic sample was modified several times in
Session 3 and this meant that the results could not be used for comparison. In
Session 4 only the inversion with RVSM (No FLAS) was examined so that a
complete set of exercise runs could be completed, enabling comparison with the
non-inversion exercises.
The results of the inversion exercises show a clear difference in opinion between
the controllers from Reims and Geneva ACCs.
Reims – The Reims controllers experienced difficulties with the new procedures
for ARR/DEP routes in sectors UH/UE. These included:
½
½
½
½
½
½
the conflict between traffic on routes UL851-UN853
the conflict between traffic on routes UL613-UN852
the conflict between Zurich arrivals from the west on UM606 and departures
from Zurich to the North. The controllers felt there was less airspace to
provide tactical separation with the inversion. The climb profile of Zurich
departures to the north also caused a conflict when intercepting UL 851.
Inbound and outbound routes from Strasbourg, Geneva, Lyon and Basle
were opposite direction to each other and would require separating by
creating new transition routes.
Inbound descending traffic to Luxembourg and Saarbrucken was difficult to
separate from other northbound traffic and it was felt that a second
northbound axis was required to allow arrivals to descend. However, the
creation of a new axis would be difficult due to the military area TSA 22.
Inbound traffic to ETAR from DIJ (Dijon) is opposite direction to the
southbound flow (UN853), In the non inversion exercises the ETAR traffic
routes in the same direction as the Northbound traffic on UN853.
The ISA recordings show an increase in workload on all the French sectors
(especially the UH EXC) compared with the non Inversion (NO FLAS) recordings
Project NAV-2-E4 – EEC Report n° 349
35
RVSM5 Real-Time Simulation
EUROCONTROL
Due to the evolving traffic the airspace structure in the inversion exercises had a
lower potential capacity than the current network. The Reims ACC already has a
capacity problem, and it was considered that the inversion would make this
worse. The inversion was not considered to be beneficial (with or without Hard
FLAS) in comparison with the current route organisation. The viability of the
inversion would require more airspace to establish specialised routes
(Saarbrucken, Strasbourg, Basel, Zurich and Luxembourg). The inversion was
not considered to be a necessity for RVSM implementation.
Geneva – The problems encountered in the Reims airspace were not as
apparent in Geneva airspace. The base level of the measured Geneva sectors
was FL285 or above and the airspace that would normally be most affected with
arrival and departure routes was a feed sector in the simulation. The Upper
sectors reported few problems with the inversion as the overflying traffic
benefited from more direct one way routeings. The other advantages reported
were that the crossing angle at MILPA was improved and the crossover point
GILIR was removed. The ISA recordings show a very small reduction in
workload compared with the non inversion (No FLAS) exercises. Further studies
are required to assess the effect on the Geneva lower sectors.
Questionnaire responses
Q: Did you benefit from the inversion?
No = 9 (all Reims)
Yes = 8 (all Geneva)
Q: Did you find the inversion difficult to apply?
Yes = 9 (all Reims)
No = 8 (all Geneva)
For those who replied yes, a further question asked the controllers to give their
opinion on why the inversion was difficult to apply. The replies are summarised
in the above paragraph Reims.
Q: Do you think the Soft FLAS is sufficient to solve these difficulties?
No = 10 (9 Reims)
Yes = 3 (all Geneva)
Q: Do you think the Hard FLAS is sufficient to solve these difficulties?
No = 12 (9 Reims)
Q: With the non-inversion organisation, do you think a FLAS is necessary?
No = 9 (all Reims)
Yes = 8 (all Geneva)
Q: If yes, which one?
Soft FLAS = 8 (all Geneva)
36
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
8.4
EUROCONTROL
SPECIFIC OBJECTIVE 3
To gain controller confidence in the viability of introducing RVSM in the
core area of Europe and the possible benefit of a FLAS.
8.4.1
Controller confidence using RVSM
This objective was considered to be important, as the simulation was an
excellent opportunity for many controllers to use RVSM flight levels for the first
time in their airspace. The results were achieved by the use of questionnaires,
observation during exercises and debriefings.
Of the 69 controllers who took part during the seven weeks only 26 had taken
part in a Real Time Simulation before, and of these only 12 had participated in
an RVSM simulation. At the end of each session the controllers were asked the
following question.
Q: Has the simulation changed your perception of RVSM?
No = 33
Yes = 28
During the course of the simulation, short presentations were given on the
following subjects to help the controllers fully understand the implications of
RVSM;
•
•
•
•
RVSM use in Irish Airspace/North Atlantic.
RVSM European Programme
RVSM Height monitoring and aircraft requirements
RVSM ATC Procedures
ALL of the Controllers quickly adapted to using RVSM flight levels and were very
positive about the use of RVSM in their airspace. The following advantages
were immediately apparent,
•
•
•
the six extra flight levels offered much more flexibility
RVSM facilitated an increase in entry rate into the sector
Most of the controllers (50/60) used a 1000’ level change as a method of
resolving a conflict as opposed to the use of a radar heading (see Figure
11: example CFG804 versus HLF045).
However, the controllers were aware that they were operating in an environment
where all aircraft were being simulated as RVSM approved and during the
course of the simulation they raised many procedural issues including nonRVSM traffic, wake vortex and future sector capacity/limits.
These issues have been covered in previous simulations and were not included
in RVSM5 in order that the controllers could concentrate on the objectives
relating to the FLAS and sectorisation issues. Notwithstanding this, they are
extremely important and each ACC should consider them prior to RVSM
implementation.
Project NAV-2-E4 – EEC Report n° 349
37
RVSM5 Real-Time Simulation
EUROCONTROL
The controllers were asked whether the extra level availability in the upper
airspace provided by RVSM could lead to a relaxation of current restrictions like
city pair capping, ATC Constraints, LOA’s etc. The questionnaire responses
below show that most felt that these restrictions were necessary. The
debriefings confirmed that in their view there is a need to regulate traffic, in order
to maintain a managed sector sequence.
Q: Do you consider short haul city pairs could have been capped below
FL290
Yes = 44
No = 7
Don’t know =7
Q: Do you consider that the usual flight level/ATC Constraints are still
necessary
Yes = 33
No = 10
Don’t know =15
One of the frequent questions asked concerning RVSM introduction is – will
experienced controllers be able to adjust to the fact that three even flight levels
used today (FL310/350/390) will change parity to odd flight levels with RVSM,
and how long will it take for them to become familiar with the new scheme?
During the first couple of days of the simulation some of the controllers
experienced confusion with the levels FL310/350/390 being reversed, especially
when planning. However, from the questionnaire responses given at the end of
each session (two weeks maximum), none of the controllers reported having
any difficulty with the reverse change in parity of FL310/350/390.
8.4.2
Possible benefits of a FLAS
The possible benefits of a FLAS are fully described under Specific Objective 1
(see section 8.2), however, to summarise, at the end of each session (including
the Zurich controllers in Session 3) the controllers were asked the following
question.
Q. Taking all things into consideration, do you think the use of a FLAS is
necessary for your airspace?
38/69 controllers answered – No, believing that a FLAS was only useful at
certain times depending on the traffic situation, and they would prefer using
RVSM without a FLAS as it offered the controller greater flexibility and capacity. .
31/69 controllers answered – Yes, most felt that a temporary / flexible Soft
FLAS or letters of agreement could be the solution to resolving conflictions at
some major crossing points in peak traffic periods.
38
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
8.5
EUROCONTROL
SPECIFIC OBJECTIVE 4
To further validate the RVSM ATC procedures developed by the ATM
Procedures Development Sub Group (APDSG).
As part of the planned introduction of RVSM in European airspace the APDSG
has developed specific ATC Procedures (incorporated within the EATMP-ATC
Manual for RVSM in Europe) to enable RVSM operations to take place safely
and expeditiously in EUR RVSM airspace. These procedures are continually
validated in RVSM Simulations.
The ATC procedures related to RVSM include General procedures, handling of
non-RVSM Traffic, flight planning, co-ordination procedures, contingency
procedures transition procedures and phraseology.
The ATC procedures applicable to the RVSM5 simulation are detailed in section
6, however, it is important to remember that all aircraft were considered to be
RVSM approved (non-RVSM approved state aircraft were not included in
the exercises).
With the absence of non-RVSM aircraft the only RVSM ATC procedure that was
considered in the simulation was the general procedure of reducing the vertical
separation from 2000’ to 1000’ between FL290-410 (see Table of Cruising
levels - section 1.1.2).
The main aspects related to the use of 1000 feet separation are detailed under
Specific Objective 1 and 3.
Project NAV-2-E4 – EEC Report n° 349
39
RVSM5 Real-Time Simulation
EUROCONTROL
9. CONCLUSIONS
9.1 GENERAL
The use of a FLAS is a complex issue and has an effect on the vertical traffic
distribution and controller workload over an extended geographical area placing
additional tasks on controllers at ACCs preparing the FLAS.
The subjective view of the controllers was that although a FLAS can be
beneficial at some crossing points by reducing the controller monitoring task, it
can create additional workload by reducing the number of FLs available and
complicating the management of FLs. The management/integration of traffic was
considered to be easier with all FLs available (No FLAS).
The implementation of RVSM will have a significant impact on sectorisation by
altering the vertical distribution of traffic and the choice of Division Flight Level
between sectors will be of primary importance in achieving a balanced flow of
traffic.
9.2 SPECIFIC OBJECTIVE 1
To compare the use of a Hard and Soft FLAS with the RVSM cruising level
reference, as published by ICAO (Annex 2 Appendix 3, Table of cruising
Levels, table a.) with particular attention to the following aspects:
•
operational advantages /disadvantages
Fewer aircraft achieved their RFL in the FLAS exercises compared with the
RVSM No FLAS exercises.
The management of some crossing points was easier with a Soft FLAS at
certain times, due to reduced monitoring. The Hard FLAS helped to reduce
monitoring and reduce conflicts and potential conflicts at some crossing points.
The integration of evolving traffic was more difficult in the FLAS exercises.
In FLAS exercises (especially the Hard FLAS) the lack of available exit flight
levels from a sector meant that some climbing aircraft were restricted and some
which were cruising had to be moved to a different level to avoid confliction or to
conform with the FLAS. These actions led to extra R/T and co-ordination for the
controller.
•
40
effect on controller workload and sector throughput
Recorded workload data showed no significant trend between scenarios,
however, many controllers felt that their workload was increased during the
FLAS scenarios. In general, sectors controlling more than 50 aircraft an hour
showed an unacceptably high workload (mainly due to R/T loading and flight
strip management). A FLAS was seen to have an effect on the distribution of
traffic between upper and lower sectors.
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
EUROCONTROL
•
effect on sectorisation
Some sectorisation problems were encountered due to the choice of Division
Flight Level (especially affected during FLAS exercises). Several sectors also
experienced difficulties with their new geographical limits. The DFL 335 was
generally considered acceptable, but this choice will depend on the location of
the sector, the nature of the traffic (overflights, evolving flights) and the vertical
distribution of traffic.
•
the interface between 2, or more, ACCs applying a FLAS
An increase in coordination was reported between sectors during FLAS
exercises
•
evaluate the impact on adjacent sectors (which are not applying a FLAS)
when preparing traffic for and receiving traffic from, sectors which are
applying a FLAS
Preparing traffic (i.e. adjusting the levels to comply with the FLAS) increased
workload and was difficult due to restricted availability of exit flight levels.
Controllers also found it difficult to integrate evolving traffic. It was felt that more
co-ordination was necessary at the interface between a FLAS and non FLAS
area.
9.3 SPECIFIC OBJECTIVE 2
To assess the operational impact of the inversion of the flight direction of
the routes UN852 and UN853 in the airspace of Geneva and Reims.
Reims –Difficulties were experienced with the new procedures for
arrival/departure routes in sectors UH/UE. The controllers considered that the
sector capacity would be reduced compared with the current airspace structure.
