The full report
Transcription
The full report
EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION EUROCONTROL EUROCONTROL EXPERIMENTAL CENTRE RVSM5 REAL TIME SIMULATION EEC Report No. 349 Project NAV-2-E4 Issued: July 2000 The information contained in this document is the property of the EUROCONTROL Agency and no part should be reproduced in any form without the Agency’s permission. The views expressed herein do not necessarily reflect the official views or policy of the Agency. REPORT DOCUMENTATION PAGE Reference: EEC Report No. 349 Security Classification: Unclassified Originator: EEC - OPS (ATM Operational & Simulation Expertise) Originator (Corporate Author) Name/Location: EUROCONTROL Experimental Centre B.P.15 F – 91222 Brétigny-sur-Orge CEDEX FRANCE Telephone : +33 (0)1 69 88 75 00 Sponsor: Sponsor (Contract Authority) Name/Location: EUROCONTROL EUROCONTROL HEADQUARTERS - BRUSSELS TITLE: RVSM5 REALTIME SIMULATION Authors Roger LANE Robin DERANSY EATMP Task Specification - Date 07/00 Pages x + 54 Project NAV-2-E4 (RVS-5-E2 From January 2000) Figures 14 Tables 5 Appendix References 4 5 Task No. Sponsor Period - October/November 1999 Distribution Statement: (a) Controlled by: Simulation Service Manager (b) Special Limitations: None (c) Copy to NTIS: YES / NO Descriptors (keywords): Real-Time Simulation – RVSM – FLAS – SOFT FLAS – HARD FLAS – Core Area – Sectorisation – Coordination – Controller workload. Inversion UN852/3 Abstract: This report describes a EUROCONTROL Real Time Simulation that studied the impact of the introduction of RVSM in the core area of Europe with specific reference to the effect on sectorisation and the use of a Soft and Hard FLAS (Flight Level Allocation scheme). This document has been collated by mechanical means. Should there be missing pages, please report to: EUROCONTROL Experimental Centre Publications Office B.P. 15 F91222 - BRETIGNY-SUR-ORGE CEDEX France RVSM5 Real-Time Simulation EUROCONTROL SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area study, and was designed to study the use of Flight Level Allocation Schemes (FLAS) and effects on sectorisation after the introduction of RVSM Flight Levels. RVSM5 was the fifth RVSM Real Time Simulation (RTS) commissioned by EUROCONTROL to be held at the EEC Bretigny. It was one of the largest in terms of number of controllers involved and also one of the longest having run for seven weeks during October and November 1999. The simulation area covered the airspace of five countries and was managed by eight Air Traffic Control Centres (ACCs). One of the major successes of the study was the bringing together of operational personnel to work and co-operate on such an important project. Firstly, during the course of 18 months, representatives from each administration met regularly to formulate an agreed plan for the study and to co-ordinate a network for the FLASs. Secondly, about 70 Air Traffic Controllers took part in the RTS, many experiencing RVSM for the first time and also benefiting from working alongside and socialising with colleagues from adjacent ACCs. The participants quickly became confident using RVSM procedures and were able to see the benefits of the six extra flight levels, especially during busy periods of traffic. The testing of a FLAS meant that on certain routes, the use of some flight levels was restricted. Having seen the benefit of being able to use all the flight levels to manage traffic, the controllers generally considered that for RVSM implementation, a fixed FLAS would be too restrictive for both the controller and the pilots. They preferred to have all the flight levels available to resolve any potential conflicts themselves. Despite the strong feeling that all flight levels should be available, many thought that a FLAS should not be ruled out completely. It was felt that in some areas at specific times of the day, a FLAS applied on a temporary or flexible basis could provide potential benefits, such as reducing monitoring tasks and automatically deconflicting traffic. The implementation of RVSM will have an effect on sectorisation in the future. It is known that current sector divisions such as FL340 will have to be amended to either FL335 or FL345, as FL340 will be a useable RVSM flight level. It is difficult to accurately predict the traffic distribution and route utilisation, post RVSM implementation but it is certain that there will be a vertical re-distribution of traffic. This makes the definition of the Division Flight Level (DFL) between upper sectors the most significant issue for airspace design. The controllers confirmed that this needs careful consideration as sectors could become overloaded if there are too many flight levels available and the flow of traffic is not carefully managed. Project NAV-2-E4 – EEC Report n° 349 v EUROCONTROL RVSM5 Real-Time Simulation ACKNOWLEDGEMENTS As Project Manager of the RVSM5 RTS, I would like to pass on my gratitude to all the staff (see Annex C) who participated in the project for their professional approach and opinions, which make this report possible. Also, to the administrations of the eight ACCs who were kind enough to supply the controllers during the various stages of the project. We appreciate with current staff shortages, releasing controllers is always a problem, but projects like this are only successful with the input and feedback from people with current operational expertise. In particular, Alain, Kevin, Karin and the EEC Project team deserve a special mention for their professional attitude, patience and dedication during the project. 5RJHU /DQH vi Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................................ix REFERENCES ......................................................................................................................................ix ABBREVIATIONS ..................................................................................................................................x 1. INTRODUCTION...................................................................................................................1 1.1 DEFINITION OF TERMS .............................................................................................................1 1.1.1 Conventional Vertical Separation Minimum (CVSM) ............................................................1 1.1.2 Reduced Vertical Separation Minimum (RVSM)...................................................................1 1.1.3 Flight Level Allocation Scheme (FLAS) ................................................................................1 1.2 RVSM BACKGROUND................................................................................................................2 1.3 CORE AREA STUDY ..................................................................................................................2 1.3.1 Phase 1- System for Assignment and Analysis at a Macroscopic Level (SAAM) ..................2 1.3.2 Phase 2- Fast Time Simulation (FTS-TAAM) ......................................................................3 1.3.3 Phase 3- Real Time Simulation (RTS) .................................................................................3 2. SIMULATION OBJECTIVES ................................................................................................4 2.1 GENERAL OBJECTIVE...............................................................................................................4 2.2 SPECIFIC OBJECTIVES .............................................................................................................4 2.3 ACHIEVEMENT OF OBJECTIVES ..............................................................................................4 3. SIMULATION ENVIRONMENT.............................................................................................5 3.1 INTRODUCTION .........................................................................................................................5 3.2 SIMULATION AREA ....................................................................................................................5 3.3 CONTROL CENTRES .................................................................................................................5 3.4 ROUTE STRUCTURE .................................................................................................................5 3.5 OPERATIONS ROOM .................................................................................................................5 3.5.1 Layout..................................................................................................................................5 3.6 SECTORS...................................................................................................................................6 3.6.1 Measured Sectors................................................................................................................6 3.6.2 Feed Sectors .......................................................................................................................6 3.7 ATC SIMULATOR .......................................................................................................................7 3.7.1 Radar Functions ..................................................................................................................7 3.7.2 Flight Strips..........................................................................................................................7 3.7.3 Telecommunications (AUDIOLAN).......................................................................................8 3.7.4 Short Term Conflict Alert (STCA) .........................................................................................8 3.7.5 Meteorological Conditions....................................................................................................8 4. DESCRIPTION OF THE SCENARIOS .................................................................................9 4.1 RVSM (REFERENCE) SCENARIO 1...........................................................................................9 4.2 HARD FLAS SCENARIO 3 ..........................................................................................................9 4.3 SOFT FLAS SCENARIO 2.........................................................................................................10 4.3.1 Summary of the FLAS Scenarios .......................................................................................11 5. TRAFFIC SAMPLES ...........................................................................................................13 5.1 INITIAL CREATION ...................................................................................................................13 5.2 CONVERSION FROM CVSM TO RVSM ...................................................................................13 5.3 CHANGES MADE FOR THE REAL TIME SIMULATION ...........................................................13 6. ATC WORKING PROCEDURES ........................................................................................14 7. SIMULATION PROGRAMME .............................................................................................14 7.1 PARTICIPANTS ........................................................................................................................14 7.2 EXERCISE SCHEDULE ............................................................................................................14 8. RESULTS............................................................................................................................15 8.1 ANALYSIS.................................................................................................................................15 Project NAV-2-E4 – EEC Report n° 349 vii RVSM5 Real-Time Simulation EUROCONTROL 8.1.1 Subjective analysis ............................................................................................................15 8.1.2 Objective analysis..............................................................................................................16 8.2 SPECIFIC OBJECTIVE 1 ..........................................................................................................17 8.2.1 Operational advantages/disadvantages .............................................................................17 8.2.2 Management of FL availability on main traffic flows............................................................19 8.2.3 Effect on controller workload and sector throughput ...........................................................21 8.2.4 Effect on Sectorisation.......................................................................................................27 8.2.5 Interface between Two or more ACCs................................................................................31 8.2.6 Evaluate the impact on adjacent sectors preparing the FLAS ............................................32 8.3 SPECIFIC OBJECTIVE 2 ..........................................................................................................35 8.3.1 Brief History.......................................................................................................................35 8.3.2 Results ..............................................................................................................................35 8.4 SPECIFIC OBJECTIVE 3 ..........................................................................................................37 8.4.1 Controller confidence using RVSM.....................................................................................37 8.4.2 Possible benefits of a FLAS ............................................................................................... 