The Reims ACC already has a capacity problem, and it was felt that the
inversion would make this problem worse.
Geneva –The Upper sectors reported few problems with the inversion as the
overflying traffic benefited from more direct one-way routeings. The advantages
reported were that the crossing angle at MILPA was improved and the crossover
point GILIR was removed. Further studies are required to assess the effect on
the Geneva lower sectors.
Project NAV-2-E4 – EEC Report n° 349
41
EUROCONTROL
RVSM5 Real-Time Simulation
9.4 SPECIFIC OBJECTIVE 3
To gain controller confidence in the viability of introducing RVSM in the
core area of Europe and the possible benefit of a FLAS.
ALL of the Controllers quickly adapted to using RVSM flight levels and were very
positive about the use of RVSM in their airspace. RVSM offered them more
flexibility and permitted an increase in entry rate into the sector. A level change
was regularly used as a method of confliction resolution, as opposed to a radar
heading.
However, the controllers were aware that they were operating in an environment
where all aircraft were being simulated as RVSM approved and during the
course of the simulation they raised many procedural issues including, nonRVSM traffic, wake vortex and future sector capacity/limits.
It was generally felt that the use of RVSM should not affect the level capping that
exists on short haul city pairs and current ATC constraints/LoAs.
By the end of the simulation none of the controllers reported having any difficulty
with the reverse change in parity of FL310/350/390 (some confusion
experienced during the first two to three days).
9.5 SPECIFIC OBJECTIVE 4
To further validate the RVSM ATC procedures developed by the ATM
Procedures Development Sub Group (APDSG).
The only ATC procedure applied during this simulation was the reduction of
separation from 2000 feet to 1000 feet, between FL290-410. This caused no
problems for the controllers who welcomed the use of the six extra flight levels.
42
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Real-Time Simulation
10.
EUROCONTROL
RECOMMENDATIONS
As a result of this simulation it is recommended that when preparing the
airspace for RVSM implementation:
•
States avoid establishing Flight Level Allocation Schemes wherever
possible. However, if circumstances dictate that a FLAS is necessary,
this should be carefully co-ordinated with neighbouring ACCs and built
on a temporary (not H24) or flexible basis.
•
The vertical DFLs between sectors are closely examined and an
assessment is made of new DFLs, best suited to the expected
redistribution of traffic.
•
Further Study of the inversion of UN852/3 is required. This should
include adjacent ACCs in order to resolve the problems with arrival and
departure routeings, within Reims airspace. Reims ACC considered that
the inversion was under no circumstances a precondition for RVSM
implementation.
Project NAV-2-E4 – EEC Report n° 349
43
RVSM5 Real-Time Simulation
EUROCONTROL
Intentionally left blank
44
Project NAV-2-E4 – EEC Report n° 349
RVSM5 Simulation en temps réel
EUROCONTROL
Traduction en langue française du Résumé, de l’Introduction,
des Objectifs, des Conclusions et Recommandations
RÉSUMÉ
La simulation RVSM5 constitue la dernière phase de l'étude RVSM pour la
Zone Cœur de l'Europe. Elle a été conçue pour évaluer l'utilisation des
Schémas d'Allocation de Niveaux de Vol (FLAS) et les effets de
l'introduction des niveaux de vol sur la sectorisation.
RVSM 5 est la cinquième Simulation en Temps Réel (RTS) pour la RVSM,
commanditée par EUROCONTROL et réalisée au Centre Expérimental
EUROCONTROL (CEE) à Brétigny. Elle est l'une des plus importantes en
termes de nombre de contrôleurs impliqués et aussi une des plus longues
avec une durée de sept semaines allaut d’octobre á novembre 1999.
La zone de simulation s'étend sur l'espace de cinq pays, espace géré par
huit Centres de Control du Trafic Aérien (ACCs). Une des principales
réalisations de l'étude a été le travail en commun et la coopération du
personnel opérationnel sur un projet d'une telle importance. En premier
lieu, au cours des 18 mois de préparation, les représentants de chacune
des administrations ont tenu des réunions régulières pour mettre au point
un plan de l'étude, coordonner un réseau de routes et la sectorisation
correspondante et établir les schémas d'allocation de niveaux de vol
(FLAS). En second lieu, environ 70 contrôleurs du trafic aérien ont participé
à la simulation; pour nombre d'entre eux, l'exercice a été l'occasion d'une
première approche de la RVSM et aussi d'un travail en commun et
d'échange avec des collègues des centres adjoints.
Très vite, les participants se sont habitués à l'utilisation des procédures
RVSM et ont perçu les bénéfices de l'utilisation de six niveaux de vol
supplémentaire, en particulier pendant les périodes de trafic chargées.
Un Schéma d'Allocation de Niveaux de Vol (FLAS) signifie un système où,
sur certaines routes, des niveaux de vols utilisables ont été interdits. Ayant
constaté l'avantage pour la gestion de trafic de l'utilisation de tous les
niveaux de vol, les contrôleurs, en général, ont considéré que, pour la mise
en œuvre de la RVSM, un Schéma d'Allocation de Niveaux pré-établi serait
trop contraignant aussi bien pour le contrôleur que les pilotes. Ils ont
marqué leur préférence afin de pouvoir résoudre eux-mêmes les conflits
potentiels.
Malgré une nette préférence pour la disponibilité de tous les niveaux de
vol, de nombreux contrôleurs ont été d'avis qu'un certain type de FLAS ne
devrait pas être complètement écarté. Dans certaines zones, et à certaines
heures de la journée, un FLAS appliqué sur une période de temps définie
ou utilisé de manière flexible pourrait apporter des bénéfices tels que la
réduction de la tâche de surveillance et la résolution automatiques de
conflits.
Projet NAV-2-E4– Rapport CEE n° 349
45
RVSM5 Simulation en temps réel
EUROCONTROL
La mise en œuvre de la RVSM aura un effet induit sur la sectorisation.
D'abord, les séparations verticales entre secteurs, telles que FL 340,
devront être modifiées à FL 335 ou FL 345 du fait que le FL 340 sera un
niveau utilisable en RVSM. Il est difficile d’anticiper avec précision les
futures distributions verticales du trafic et l'utilisation des routes résultant
de la mise en œuvre de la RVSM, mais il est certain que cette dernière
entraînera une re-distribution verticale du trafic. De ce fait, la définition de
la séparation verticale (Division Flight Level: DFL) entre secteurs
supérieurs devient la question fondamentale pour l'organisation de
l'espace. Les contrôleurs ont confirmé que ce point devait être étudié avec
soin. En effet, des secteurs pourraient se retrouver en surcharge s'ils
contenaient trop de niveaux de vol utilisable et si le flux du trafic n'était pas
régulièrement distribué.
DESCRIPTION GENERALE
Historique de la RVSM
A la fin des années 70, l'Aviation Civile a été confrontée et à une augmentation
des coûts du carburant et à une rapide croissance de la demande. En
conséquence, l'Organisation de l'Aviation Civile Internationale (OACI) a lancé un
vaste programme d'études de faisabilités de la réduction de 2000 pieds de
séparation verticale minimum à 1000 pieds, au-dessus du niveau FL 290.
Ces recherches ont indiqué que la RVSM entre les niveaux FL 290-410 était
réalisable, sure et présentait un rapport coût/bénéfice avantageux sans imposer
d'investissements techniques massifs.
La RVSM (entre les niveaux FL330-370) est devenue opérationnelle sur la
Région NAT (Atlantique Nord) le 27 mars 1997. Cette couche de niveaux a été
étendue aux niveaux FL310-390 le 8 octobre 1998.
La mise en œuvre complète de la RVSM dans l'Espace Européen et Atlantique
aura lieu le 24 Janvier 2002 et devrait apporter des bénéfices importants.
Cependant, à cause de la nature complexe de la structure du réseau de routes
ATS en Europe, et du fait que quelques 40 pays participent au projet, la mise en
œuvre dans l'Espace Européen sera plus complexe que dans l'Espace
Atlantique.
Etude de la Zone Cœur de L’Europe
EUROCONTROL a financé plusieurs Etudes liées à l'introduction de la RVSM
dans l'Espace Européen. Le RNDSG (Sous-Groupe pour le Développement du
Réseau de Route), sous-groupe de l'ANT (Airspace and Navigation Team) a
demandé, en accord avec les Etats concernés, une étude d'impact de la RVSM
sur la sectorisation, ainsi que, plus particulièrement, des bénéfices éventuels,
dérivés de l'application de différents schémas d'allocation de niveaux de vol
(FLAS) dans la Zone Cœur de l'Europe. Ce document, RVSM 5 Simulation en
temps réel, est le rapport de la troisième et la dernière phase de l'Etude.
46
Projet NAV-2-E4– Rapport CEE n° 349
RVSM5 Simulation en temps réel
EUROCONTROL
Phase 1 - Système d'assignement et d'Analyse au niveau macroscopique
(SAAM)
SAAM est un outil d'analyse statistique, développé au siège d'EUROCONTROL.
L'outil est largement utilisé en support du travail du RNDSG car il permet de
modéliser et d'évaluer de gros échantillons de trafic sur l'ensemble du réseau de
route européen. Les résultats peuvent être fournis en quelques minutes. Ils
comprennent les charges de trafic sur des segments de routes, les charges sur
les secteurs et le comptage des conflits dans n'importe quel volume défini de
l'espace. Cependant, SAAM n'est pas encore à même de calculer la charge de
travail du contrôleur. Parce que l'outil a un temps de réponse rapide et une
interface graphique adaptée, il est possible de re-configurer l'espace et de le
tester avec les nouvelles structures dans un temps de préparation relativement
court. Ceci rend possible une évaluation des scénarios à grande échelle,
permettant de sélectionner les plus prometteurs pour des développements
ultérieurs. SAAM a été utilisé pour le développement de la Version 3 de l’ARN
et, en conséquence, avait déjà disponible, instantanément, le futur réseau de
route (Réseau V3 planifié). Ceci a permis d'étudier une série d'options de
sectorisations de façon à dégager les deux coupures verticales de secteurs les
plus probables et de les évaluer en Simulation Temps Accéléré.
Phase 2 - Simulation en Temps accéléré (FTS-TAAM)
En Octobre 1998, une demande de Simulation en Temps Accéléré à été
soumise au Centre d'Etudes de Bretigny. Dans le cadre du partenariat pour les
simulations EUROCONTROL, la demande a été proposé à SWISSCONTROL et
à la DFS, l'un et l'autre utilisant le Total Airspace and Airport Modeler (TAAM).
Initialement les deux fournisseurs de TAAM devaient se partager la tâche.
Cependant, la DFS, à cause d'autres engagements, a du retirer son offre,
laissant SWISSCONTROL comme seule fournisseur de service.
TAAM a permis un examen plus détaillé des scénarios et, en plus d'un
comptage des conflits et d'une charge secteurs plus précise que dans SAAM, il
a aussi fourni des chiffres de charge de travail du contrôleur pour une période
de 24h. Aux moins 30 secteurs ont été étudiés, dont la plupart ont été simulés
avec différentes coupures verticales (FL 325 et FL 335) en utilisant un
échantillon de trafic de 24 h comprenant approximativement 8000 vols. Dans la
mesure du possible les échantillons de trafic et la définition géographique de
l'espace (secteur et réseau de routes) devaient être transférés de SAAM à
TAAM. Ceci a été réalisé en grande partie, mais les utilisateurs de TAAM ont
néanmoins assumé une certaine charge de travail pour valider la préparation
des données.
Phase 3 - Simulation en Temps Réel (RTS)
La RTS constituait la dernière phase de l' Etude et comprenait 32 secteurs a
simuler regroupant 8 Centres de Contrôle différents. Les résultats des phases
précédentes ont été utilisées pour étudier plus en profondeur les effets de
l'utilisation d'un FLAS dans la Région Cœur de l'Europe, avec, comme bénéfice
supplémentaire, la possibilité de mesurer la charge de travail et d'avoir en retour
les commentaires des équipes de contrôleurs opérationnels. La RTS s'est tenue
au Centre Experimental EUROCONTROL (CEE) à Bretigny et à cause du
nombre important de secteurs impliqués, a été divisée en 4 sessions (maximum
10 secteurs mésurés à la fois). Ce rapport détaille les résultats de la RTS.
Projet NAV-2-E4– Rapport CEE n° 349
47
RVSM5 Simulation en temps réel
EUROCONTROL
OBJECTIFS DE LA SIMULATION
Objectif général
Evaluer l'impact de l'introduction de la RVSM de la Zone Cœur de l'Europe
et, plus précisément, son effet sur la sectorisaiton et l'interêt de la mise en
place d'un FLAS
Note: L'objectif général ci-dessus a été pris en compte dans les 3 phases de
l'Etude. Les objectifs particuliers 3 et 4 ci-dessous ne sont applicables qu'à la
seule simulation en temps réel (RTS)
Objectifs spécifiques
1. Comparer l'utilisation d'un FLAS systématique (Hard FLAS) et d'un FLAS
partiel (Soft FLAS) avec la Référence (No FLAS) des niveaux de vol RVSM tels
que publiée par l'OACI (Annexe 2 Appendix 3, Table des niveaux de vol en
croisière, table a) en mettant l'accent sur les aspects suivants:
•
•
•
•
•
Avantages / Désavantagés opérationnels
Effet sur la charge de travail du contrôleur et sur la charge du secteur
Effet sur la sectorisation
Interface entre deux Centres (ACC) ou plus, appliquant un FLAS
Evaluation de l’impact sur les secteurs adjacents (n'appliquant pas de
FLAS) qui préparent, ou reçoivent, le trafic de secteurs appliquant un FLAS
2. Evaluer l'impact opérationnel de l’inversion de la direction de vol sur les
routes UN 852 et UN 853 dans l'espace aérien de Genève et de Reims.
dans la Zone Cœur de l'Europe
3. Assurer la confiance des contrôleurs quant à la viabilité de l'introduction de
la RVSM dans la Zone Cœur de l’Europe, ainsi que les avantages éventuels liés
à un FLAS.
4. Compléter la validation des procédures ATC/RVSM développées par le
sous-groupe Développement des Procédures ATM (APDSG)
Zone de simulation
La zone simulée recouvre cinq pays et comprend des parties des FIR/UIR de
l'Autriche, la France, l'Allemagne, l'Italie et la Suisse (voir carte 1, Annexe A).
Centres de contrôle
Les Centres de Controle suivants ont participé à la simulation: Genève,
Karlsrhue, Milan, Munich, Padua, Reims, Vienne et Zurich.
Structure du réseau de routes
La structure de route utilisée pour la simulation était le Plan Version 3 de l'ARN,
proposition d'amendement pour le Plan EUR (EUR ANP). Plus précisément, le
réseau de routes proposé était celui de la mise en oeuvre de la Phase 2 pour la
France et Genève, de la Phase 3 pour l'Autriche, l'Italie et Zurich. La structure
48
Projet NAV-2-E4– Rapport CEE n° 349
RVSM5 Simulation en temps réel
EUROCONTROL
de route pour l'Allemagne correspondait généralement à celle planifiée pour la
Phase 3 avec quelques adaptations résultant de la Simulation en Temps Réel
GE98. Des modifications supplémentaires ont été intégrées, proposées par les
experts des Etats au cours de la phase de préparation.
DESCRIPTION DES SCENARIOS
RVSM (référence) Scénario 1
La mise en œuvre de la RVSM entraîne l'introduction de six niveaux de vol
supplémentaires. Dans la Zone à simuler, ces niveaux de vol ont été organisés
en fonction de la direction de la route ou du segment de route survolé. D'une
manière générale, le schéma a suivi une séparation Nord/Sud et les niveaux ont
été respectivement alloués en niveaux pairs/impairs. Le but du scénario RVSM
de Référence consistait à simuler l'organisation de l'espace proposé pour 2001
en utilisant un échantillon de trafic (projection pour 2001) distribué sur les
niveaux RVSM en alternance simple (pair/impair alternativement).
Hard FLAS Scénario 3
Le scénario RVSM de référence peut être divisé en schéma "quadrantal" tel
qu’illustré dans le diagramme Figure 4.
Ce schéma est à la base de deux variantes des FLAS simulées. Nommées le
"Hard" et le "Soft" FLAS par le groupe de travail, elles ne représentent que deux
variantes parmi une infinité de cas possibles d'application d'un système
d'allocation de niveaux sur une grande échelle géographique.
Il est important de noter que dans la simulation les secteurs allemands n’ont pas
appliqué les FLAS à l'intérieur de leur espace. Cependant, parce que les
Centres voisins devaient recevoir et donner le trafic à des niveaux de vol définis
pour le FLAS, les contrôleurs de Munich (Session 1) et de Karslruhe (Session 2)
ont eu la tâche supplémentaire de préparer le trafic aux niveaux définis pour ce
FLAS. Cette disposition a été testée et mesurée au cours de la simulation.
Le Hard FLAS implique une application rigide de la règle quadrantale sur les
routes principales dans l'espace défini. La carte 3 en Annex A montre les routes
sur lesquelles le Hard FLAS a été appliqué les couleurs des routes
correspondant aux couleurs et niveaux décrits dans la Figure 4
Le but du Hard FLAS est de réduire la charge de travail du contrôleur grâce à la
ségrégation automatique des niveaux en conflit aux principaux points de
croisement. Ceci a été réalisé en allouant une série de niveaux spécifiques à
des routes spécifiques, permettant ainsi un meilleur écoulement du trafic. La
Figure 5 illustre le principe général de l'allocation de niveaux Hard FLAS.
Dans cet exemple, le trafic sur deux routes Nord séquentes, a été
stratégiquement "déconflicté". Trois niveaux de vol orientés-Nord sont
disponibles pour chacun des deux flux de trafic et, au point de croisement, il n'y
a pas de conflits potentiels entre avions en croisière. En théorie, la tâche de
surveillance du contrôleur devrait être minimale.
Dans la simulation, les routes sur lesquelles un Hard FLAS a été appliqué, ont
été sélectionnées par les Experts des Etats et ont été définies pour satisfaire le
Projet NAV-2-E4– Rapport CEE n° 349
49
RVSM5 Simulation en temps réel
EUROCONTROL
flux de trafic dominant et pour alléger la charge sur les contrôleurs aux points de
convergences difficiles.
A cause de la structure complexe du réseau, il a été impossible d'appliquer
strictement le schéma quadrantal; de là certaines divergences du scénario Hard
FLAS avec la Figure 4.
Soft FLAS Scénario 2
Le Soft FLAS est une application plus flexible de la règle quadrantale imposée
sur quelques unes des routes principales à l'intérieur de l'espace défini.
L'intention du Soft FLAS est de réduire la charge de travail du contrôleur aux
principaux points de croisement en résolvant stratégiquement une partie des
conflits, à des niveaux de vol sélectionnés, sans priver le contrôleur de sa liberté
d'action tactique. Par ailleurs, le Soft FLAS offre à l'utilisateur une plus grande
flexibilité dans son choix de niveaux de vol.
Le Soft FLAS utilise le même principe général d'attribution de niveaux selon la
direction du vol, mais contrairement au Hard FLAS, un seul niveau de vol, ou
dans quelques cas deux, ont été gelés sur une route particulière (voir Annexe A
Carte 2) La figure 6 illustre ce principe.
Dans cet exemple les deux routes orientées Nord ont chacune 5 niveaux de vol
utilisables avec un seul niveau gelé sur chacune d'entre elles. Le niveau FL320
n'est pas disponible sur la route orientée Nord/Ouest. Le niveau FL320 devient
alors un "niveau protégé" ou un "niveau préféré" sur l'autre route, orientée
Nord/Ouest. Ainsi les niveaux FL320 et 340 sont exempts de conflits sur cette
paire de routes.
De même que pour le Hard FLAS, les Experts des Etats ont sélectionnés les
routes et les niveaux pour les exercices Soft FLAS. Le principe général était que
les restrictions de niveaux seraient gardées minimales et ne seraient appliquées
que sur les flux principaux de trafic. En plus, partout où un niveau de vol devait
être gelé, cette disposition a été coordonné sur toute la longueur de la route
pour éviter, aux opérateurs et aux contrôleurs, des changements de niveaux
non nécessaires.
PROCEDURES DE TRAVAIL ATC
Des procédures de travail utilisées pendant la simulation correspondaient aux
lettres d'accord existantes et aux instructions opérationnelles particulières.
Toutes les sessions ont utilisé le "SSR" où le code était automatiquement
corrélé pour indiquer l'identification de l'avion sur l'étiquette radar.
Procédures RVSM - La réduction de la séparation de 2000' à 1000' entre FL 290
et FL 410 a été appliqué sur la base des Tables de Niveaux de Croisières
recommandées par l'OACI (OACI doc Annexe 2, Appendix 3, table a).
Pour pouvoir comparer les effets des différents FLAS, il était nécessaire de
maintenir un certain nombre de variables (influences extérieures) à un niveau
minimum. Le groupe de travail s'est mis d'accord pour que tous les avions soient
considérés "approuvés RVSM". Les procédures spécifiques (phraséologie,
séparation, inscription sur les strips) nécessaires pour la gestion des avions
50
Projet NAV-2-E4– Rapport CEE n° 349
RVSM5 Simulation en temps réel
EUROCONTROL
non-approuvés RVSM, n'ont donc pas été utilisées pendant la simulation.
Aucun exercice impliquant des avions non-approuvés RVSM, la panne de
communication R/T, la transition entre CVSM/RVSM, n'a été simulé.
CONCLUSIONS
Conclusions Générales
L'utilisation d'un FLAS est une question qui n'a pas de réponse simple. Tout
FLAS a une influence sur la distribution verticale du trafic et sur la charge de
travail du contrôleur dans une zone géographique étendue. En particulier des
tâches supplémentaires incomberont aux contrôleurs des ACCs préparant le
FLAS.
Bien que les contrôleurs aient considéré qu'un FLAS pouvait présenter des
avantages à certains points de croisement en réduisant la tâche de surveillance,
ils ont été aussi d'avis qu'un FLAS pouvait créer une charge de travail
supplémentaire parce qu'il réduit le nombre de niveaux disponibles et complique
la gestion de ces niveaux. La gestion/intégration du trafic a été jugée plus aisée
quand tous les niveaux peuvent être utilisés.
La mise en œuvre de la RVSM aura un impact important sur la sectorisation
parce qu'elle modifiera la distribution verticale du trafic et le choix de la Division
Verticale entre Secteurs (DFLs) sera primordial pour obtenir un équilibre entre
les flux du trafic dans les secteurs superposés.
Objectifs particuliers 1
Comparer l'utilisation d'un FLAS systématique (Hard FLAS) et d'un FLAS
partiel (Soft FLAS) avec la Référence (No FLAS) des niveaux de vol RVSM
telle que publié par l'OACI (Annexe 2 Appendix 3, Table des niveaux de vol
en croisière, table a) en mettant l'accent sur les aspects suivants:
•
Avantages / Désavantages opérationnels
Dans les exercices avec FLAS les avions ont atteint leur RFL (niveau de vol
demandé) dans une moindre proportion que lors des exercices sans FLAS.
Avec le Soft FLAS, la gestion de certains points de croisement a été facilitée,
dans certaines cas, grâce à une réduction de la tâche de surveillance.
Le Hard FLAS a contribué à réduire, pour certains points de croisement, la tâche
de surveillance ainsi que le nombre de conflits et conflits potentiels.