38 8.5 SPECIFIC OBJECTIVE 4 ..........................................................................................................39 9. CONCLUSIONS..................................................................................................................40 9.1 9.2 9.3 9.4 9.5 10. GENERAL .................................................................................................................................40 SPECIFIC OBJECTIVE 1 ..........................................................................................................40 SPECIFIC OBJECTIVE 2 ..........................................................................................................41 SPECIFIC OBJECTIVE 3 ..........................................................................................................42 SPECIFIC OBJECTIVE 4 ..........................................................................................................42 RECOMMENDATIONS ...................................................................................................43 Green pages : French translation of the summary, the introduction, objectives, conclusions and recommendations ....................................................................................................................... 45 Pages vertes : Traduction en langue française du résumé, de l'introduction, des objectifs, des conclusions et recommandations ................................................................................................................... 45 ANNEX A: MAPS ANNEX B: OPERATIONS ROOM LAYOUT ANNEX C: SIMULATION PARTICIPANTS ANNEX D: SIMULATION SCHEDULE viii Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL LIST OF FIGURES Figure Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Page Differences between CVSM and RVSM flight levels. .................................................1 The Reims sector UE .................................................................................................7 Sector equipment (AUDIOLAN left, ISA centre and TID right) ...................................8 Hard FLAS Quadrantral scheme ................................................................................9 Hard FLAS example .................................................................................................10 Soft FLAS example ..................................................................................................11 Effect of a FLAS on FL, route and sector occupancy...............................................12 ISA Workload for the Swiss sectors in Session 4 ....................................................23 ISA Workload for the French sectors in Session 4...................................................24 ISA Workload for the Italian sectors in Session 4 ....................................................24 Screen dump of Sector MOLUU during a Hard FLAS exercise................................30 Flight Level Orders Session 1 for sectors preparing a FLAS ...................................33 Session 2 ISA (Karlsruhe and Munich Sectors) .......................................................34 Session 2 telephone usage. .....................................................................................34 REFERENCES 1) 2) 3) 4) 5) RVSM5 Project Management Plan –EEC Bretigny – Author: R. Lane. RVSM5 Facility Specification – EEC Bretigny Authors: R. Lane and C. Chevalier EATMP ATC Manual for RVSM in Europe – Eurocontrol HQ EEC Report 315 –3rd Continental RVSM RTS EEC Report 341 – RVSM4 (Turkey) RTS Project NAV-2-E4 – EEC Report n° 349 ix RVSM5 Real-Time Simulation EUROCONTROL ABBREVIATIONS ACC AIP ANT ARN ATC ATM ATS CFL CVSM CWP DFL EATMP ECAC EEC EUROCONTROL EXC FIR FL FLAS Ft FTS HQ ICAO N/A NAT Nm PLC R/T RFL RTS RVSM SAAM STCA TID UIR x Area Control Centre Aeronautical Information Publication Airspace and Navigation Team ATS Route Network Air Traffic Control Air Traffic Management Air Traffic Services Cleared Flight Level Conventional Vertical Separation Minimum Controller Working Position Division Flight Level European Air Traffic Management Programme European Civil Aviation Conference EUROCONTROL Experimental Centre European Organisation for the Safety of Air Navigation Executive Flight Information Region Flight Level Flight Level Allocation Scheme Feet Fast Time Simulation Headquarters International Civil Aviation Organisation Non Applicable North Atlantic Nautical miles Planner Controller Radio & Telephone Request Flight Level Real Time Simulation Reduced Vertical Separation Minimum System for Assignment at a Macroscopic Level Short Term Conflict Alert Touch Input Device Upper Information Region Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL 1. INTRODUCTION 1.1 DEFINITION OF TERMS 1.1.1 Conventional Vertical Separation Minimum (CVSM) CVSM is the current separation standard where flight levels above FL290 are vertically separated by 2000 feet. 1.1.2 Reduced Vertical Separation Minimum (RVSM) RVSM is an approved International Civil Aviation Organisation (ICAO) concept to reduce aircraft vertical separation from the CVSM 2000’ to 1000’, between flight levels (FLs) 290-410 inclusive. RVSM introduces 6 additional flight levels (FL300,320,340,360,380,400) and as a general principle the levels up to FL410 are allocated as ‘even levels – west/north bound and odd levels – east/south bound’. Note that FL310/350/390 change parity from even to odd flight levels with RVSM EVEN CVSM ODD EVEN RVSM 410 ODD 410 400 390 390 380 370 370 360 350 350 340 330 330 320 310 310 300 290 280 290 280 Figure 1: Differences between CVSM and RVSM flight levels. 1.1.3 Flight Level Allocation Scheme (FLAS) A scheme whereby specific flight levels may be assigned to specific route segments within the route network on a strategic basis (see sections 4.2 & 4.3) Project NAV-2-E4 – EEC Report n° 349 1 RVSM5 Real-Time Simulation EUROCONTROL 1.2 RVSM BACKGROUND In the late 1970s, civil aviation faced both rising fuel costs and fast growing demand. Consequently, the International Civil Aviation Organisation (ICAO) initiated an extensive programme of studies to investigate the feasibility of reducing the 2000ft Vertical Separation Minimum (VSM) to 1000ft above FL290. These investigations indicated that RVSM (Reduced Vertical Separation Minimum) between FL290-410 was feasible, safe and cost-beneficial without imposing massive technical requirements. RVSM (between FL330-370) became operational in the NAT (North Atlantic) region on 27 March 1997. This level band was increased to FL310-390 on the 8 October 1998. Full RVSM implementation within European and NAT airspace will take place on the 24 January 2002, and is expected to provide considerable benefits. However, due to the complex nature of the European ATS route structure and the fact that some 40 countries are participating in the project, European implementation will be more complicated compared with the NAT region. 1.3 CORE AREA STUDY EUROCONTROL has sponsored many studies associated with the introduction of RVSM in European airspace. The RNDSG (Route Network Development Sub-Group) of the Airspace and Navigation Team (ANT), requested a study in conjunction with the States concerned, to look at the effect of RVSM on sectorisation and in particular, the possible benefit of applying different FLASs (Flight Level Allocation Schemes) within the Core Area of Europe. This document reports on the third and final phase of the study – the RVSM5 Real Time Simulation. 1.3.1 Phase 1- System for Assignment and Analysis at a Macroscopic Level (SAAM) SAAM is a statistical analysis tool developed at EUROCONTROL Headquarters. The tool is widely used in support of the work of the RNDSG because it permits large traffic samples to be modeled and evaluated over the entire European route network. The results are provided in a matter of minutes. These include traffic loadings on individual segments of the route network, loads on sectors and conflict counts in any defined volume of airspace. However, SAAM is not yet able to calculate controller workload. Because the tool has a quick response time and a user-friendly graphical interface, it is possible to reconfigure airspace and experiment with new structures without investing too much time in preparation. This allows for the evaluation of a wide range of scenarios after which the more promising can be proposed for further development. SAAM was used in the development of Version 3 of the ARN and therefore already had the future (planned V3 network) route network instantly available. This enabled a series of sectorisation options to be investigated so that the two most likely vertical sector splits could be identified and assessed further in the Fast Time Simulation. 2 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation 1.3.2 EUROCONTROL Phase 2- Fast Time Simulation (FTS-TAAM) In October 1998 a request for a fast time simulation was submitted to the EEC Bretigny. Through the EUROCONTROL Simulation Partnership Scheme the request was offered to Swisscontrol and the DFS, both of whom use the Total Airspace and Airport Modeler (TAAM). Initially the two TAAM providers were expecting to work on elements of the study. However, due to other commitments the DFS were forced to withdraw from the simulation leaving SWISSCONTROL as the sole provider. TAAM enabled a more detailed examination of the scenarios and, in addition to a more refined calculation of conflict counts, sector and segment traffic loads than SAAM, also provided controller workload figures throughout the 24 hour period. It was recognised from the very beginning that the timescales were extremely tight bearing in mind the scale of the proposed simulation. At least 30 sectors were proposed for examination most of which were simulated with different vertical splits (FL 325 and FL335) using the 24 hour traffic sample which included approximately 8000 flights. Wherever possible the traffic samples and the geographical definition of the airspace (sectors and route network) were to be transferred from SAAM to TAAM. To an extent this was achieved but the TAAM providers were still faced with a considerable workload in getting the data prepared. 1.3.3 Phase 3- Real Time Simulation (RTS) The RTS was the final phase of the study and simulated 32 sectors from eight ACCs. The results of the previous phases were used to further study the effects of the use of a FLAS within the Core Area of Europe, with the additional benefit of being able to measure the workload and gain feedback from operational Air Traffic Controller staff. The RTS was held at the EEC Bretigny and due to the large number of sectors involved, was divided into four sessions (a maximum of 10 sectors at a time). This report details the findings of the RTS. Project NAV-2-E4 – EEC Report n° 349 3 RVSM5 Real-Time Simulation EUROCONTROL 2. SIMULATION OBJECTIVES 2.1 GENERAL OBJECTIVE To evaluate the impact of the introduction of RVSM in the Core Area of Europe with specific reference to the effect on sectorisation and the use of a FLAS(s). Note: The above General objective was made for the three phases of the study. The specific objectives 3 and 4 were applicable solely to the Real Time Simulation. 2.2 SPECIFIC OBJECTIVES 1. To compare the use of a Hard and Soft FLAS with the RVSM cruising level reference, as published by ICAO in Annex 2 (Annex 2 Appendix 3, Table of cruising Levels, table a.) with particular attention to the following aspects, • • • • • operational advantages/disadvantages effect on controller workload and sector throughput effect on sectorisation the interface between two, or more, ACCs applying a FLAS evaluate the impact on adjacent sectors (which are not applying a FLAS) when preparing traffic for and receiving traffic from, sectors which are applying a FLAS 2. To assess the operational impact of the inversion of the flight direction of the routes UN852 and UN853 in the airspace of Geneva and Reims. 3. To gain controller confidence in the viability of introducing RVSM in the core area of Europe and the possible benefit of a FLAS. 4. To further validate the RVSM ATC procedures developed by the ATM Procedures Development Sub Group (APDSG). 2.3 ACHIEVEMENT OF OBJECTIVES The objectives were achieved by gathering controller feedback via questionnaires, debriefs and observations, and by data recordings made during the exercises. A full description of the analysis can be found in section 8 - Results. 4 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL 3. SIMULATION ENVIRONMENT 3.1 INTRODUCTION This chapter outlines the ATC environment and different Scenarios that were used for the RVSM5 simulation. 3.2 SIMULATION AREA The simulation area covered five different countries and included parts of the Austrian, France, German, Italian and Swiss FIR/UIRs (see Annex A Map 1). 3.3 CONTROL CENTRES The following eight Air Traffic Control Centres were involved in the Simulation; Geneva, Karlsruhe, Milan, Munich, Padua, Reims, Vienna and Zurich. 3.4 ROUTE STRUCTURE The route structure used during the simulation was that planned in the ARN Version 3 proposal for amendment to the EUR ANP (The structure was that proposed for Phase 2 implementation for France and Geneva, Phase 3 for Austria Italy and Zurich). The German route structure generally followed that planned for Phase 3 with some adaptation as a result of the GE98 Real Time Simulation. Additional adaptations, proposed by the State experts during the preparatory stage, were also included. 3.5 OPERATIONS ROOM 3.5.1 Layout The Operations Room layout was the same for all four sessions. The configuration and a photograph are shown in Annex B. Project NAV-2-E4 – EEC Report n° 349 5 RVSM5 Real-Time Simulation EUROCONTROL 3.6 SECTORS Due to the size of the airspace to be studied (see Annex A Map 1) it was not possible to simulate all of the sectors (30 in total) at the same time. Therefore, the airspace was divided into four areas with a maximum of 10 measured sectors in each area. The four areas were considered to be ‘four mini simulations’ and were called SESSIONs. The vertical limits and frequencies used for each sector can be found on the maps in Annex A. The table below details the grouping for each session. SESSION SESSION 1 Oct. 4-15 SESSION 2 Oct. 18-29 SESSION 3 Nov. 8-12 SESSION 4 Nov. 15-26 ACC involved Measured Sectors Munich Vienna AYING RIDAR EST/U, NST/U, SST/U, WST/U Karlsruhe Milan Munich Padua Zurich KARLS/U EU/EUU ALGOI/ALPEN NT/NTU ZUR/H Reims UE/XE, UH/XH Zurich ZUR/H Milan Geneva Reims WU/WUU MILPA/U, MOLUS/U UE/XE, UH/XH 3.6.1 Measured Sectors Measured sectors consisted of two Controller Working Positions (CWP) Executive (EXC) and Planner controller (PLC). Figure 2 shows the Reims sector ‘UE’ with the EXC controller on the left and his PLC on the right. 3.6.2 Feed Sectors In each Session, up to five feed positions were simulated, to deliver and receive traffic from the measured position and to respond to coordination requests on the telephone. Controllers from either the adjacent ACC or the ACC being simulated were used to staff the feed positions. 6 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL Figure 2: The Reims sector UE 3.7 ATC SIMULATOR A common HMI (Human Machine Interface) was used for the seven-week period of Simulation in order to reduce the risk of technical difficulties. The platform was a proven HMI based on the French Cautra system. 3.7.1 Radar Functions The following functionality was available to all sectors; • • • • • • • • 3.7.2 Sony 28 inch colour Radar screen showing full radar cover from FL000FL460. Touch Input Device (TID) to change the Planned Flight Level of an aircraft Standard paper strip containing flight plan information. Range and Bearing tool Speed Vector (0-10 minutes) Minimum separation tool Height filtering Short Term Conflict Alert Flight Strips Paper flight strips were used on the measured sectors. Project NAV-2-E4 – EEC Report n° 349 7 RVSM5 Real-Time Simulation EUROCONTROL 3.7.3 Telecommunications (AUDIOLAN) All positions used AUDIOLAN telecommunications equipment. This comprised of a Headset and touch input panel (see Figure 3: sector equipment) with pre-defined frequencies and landlines according to the sector. Figure 3: Sector equipment (AUDIOLAN left, ISA centre and TID right) 3.7.4 Short Term Conflict Alert (STCA) STCA was available within the radar coverage area. 2 volumes were defined and in each case the look ahead time was 2 minutes: Volume 1 between FL 000 to FL 410: The minimum horizontal separation = 4.9 Nm. The minimum vertical separation = 1000 ft. Volume 2 FL 410 to FL 460: The minimum horizontal separation =4.9 Nm. The minimum vertical separation = 2000 ft. 3.7.5 Meteorological Conditions The direction and strength of the wind was decided as necessary for each exercise by the simulation team. 8 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL 4. DESCRIPTION OF THE SCENARIOS 4.1 RVSM (REFERENCE) SCENARIO 1 The introduction of RVSM results in six extra Flight Levels. Within the area being simulated these levels were organised according to the direction of the route or route segment flown. In general this followed a north/south split and the levels were allocated even/odd accordingly. The purpose of the Scenario RVSM reference was to simulate the proposed 2001 Airspace plan using RVSM traffic samples based on the Single Alternate Flight Level Orientation adjusted to levels of traffic forecast for 2001. 4.2 HARD FLAS SCENARIO 3 The RVSM Scenario can be further subdivided into a ‘Quadrantal‘ scheme and this is illustrated in the Diagram below. Figure 4: Hard FLAS Quadrantral scheme This scheme forms the basis of the two variants of the FLAS simulated. Termed the ‘Hard’ and ‘Soft FLAS’ by the Working Group they were just two of an infinite number of possibilities that exist when a FLAS is applied over a large geographical area. It is important to point out that in the simulation the German sectors did not apply a FLAS within their airspace. However because neighbouring ACCs were expecting to receive and give traffic at FLAS levels, the Munich (session 1) and Karlsruhe (session 2) controllers had the additional tasks placed upon them of preparing the traffic for the correct FLAS levels. This element was tested and measured in the simulation. Project NAV-2-E4 – EEC Report n° 349 9 RVSM5 Real-Time Simulation EUROCONTROL The Hard FLAS involved a rigid application of the Quadrantal rule on major routes within the defined airspace. Map 3 in Annex A shows the routes where the Hard FLAS was applied and the colours of the routes correspond to the colours and levels shown in Figure 4. The purpose of the HARD FLAS was to reduce controller workload by automatically resolving conflicting levels at major crossing points. This was achieved by allocating specific levels to specific routes, thereby improving the flow of traffic. Figure 5 below illustrates the general principle of level allocation. Hard FLAS Only FLs 380,340 and 300 available Only FLs 400,360 and 320 available Figure 5: Hard FLAS example In this example, traffic on two northbound crossing routes was strategically deconflicted. Three northbound levels are made available to each traffic flow and at the crossing point there is no risk of confliction between aircraft in level flight. In theory the controllers’ monitoring task would be minimal. In the simulation the routes on which a Hard FLAS was applied were selected by the State experts and were designed to accommodate the major traffic flows and ease the burden on controllers at known choke points. Due to the complex route network it was impossible to strictly apply the quadrantal scheme, therefore some routes were allocated levels which did not necessarily agree with Figure 4. 4.3 SOFT FLAS SCENARIO 2 The Soft FLAS involved a more flexible application of the Quadrantal rule on some of the major routes within the defined airspace. The intention of the Soft FLAS was to reduce the controller workload at major crossing points by strategically resolving some of the conflicts, at selected Flight Levels without denying the controller tactical freedom. In addition the Soft FLAS offered the airspace user more flexibility in the choice of the RVSM Flight levels The Soft FLAS used the same general principle of level application according to the direction of flight but unlike the Hard FLAS, only one or in some cases two 10 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL Flight Levels were frozen on individual routes (see Annex A- Map 2). Figure 6 below illustrates this principle. Soft FLAS FL 320 frozen FLs 400,380,360 320 and 300 available FL 340 frozen FLs 400,380,360 340 and 300 available Figure 6: Soft FLAS example In this example the two northbound routes each have five useable Flight Levels with a single level frozen on each one. FL 320 is not available for northwestbound traffic. FL 320 would therefore become a ‘protected’ or ‘preferred’ level on the other north-eastbound route. As a consequence FLs 320 and 340 are free of conflicts on this pair of routes. As with the Hard FLAS, the experts from the States selected the routes and FLs for the Soft FLAS exercises. The general principle was that this would be kept to the minimum and would only be applied in order to accommodate major flows of traffic. In addition, wherever a level was frozen, this was co-ordinated along the length of a route to avoid unnecessary changes of FL for the operators and ATC. 4.3.1 Summary of the FLAS Scenarios A comparison of the three scenarios simulated is shown in Figure 7. In this example, two routes that pass through the busy Swiss point MOLUS are used. The flight levels available to the controller are also shown in each case next to the routes. The FLs are shown next to each of the six aircraft, and in the Soft and Hard FLAS examples the modified FLAS FL was chosen at random (the original FL appears in brackets next to the new FL). The split between the Upper and Middle sectors was FL335, and it can be seen that in the No FLAS scenario, the Blue and the Purple aircraft would be in the Middle sector. However, in the Soft FLAS scenario the Blue and Green aircraft are in the Middle sector and in the Hard FLAS the Purple and Yellow aircraft. This diagram is just a demonstration of the way a FLAS can effect levels, routes and sector occupancy, all of which would be dependent on the FL selected by the controller at the time. In the Soft FLAS, note that on each of the routes, one FL is blocked and one is highlighted in bold. This highlighted FL was called a ‘preferred FL’ as it corresponded to the blocked level of the other crossing route. Project NAV-2-E4 – EEC Report n° 349 11 EUROCONTROL RVSM5 Real-Time Simulation Figure 7: Effect of a FLAS on FL, route and sector occupancy 12 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL 5. TRAFFIC SAMPLES 5.1 INITIAL CREATION It was planned to use a common traffic sample for all three phases of the study. A traffic sample containing 24,000 flights from 26th June 1998 was taken from the CFMU databank and this was cross-checked with the CRCO data. This sample was boosted, by the Statistics and Forecasting Unit (STATFOR) of DED 4, to June 2001 levels. STATFOR takes forecast data for each city pair in the ECAC area into account. This resulted in a new sample with approx. 28,000 flights, (an approximate global increase of 20%). In the simulation window almost 10,000 flights were captured within the 24-hour period. The original traffic sample had been based on the 1998 route network, which was radically different in some regions from that planned for Version 3, and it was necessary to ‘move’ many of the flights onto the new network. This was completed using the SAAM tool, which automatically assigns large traffic samples to the available routes according to certain criteria. In this case the shortest path available, provided the right connections existed, was selected. 5.2 CONVERSION FROM CVSM TO RVSM In addition to the lateral change to the traffic a method of distributing flights from their current (non-RVSM) levels onto the RVSM levels was investigated and applied to the sample. The following issues were taken into account: • • • • • The two hemispherical (North/South and East/West) methods of allocating flight Levels in accordance with the direction of flight within Europe will be retained. After the implementation of RVSM more flights will operate closer to their optimum FL, within the level band FL330-370. 60% of flights within the ECAC region are of less than 400nms ‘Capping’ of city pairs is likely to remain in force although it is hoped the general push up to higher levels by other flights will result in a raising of these capped levels (probably FL 270/280/290 instead of FL 230/240) The ATC system will probably ‘spread’ the traffic more evenly than aircraft performance would demand, either at sector or pre-tactical level The group preparing the simulation selected a scheme where flight levels were Harmonised and applied to the 2001 traffic sample. The Harmonisation allowed a defined proportion of traffic at any given level to be moved to another, provided the FLs were of the same parity. i.e. N/S or E/W. 5.3 CHANGES MADE FOR THE REAL TIME SIMULATION The traffic sample was then modified for use in the Real Time Simulator as follows: • • • 2 x 2 hour periods were identified to form a Morning and Afternoon Traffic sample. The periods selected were 0800-1000 and 1600-1800. The traffic was reviewed by the staff at the EEC and further reduced to make Project NAV-2-E4 – EEC Report n° 349 13 RVSM5 Real-Time Simulation EUROCONTROL • two traffic samples, each one 80 minutes long (10 minutes lead in, followed by 60 minutes measured, followed by 10 minutes wind down). The traffic levels in each sector were adjusted by adding or reducing traffic in order to achieve a constant load (about 55 per hour) on each sector concerned during the measured period. The samples were validated by the experts from each ACC to verify correct routeings and vertical profiles. The samples were adjusted for the Soft and Hard FLAS so that aircraft commencing outside of the measured sectors who required to be at a FL compliant with a FLAS were adjusted accordingly. The new FLs chosen for use were based upon Departure/Destination, letters of Agreement and aircraft performance. A list of the traffic samples used can be found at Annex D Simulation Schedule. 