L'intégration du trafic en évolution a été plus difficile dans les exercices avec
FLAS.
Dans les exercices avec FLAS (et particulièrement avec le Hard FLAS), le
manque de niveaux de vol disponibles en sortie du secteur a conduit à limiter en
niveau des avions en montée ou à changer de niveau des avions en croisière,
soit pour éviter un conflit, soit pour se conformer au FLAS défini. Ces actions ont
entraîné un surplus de communications R/T et de coordinations.
Projet NAV-2-E4– Rapport CEE n° 349
51
RVSM5 Simulation en temps réel
EUROCONTROL
•
Effet sur la charge de travail du contrôleur et sur la charge du secteur
Les données enregistrées en terme de charge de travail n'ont pas indiqué de
tendance significative entre les différents scénarios. Cependant nombre de
contrôleur ont ressenti un accroissement de la charge de travail au cours des
scénarios avec FLAS.
En général, les secteurs contrôlant plus de 50 avions en taux d'entrée par heure,
ont présenté une charge de travail inacceptable, quel soit le scénario, avec ou
sans FLAS principalement due à la charge R/T et à la gestion des strips.
Tout FLAS a eu un impact sur la répartition du trafic entre secteurs supérieurs et
inférieurs.
•
Effet sur la sectorisation
Quelques problèmes de sectorisation ont été rencontrés, relatifs au choix de la
séparation vertical (DFL) (mise en cause en particulier par des exercices avec
FLAS). Plusieurs secteurs ont présenté des difficultés liées à leur nouvelle
délimitation géographique. Le DFL 335 a été généralement jugé acceptable,
mais ce choix dépendra de la localisation du secteur, de sa nature (survols purs,
avions en évolutions) et de la distribution verticale constatée du trafic.
•
Interface entre deux Centres (ACC) ou plus, appliquant un FLAS
On a constaté une augmentation de la charge de coordination entre secteurs
lors des exercices avec FLAS.
•
Evaluation de l’impact sur les secteurs adjacents (n’appliquant pas de
FLAS) qui préparent, ou reçoivent, le trafic de secteurs appliquant un
FLAS
Préparer le trafic (c'est à dire ajuster les niveaux de vol pour se conformer au
FLAS défini) augmente la charge et la difficulté du travail à cause du nombre
plus réduit de niveaux de vol disponibles en sortie. Les contrôleurs ont aussi
reconnu une plus grande difficulté pour intégrer le trafic en évolution. Enfin, il a
été estimé que davantage de coordination étaient nécessaire à l'interface
FLAS/non FLAS.
Objectif particulier 2
Evaluer l'impact opérationnel de l'inversion de la direction de vol sur les
routes UN 852 et UN 853 dans l'espace aérien de Genève et de Reims.
Reims: Des difficultés ont été rencontrées avec des nouvelles procédures pour
les routes "Arrivées/Départs" dans les secteurs UH/UE. Les contrôleurs ont
considéré que la capacité secteur pourrait être réduite par rapport à la structure
d'espace actuelle. Le Centre de Reims, est déjà confronté à des problèmes de
capacité. Les contrôleurs ont jugé que l'inversion accentuerait ce problème.
52
Projet NAV-2-E4– Rapport CEE n° 349
RVSM5 Simulation en temps réel
EUROCONTROL
Genève: Les secteurs supérieurs n'ont pas relevé des problèmes particuliers
avec l'inversion, du fait que le trafic en survol disposait de routes unidirectionnelles plus directes. Parmi les avantages mentionnés, l'angle de
croisement à MILPA a été amélioré et le point de croisement GILIR évité.
D'autres études seront nécessaires pour évaluer l'effet de l'inversion sur les
secteurs inférieurs.
Objectif particulier 3
Assurer la confiance des contrôleurs quant à la viabilité de l'introduction
de la RVSM dans la Zone Cœur de l'Europe, ainsi que les avantages
éventuels liés à un FLAS.
Tous les contrôleurs se sont rapidement adaptés à l'utilisation des niveaux de
vol RVSM et ont été très positifs quant à l'utilisation de la RVSM dans leur
espace. La RVSM leur a offert une plus grande flexibilité et a permis une
augmentation du taux de trafic en entrée dans le secteur. Le changement de
niveau a été régulièrement utilisé comme méthode de résolution de conflit par
opposition à la technique du cap radar.
Cependant, les contrôleurs étaient conscients qu'ils opéraient dans un
environnement où tous les avions étaient supposés qualifiés RVSM, et, au cours
de la simulation, nombre de questions relatif aux procédures ont été soulevées
concernant le trafic non approuvé RVSM, la turbulence de sillage et des futures
limites de capacités secteurs.
Il a été généralement admis que l'utilisation de la RVSM ne devrait pas affecter
les restrictions de niveau qui existent actuellement pour les court-courriers entre
deux villes ainsi que les contraintes ATC et les lettres d'accords (LoAs). Des
modifications ont pu être nécessaires là où les DFL ont été modifiés.
A la fin de la simulation aucun contrôleur n'a signalé avoir eu de difficultés avec
le changement de parité de niveaux FL310/FL350/FL390 (seulement quelques
hésitations lors des deux/trois premiers jours).
Point de vue des contrôleurs sur le FLAS : voir objectif particulier 1.
Objectif particulier 4
Compléter la validation des procédures ATC/RVSM développées par le
sous-groupe Développement des Procédures ATM (APDSG)
La seule procédure appliquée pendant la simulation a été la réduction de la
séparation de 2000 pieds à 1000 pieds, entre FL 290-410. Les contrôleurs n'ont
rencontré sur ce plan aucun problème et ont bien accueilli l'utilisation des six
niveaux de vol supplémentaires.
Projet NAV-2-E4– Rapport CEE n° 349
53
RVSM5 Simulation en temps réel
EUROCONTROL
RECOMMANDATIONS
En conformité avec les résultats de la simulation, il est recommandé que,
pour l'organisation de l'Espace, en vue de la mise en œuvre de la RVSM:
54
•
les Etats évitent, autant que possible, la mise en place d'un Schéma
d'Allocation de niveau de Vol (FLAS). Cependant, si les circonstances
imposent un FLAS, celui-ci devra être soigneusement coordonné avec
les Centres voisins, conçu sur une règle commune et élaboré pour une
application temporaire (pas H24) ou une application assez flexible,
•
les séparations verticales entre secteurs (DFLs) soient étudiées en
détail et une évaluation soit menée sur des nouvelles divisions entre
secteurs, les mieux adaptés à la future distribution de trafic.
•
des études complémentaires pour l'inversion des routes UN 852/3
soient entreprises. Elle devront inclure les Centres adjacents pour
permettre de trouver une solution aux routes arrivée/départ dans
l'espace de Reims. Le centre de Reims a jugé que l’inversion n’était en
aucun cas un préalable à la mise en œuvre de la RVSM.
Projet NAV-2-E4– Rapport CEE n° 349
Annex A: MAPS
RVSM5
LOVIN
KENUM
BAT2
BULUX
MAUBE
FREQUENCIES
LARED
NITAR
UE
(195-305)
127.55
UH
(195-325)
KOPOR
XH
(325-460)
133.82
WU
(285-335)
132.90
CDG
GX
PON
SOTOR
(335-460)
MILPA
(285-335)
133.15
MILPU
(335-460)
133.62
MOLUS (285-335)
134.85
MOLUU (335-460)
128.15
WST
(335-460)
126.27
WSU
(285-335)
133.60
RIDAR
(285-460)
133.75
AYING
(285-460)
133.67
VILER
CLM
EST
NSU
(285-335)
(335-460)
(285-335)
133.80
PERNO
118.95
SSU
(285-335)
132.60
SST
EUU
EU
ALPEN
ALGOI
(335-460)
(335-460)
(285-335)
(325-460)
(285-325)
135.05
134.05
POGOL
TRO
MELCO
MANAG
PTV
RESPO
IXILU
NT
125.90
ANTON
LEGRO
RIGNI
BENIP
ATN
MOU
TONUS
LUGNY
LESPI
BOBSI
TALAR
THR
LFLL
PILAT
TDP
ARBON
ETRAC
EDUAR
AOSTA
OMETO
BAVMI
ALPEN
ALGOI
GONBA
RIDAR ANKER
WLD
RIDAR
MBG
MD3
ETSM
KPT
FUSSE
LIMW
AYING
KODOK
BW1
PETEN
LIMRA
ARASA
NST
NSU
WALSE
LOWI
SCHNE
BIRGI
LIZUM
INN
ENKUN
PX11
RIEMA
BRUCK
WST
WSU
PITAR
MATAR
KATSA
KUKUT
KIKIT
KLIMT
GRZ
SPITA
MALUG
VIW
ARNOS
BERVA
WGM
WELLS
GOTAR
TIROL
LOWG
DETSA
CESAR
EST
ESU
HOLIN
ENTAR
BRENO
SVR
SST
SSU
KFT
LOWK
LUSIL
VIC
NIGOT
TOMPA
ZAG
BABIT
JESSE
LDZA
ILB
LIPZ
AKADO
VINOS
SLOVO
BUCCO
LAREN
LDRI
TITOV
DORIN
ZEPPO
GEN
EUU
EU
PAR
OMA
PUL
FER
ELENA
BOA
BORGA
LIMJ
SENIC
CHI
LIMBA
VOG
LAGEN
ISTRI
VURDI
Y3VOG
PAMLA
PODET
TRE
ADOSA
LIPX
MG
DOL
VOLVO
LIPQ
RON
VALPO
SCALA
LJLJ
NTU
NT
FEDER
IMA
SRNXA
SRN PETRO
LIMC
CHICO
TZO
NOV LIML
FARAK
BEKAN
LIN
CALAS RIGON
CDO
TOP
WUU
WU
MTL
PAVLI
SAMBA
CIFER
NITRA
SLC
TOTOV
OKRXD
GANTA
SEPPI
GUSTA LOWW
OKR JAN
JOZEF
SOLEN
AW1 AW2
MORIZ
ELMUT
HEIDI
BEATE
VYDRA
SISSI
MESSY
SNU
MALKO
OKI
BUMAS
UDVAR
GYR
ABETI
GOLEM
TORNO
ROBOT
GABEL
PUBEG
PINKA
VELAT
STO
LNZ
LOWL
SIMBA
AYING PLOTO
TALSA
PRITZ
SBG
HOLZI
LOWS
LOFER
CHIEM
RIEMU
ERKIR
EUR
KREMS
FRE
MDF
ALGOI
INTER
COGNE
ISOAR
NOFRE
PONTE
STAUB
FRANZ
MAIRA
EDDM
ETSF
ANDEC
TULSI
DISUN
KONIN
MANAL
SULUR
VEVAR
NOUGA
SUMEK
A75
NDG
LSZA
BLONA
LALIN
SUMIR
MEDAM VERCI
LIMF
Y2TOP
SIRLO
TORIN
CIRGA
MOZAR
ABENA
ODINA
LSGS
GIPNI
LKTB BNO
BZO
MOLUU
MOLUS
VANAS
HLV
TILSI
RDG
HERTA
AALEN
ZUR
BLOMO
KALOD
ANORA
UH
MILPU
MILPA
FELSI
CERNO
MARCO
CHATO
TOLNA
LFLB
BALSI
LSA
MADOC
MEN
LUKAS
RALIX
BOJOL ARGIS CBY
LMG
DKB
ARPUS
GALBI
LIRKO
MOLUS
MOREG
CRANA
MILPA
LSGG
TONON
GVAXR GVA
GVAXA
GVAXD
PASRI PAS
GOLEB
OTKOL
PITON
VIGOR
KASUL
HAROM
HEUSE
VLM
SALEM
EDDN
SPEDY
KARLU
KARLS
AKOSI
ZAB
LAUFE
ETHN
ANSBA
TIRSO XH
LUL
EKROT
VESOX
ERLLI
ERL
HARRY
WURST
KRAUT
BADEN
OKREN
SAFFA KONSA FHA2
TRA
BLM
EDNY
BRINA
BODAN
ZUE
TRASA
TROUE LFSB
DELOX
EKRON
KLO
HR LASNO
REKLA
MONEY
TORPA
VERDI
HOC AMINO
LSZH
SARME
LASON
MOROK
AARAU
PENDU
LFSD DIJ
ALOGA
OLBEN
ELMUR
RIPUS
ODIGA
GILIR
RIVEL
SHU
LEO
BERSU
BENEM
MUR
LSZB
DIMIL
VADEM
KORED
TUROM
BERSO
TALED
ZURH
RLP
MIRJA
PEROS
LIPE
JULIX
ANTIK
RETNO
BARSO
MEZEL
IDONA
VAMTU
PUGET
SUTIF
136.72
PSASE
LOLLI
WILLI
MIRGU
OKRIX
LKPR
LKPR
OKL
RAK
OKG
SULUS
RID
BEGAR
JURGE
RAKIS
SPEZL
SCHMA
SALAT
LASAT
PILON
132.87
KARLU (335-460)
GELNI
FFM
EDDF
BRASU LBUXD
WEKAR
LBU
EDSB
KARLS
NOTAG
EDDS
ZWERG
MAMBO
MARCY
LFST
TGO
BOSSA TEGOS
STR
OBORN
SUL
GIVOR
EPL
LUVAL
127.37
120.92
TAUER
NKR
TOMPI
GTQ
XE
UE
134.52
KARLS (295-335)
EDDR
BITNI
WASAR
FULDI
ETAR
RINAX
GELTA
134.35
(335-460)
MOSET
SORAL
SUSIN
129.12
NST
GED
TAU
SAA
GISCA
ESU
GIMER
GABOR
FUL
MARTY
ROUSY
KOTUN
BUBLI
BRY
COL
OKX
MESSE
OHMAR
P63
WISOS
ADENU
GOA
NTM
BUEWE
NORPA
BANKOETAD
DIK
IDARO
RUWER
ELLX
IDOSA
SEXYS
LUXXD LUXIE
MMD
HDO
SALZU
NETMA
MEDIX
CTL
MEL
TELBO
136.77
RELAN
EXIDU
LFPB GY
OL
OYE
RBT
TOLPA
WUU
GORTU
DIDOR
134.40
RAPOR
XERAN
NOR
NARSI
BULTO
LEQX
VINKE
KBO2
DRN
LARIT
ALFAS
RAPNE
BATTY
BARAK
VESAN
119.75
ARKOL
WYP
ARDEN
(305-460)
TWIST
ZED1G
4 OCT - 26 NOV 99
XE
LEG
NORRA
WRB
BEROK
FRZ
ABN2
TRUFO
LFMN
NIZZA
PANIS
DRAMO
BLCX
UNITA
ZIDAN
COLIN
PIS
LIRP
VALEN
PRTXA
LIRQ
SAR
PRTXD
URBAN
TOWER
ANC
SPL
AMORE
TORTU
NISAP
MAREL
AKUTI
STP
ERTOL
SODRI
(285-335)
NTU
(335-460)
120.72
ZUR
(285-335)
134.60
ZURH
(335-460)
133.40
BABAR
ELB
ABRON
VAREK
GRO
BOL
UGLUK
DBK
KISTO
OMEDA
AJO
Véro:29.06.99
AMN UNIT
RVSM CORE AREA STUDY : MAP 2 SOFT FLAS
DATE:26.11.99
350 FL
350 FL
310 FL
250 FL
360 FL
340 FL
240 FL
330 FL
290 FL
290 FL
330 FL
360 FL
320 FL
260 FL
290 FL
300 FL
320 FL
350 FL
330 FL
360 FL
350 FL
290 FL
350 FL
360 FL
340 FL
320 FL
330 FL
330 FL
350 FL
330 FL
350 FL
310 FL
330 FL
340 FL
350 FL
330 FL
320 FL
340 FL
360 FL
320 FL
330 FL
330 FL
330 FL
320 FL
340 FL
350 FL
320 FL
330 FL
330 FL
340 FL
340 FL
330 FL
310 FL
320 FL
310 FL
310 FL
340 FL
350 FL
330 FL
360 FL
360 FL
350 FL
320 FL
AMN UNIT
RVSM CORE AREA STUDY : MAP 3 HARD FLAS
GED
BULTO
TAU
TAUER
DATE:26/11/99
FULDI
GELNI
EDSB
NITAR
NORPA
RAK
GOA
NTM
ADENU BUEWE
P63
FFM
SPEZL
EDDF
DIK BANKO
RUWER
MTD
KOPOR
OKL
EKROT
ZAB
VESOX
LKMT
PSASE
RID
VLM
LOLLI
XERAN
VINKE
RAPOR
RELAN
GIMER
ERLLI
ERL
LAUFE
SEXYS
ELLX
LUX.D
LUXIE
MOSET
ROUSY
GORTU
VILER
LKPR
OKG
IDARO
IDOSA
DIDOR
JURGE
RAKIS
SULUS
AKOSI
HARRY
MMD
HLV
EDDN
WURST
CREME
MEDIX
FELSI
SORAL
NKR
CTL
WDG
CDG
PERNO
LFPG
TOMPI
SAA
RINAX
EXIDU
OL
LFPO
KALOD
DKB
P75
LUKAS
ANORA
KOTUN
WEKAR
GTQ
GTQ.A
LFJL
OYE
RDG
SUMEK
LBU.D
LBU
BUBLI
SUSIN
AALEN
KARLS
GELTA
POGOL
TRO
MELCO
LUVAL
EDDS
GONBA
TGO.D
TGO
TGO.A
TEGOS
MARCY
LFST
STR.A
STR
OBORN
STR.D
BERVA
LALIN
NDG
ZWERG
BRY
HERTA
A75
NOTAG
GIVOR
MEL
TELBO
BNO
LKTB
CERNO
SPEDY
HAROM
CLM
MASOR
ANSBA
WILLI
SCHMA
EDDR
RIDAR
WLD
ANKER
ERNST
MBG
STO
MD3
SUL
EPL
OKR
LZIB
OKR.D
STAUB
SEPPI
A/1
MAIRA
MDF
FRANZ
MANAG
B/1
EDDM
ANTON
RLP
HEUSE
MIRGU
RESPO
BADEN
ANDEC
ARPUS
DELOX
MOROK
RIGNI
LEGRO
EKRON
LASON
KONSA
HOLZI
PRITZ
LOFER
FUSSE
HOLIN
BIRGI
RIPUS
INN
LOWI
LIZUM
GOTAR
ELMUR
BERSU
BENEM
PITAR
SHU
TUROM
LOWG
LEO
GRZ
MUR
BRENO
MATAR
KORED LSZB
VADEM
TALED
GALBI
DETSA
LIRKO
6
OTKOL
PINEL
BZO
HARPO
LJLJ
LSGS
ABENA
DOL
10AA
ARGIS
ZAG
LUSIL
LSZA
LFLC
ISTRI
CBY
CHATO