6. ATC WORKING PROCEDURES The ATC working procedures used during the simulation were in accordance with current Letters of Agreement and/or particular Operational Instructions. All Sessions used SSR where the code was automatically converted to show the callsign on the radar label. RVSM Procedures – The reduction of separation from 2000’ to 1000’ between FL290 and FL410 was applied based on the ICAO recommended Table of Cruising Levels (ICAO doc Annex 2, Appendix 3, table a). In order to be able to compare the effect of the different FLASs, it was necessary to keep the number of variables (outside influences) to a minimum. The working group agreed that all aircraft would be considered to be RVSM approved. Specific procedures (Phraseology, Separation, Strip marking) required for handling non-RVSM approved aircraft were therefore not necessary during the simulation. There were no exercises concerning non-RVSM approved aircraft, R/T failure, failure to maintain altitude or transition between CVSM/RVSM. 7. SIMULATION PROGRAMME 7.1 PARTICIPANTS A list of the simulation participants can be found in Annex C. 7.2 EXERCISE SCHEDULE The timetable for the seven weeks of simulation can be found in Annex D. 14 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL 8. RESULTS The description of the methods (Subjective and Objective analysis) used to collate the results follows this paragraph. The results are then detailed according to the four Specific Objectives (see section 2.2). The Conclusions of the results appears at section 9. The results of Session 3 were not taken into account as it was felt that too many changes to the traffic samples occurred during the first three days of the five day Session. Also, the exercise schedule included too many variations (RVSM, FLAS and Inversion) with too few exercises for the controllers to be reasonably expected to form a subjective opinion. However, the Session was seen to be a valuable training period for the nine Reims controllers who stayed on to complete Session 4. Sessions 1,2 and 4 were analysed individually and then the results were compared to see if a trend existed between them. 8.1 ANALYSIS 8.1.1 Subjective analysis The subjective analysis is based on two different sources of information. The first source is the questionnaires given to the controllers before, during, and after the simulation. The second source is the Instantaneous Self Assessment method or ISA. Where appropriate, questions asked on the questionnaires (indicated by a ‘ Q.’ followed by the text in bold italic letters) have been inserted. The answers appear below the question in normal text. Questionnaires The following questionnaires were used during the seven week simulation: • • • • • • • Pre-simulation (sent out one month before start of simulation) Post exercise (short questionnaire after each exercise) RVSM -No FLAS (given at the end of the Scenario 1 exercises) RVSM Soft FLAS (given at the end of the Scenario 2 exercises) RVSM Hard FLAS (given at the end of the Scenario 3 exercises) Inversion (Session 3 and 4 only) Final questionnaire (given at the end of each Session) The Post exercise questionnaire included subjective evaluations on a scale from 1 to 10 of the following elements: • • • • the controller overall workload the R/T loading the degree of realism of the simulated traffic sample the difficulty in maintaining situational awareness For each of these elements, the value 1 was considered to be Very Low, 5 as Moderate, and 10 as Very High. If a controller answered with a value of 6 or higher they were asked to give a brief reason why (i.e. traffic density, R/T Project NAV-2-E4 – EEC Report n° 349 15 RVSM5 Real-Time Simulation EUROCONTROL loading, procedures). The value of 6 indicates the point at which the effort/demand was considered to be higher than moderate. The workload results on the questionnaires were used as a crosscheck with the ISA and data recordings, and also as a back up in case of a recording failure. Instantaneous Self Assessment (ISA) The ISA method allowed the controller to assess his/her workload during the course of a simulated exercise. The controller was provided with a warning (Flashing light) every three minutes and had 30 seconds to register their perceived workload on a five button box (see Figure 3: sector equipment) according to the following point scale, 1 - Under-utilised, 2 - Relaxed, 3 - Comfortable, 4 - High, 5 - Excessive. Experience shows that selection of either button 4 or 5 for more than 40% of an exercise means that the participant is likely to reject the organisation. 8.1.2 Objective analysis The Objective analysis is taken from data recordings made for each exercise. From these recordings the following factors are studied: • • • • • Analysis of the R/T occupancy Analysis of RFL Analysis of pilot orders Level Changes to Solve Conflicts Analysis of the loss of separation Most of the objective analysis concerned the controllers workload and is therefore directed mainly towards Specific Objective 1. Reference to Controller workload covers the executive and the planning controller unless specific reference is made to one or the other. The simulation produced a large amount of data and recordings for analysis. In order to keep the size of the report reasonable, only the graphs or figures that show a significant trend have been included, and where possible the results not showing a clear trend have been summarised as text. 16 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation 8.2 SPECIFIC OBJECTIVE 1 To compare the use of a Hard and Soft FLAS with the RVSM cruising level reference, as published by ICAO (Annex 2 Appendix 3, Table of Cruising Levels, table a.) with particular attention to the following aspects: • • • • • 8.2.1 EUROCONTROL operational advantages/disadvantages effect on controller workload and sector throughput effect on sectorisation the interface between two, or more, ACCs applying a FLAS evaluate the impact on adjacent sectors (which are not applying a FLAS) when preparing traffic for and receiving traffic from, sectors which are applying a FLAS Operational advantages/disadvantages Achievement of RFL (Requested Flight Level) The table below shows the percentage of flights that reached their RFL during the three sessions. It can be seen that in the RVSM No FLAS exercises the percentage of aircraft reaching their RFL was in the high 80s. In all three sessions this rate was slightly reduced in the Soft FLAS and very much reduced in the Hard FLAS. The two traffic samples (morning and afternoon) used in each session were duplicated throughout the different scenarios, with the exception of the cruising Flight Level where a FLAS was applicable (the original RFL remained constant). In reality, if a FLAS was in use and a pilot knew that for example FL340 was not available on a route, it would be unlikely that the pilot would flight plan an RFL which was unavailable, instead they would more likely opt for FL320 or FL360. However, the table below indicates how many flights were disrupted by the two FLASs. TRAFFIC SAMPLE SCENARIO SESSION 1 SESSION 2 SESSION 4 Afternoon NO FLAS Soft Hard NO FLAS Soft Hard 89% 86% 64% 88% 85% 59% 87% 75% 51% 88% 75% 60% 81% 64% 51% 85% 61% 55% Morning Project NAV-2-E4 – EEC Report n° 349 17 RVSM5 Real-Time Simulation EUROCONTROL Management of crossing points It was expected that the main advantage of a FLAS would be the de-confliction of traffic at crossing points with the aim of reducing the controllers workload and increasing safety. Q: Does the Soft FLAS make the management of crossing points easier? Yes 33 No = 27 The advantage reported was a reduction in the monitoring tasks Q: Does the Hard FLAS make the management of crossing points easier? Yes 50 No = 8 The main advantage reported was the reduction in conflicts or potential conflicts, closely followed by the reduction in monitoring tasks. From the responses to the above two questions and from debriefings, it was seen that the Soft and Hard FLAS both offered the controllers some advantages at busy crossing points. Where traffic was in level flight and required no preparation for the following sector, the controllers felt that a FLAS could be beneficial for reducing the planning and monitoring of crossing traffic. This benefit was greater where a FLAS was concentrated on a point (i.e. where many routes converged and each one had a level/ or levels restricted). However, it was felt that the advantage of a FLAS only occurred at certain times For long periods it was deemed that a FLAS was not required and that aircraft were being penalised unnecessarily by being descended from their RFL to conform with the FLAS even though no conflicts along the route were detected. For this reason it is considered that a temporary/flexible FLAS or a letter of Agreement would be more appropriate than a permanent FLAS. In some cases the use of an Opposite Direction Level (ODL) was used, this occurred in larger sectors where there were few crossing routes of the opposite parity. Example: Traffic on the route SUMEK-PUBEG-DETSA at FL330 had to vacate FL330 at PUBEG to comply with the Soft FLAS. Quite often the traffic was initially descended to FL320 for transit of the WSU sector, this avoided the traffic at FL310 on the busy routes ENKUN-TIROL and ENKUN-KFT. The aircraft still had to be watched carefully to avoid any conflicts with traffic at FL320 routeing through VIW/KFT northwest bound. When clear of all these routes the aircraft would be given FL310 (or another level other than 330/350) before hand-over to Padua Feed sector. 18 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation 8.2.2 EUROCONTROL Management of FL availability on main traffic flows The biggest disadvantage perceived by the controllers was the fact that they had been given six extra levels to use, then restricted with the way in which to use them. Although a FLAS was seen to offer some benefits at busy crossing points, the controllers felt that the number of levels available without a FLAS was preferential and offered more flexibility to the controller. They also felt that pilots may question big level changes in the future when RVSM is supposed to help them to get closer to their Requested Flight Level. In terms of the controller workload, although the FLASs might prove beneficial at the crossing point (fewer conflicts, less monitoring) this was outweighed by the disadvantage of having fewer FLs available. Most sectors handled a high density of traffic and this in itself meant an increase in monitoring tasks. It also showed the controllers that in reality this level of traffic would be difficult to manage with the sectorisation simulated. Hard FLAS The controllers found that the Hard FLAS was more difficult to manage than the Soft FLAS and RVSM (No FLAS). On the positive side, the traffic was evenly distributed over routes in a quadrantal system and at crossing points where traffic was in level flight, this provided a well separated flow. On the negative side, the level availability on routes went from six to three (similar to CVSM) and the controllers were working the same volume of traffic. This led to difficulties in finding an available FL for traffic that was bunching and evolving, and on many occasions a lack of exit FLs was reported. Q: Was the integration of evolving traffic made more difficult on a route with the Hard FLAS? Yes = 38 No = 27 It was felt that co-ordination also increased between internal sectors as the distribution of FLs affected the throughput of the lower and upper sectors, often a sector would end up with only one popular/useable FL available. Example: The table below shows the distribution of levels available on the routes that run from southeast to northwest (FRZ-AOSTA and GEN-AOSTA) within the WU/WUU Italian sectors. They were allocated as Even FL’s in the RVSM (No FLAS) scenario. If we assume that there are few flights at FL400, it can be seen that each sector ends up with only one useable FL on two very busy routes. SECTOR FL’s available in RVSM (No FLAS ) FL’s available in HARD FLAS WU (FL285-335) WUU (FL335-UNLTD) 300 -320 340-360-380-400 320 360/400 Project NAV-2-E4 – EEC Report n° 349 19 RVSM5 Real-Time Simulation EUROCONTROL Q: Does the proposed Hard FLAS offer sufficient flexibility between number of flights and the number of FLs available? Not at all = 43 Partially = 18 Totally = 2 Example: This situation demonstrates the restriction put on controllers and pilots for exit FL availability. In Session 1, NSU/NST sectors had FLs 300/340/380 available for the northwest bound traffic on three busy converging routes (GRZSTAUB, PINKA-LALIN and GUSTA-LALIN) going into German airspace (which was not applying a FLAS). Once these routes had crossed the east-west routes PRITZ-SNU and TALSA -AW2 they had no other crossing routes to affect the FLAS and the controllers felt penalised by having only three exit levels available instead of six. After several exercises it was agreed in this case to make all six levels available to traffic after crossing the east-west routes. Summary The use of a FLAS clearly restricted aircraft from achieving their RFL. At some crossing points a FLAS was seen at certain times to show some benefits; reduced monitoring and automatic deconfliction. The management/integration of traffic was considered to be easier with all FLs available (No FLAS). On balance, RVSM without a FLAS was operationally the most beneficial, however, a Soft FLAS or letter of Agreement could be beneficial in certain circumstances. 