LSA
MADOC
PODET
MG
ODINA
BOJOL
TALAR
THR
KFT
ARNOS
XIII
BOBSI
LESPI
LOWK
5AB
7 7AA MOLUS
8A8AA
7AB
7A
9
1A 1
9AA TONON
XIV 1BCRANA 9A
XII
V.
IXA
3A
GVA.D
GVA.A
GVA 3B
IXB IX
LSGG
4A
XA PAS
X.
XIC
GOLEB
XIA PITON
XI
MILPA
LUGNY
VIW
MALUG
TONUS
O
PINKA
ENKUN
ALGOI
LSZH
AMINO
AARAU
OLBEN
SARME
PUBEG
MA1 WALSE
RIVEL
BERSO
GYR
BUMAS
ERKIR
BODAN
MONEY
BENIP
ATN
MALKO
EDNY
KLO
ODIGA
MOU
SISSI
HEIDI
CHIEM
KPT
FHA2
BRINA ZUE
HOC
PENDU
ALOGA
DIJ
LFSD
SAFFA
TRA
BLM
LFSB
TROUE
BLM.D
HR
TORPA
NEV
SNU
LOWS
LUL
REKLA
TULSI
MANAL
KONIN
TIRSO
IXILU
AW2
SNU.A
SBG.A
SBG
RALIX
BEGAR
VYDRA
LOWW
A/2
LIMRA
PETEN
SIMBA
AYING
MA2
MARCO
AOSTA
LFLL
TOLNA
SLOVO
RON
VALPO
LDZA
SULUR
SRN.A
OMETO
LFLB
PILAT
INTER
TDP
VANAS
BALSI
CIRGA
IMA
SRN
LIMC
FEDER
ADOSA
FARAK
ARBON
VIC
LIN.D
LIML
LIN
LIN.A
NOV
TRE
BUCCO
VINOS
LAREN
ETRAC
VERCI
*2TOP
MEDAM
LIMF
ILB
LIPZ
CHICO
TZO
COGNE
AKADO
LIPX
CDO
SIRLO
DORIN
OMA
EDUAR
CHI
*3VOG
BLONA
PAMLA
TOP
VERDI
VOG
PUL
LIMBA
MEN
LDPL
PAR
FER
NOUGA
ELENA
VEVAR
MTL
MENSU
ZEPPO
ISOAR
MIRJA
BOA
LIPE
LAGEN
RETNO
LIMJ
PEROS
GEN
BARSO
LDZD
BEROK
IDONA
ABN2
FRZ
TRUFO
GIGNA
LUNEL
VALEN
MEZELAMFOU
FJR
PRT.A
PRT.D
LIRQ
ZEBRA
LFMT
COLIN
VENTA
BERRE
NIZZA
LFMN
URBAN
PIS
LIRP
PANIS
ANC
LFML
LIPY
MTG
NIBAR
DRAMO
POMEG
TORTU
NISAP
TABIT
STP
ERTOL
AKUTI
SODRI
MAREL
S
JAN
JOZEF
LNZLOWL
OKRIX
NITRA
CIFER
WGM
FRE
SPL
LDSP
RVSM5
DRN
SESSION 1
HDO
4 OCT - 15 OCT 99
FNW 999
000
FUL
WASAR
GED
TAU
BITNI
FULDI
TAUER
GELNI
FFM
P63
EDDF
SPEZL
PSASE
RID
FNW
FNE
FSE
FSW
(000-unl)
124.02
SPEDY
WILLI
HAROM
(000-unl)
134.72
(000-unl)
128.87
(000-unl)
126.27
WSU
(285-335)
133.60
(285-460)
133.75
AYING
(285-460)
133.67
ESU
(285-335)
133.80
EST
NSU
NST
SSU
SST
ETSF
ETSM
DISUN
KRAUT
SAFFA
KONSA
KPT
FHA2
EDNY
BRINA
EKRONTRASA
KLO
ZUE BODAN
MONEY
SARME LSZH
RIPUS
FRANZ
EDDM
ANDEC
TULSI
FUSSE
EUR
ELMUR
LOWI
SCHNE
PITAR
RIVEL
LEO
INN
129.12
(285-335)
134.35
(335-460)
118.95
(285-335)
132.60
135.05
TALSA
HOLZI
SBG PRITZ
LOWS
CHIEM
STO
GANTA
RIEMU
BW1
ARASA
NST
NSU
FNE
LIZUM
BRENO
CESAR
MALUG
BZO
JAN
VYDRA
MALKO
UDVAR
TORNO
PINKA
VELAT
GABEL
WELLS
KLIMT
LOWG
ARNOS
TOTOV
NITRA
HOLIN
ENTAR
TIROL
VIW
JOZEF
MORIZ
SAMBA
GOLEM
SPITA
DETSA
CIFER
OKR
GYR
RIEMA
KATSA
LOWW
SNU
PUBEG
WST
WSU
FSE
SLC
AW1
AW2
MESSY
KUKUT
BERVA
WGM
GUSTA
LIMRA
PETEN
ENKUN
BRUCK
MATAR
FSW 999
000
FRE
LNZ
SIMBA
AYING PLOTO
BIRGI
KREMS
LOWL
LOFER
ERKIR
WALSE
ALGOI
STAUB
MDF
MANAL
KONIN
EST
ESU
FNE
NOFRE
PONTE
AYING
FNW
MD3
KIKIT
SUMEK
GONBA
MBG
TALED
(335-460)
(335-460)
WLD
MAIRA
RALIX
LALIN
RIDAR ANKER
NDG
HEUSE
BNO
MOZAR
RIDAR
FNW
HLV
LKTB
CERNO
RDG
HERTA
SUL
OKREN
TRA
TILSI
ANORA
AALEN
ZAB
VIGOR
FELSI
LUKAS
DKB
LBU
NOTAG
KARLS
EDDS
ZWERG
MAMBO
TGO
BOSSA TEGOS
MARCY
ANTON
(335-460)
EDDN
KASUL
LBUXD
VLM
SALEM
KALOD
EDSB
127.37
WST
RIDAR
BRASU
WEKAR
AKOSI
LAUFE
ETHN
SCHMA
FNE 999
000
VESOX
ANSBA
WURST
NKR
EKROT
OKL
ERLLI
ERL
LOLLI
FREQUENCIES
LKPR
RAK
SULUS
HARRY
SEXYS
OKG
JURGE
RAKIS
GRZ
KFT
LOWK
SST
SSU
FSE
GOTAR
SVR
SUMIR
LJLJ
ODINA
ABENA
MG
LSZA
LUSIL
MARCO
RIGON
Y3VOG
SCALA
ADOSA
VINOS
ISTRI
PODET
SLOVO
TOMPA
ZAG
BABIT
RON
LDZA
JESSE
ILB
BUCCO
FSE
LDRI
LAREN
DORIN
VURDY
VOG
PAR
999
000
TITOV
SENIC
CHI
FER
ZEPPO
TRE
LIPZ
AKADO
LIPX
LIMBA
PAMLA
VIC
CHICO
VOLVO
LIPQ
VALPO
SULUR
BAVMI
IMA
SRNXA
FEDER
OMETO
SRN
LIMC
PETROTZO
INTER
LIML
FARAK
BEKAN
NOV
LIN
CALAS
CDO
SIRLO
DOL
OMA
PUL
ELENA
Véro:30.06.99
999
000
FN
RVSM5
SESSION 2
ARKOL
RAPNE
KBO2
KENUM
FN
(000-unl)
FE
(000-unl)
FSW
(000-unl)
124.20
TAU
FSE
(000-unl)
135.00
FW
(000-unl)
133.82
(335-460)
134.05
EU
(285-335)
134.52
ALPEN
(325-460)
127.37
(285-325)
132.87
ALGOI
KARLS (295-335)
120.92
KARLU (335-460)
136.72
NT
(285-335)
125.90
NTU
(335-460)
120.72
ZUR
(285-335)
134.60
ZURH
(335-460)
133.40
BITNI
FULDI
GELNI
GTQ
SPEZL
FFM
LOLLI
HARRY
MIRGU
ERLLI
ERL
WURST
SPEDY
ETHN
ANSBA
KASUL
DKB
LUKAS
HEUSE
CRANA
TONON
LSGG
GVAXA
GVA
GVAXD
PAS
GOLEB
PITON
NDG
ALPEN
ALGOI
FE
PONTE
MAIRA FRANZ
EDDM
ETSF
ANDEC
TULSI
DISUN
KONIN MANAL
ETSM
KPT
FUSSE
AOSTA
OMETO
BAVMI
LIMW
VANAS
COGNE
MEDAM VERCI
LIMF
Y2TOP
SIRLO
TORIN
LNZ
LOWL
KODOK
BLONA
WALSE
ALGOI
LOWI
SCHNE
BIRGI
LIZUM
INN
MATAR
ENTAR
KATSA
BRENO
DETSA
CESAR
SPITA
VIW
MALUG
BZO
NTU
NT
FSE
VIC
ADOSA
LJLJ
LIPQ
RON
VALPO
ISTRI
TRE
LIPZ
AKADO
VINOS
LIPX
ILB
BUCCO
LAREN
DORIN
VURDI
CHI
SENIC
LIMBA
VOG
VEVAR
LOWK
ARNOS
LUSIL
SRNXA
FEDER
SRN PETRO
INTER
LIMC
TZO
CHICO
NOV LIML
BEKAN
FARAK
LIN
CALAS RIGON
CDO
ZEPPO
GEN
LAGEN
PX11
ENKUN
BRUCK
PITAR
IMA
TOP
PETEN
LIMRA
SIMBA
AYING PLOTO
TALSA
PRITZ
SBG
HOLZI
LOWS
LOFER
CHIEM
RIEMU
ERKIR
EUR
SULUR
Y3VOG
PAMLA
FRE
STAUB
MDF
ABENA
SCALA
NOFRE
MBG
LSZA
BLOMO
ISOAR
GONBA
SUMIR
ODINA
LALIN
RIDAR ANKER
WLD
MD3
MARCO
EDUAR
MOZAR
A75
ZUR
FN
LSGS
TILSI
RDG
HERTA
AALEN
KRAUT
SAFFA KONSA FHA2
TRA
IXILU
BLM
ARPUS
EDNY
BODAN
BRINA
TROUE LFSB
TRASA
ZUE
DELOX
EKRON
KLO
HR LASNO
TORPA
MONEY
HOC AMINO
LSZH
SARME
MOROK
LASON
PENDU
AARAU
OLBEN
RIPUS
ELMUR
ODIGA
RIVEL
SHU
LEO
BENEM
BERSU
MUR
TUROM
LSZB
VADEM
KORED
TALED
GALBI
ZURH
MOLUS
KALOD
FELSI
ANORA
BADEN
OKREN
LUL
SALEM
CERNO
HAROM
RALIX
AKOSI
LAUFE
EDDN
NKR
KARLU
KARLS
FN ANTON
BEGAR
OKL
PSASE
RID
BRASU LBUXD
WEKAR
LBU
EDSB
NOTAG
KARLS
EDDS
ZWERG
MAMBO
TGO
MARCY
LFST
STR
BOSSA TEGOS
OBORN
SUL
SALAT
LASAT
LKPR
JURGE
SULUS
FW 999
000
POGOL
RAK
OKG
RAKIS
EDDF
WILLI
TIRSO
EUU
WASAR
TAUER
SAA
EPL
FE 999
000
FUL
NARSI
GIVOR
HDO
GABOR
GED
124.02
MESSE
OHMAR
P63
WISOS
ADENU
NTM
GOA
BUEWE
BANKO ETAD
DIK
IDARO
RUWER
ELLX
SEXYS
LUXIE
LUXXD
MOSET
ETAR
ROUSY
TOMPI
SCHMA
SORAL
EDDR
133.67
SALZU
ALFAS
COL
NETMA
FREQUENCIES
DRN
LARIT
MARTY
18 OCT - 29 OCT 99
TWIST
ZED1G
WYP
NOR
LEG
NORRA
WRB
EUU
EU
FSW
PAR
FSE 999
000
BOA
BORGA
LIMJ
PUL
FER
LIPE
PEROS
ANTIK
BARSO
PUGET
MEZEL
SUTIF
VALEN
PRTXA
LIRQ
PRTXD
FRZ
UNITA
ZIDAN
999
FSW 000
NISAP
STP
BEROK
ABN2
TRUFO
LFMN
NIZZA
PANIS
DRAMO
COLIN
IDONA
VAMTU
PIS
LIRP
TOWER
TORTU
AKUTI
URBAN
ANC
AMORE
MAREL
Véro:28.09.99
NORRA
WRB
ZED1G
RVSM5
ARKOL
WYP
LOVIN
BAT2
SESSION 3
ARDEN
LARED
VESAN
MAUBE
999
FNW 000
LEQX
NORPA
WISOS
ADENU
GOA
BUEWE
IDARO
RUWER
ELLX
LUXXD LUXIE
MOSET
ROUSY
WASAR
TAUER
GELNI
P63
SPEZL
FFM
EDDF
SULUS
PSASE
RID
LOLLI
IDOSA
VINKE
KOPOR
(000-unl)
FNE
(000-unl)
FSE
(000-unl)
SOTOR
136.72
XE
(305-460)
119.75
UE
(195-305)
127.55
UH
(195-325)
134.40
XH
(325-460)
133.82
ZURH
(335-460)
133.40
ZUR
(285-335)
134.60
VILER
MMD
GIMER
CLM
RINAX
KOTUN
BUBLI
SUSIN
BRY
TOMPI
GELTA
GTQ
SPEDY
SCHMA
EPL
LUVAL
POGOL
MANAG
PTV
LASAT
PILON
OKRIX
ANTON
BEGAR
MIRGU
LEGRO
ATN
MOU
TONUS
LUGNY
GISCA
LESPI
BOBSI
TALAR
THR
LIRKO
MOREG
CRANA
MILPA
LSGG
GVA
PASRI PAS
OTKOL
PITON
WLD
MAIRA
ETSF
HEUSE
ETSM
DISUN
TDP
ARBON
ALGOI
LOWI
SCHNE
BRENO
BZO
SUMIR
ABENA
ODINA
LSGS
GOLEB
LSZA
LUSIL
999
FSE 000
MARCO
BLOMO
AOSTA
OMETO
BAVMI
LIMW
VANAS
EDUAR
BLONA
SULUR
FEDER
IMA
SRNXA
SRN PETRO
LIMC
CHICO
TZO
NOV LIML
BEKAN
FARAK
LIN
CDO
CALAS RIGON
INTER
COGNE
MEDAM VERCI
LIMF
Y2TOP
SIRLO
TORIN
TOP
KODOK
SCALA
VALPO
ADOSA
LIPX
DORIN
VURDI
Y3VOG
LIMBA
PAMLA
VOG
VEVAR
PAR
ZEPPO
ISOAR
BOA
MTL
GEN
LAGEN
NIGOT
BORGA
LIMJ
LIPE
ANTIK
RETNO
BARSO
VAMTU
PUGET
MEZEL
PITAR
MATAR
TONON
CIRGA
NOUGA
EUR
FUSSE
MOLUS
GIPNI
ETRAC
KPT
ZUR
FSE
CHATO
TOLNA
LFLB
BALSI
LFLL
PILAT
MEN
A75
NDG
BADEN
OKREN
TIRSO
LSA
MADOC
FSW 999
000
HERTA
AALEN
RALIX
BOJOLARGIS CBY
LMG
ANORA
KRAUT
SAFFA KONSA FHA2
RESPO
LUL
TRA
BLM
ARPUS
EDNY
IXILU
BRINA
BODAN
LFSB
ZUE
TROUE
TRASA
DELOX
EKRON
KLO
HR LASNO
REKLA
MONEY
LSZH
XH TORPA
HOC AMINO
VERDI
SARME
LASON
MOROK
UH
AARAU
PENDU
LFSD DIJ ALOGA
OLBEN
FNW
ELMUR
RIPUS
ODIGA
GILIR
RIVEL
SHU
BENEM
BERSU
LEO
MUR
LSZB
DIMIL
VADEM
KORED
ZURH
TUROM
BERSO
GALBI
TALED
RLP
BENIP
DKB
LBUXD
SALAT
MELCO
RIGNI
HAROM
WILLI
WEKAR
LBU
EDSB
NOTAG
KARLS
EDDS
ZWERG
MAMBO
LFST
MARCY
TGO
BOSSA TEGOS
STR
OBORN
SUL
GIVOR
TRO
ETHN
ANSBA
NKR
BRASU
XE
UE
FNW
EDDN
WURST
ETAR
SAA
PERNO
ERLLI
ERL
HARRY
SEXYS
EDDR
SORAL
MEDIX
EXIDU
MEL
TELBO
RAPOR
RELAN
CTL
LFPB GY
OL
OYE
RBT
TOLPA
134.05
128.15
CDG
GX
PON
132.27
(000-unl)
FSW
GORTU
DIDOR
FREQUENCIES
FNW
XERAN
SALZU
FULDI
TAU
NTM
BANKO
ETAD
LARIT
FUL
GED
NARSI
NETMA
DIK
OHMAR
COL
MARTY
BULTO
NITAR
ALFAS
RAPNE
KBO2
NOR
BATTY
BARAK
BULUX
8 NOV - 12 NOV 99
KENUM
FNE 999
000
TRUFO
IDONA
UNITA
ZIDAN
BEROK
FRZ
ABN2
LIRQ
Véro:30.06.99
NORRA
WRB
ZED1G
RVSM5
WYP
LOVIN
BAT2
SESSION 4
BULUX
LEQX
XERAN
DIDOR
FREQUENCIES
FNE
(000-unl)
133.40
FSE
(000-unl)
134.05
FSW
(000-unl)
119.75
UE
(195-305)
127.55
UH
(195-325)
134.40
XH
(325-460)
133.82
WU
(285-335)
WUU
(335-460)
MOLUS (285-335)
MOLUU (335-460)
SOTOR
EXIDU
CLM
PERNO
RINAX
RUWER
ELLX
IDOSA
LUXXD LUXIE
MOSET
ROUSY
GELTA
TRO
MELCO
PTV
MANAG
EDDR
ERLLI
ERL
LOLLI
HARRY
WURST
NKR
SCHMA
HAROM
WILLI
LASAT
SALAT
PILON
ANTON
BEGAR
DKB
ANORA
HERTA
AALEN
A75
NDG
ETSM
RALIX
DISUN
KRAUT
SAFFA KONSA FHA2
LUL
TRA
BLM
IXILU
ARPUS
EDNY
BRINA
BODAN
ZUE
TROUE LFSB
TRASA
DELOX
EKRON
HR LASNO
KLO
REKLA
MONEY
HOC AMINO
XH TORPA
VERDI
LSZH
SARME
LASON
UH MOROK
AARAU
PENDU
OLBEN
LFSD DIJ ALOGA
FNW
ELMUR
RIPUS
ODIGA
GILIR
RIVEL
SHU
BENEM
BERSU
LEO
TUROM
MUR
DIMIL
LSZB
VADEM
KORED
GALBI
BERSO
TALED
RIGNI
LEGRO
BENIP
ATN
WLD
MAIRA
ETSF
HEUSE
BADEN
OKREN
TIRSO
EDDN
ETHN
ANSBA
SPEDY
BRASU
LBUXD
LBU
EDSB
KARLS
EDDS
ZWERG
NOTAG
MAMBO
MARCY
TGO
LFST
BOSSA TEGOS
STR
OBORN
SUL
POGOL
RLP
KPT
FUSSE
EUR
ALGOI
LOWI
SCHNE
PITAR
MATAR
BRENO
MOU
TONUS
LUGNY
133.15
GISCA
LESPI
BOBSI
TALAR
LIRKO
MOREG
MOLUSMOLUU
CRANA
MILPA
MOLUS
TONON
LSGG
FSW
GVAXR GVA
GVAXA
GVAXD
PASRI PAS
LSGS
GOLEB
OTKOL
PITON
BOJOLARGIS CBY
128.15
SULUS
PSASE
RID
TOMPI
MIRGU
136.77
134.85
SPEZL
EDDF
ETAR
GIVOR
OKRIX
132.90
133.62
P63
GELNI
SEXYS
GTQ
EPL
LUVAL
WASAR
WEKAR
XE
UE
FNW
SUSIN
BRY
WISOS
ADENU
GOA
BUEWE
IDARO
TAUER
FFM
SAA
KOTUN
BUBLI
OYE
MEL
TELBO
NTM
BANKO
ETAD
SORAL
SALZU
FULDI
NORPA
GIMER
LARIT
FUL
GED
NETMA
MEDIX
CTL
RBT
TOLPA
MMD
OHMAR
NARSI
RESPO
(305-460)
MILPU (335-460)
GY
LFPB
OL
128.77
XE
MILPA (285-335)
CDG
GX
PON
RAPOR
RELAN
VILER
ALFAS
COL
FNE 999
000
MARTY
BULTO
DIK
GORTU
VINKE
RAPNE
KBO2
NOR
TAU
MAUBE
999
FNW 000
KOPOR
132.27
LARED
VESAN
NITAR
(000-unl)
KENUM
BATTY
BARAK
ARDEN
15 NOV - 26 NOV 99
FNW
ARKOL
LMG
THR
MADOC
FSW 999
000
CHATO
TOLNA
LFLB
BALSI
LSA
LFLL
PILAT
TDP
ARBON
MILPU
MILPA
FSW
LSZA
BLOMO
AOSTA
OMETO
BAVMI
LIMW
VANAS
GIPNI
MEDAM VERCI
LIMF
Y2TOP
SIRLO
TORIN
EDUAR
999
FSE 000
FEDER
IMA
SRNXA
SRN PETRO
LIMC
CHICO
TZO
NOV LIML
FARAK
BEKAN
LIN
CDO
CALAS RIGON
SCALA
ISOAR
WUU
WU
FSE
NIGOT
ADOSA
LIPX
DORIN
LIMBA
VOG
KODOK TOP
VALPO
VURDI
Y3VOG
PAMLA
VEVAR
NOUGA
MTL
LUSIL
SULUR
INTER
COGNE
BLONA
MEN
SUMIR
ABENA
ODINA
MARCO
CIRGA
ETRAC
BZO
PAR
ZEPPO
GEN
LAGEN
BOA
BORGA
LIMJ
LIPE
ANTIK
RETNO
BARSO
IDONA
VAMTU
LFMN
COLIN
SUTIF
DRAMO
PRTXA
UNITA
PUGET
MEZEL
FRZ
BEROK
ABN2
TRUFO
NIZZA
LIRQ
ZIDAN
PANIS
PIS
LIRP
TOWER
Véro:30.06.99
GIVOR
XE
UE
FNW
ARR LSZH/LSG/FL
SURVOLS NORD-SUD
Zoom Inversion
EPL
LFST
STR
OBORN
POGOL
TASAL
LF
ST
PILON
AR
R
BEGAR
MIRGU
SORTI
ARR
LSZH
AR
R
LF
BADEN
TIRSO
LUL
P
ARPUS
EPOXI
HR
DE
IXILU
LF
ST
SB
DELOX
REKLA
BLM
DEP LSZH
B
FS
PL
CORDE
ARR LSG/LFL
DE
XH
UH
FNW
LASNO
TORPA
MOROK
LASON
OLBEN
ODIGA
GADOI
BENEM
LS
G
LIRKO
SHU
MUR
SURVOLS + ARR SUD - NORD
AR
R
LF
L
AR
R
GALBI
MOLUS
LFSB
HOC
TROUE
KORED
BERSU
LSZB
Annex B: OPERATIONS ROOM LAYOUT
The OPS Room during Session 4.
The RVSM5 Operations room layout was common for all 4 sessions. The layout
shown below details the Session 1 configuration. The table following the diagram
details the position of the sectors for the Sessions 2-4.
RVSM 5
ESU
30
31
32
33
28"
28"
28"
28"
EXC
28"
5
PLC
28"
15
133.8
28"
DEMO
37
28"
Strp.pr.
V
I
E
N
N
A
TID
TID
Hybrid
Hybrid
Hybrid
FNE
FSE
FSW
134.72
14
28"
PLC
4
28"
EXC
128.87
127.37
Hybrid
FNW
Hybrid
EST
129.12
124.02
NSU
TID
13
28"
PLC
3
28"
EXC
28"
6
PLC
28"
16
TID
134.35
Strp.pr.
EXC
WST
126.27
28"
7
PLC
28"
17
TID
NST
Strp.pr.
EXC
WSU
133.6
Strp.pr.
Strp.pr.
EXC
28"
8
PLC
28"
18
V
I
E
N
N
A
118.95
Strp.pr.
M
U
N
C
H
E
N
TID
12
28"
PLC
2
28"
EXC
TID
RIDAR
133.75
SSU
Strp.pr.
EXC
28"
9
PLC
28"
19
132.6
Strp.pr.
TID
11
28"
PLC
1
28"
EXC
TID
AYING
133.67
SST
Strp.pr.
EXC
28" 10
PLC
28" 20
135.05
TID
Strp.pr.
SUPERVISION
SESSION 1 : 4 - 15 OCT
24.08.99/SLI
CONTROL ROOM POSITIONS FOR SESSION 2-4
SECTOR NUMBER
SESSION2
SESSION 3
Controller/Planner
1/11
ALGOI
2/12
ALPEN
3/13
EU
ZUR
4/14
EUU
ZURH
5/15
KARLS
UE
6/16
KARLU
XE
7/17
NT
UH
8/18
NTU
XH
9/19
ZUR
10/20
ZURH
SESSION 4
MOLUS
MILPA
MILPU
MOLUU
UE
XE
UH
XH
WU
WUU
A maximum of 13 Pilot positions was used during the simulation. The diagram below
shows an example of the Pilot Room layout for Session 1.