20 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation 8.2.3 EUROCONTROL Effect on controller workload and sector throughput Controller Workload - Method Controller workload was measured by the following means: ½ ½ ½ ½ ISA - controllers had to assess their workload on a scale of 1-5 every three minutes during an exercise. Questionnaires – at the end of each exercise the controllers had to mark their average workload during the exercise on a scale of 1-10. Also, the controllers were asked to comment on their workload at the end of each scenario. Telephone use- the amount of calls made between sectors R/T use- the amount of time spent talking on the frequency. Summary The recordings from Sessions 1, 2 and 4 show very little difference between controller workload with RVSM (No FLAS), Soft FLAS and Hard FLAS. The ISA recordings on most sectors vary between a normal to very high workload. When this data is compared to the number of aircraft on frequency it is clear that much of the workload for the Executive controller can be contributed to R/T load and for the Planning controller the tasks of strip loading/sorting and co-ordination. These points were confirmed in the debriefings where controllers commented on the number of aircraft passing through the sector and many felt that although they were just able to cope in a simulation environment. In real life this amount of traffic would be unacceptable with the sector dimensions simulated. A FLAS will not be able to remedy the R/T saturation, which is the major limitation on controller workload. Where the controllers believed that there was a difference in workload between Scenarios, it has been detailed under the appropriate objective. RVSM NO FLAS The main comment on workload from Scenario 1 was the fact that the extra FLs gave the controller the opportunity to use 1000 feet separation on a tactical basis to resolve conflictions, instead of giving heading or speed restrictions. Nearly all the controllers felt that as an Executive or Planning controller they benefited from the extra levels, however the increase in useable FLs within a sector did lead to an increase in monitoring tasks. SOFT FLAS Generally it was considered that workload was not reduced when using a Soft FLAS. Co-ordination on some sectors became more difficult especially those preparing the traffic for the FLAS (e.g. EST/U in Session 1). Many of the controllers (44/61) felt that workload increased on the sectors which had to prepare or receive the FLAS from adjacent sectors and as result 27 of the controllers thought this would lead to reduced sector capacity. Project NAV-2-E4 – EEC Report n° 349 21 RVSM5 Real-Time Simulation EUROCONTROL Q: When compared with the RVSM (No FLAS), did the Soft FLAS reduce the workload: for the planner? No = 51 Yes = 7 for the executive? No = 40 Yes = 20 HARD FLAS When compared to the No FLAS and Soft FLAS scenarios, the Hard FLAS Scenario changed the operating practices of the controller the most. It was similar in many respects to the way that the controllers operate in CVSM i.e. having three levels available on a route, each separated by 4000’ feet. However, the main difference was that instead of six FLs being separated in two directions, 12 FLs were arranged in four directions (see section 4.2). Also, the volume of traffic was much greater than the present declared capacity. The workload figures show no global significant difference, some sectors have a higher workload and some have a lower workload. This is also reflected in the questionnaire responses below, Q: When compared with the RVSM (No FLAS), did the Hard FLAS reduce the workload: for the planner? No = 43 Yes = 19 for the executive? Yes = 32 No = 27 Sector throughput The traffic samples aimed at simulating about 55 aircraft per hour in each sector, generally this volume of traffic is much higher than levels normally handled with CVSM. Achieving an exact balance is often difficult due to variations in aircraft performance and the difficulty in predicting controllers’ orders. This led to some sectors having more than the 55 aircraft per hour and some having less than the 55. This variation actually provided a useful guide to the number of aircraft that a sector could reasonably manage using RVSM in a simulation environment. The controllers believed that the benefit from six extra RVSM levels would lead to an increase in the present sector entry rate. In the simulation sectors handling between 32-50 movements showed an acceptable workload (1-3 on ISA button) where sectors with over 50 showed an unacceptably high workload (regular use of the 4-5 ISA button). 22 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL It is important to note that these figures represent a simulation environment, and all aircraft simulated were RVSM approved. Other simulations have shown that, ½ ½ Non-RVSM State aircraft in an RVSM environment do increase workload/reduce capacity for the executive and planning controller Sectors generally can cope with more workload due to the fact that the situation is simulated (e.g. traffic is not real, pilots are more cooperative and aircraft respond quickly after an input). The application of a FLAS did create a redistribution of traffic between some sectors. However, in the sectors where the affect was minimal, the throughput was similar with or without a FLAS. Therefore, the use of a FLAS did not increase or decrease the sector throughput. The following three Figures (8-10) show the ISA workload averages for Session 4. In Figure 8 there is a slight reduction in workload in the MILPU/MOLUU Upper sectors and a slight increase in workload in the MILPA/ MOLUS sectors. in the Soft FLAS Scenario. This can be attributed to the imbalance of traffic between the sectors which is an indirect result of the selection of FLs which can redistribute traffic from one sector to another, either above or below. In Figure 9 and Figure 10 it can be seen that the sectors (XE/XH/WU and WUU) which generally handled below 50 aircraft an hour have a noticeably reduced workload. Estimated Workload (ISA) SESSION 4 % 00 90 80 70 60 50 40 30 20 10 0 1.N 2.S 3.H MILPA/EX 1.N 2.S 3.H MILPA/PL Very 1.N 2.S 3.H MILPU/EX 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H MILPU/PL MOLUS/EX MOLUS/PL MOLUU/EX MOLUU/PL High Norma Low Very No Figure 8: ISA Workload for the Swiss sectors in Session 4 Project NAV-2-E4 – EEC Report n° 349 23 RVSM5 Real-Time Simulation EUROCONTROL Estimated Workload (ISA) SESSION 4 % 00 90 80 70 60 50 40 30 20 10 0 1.N 2.S 3.H UE/EXC 1.N 2.S 3.H UE/PLC Very 1.N 2.S 3.H UH/EXC 1.N 2.S 3.H UH/PLC Norma High 1.N 2.S 3.H XE/EXC 1.N 2.S 3.H XE/PLC Very Low 1.N 2.S 3.H XH/EXC 1.N 2.S 3.H XH/PLC No Figure 9: ISA Workload for the French sectors in Session 4 Estimated Workload (ISA) SESSION 4 % 100 90 80 70 60 50 40 30 20 10 0 1.N 2.S 3.H WU/EXC Very 1.N High 2.S 3.H WU/PLC Norma 1.N 2.S 3.H WUU/EXC Low Very 1.N 2.S 3.H WUU/PLC No Figure 10: ISA Workload for the Italian sectors in Session 4 24 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL The answers to the following questions show that half of the controllers consider a FLAS would not increase the sector throughput and the majority of the other half believe a Soft FLAS would help more than a Hard FLAS. Q: In your view would the application of a FLAS increase sector throughput Yes = 31 No = 31 Q: If yes, which FLAS would be the most advantageous Soft FLAS = 21 Hard FLAS = 14 The table below details the average amount of traffic each sector handled in the afternoon traffic samples (the morning sample was very similar) and shows the difference between scenarios. It should be noted that these are average figures and they are based on the number of aircraft on the sector frequency at the time of measurement. The majority of the differences between Scenarios can be attributed to the effect of the FLAS. However, in some cases they are the result of the traffic being transferred at different times. Project NAV-2-E4 – EEC Report n° 349 25 RVSM5 Real-Time Simulation EUROCONTROL SESSION 1 PM Sector AYING EST ESU NST NSU RIDAR SST SSU WST WSU No NB Acft Soft Hard 61 62 60 10 12 11 50 43 58 51 59 63 52 54 59 49 47 57 60 63 63 52 52 61 45 53 58 61 63 64 46 55 61 17 14 14 13 15 15 11 14 17 15 15 14 14 15 14 12 15 19 14 17 14 15 17 14 10 16 19 NB Acft Soft 56 54 45 56 66 54 50 61 60 62 Hard 61 53 49 52 70 50 57 48 63 56 No 11 13 14 13 14 10 20 20 11 18 Max Acft Soft 12 14 10 14 13 11 13 23 12 19 Hard 12 12 14 14 15 11 18 16 12 17 No Max Acft Soft Hard SESSION 2 PM Sector ALGOI ALPEN EU EUU KARLS KARLU NT NTU ZUR ZURH No 51 59 54 49 70 50 57 56 57 64 SESSION 4 PM Sector MILPA MILPU MOLUS MOLUU UE UH WU WUU XE XH 26 No 46 60 52 58 46 56 41 46 41 35 NB Acft Soft 62 54 63 59 50 63 37 49 42 32 Hard 48 66 61 59 54 61 41 45 37 39 No 10 13 11 12 13 13 14 15 12 9 Max Acft Soft Hard 12 13 13 13 14 13 11 16 11 8 10 16 13 11 15 13 13 16 10 10 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation 8.2.4 EUROCONTROL Effect on Sectorisation The sectorisation (for the full list of sector splits see Annex A– Maps) selected for the RTS came about as a result of the SAAM and TAAM simulations, and agreements made between the members of the Working Group. Many of the geographical limits were unchanged from that in use today, however, the factor of most interest was which Division Flight Level (DFL) would be most suited to RVSM operations. The benefit of simulating 32 sectors is that a wide range of operational differences can be considered such as, route network, vertical splits, conflict points and traffic profiles. Although the sectors were all considered to be ‘enroute sectors’ some dealt with predominantly overflying traffic (EST- Vienna) and some dealt with mainly evolving traffic (UH-Reims). The most common sector base level was FL285, with FL335 being most commonly used as the intermediate DFL. Generally these two levels varied by ± 2000’ with the exception of sectors UE and UH which used FL195 as the base level as they are heavily involved with climbing/descending traffic from several major airports (e.g. Geneva, Paris, Basel and Zurich). The busy exercise plan meant that there was no flexibility during the seven week simulation to test different DFLs (this had been the main objective of the FT Simulations) The controllers were asked the following question after the RVSM (No FLAS) exercises in order to get opinions on sectorisation without the influence of a FLAS. Q: Do you consider that the vertical splits (DFLs) between the sectors were appropriate? Yes = 40 No = 10 Don’t know = 10 In the RTS the DFLs remained the same for the Soft and Hard FLAS exercises. The FLs chosen for the Soft FLAS were mainly between FL310-340. This meant that most of the sectors affected were the Middle sectors (e.g. between FL285335). The controllers felt that the choice of FLAS vs DFL needs to be taken into consideration, as does the ratio of traffic on crossing routes vs the number of FLs available for use on each route. The controllers highlighted the following specific points on sectorisation, Austria There were eight Vienna ACC sectors simulated and a common DFL of FL285/335 was used between the Upper and Top sectors. Most of the controllers felt that the DFLs were appropriate with RVSM (No FLAS), but not when using a FLAS. The Hard FLAS reduced the number of levels from six to three in a given direction. In some sectors this caused difficulties, for example the NST/U sectors deal with traffic predominantly northwest bound and the levels available were 300/340/380. This meant that NSU sector (FL285-335) had only FL300 available on three routes used by both the overflights and the Vienna departures towards Germany. Project NAV-2-E4 – EEC Report n° 349 27 RVSM5 Real-Time Simulation EUROCONTROL France The Reims sector layout included the new sector ‘XE” for the simulation which was situated above the existing sector UE. This sector was considered to be necessary by the controllers for RVSM implementation in order to manage traffic levels similar to those experienced in the simulation. The DFL between the sectors UH/XH was FL325. This meant that traffic at FL320 was in sector UH which added extra workload. Although not tested, many of the controllers felt that a DFL of FL315 may have proportioned the workload more evenly between the two sectors UH/XH, and given the XH controller more flexibility to resolve conflicts between traffic on UN852/3 crossing UL856. Germany – The Karlsruhe ‘KARLS’ sector was the only middle sector to have a base level of FL295, which meant that FL290 was in the feed sector below. During the RVSM No FLAS exercises this did not cause too many problems for the controllers. However, during the FLAS exercises (bearing in mind that this sector had to prepare and deliver the traffic at FLAS levels to the adjacent Zurich/Munich sectors) the controllers regularly ran out of odd levels and felt that FL290 would have been useful in the KARLS sector. The integration of Frankfurt (EDDF) departures was also very difficult without FL290, and many southbound flights were restricted at FL270/280 and transferred to Zurich. For the Munich controllers the AYING sector was simulated from FL285 to Unlimited. This sector had the busy crossing point AYING situated in the middle of it. The main concern of the controllers was that the sector had too many levels and was too small geographically. As a result there was little time to control the aircraft on the frequency, and all level co-ordination had to be done before sector entry. Italy – The Milano controllers normally operate with smaller sectors divided on a north/south basis. For the simulation, the sectors were divided into east /west with each sector having an upper DFL of FL335. This DFL was considered to be appropriate, however, it was felt that the Milano sectors were too long and thin. Switzerland Zurich – The sectors were split at FL285/FL335 which was felt to be suitable for the simulation. However, the controllers felt that with this sectorisation and high traffic levels there would be too much traffic on too many levels to handle safely. A geographical split of these large sectors should be investigated in the medium term. Geneva - The controllers did not like the MILPA and MOLUS sectorisation, which was very different to the one that they were familiar with in their ACC. (note: the sectorisation was built on an east/west rather than north/south split.) For the simulation it was agreed that the military areas would be assumed to be active, which forced all traffic from the SE towards the point MOLUS to route via AOSTA. The following observations were made, ½ 28 Poor geographical division between sectors MILPA/U and MOLUS/U - the two main conflict points MOLUS and MILPA were located in different sectors. However, two of the three routes converging at each conflict point were in the adjacent sector e.g. AOSTA-MOLUS controlled by MOLUS sector, ISOAR-MOLUS and TDP MOLUS controlled by MILPA sector, with the point MOLUS only about 10nm from the MILPA sector boundary. Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation ½ ½ ½ EUROCONTROL Positioning of routes in the sectors – MOROK-GILIR-TUROM-MILPA passed through MOLUS/U for a very short time, and most aircraft were transferred directly to MILPA/U sector. Overflying traffic from Northeast to Southwest and vice-versa had to pass through two sectors, resulting in an increase in co-ordination. MILPA sector too long – Generally the radar screen range was set at 140nm diameter for MOLUS/U and 200nm for MILPA/U. The advantages of the sectorisation were that only one sector (MOLUS) controlled the traffic from Geneva to Zurich and TONDA-MOLUS-DIJ. Also, the sectors MILPA/U were the only sectors controlling traffic on the route MOU-MILPA-TOP. Figure 11 shows the sector MOLUU and most of the adjacent sector MILPU. The exercise was a Hard FLAS afternoon sample, and the convergence of the routes to the points MOLUS and MILPA can be seen. Of particular note is the flight CFG804 at the boundary of the two sectors heading towards MILPA. CFG804 is flying at FL360, whereas the Hard FLAS levels for this route and the converging route TUROM-MILPA were FLs 290/330/370/410. The controller has used an even flight level (FL360) to avoid the conflict with HLF045, also at FL370. This is a good example of the tactical use of 1000’ separation instead of descending CFG804 by 4000’ to FL330. The exercise recording shows that this flight was descended from FL370 to FL360 about 5nm before the screen dump was taken and then climbed to FL370 shortly after MILPA (where the two flights crossed) before exiting the sector towards BOJOL level at FL370. Project NAV-2-E4 – EEC Report n° 349 29 EUROCONTROL RVSM5 Real-Time Simulation Figure 11: Screen dump of Sector MOLUU during a Hard FLAS exercise 30 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation 8.2.5 EUROCONTROL Interface between Two or more ACCs Under normal circumstances aircraft can be transferred between ACCs at irregular levels subject to co-ordination. However, in order to reduce coordination and be able to examine the effects of a FLAS along the entire planned route, within this simulation, the controllers were briefed to strictly apply the FLAS levels at the boundary between ACCs, in the Soft and Hard FLAS Scenarios. The FLAS network was constructed on all major routes and aimed at deconflicting as many points as possible along each route length. It was agreed that the controllers should have tactical freedom to use Flight Levels as required within their sector but that the general framework of the FLAS should be respected. This would mean that a receiving ACC could expect aircraft to arrive at FLs, which were already de-conflicted at a major conflict point close to the sector boundary. An example of this can be found in the Zurich Sector. The point TRA (Trasadingen) is located close to the boundaries of Reims and Karlsruhe ACCs. It acts as a crossroad for several major routes and the Hard FLAS in particular, was intended to automatically de-conflict 4 flows of traffic. Therefore, it was important to the Zurich controllers that the FLAS was respected as they had limited levels available and a short period of time to control the traffic before crossing the conflict point. The following questionnaire replies show that the controllers considered that a FLAS had an effect on inter-ACC co-ordination and that the Soft FLAS was less penalising than the Hard FLAS. Q: Was co-ordination between neighbouring ACCs affected by the application of a FLAS Yes = 47 No = 18 Q: If yes with which FLAS was it easier Soft FLAS = 27 Hard FLAS = 14 The recorded data from the telephone lines also shows no clear trend for the number of calls between ACCs. Some sectors show an increase and some show a decrease. The sector that showed the most noticeable increase was the KARLS PLC where there were more calls to Zurich and Munich in the FLAS exercises, but there was no clear difference between the Soft and Hard FLAS. This increase can be attributed to the addition task of preparing the FLAS, which the KARLS sector was responsible for. Project NAV-2-E4 – EEC Report n° 349 31 RVSM5 Real-Time Simulation EUROCONTROL 8.2.6 Evaluate the impact on adjacent sectors preparing the FLAS During the preparation phase of the simulation the DFS indicated that they would be unlikely to implement a FLAS within their airspace in the future. This enabled examination of the impact of traffic transferring from a FLAS to non FLAS environment, and vice versa, in the following sectors: ½ ½ ½ AYING/RIDAR - Munich ACC sectors in Session 1. EST/U - Vienna sectors which prepared the SOFT FLAS only for the WST/U sectors) in Session1. KARLS/KARLU – Karlsruhe ACC sectors Session 2 This objective was studied using a duplicate of the RVSM exercise traffic sample, but with the following differences, ½ ½ For flights exiting a sector with no FLAS to a sector with a FLAS, the flight levels were unaltered. In other words, a worst case scenario was assumed where the last sector prior to a sector with a FLAS, was responsible for delivering the traffic at the correct level. The Feed sectors delivering traffic to sectors with a FLAS were assumed to be part of the FLAS system and flight levels were modified so as to be at a correct FLAS level prior to sector entry. RESULTS The sectors preparing the Soft and Hard FLAS for other sectors found the task to be very demanding. The controllers reported an increase in co-ordination between adjacent ACCs and internally between upper and lower sectors (see Figure 14: telephone use). In Session 1 the two Munich sectors and the two Austrian ES sectors were responsible for the FLAS preparation (ES prepared traffic in the Soft FLAS only). The Munich sectors reported little difference, mainly due to the fact that there were few aircraft in the traffic sample that transited the sector at the FLAS levels. However, the ES sectors were affected and the workload associated with coordination and FL orders was increased. In the Hard FLAS the ES sectors did not have to prepare traffic and the number of telephone calls and flight level orders were less than the Soft FLAS. Figure 12: Pilot orders shows the average number of flight level orders given by the controller during the three Scenarios. There is an increase in the number of instructions in all of the sectors preparing the FLAS in Session 1, with the Austrian sectors notably higher than the Munich sectors. 32 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL Flight Level orders by sectors SESSION 1 40 37 34 32 30 30 28 21 19 20 17 16 16 14 9 10 0 1.N Figure 12: 2.S 3.H AYING 1.N 2.S 3.H RIDAR 1.N 2.S 3.H EST 1.N 2.S 3.H ESU Flight Level Orders Session 1 for sectors preparing a FLAS The Hard FLAS proved to be the most difficult due to the number of restricted FLs and in Session 2 the Karlsruhe sectors experienced an extremely high workload whilst attempting to deal with the dense level of traffic and limited exit flight levels. The problem of flight level distribution has already been detailed in section 8.2.2 . The small geographical sector (see 8.2.4 ‘Germany’) added to the complexity of the task. It can be seen from Figure 13 that the ISA workload levels for the two Karlsruhe sectors were already at high levels in the RVSM (No FLAS) Scenario due to the volume of traffic. With the exception of the Upper sector PLC, there is an increase in workload with the Soft and Hard FLAS. During the simulation the automatic transfer of Flight plan information was sent eight minutes before sector entry. The planned flight level could be changed up to three minutes before sector exit. However, a PFL change could often mean a new sector sequence and as a result strips had to be generated on the new sector and cancelled from a sector if it had already been pre-warned (eight minutes before entry). To reduce this extra co-ordination the Karlsruhe planning controllers would attempt to plan the sector exit before the eight minute notification to Zurich/Munich. This would give them only three to five minutes to decide on the exit levels and during the FLAS preparation exercises this task was difficult to achieve due to volume of traffic, lack of available levels and the time parameters of the system. Project NAV-2-E4 – EEC Report n° 349 33 RVSM5 Real-Time Simulation EUROCONTROL The controllers also had the task of receiving traffic at FLAS levels and where required, changing the flights back to a No FLAS situation (from three to six FLs). The controllers had no difficulty with this as the extra three FLs gave them added flexibility. Estimated Workload (ISA) SESSION 2 % 00 90 80 70 60 50 40 30 20 10 0 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H ALGOI/EX ALGOI/PL ALPEN/EX ALPEN/PL Very High High 1.N 2.S 3.H KARL/EX Normal 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H KARL/PL KARLU/EX KARLU/PL Low Very Low No Answer Figure 13: Session 2 ISA (Karlsruhe and Munich Sectors) Session 2 –Telephone Usage 20 The number on the top of each bar = number of calls made/received 36 31 15 28 27 30 29 m 10 18 18 18 20 18 5 12 12 11 % 10 9 11 7 6 0 1 2 3 1 2 3 . . . . . . N S H N S H ALGOI/PLALPEN/PL 13 13 14 14 14 14 13 12 10 6 5 1 2 3 1 2 3 1 2 3 1 2 3 . . . . . . . . . . . . N S H N S H N S H N S H EU/PL EUU/PL KARLS/PL KARLU/PL 1 2 3 1 2 3 1 2 3 1 2 3 . . . . . . . . . . . . N S H N S H N S H N S H NT/PL NTU/PL ZUR/PL ZURH/PL Figure 14: Session 2 telephone usage. 34 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL 8.3 SPECIFIC OBJECTIVE 2 To assess the operational impact of the inversion of the flight direction on the routes UN852 and UN853 in the airspace of Geneva and Reims. 8.3.1 Brief History The proposed inversion would mainly affect three ACCs (Maastricht, Reims and Geneva). Whilst the change in direction might benefit the ATM system in some areas it may cause problems in others and this needs to be fully addressed before any change takes place. The dualisation of UN852/53 has been optimised yearly since 1977 and the Reims controllers are now familiar with this network. Many procedures would need to be changed to accommodate an inversion (specifically arrival /departure routes) and unless these issues are correctly co-ordinated, they could cause serious disruption within Reims airspace and lead to a reduction in capacity. 