20
25 26 27 28 29 30
19
18
17
21 22 23 24
EST
NSU
129.12 134.35
7
8
NST
SSU
118.95 132.6
9
SST
135.05
16
(NST)
(118.95)
15
14
10 11 12
(134.35)
AYING RIDAR WSU
133.67 133.75 133.6
WST ESU
126.27 133.8
(NSU)
13
(AYING)
(133.67)
RVSM 5
1
2
3
4
5
6
02.06.99/SLI
SESSION 1
Annex C: SIMULATION PARTICIPANTS
RVSM5
SIMULATION PARTICIPANTS
EUROCONTROL – Airspace Management and Navigation Division
Alain DUCHÈNE
Karin BARBARINO
Kevin HARVEY
Core Area Study Project Manager
Assistant Project Manager
Assistant Project Manager
EUROCONTROL – Experimental Centre Bretigny
Roger LANE
Steven BANCROFT
Veronique BEGAULT
Josee BRALET
Christine CHEVALIER
Robin DERANSY
Sandrine GUIBERT
Marie Christine LEDUC
Hugh O’CONNOR
Elisabeth PLACHINSKI
Francoise ROTH
Peter SLINGERLAND
RTS Project Manager
Assistant Project Manager
Map Preparation
Pilot Supervisor
Simulation Technical Coordinator
Data Analysis
Data Analysis
Data Preparation
Assistant Project Manager
Mission Office
Administration
OPS Room Supervisor
Bertram UNFRIED
Ralf BECKER
Ralf EVERLING
Hans ZABL
Sabine ZÄCH
Herbert FORSTER
Hans Joachim KOCH
Wolfgang NOLTE
DFS – Munich Supervisor and Feed
DFS Munich Controller
DFS Munich Controller
DFS Munich Controller
DFS Munich Controller
DFS Munich – Feed Controller
DFS Munich – Feed Controller
DFS Munich – Feed Controller
Ernst HOFMANN
Austro Control Vienna– Supervisor
SESSION 1
Austro Control Vienna Controllers
Andreas BAUER
Alex GESSKY
Thomas HOFBAUER
Bernhard HOFMANN
Thomas HORVATH
Gerald KASCHA
Alexander KANTZ
Thomas KIHR
Peter KNEZEK
Günter MELCHERT
Ralph MICHALKE
Erwin OBERGRUBER
Nikolaus REIDINGER
Wolfgang SCHEIDL
Nikolaus SELINGER
Andreas STUHLIK
Günter VONES
Harald WITTMANN
Klaus LIENEN
Markus BADER
Cindy BLECH
Gerhard LEIPERT
Heinz STEHR
DFS Karlsruhe –Supervisor/Controller
DFS Karlsruhe Controller
DFS Karlsruhe Controller
DFS Karlsruhe Controller
DFS Karlsruhe Controller
Bernd FREESE
Uli DIETMAR
Thomas HOPF
Theo KEBER
WIRSCHING STUMBAUM
Karl-Heinz LOHÖFER
DFS Munich Supervisor and Feed
DFS Munich Controller
DFS Munich Controller
DFS Munich Controller
DFS Munich Controller
DFS Munich – Feed Controller
SESSION 2
Anton MAAG
Judith BAUMANN
Simon SPIRI
Ernst HINNEN
Sabine ZIMMERMANN
Jean Pierre GRAF
Erwin SCHÄR
Georgio BRUDERER
Swisscontrol Supervisor
Swisscontrol Zurich Controller
Swisscontrol Zurich Controller
Swisscontrol Zurich Controller
Swisscontrol Zurich Controller
Swisscontrol Genève Controller
Swisscontrol Genève Controller
Swisscontrol Genève Feed Controller
Philippe DALMONT
CRNA-E Reims Feed Controller
Pietro PAGLIA
Giusepe NOCERINO
Stefano GHILARDI
Fabio MASCELLI
Carlo DE VITA
Michele FILETI
Fabio STRAPPA
Massimo MANICCIA
Walter RECCHIA
Luca CAVESTRO
Paolo PINNA
ENAV Milano – Supervisor
ENAV Milano Controller
ENAV Milano Controller
ENAV Milano Controller
ENAV Milano Controller
ENAV Milano Feed Controller
ENAV Padua Controller
ENAV Padua Controller
ENAV Padua Controller
ENAV Padua Controller
ENAV Padua Controller
Kurt DUSS
Ernst HINNEN
A. HABERMACHER
W. MÜLLER
R. SIMMLER
R. STAUFFER
Georgio BRUDERER
Swisscontrol -Zurich – Supervisor
Swisscontrol Zurich Controller
Swisscontrol Zurich Controller
Swisscontrol Zurich Controller
Swisscontrol Zurich Controller
Swisscontrol Zurich Controller
Swisscontrol Genève Feed Controller
Cindy BLECH
DFS Karlsruhe Feed Controller
SESSION 3
SESSION 3 and 4
Herve GRANGE
CRNA-E Reims Supervisor
CRNA-E Reims Controllers
Gérard BARZELLINO
Xavier COTTON
Xavier ESTIENNE
Cyril GAUTRON
Philippe GONDOIN
Véronique MEYER
Joseph ROCHELLE
Yves SANJIVY
Max SINTES
Georgio BRUDERER
Swisscontrol Genève – Supervisor
SESSION 4
Swisscontrol Genève Controllers
Daniel ARN
Lukas BISSIG
Alain GABERELL
Eric JEMELIN
René LEHNER
Gregor MÖGLI
Bernard PATTUSCH
Bruno PULIAFITO
Erwin SCHÄR
W. MÜLLER
Swisscontrol Zurich Feed Controller
Pietro PAGLIA
ENAV Milano – Supervisor
Ugo DI LABIO
Mario CONSOLI
Andrea QUERCIA
Giulio CILIA
Michele FILETI
ENAV Milano Controller
ENAV Milano Controller
ENAV Milano Controller
ENAV Milano Controller
ENAV MilanoFeed Controller
Annex D: SIMULATION SCHEDULE
START
STOP
SCENARIO/ACTIVITY
0915
1100
1330
1500
1030
1200
1445
1615
INTRODUCTION TO RVSM5 AND THE EEC
Training exercise
Training exercise
Training exercise
TTNG1
TTNG1
TTNG1
TUE 5 Oct
1000
1300
1500
1130
1430
1630
Exercise 1
Exercise 2
Exercise 3
TMR1
TAR1
TMR1
WED 6 Oct
0930
1115
1345
1415
1545
1045
1230
1415
1530
1630
Exercise 1
Exercise 2
RVSM Presentation (Ireland)
Exercise 3
Debrief
TAR1
TMR1
AE03
TAR1
THU 7 Oct
0930
1115
1400
1545
1045
1230
1530
1630
Exercise 1
Exercise 2
Exercise 3
Debrief
TMS1
TAS1
TMS1
FRI 8 Oct
0900
1100
1345
1415
1030
1230
1415
1530
Exercise 1
Exercise 2
RVSM Presentation (ATC Procedures)
Exercise 3
TAS1
TMS1
AE04
TAS1
MON 11 Oct
0900
1045
1330
1445
1600
1015
1230
1400
1600
1630
Exercise 1
Exercise 2
Training Exercise for Hard FLAS
Exercise 3
Debrief
TMS1
TAS1
TTNGH1
TMH1
TUE 12 Oct
0900
1045
1330
1500
1030
1200
1445
1600
Exercise 1
Exercise 2
Exercise 3
RVSM Presentation (Height monitoring)
TAH1
TMH1
TAH1
AE04
WED 13 Oct
0905
1045
1345
1515
1020
1200
1500
1600
Exercise 1
Exercise 2
Exercise 3
Debrief
TMH1
TAH1
TMH1
THU 14 Oct
0900
1100
1400
1530
1030
1230
1515
1600
Exercise 1
Exercise 2
Exercise 3
RVSM Presentation (RVSM Programme)
TMR1
TAS1
TMS1
AE04
FRI 15 Oct
0900
1100
1030
1200
Exercise 1
Debrief
TAS1
Date
WEEK 1
MON 4 Oct
TRAFFIC
CODE
SESSION 1
WEEK 2
SESSION 1
WEEK 3
MON 18 Oct
SESSION 2
0915
1100
1330
1500
1030
1200
1445
1615
INTRODUCTION TO RVSM5 AND THE EEC
Training exercise
Training exercise
Training exercise
TUE 19 Oct
0900
0930
1100
1400
1545
0930
1045
1215
1530
1630
RVSM Presentation (Ireland)
Exercise 1
Exercise 2
Exercise 3
Debrief
AE04
TMR2
TAR2
TMR2
WED 20 Oct
0900
1100
1345
1530
1030
1230
1530
1600
Exercise 1
Exercise 2
Exercise 3
Debrief (Questionnaire)
TAR2
TMR2
TAR2
THU 21 Oct
0900
1100
1400
1530
1015
1230
1530
1600
Exercise 1
Exercise 2
Exercise 3
Debrief
TMS2
TAS2
TMS2
FRI 22 Oct
0905
1045
1330
1015
1200
1500
Exercise 1
Exercise 2
Exercise 3
TAS2
TMS2
TAS2
WEEK 4
TTNG2
TTNG2
TTNG2
SESSION 2
MON 25 Oct
0900
1100
1400
1545
1030
1230
1530
1630
Exercise 1
Training Exercise Hard FLAS
Exercise 2
Debrief
TMS2
TTNGH2
TAH2
TUE 26 Oct
0900
1045
1330
1400
1530
1030
1200
1400
1530
1600
Exercise 1
Exercise 2
RVSM Presentation (ATC Procedures)
Exercise 3
Debrief
TMH2
TAH2
AE04
TMH2
WED 27 Oct
0900
1100
1330
1515
1030
1230
1500
1600
Exercise 1
Exercise 2
Exercise 3
Debrief (Questionnaire)
TAH2
TMH2
TAH2
THU 28 Oct
0900
1100
1400
1545
1030
1230
1530
1630
Exercise 1
Exercise 2
Exercise 3
Debrief
TAH2B
TAH2B
TMR2
FRI 29 Oct
0900
1100
1030
1200
Exercise 1
Debrief
TAR2
WEEK 5
MON 8 Nov
SESSION 3
0915
1030
1200
1445
1615
INTRODUCTION TO RVSM5 AND THE
EEC
Training exercise
Training exercise
Exercise 1
1045
1330
1500
TTNG3
TTNG3
TMR3
TUE 9 Nov
0900
1100
1330
1515
1030
1230
1500
1645
Exercise 1
Exercise 2
Exercise 3
Exercise 4
TMR3
TMR3
TAH3
TMH3
WED 10 Nov
0900
1100
1400
1545
1030
1230
1530
1630
Exercise 1
Exercise 2
Exercise 3
Debrief
TAH3
TMH3
TAH3
THU 11 Nov
0900
1110
1330
1500
1000
1230
1445
1615
Training Exercise Inversion
Exercise 1
Exercise 2
Exercise 3
TNG3i
TIMR3
TIMR3
TIMR3
FRI 12 Nov
0900
1045
1330
1015
1230
1500
Exercise 1
Exercise 2
Exercise 3
TIAH3
TIAH3
TIAH3
TSAM
M
A
RVSM
3
3
SOFT
3
3
HARD
2
3
WEEK 6
MON 15 Nov
RVSM-INV
3
3
SOFT-INV
3
3
HARD-INV
3
3
SESSION 4
0915
1030
1100
1330
1500
1200
1445
1615
INTRODUCTION TO RVSM5 AND THE
EEC
Training exercise
Training exercise with ISA
Busy Training exercise
TUE 16 Nov
0900
1045
1330
1400
1530
1015
1200
1400
1515
1600
Exercise 1
Exercise 2
RVSM Presentation (Ireland)
Exercise 3
Debrief
TAR4
TMR4
AE04
TAR4
WED 17 Nov
0915
1115
1400
1545
1030
1230
1530
1630
Exercise 1
Exercise 2
Exercise 3
Debrief (Questionnaire)
TMR4
TAR4
TMR4
THU 18 Nov
0930
1100
1330
1400
1545
1045
1230
1400
1530
1630
Exercise 1
Exercise 2
RVSM Presentation (ATC Procedures)
Exercise 3
Debrief
TAS4
TMS4
AE04
TAS4
FRI 19 Nov
0900
1045
1330
1015
1200
1500
Exercise 1
Exercise 2
Exercise 3
TMS4
TAS4
TMS4
TNG4
TNG4
TAR4
WEEK 7
SESSION 4
MON 22 Nov
0900
0930
1300
1415
1500
0915
1045
1415
1530
1615
Hard FLAS Briefing
Training Exercise Hard FLAS
Exercise 1
Exercise 2
Exercise 3
AE04
TNG4H
TAH4
TMH4
TAH4
TUE 23 Nov
0900
1045
1330
1400
1530
1015
1215
1400
1515
1600
Exercise 1
Exercise 2
Questionnaire
Exercise 3
RVSM Presentation (Height Monitoring)
TMH4
TAH4
AE04
TMH4
AE04
WED 24 Nov
0930
1030
1330
1515
1015
1200
1500
1645
Training Exercise Inversion
Exercise 1
Exercise 2
Exercise 3
TNG4i
TIAR4
TIMR4
TIAR4
THU 25 Nov
1000
1300
1445
1600
1115
1415
1600
1630
Exercise 1
Exercise 2
Exercise 3
Debrief
TIMR4
TIAR4
TIMR4
FRI 26 Nov
1000
1200
Presentation of Initial results
AE41/42
TSAM
M
A
RVSM
3
3
SOFT
3
3
HARD
3
3
RVSM-INV
3
3
SOFT-INV
HARD-INV
Traffic sample data decode
Traffic sample data is displayed by an orderly group of letters/numbers e.g. T
T
TNG
A
M
R
H
S
IMR
IMH
IMS
1-4
=
=
=
=
=
=
=
=
=
=
=
Traffic
Training
Afternoon Traffic
Morning Traffic
Org 1-RVSM
Org 2-HARD FLAS
Org 3-SOFT FLAS
RVSM with Inversion
HARD FLAS with inversion
SOFT FLAS with inversion
Session number