8.3.2 Results The plan in the original exercise schedule was that a FLAS would be tested in the inversion exercises. This was achieved in three session 3 exercises but only with the Hard FLAS. However, the traffic sample was modified several times in Session 3 and this meant that the results could not be used for comparison. In Session 4 only the inversion with RVSM (No FLAS) was examined so that a complete set of exercise runs could be completed, enabling comparison with the non-inversion exercises. The results of the inversion exercises show a clear difference in opinion between the controllers from Reims and Geneva ACCs. Reims – The Reims controllers experienced difficulties with the new procedures for ARR/DEP routes in sectors UH/UE. These included: ½ ½ ½ ½ ½ ½ the conflict between traffic on routes UL851-UN853 the conflict between traffic on routes UL613-UN852 the conflict between Zurich arrivals from the west on UM606 and departures from Zurich to the North. The controllers felt there was less airspace to provide tactical separation with the inversion. The climb profile of Zurich departures to the north also caused a conflict when intercepting UL 851. Inbound and outbound routes from Strasbourg, Geneva, Lyon and Basle were opposite direction to each other and would require separating by creating new transition routes. Inbound descending traffic to Luxembourg and Saarbrucken was difficult to separate from other northbound traffic and it was felt that a second northbound axis was required to allow arrivals to descend. However, the creation of a new axis would be difficult due to the military area TSA 22. Inbound traffic to ETAR from DIJ (Dijon) is opposite direction to the southbound flow (UN853), In the non inversion exercises the ETAR traffic routes in the same direction as the Northbound traffic on UN853. The ISA recordings show an increase in workload on all the French sectors (especially the UH EXC) compared with the non Inversion (NO FLAS) recordings Project NAV-2-E4 – EEC Report n° 349 35 RVSM5 Real-Time Simulation EUROCONTROL Due to the evolving traffic the airspace structure in the inversion exercises had a lower potential capacity than the current network. The Reims ACC already has a capacity problem, and it was considered that the inversion would make this worse. The inversion was not considered to be beneficial (with or without Hard FLAS) in comparison with the current route organisation. The viability of the inversion would require more airspace to establish specialised routes (Saarbrucken, Strasbourg, Basel, Zurich and Luxembourg). The inversion was not considered to be a necessity for RVSM implementation. Geneva – The problems encountered in the Reims airspace were not as apparent in Geneva airspace. The base level of the measured Geneva sectors was FL285 or above and the airspace that would normally be most affected with arrival and departure routes was a feed sector in the simulation. The Upper sectors reported few problems with the inversion as the overflying traffic benefited from more direct one way routeings. The other advantages reported were that the crossing angle at MILPA was improved and the crossover point GILIR was removed. The ISA recordings show a very small reduction in workload compared with the non inversion (No FLAS) exercises. Further studies are required to assess the effect on the Geneva lower sectors. Questionnaire responses Q: Did you benefit from the inversion? No = 9 (all Reims) Yes = 8 (all Geneva) Q: Did you find the inversion difficult to apply? Yes = 9 (all Reims) No = 8 (all Geneva) For those who replied yes, a further question asked the controllers to give their opinion on why the inversion was difficult to apply. The replies are summarised in the above paragraph Reims. Q: Do you think the Soft FLAS is sufficient to solve these difficulties? No = 10 (9 Reims) Yes = 3 (all Geneva) Q: Do you think the Hard FLAS is sufficient to solve these difficulties? No = 12 (9 Reims) Q: With the non-inversion organisation, do you think a FLAS is necessary? No = 9 (all Reims) Yes = 8 (all Geneva) Q: If yes, which one? Soft FLAS = 8 (all Geneva) 36 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation 8.4 EUROCONTROL SPECIFIC OBJECTIVE 3 To gain controller confidence in the viability of introducing RVSM in the core area of Europe and the possible benefit of a FLAS. 8.4.1 Controller confidence using RVSM This objective was considered to be important, as the simulation was an excellent opportunity for many controllers to use RVSM flight levels for the first time in their airspace. The results were achieved by the use of questionnaires, observation during exercises and debriefings. Of the 69 controllers who took part during the seven weeks only 26 had taken part in a Real Time Simulation before, and of these only 12 had participated in an RVSM simulation. At the end of each session the controllers were asked the following question. Q: Has the simulation changed your perception of RVSM? No = 33 Yes = 28 During the course of the simulation, short presentations were given on the following subjects to help the controllers fully understand the implications of RVSM; • • • • RVSM use in Irish Airspace/North Atlantic. RVSM European Programme RVSM Height monitoring and aircraft requirements RVSM ATC Procedures ALL of the Controllers quickly adapted to using RVSM flight levels and were very positive about the use of RVSM in their airspace. The following advantages were immediately apparent, • • • the six extra flight levels offered much more flexibility RVSM facilitated an increase in entry rate into the sector Most of the controllers (50/60) used a 1000’ level change as a method of resolving a conflict as opposed to the use of a radar heading (see Figure 11: example CFG804 versus HLF045). However, the controllers were aware that they were operating in an environment where all aircraft were being simulated as RVSM approved and during the course of the simulation they raised many procedural issues including nonRVSM traffic, wake vortex and future sector capacity/limits. These issues have been covered in previous simulations and were not included in RVSM5 in order that the controllers could concentrate on the objectives relating to the FLAS and sectorisation issues. Notwithstanding this, they are extremely important and each ACC should consider them prior to RVSM implementation. Project NAV-2-E4 – EEC Report n° 349 37 RVSM5 Real-Time Simulation EUROCONTROL The controllers were asked whether the extra level availability in the upper airspace provided by RVSM could lead to a relaxation of current restrictions like city pair capping, ATC Constraints, LOA’s etc. The questionnaire responses below show that most felt that these restrictions were necessary. The debriefings confirmed that in their view there is a need to regulate traffic, in order to maintain a managed sector sequence. Q: Do you consider short haul city pairs could have been capped below FL290 Yes = 44 No = 7 Don’t know =7 Q: Do you consider that the usual flight level/ATC Constraints are still necessary Yes = 33 No = 10 Don’t know =15 One of the frequent questions asked concerning RVSM introduction is – will experienced controllers be able to adjust to the fact that three even flight levels used today (FL310/350/390) will change parity to odd flight levels with RVSM, and how long will it take for them to become familiar with the new scheme? During the first couple of days of the simulation some of the controllers experienced confusion with the levels FL310/350/390 being reversed, especially when planning. However, from the questionnaire responses given at the end of each session (two weeks maximum), none of the controllers reported having any difficulty with the reverse change in parity of FL310/350/390. 8.4.2 Possible benefits of a FLAS The possible benefits of a FLAS are fully described under Specific Objective 1 (see section 8.2), however, to summarise, at the end of each session (including the Zurich controllers in Session 3) the controllers were asked the following question. Q. Taking all things into consideration, do you think the use of a FLAS is necessary for your airspace? 38/69 controllers answered – No, believing that a FLAS was only useful at certain times depending on the traffic situation, and they would prefer using RVSM without a FLAS as it offered the controller greater flexibility and capacity. . 31/69 controllers answered – Yes, most felt that a temporary / flexible Soft FLAS or letters of agreement could be the solution to resolving conflictions at some major crossing points in peak traffic periods. 38 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation 8.5 EUROCONTROL SPECIFIC OBJECTIVE 4 To further validate the RVSM ATC procedures developed by the ATM Procedures Development Sub Group (APDSG). As part of the planned introduction of RVSM in European airspace the APDSG has developed specific ATC Procedures (incorporated within the EATMP-ATC Manual for RVSM in Europe) to enable RVSM operations to take place safely and expeditiously in EUR RVSM airspace. These procedures are continually validated in RVSM Simulations. The ATC procedures related to RVSM include General procedures, handling of non-RVSM Traffic, flight planning, co-ordination procedures, contingency procedures transition procedures and phraseology. The ATC procedures applicable to the RVSM5 simulation are detailed in section 6, however, it is important to remember that all aircraft were considered to be RVSM approved (non-RVSM approved state aircraft were not included in the exercises). With the absence of non-RVSM aircraft the only RVSM ATC procedure that was considered in the simulation was the general procedure of reducing the vertical separation from 2000’ to 1000’ between FL290-410 (see Table of Cruising levels - section 1.1.2). The main aspects related to the use of 1000 feet separation are detailed under Specific Objective 1 and 3. Project NAV-2-E4 – EEC Report n° 349 39 RVSM5 Real-Time Simulation EUROCONTROL 9. CONCLUSIONS 9.1 GENERAL The use of a FLAS is a complex issue and has an effect on the vertical traffic distribution and controller workload over an extended geographical area placing additional tasks on controllers at ACCs preparing the FLAS. The subjective view of the controllers was that although a FLAS can be beneficial at some crossing points by reducing the controller monitoring task, it can create additional workload by reducing the number of FLs available and complicating the management of FLs. The management/integration of traffic was considered to be easier with all FLs available (No FLAS). The implementation of RVSM will have a significant impact on sectorisation by altering the vertical distribution of traffic and the choice of Division Flight Level between sectors will be of primary importance in achieving a balanced flow of traffic. 9.2 SPECIFIC OBJECTIVE 1 To compare the use of a Hard and Soft FLAS with the RVSM cruising level reference, as published by ICAO (Annex 2 Appendix 3, Table of cruising Levels, table a.) with particular attention to the following aspects: • operational advantages /disadvantages Fewer aircraft achieved their RFL in the FLAS exercises compared with the RVSM No FLAS exercises. The management of some crossing points was easier with a Soft FLAS at certain times, due to reduced monitoring. The Hard FLAS helped to reduce monitoring and reduce conflicts and potential conflicts at some crossing points. The integration of evolving traffic was more difficult in the FLAS exercises. In FLAS exercises (especially the Hard FLAS) the lack of available exit flight levels from a sector meant that some climbing aircraft were restricted and some which were cruising had to be moved to a different level to avoid confliction or to conform with the FLAS. These actions led to extra R/T and co-ordination for the controller. • 40 effect on controller workload and sector throughput Recorded workload data showed no significant trend between scenarios, however, many controllers felt that their workload was increased during the FLAS scenarios. In general, sectors controlling more than 50 aircraft an hour showed an unacceptably high workload (mainly due to R/T loading and flight strip management). A FLAS was seen to have an effect on the distribution of traffic between upper and lower sectors. Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation EUROCONTROL • effect on sectorisation Some sectorisation problems were encountered due to the choice of Division Flight Level (especially affected during FLAS exercises). Several sectors also experienced difficulties with their new geographical limits. The DFL 335 was generally considered acceptable, but this choice will depend on the location of the sector, the nature of the traffic (overflights, evolving flights) and the vertical distribution of traffic. • the interface between 2, or more, ACCs applying a FLAS An increase in coordination was reported between sectors during FLAS exercises • evaluate the impact on adjacent sectors (which are not applying a FLAS) when preparing traffic for and receiving traffic from, sectors which are applying a FLAS Preparing traffic (i.e. adjusting the levels to comply with the FLAS) increased workload and was difficult due to restricted availability of exit flight levels. Controllers also found it difficult to integrate evolving traffic. It was felt that more co-ordination was necessary at the interface between a FLAS and non FLAS area. 9.3 SPECIFIC OBJECTIVE 2 To assess the operational impact of the inversion of the flight direction of the routes UN852 and UN853 in the airspace of Geneva and Reims. Reims –Difficulties were experienced with the new procedures for arrival/departure routes in sectors UH/UE. The controllers considered that the sector capacity would be reduced compared with the current airspace structure. The Reims ACC already has a capacity problem, and it was felt that the inversion would make this problem worse. Geneva –The Upper sectors reported few problems with the inversion as the overflying traffic benefited from more direct one-way routeings. The advantages reported were that the crossing angle at MILPA was improved and the crossover point GILIR was removed. Further studies are required to assess the effect on the Geneva lower sectors. Project NAV-2-E4 – EEC Report n° 349 41 EUROCONTROL RVSM5 Real-Time Simulation 9.4 SPECIFIC OBJECTIVE 3 To gain controller confidence in the viability of introducing RVSM in the core area of Europe and the possible benefit of a FLAS. ALL of the Controllers quickly adapted to using RVSM flight levels and were very positive about the use of RVSM in their airspace. RVSM offered them more flexibility and permitted an increase in entry rate into the sector. A level change was regularly used as a method of confliction resolution, as opposed to a radar heading. However, the controllers were aware that they were operating in an environment where all aircraft were being simulated as RVSM approved and during the course of the simulation they raised many procedural issues including, nonRVSM traffic, wake vortex and future sector capacity/limits. It was generally felt that the use of RVSM should not affect the level capping that exists on short haul city pairs and current ATC constraints/LoAs. By the end of the simulation none of the controllers reported having any difficulty with the reverse change in parity of FL310/350/390 (some confusion experienced during the first two to three days). 9.5 SPECIFIC OBJECTIVE 4 To further validate the RVSM ATC procedures developed by the ATM Procedures Development Sub Group (APDSG). The only ATC procedure applied during this simulation was the reduction of separation from 2000 feet to 1000 feet, between FL290-410. This caused no problems for the controllers who welcomed the use of the six extra flight levels. 42 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Real-Time Simulation 10. EUROCONTROL RECOMMENDATIONS As a result of this simulation it is recommended that when preparing the airspace for RVSM implementation: • States avoid establishing Flight Level Allocation Schemes wherever possible. However, if circumstances dictate that a FLAS is necessary, this should be carefully co-ordinated with neighbouring ACCs and built on a temporary (not H24) or flexible basis. • The vertical DFLs between sectors are closely examined and an assessment is made of new DFLs, best suited to the expected redistribution of traffic. • Further Study of the inversion of UN852/3 is required. This should include adjacent ACCs in order to resolve the problems with arrival and departure routeings, within Reims airspace. Reims ACC considered that the inversion was under no circumstances a precondition for RVSM implementation. Project NAV-2-E4 – EEC Report n° 349 43 RVSM5 Real-Time Simulation EUROCONTROL Intentionally left blank 44 Project NAV-2-E4 – EEC Report n° 349 RVSM5 Simulation en temps réel EUROCONTROL Traduction en langue française du Résumé, de l’Introduction, des Objectifs, des Conclusions et Recommandations RÉSUMÉ La simulation RVSM5 constitue la dernière phase de l'étude RVSM pour la Zone Cœur de l'Europe. Elle a été conçue pour évaluer l'utilisation des Schémas d'Allocation de Niveaux de Vol (FLAS) et les effets de l'introduction des niveaux de vol sur la sectorisation. RVSM 5 est la cinquième Simulation en Temps Réel (RTS) pour la RVSM, commanditée par EUROCONTROL et réalisée au Centre Expérimental EUROCONTROL (CEE) à Brétigny. Elle est l'une des plus importantes en termes de nombre de contrôleurs impliqués et aussi une des plus longues avec une durée de sept semaines allaut d’octobre á novembre 1999. La zone de simulation s'étend sur l'espace de cinq pays, espace géré par huit Centres de Control du Trafic Aérien (ACCs). Une des principales réalisations de l'étude a été le travail en commun et la coopération du personnel opérationnel sur un projet d'une telle importance. En premier lieu, au cours des 18 mois de préparation, les représentants de chacune des administrations ont tenu des réunions régulières pour mettre au point un plan de l'étude, coordonner un réseau de routes et la sectorisation correspondante et établir les schémas d'allocation de niveaux de vol (FLAS). En second lieu, environ 70 contrôleurs du trafic aérien ont participé à la simulation; pour nombre d'entre eux, l'exercice a été l'occasion d'une première approche de la RVSM et aussi d'un travail en commun et d'échange avec des collègues des centres adjoints. Très vite, les participants se sont habitués à l'utilisation des procédures RVSM et ont perçu les bénéfices de l'utilisation de six niveaux de vol supplémentaire, en particulier pendant les périodes de trafic chargées. Un Schéma d'Allocation de Niveaux de Vol (FLAS) signifie un système où, sur certaines routes, des niveaux de vols utilisables ont été interdits. Ayant constaté l'avantage pour la gestion de trafic de l'utilisation de tous les niveaux de vol, les contrôleurs, en général, ont considéré que, pour la mise en œuvre de la RVSM, un Schéma d'Allocation de Niveaux pré-établi serait trop contraignant aussi bien pour le contrôleur que les pilotes. Ils ont marqué leur préférence afin de pouvoir résoudre eux-mêmes les conflits potentiels. Malgré une nette préférence pour la disponibilité de tous les niveaux de vol, de nombreux contrôleurs ont été d'avis qu'un certain type de FLAS ne devrait pas être complètement écarté. Dans certaines zones, et à certaines heures de la journée, un FLAS appliqué sur une période de temps définie ou utilisé de manière flexible pourrait apporter des bénéfices tels que la réduction de la tâche de surveillance et la résolution automatiques de conflits. Projet NAV-2-E4– Rapport CEE n° 349 45 RVSM5 Simulation en temps réel EUROCONTROL La mise en œuvre de la RVSM aura un effet induit sur la sectorisation. D'abord, les séparations verticales entre secteurs, telles que FL 340, devront être modifiées à FL 335 ou FL 345 du fait que le FL 340 sera un niveau utilisable en RVSM. Il est difficile d’anticiper avec précision les futures distributions verticales du trafic et l'utilisation des routes résultant de la mise en œuvre de la RVSM, mais il est certain que cette dernière entraînera une re-distribution verticale du trafic. De ce fait, la définition de la séparation verticale (Division Flight Level: DFL) entre secteurs supérieurs devient la question fondamentale pour l'organisation de l'espace. Les contrôleurs ont confirmé que ce point devait être étudié avec soin. En effet, des secteurs pourraient se retrouver en surcharge s'ils contenaient trop de niveaux de vol utilisable et si le flux du trafic n'était pas régulièrement distribué. DESCRIPTION GENERALE Historique de la RVSM A la fin des années 70, l'Aviation Civile a été confrontée et à une augmentation des coûts du carburant et à une rapide croissance de la demande. En conséquence, l'Organisation de l'Aviation Civile Internationale (OACI) a lancé un vaste programme d'études de faisabilités de la réduction de 2000 pieds de séparation verticale minimum à 1000 pieds, au-dessus du niveau FL 290. Ces recherches ont indiqué que la RVSM entre les niveaux FL 290-410 était réalisable, sure et présentait un rapport coût/bénéfice avantageux sans imposer d'investissements techniques massifs. La RVSM (entre les niveaux FL330-370) est devenue opérationnelle sur la Région NAT (Atlantique Nord) le 27 mars 1997. Cette couche de niveaux a été étendue aux niveaux FL310-390 le 8 octobre 1998. La mise en œuvre complète de la RVSM dans l'Espace Européen et Atlantique aura lieu le 24 Janvier 2002 et devrait apporter des bénéfices importants. Cependant, à cause de la nature complexe de la structure du réseau de routes ATS en Europe, et du fait que quelques 40 pays participent au projet, la mise en œuvre dans l'Espace Européen sera plus complexe que dans l'Espace Atlantique. Etude de la Zone Cœur de L’Europe EUROCONTROL a financé plusieurs Etudes liées à l'introduction de la RVSM dans l'Espace Européen. Le RNDSG (Sous-Groupe pour le Développement du Réseau de Route), sous-groupe de l'ANT (Airspace and Navigation Team) a demandé, en accord avec les Etats concernés, une étude d'impact de la RVSM sur la sectorisation, ainsi que, plus particulièrement, des bénéfices éventuels, dérivés de l'application de différents schémas d'allocation de niveaux de vol (FLAS) dans la Zone Cœur de l'Europe. Ce document, RVSM 5 Simulation en temps réel, est le rapport de la troisième et la dernière phase de l'Etude. 46 Projet NAV-2-E4– Rapport CEE n° 349 RVSM5 Simulation en temps réel EUROCONTROL Phase 1 - Système d'assignement et d'Analyse au niveau macroscopique (SAAM) SAAM est un outil d'analyse statistique, développé au siège d'EUROCONTROL. L'outil est largement utilisé en support du travail du RNDSG car il permet de modéliser et d'évaluer de gros échantillons de trafic sur l'ensemble du réseau de route européen. Les résultats peuvent être fournis en quelques minutes. Ils comprennent les charges de trafic sur des segments de routes, les charges sur les secteurs et le comptage des conflits dans n'importe quel volume défini de l'espace. Cependant, SAAM n'est pas encore à même de calculer la charge de travail du contrôleur. Parce que l'outil a un temps de réponse rapide et une interface graphique adaptée, il est possible de re-configurer l'espace et de le tester avec les nouvelles structures dans un temps de préparation relativement court. Ceci rend possible une évaluation des scénarios à grande échelle, permettant de sélectionner les plus prometteurs pour des développements ultérieurs. SAAM a été utilisé pour le développement de la Version 3 de l’ARN et, en conséquence, avait déjà disponible, instantanément, le futur réseau de route (Réseau V3 planifié). Ceci a permis d'étudier une série d'options de sectorisations de façon à dégager les deux coupures verticales de secteurs les plus probables et de les évaluer en Simulation Temps Accéléré. Phase 2 - Simulation en Temps accéléré (FTS-TAAM) En Octobre 1998, une demande de Simulation en Temps Accéléré à été soumise au Centre d'Etudes de Bretigny. Dans le cadre du partenariat pour les simulations EUROCONTROL, la demande a été proposé à SWISSCONTROL et à la DFS, l'un et l'autre utilisant le Total Airspace and Airport Modeler (TAAM). Initialement les deux fournisseurs de TAAM devaient se partager la tâche. Cependant, la DFS, à cause d'autres engagements, a du retirer son offre, laissant SWISSCONTROL comme seule fournisseur de service. TAAM a permis un examen plus détaillé des scénarios et, en plus d'un comptage des conflits et d'une charge secteurs plus précise que dans SAAM, il a aussi fourni des chiffres de charge de travail du contrôleur pour une période de 24h. Aux moins 30 secteurs ont été étudiés, dont la plupart ont été simulés avec différentes coupures verticales (FL 325 et FL 335) en utilisant un échantillon de trafic de 24 h comprenant approximativement 8000 vols. Dans la mesure du possible les échantillons de trafic et la définition géographique de l'espace (secteur et réseau de routes) devaient être transférés de SAAM à TAAM. Ceci a été réalisé en grande partie, mais les utilisateurs de TAAM ont néanmoins assumé une certaine charge de travail pour valider la préparation des données. Phase 3 - Simulation en Temps Réel (RTS) La RTS constituait la dernière phase de l' Etude et comprenait 32 secteurs a simuler regroupant 8 Centres de Contrôle différents. Les résultats des phases précédentes ont été utilisées pour étudier plus en profondeur les effets de l'utilisation d'un FLAS dans la Région Cœur de l'Europe, avec, comme bénéfice supplémentaire, la possibilité de mesurer la charge de travail et d'avoir en retour les commentaires des équipes de contrôleurs opérationnels. La RTS s'est tenue au Centre Experimental EUROCONTROL (CEE) à Bretigny et à cause du nombre important de secteurs impliqués, a été divisée en 4 sessions (maximum 10 secteurs mésurés à la fois). Ce rapport détaille les résultats de la RTS. Projet NAV-2-E4– Rapport CEE n° 349 47 RVSM5 Simulation en temps réel EUROCONTROL OBJECTIFS DE LA SIMULATION Objectif général Evaluer l'impact de l'introduction de la RVSM de la Zone Cœur de l'Europe et, plus précisément, son effet sur la sectorisaiton et l'interêt de la mise en place d'un FLAS Note: L'objectif général ci-dessus a été pris en compte dans les 3 phases de l'Etude. Les objectifs particuliers 3 et 4 ci-dessous ne sont applicables qu'à la seule simulation en temps réel (RTS) Objectifs spécifiques 1. Comparer l'utilisation d'un FLAS systématique (Hard FLAS) et d'un FLAS partiel (Soft FLAS) avec la Référence (No FLAS) des niveaux de vol RVSM tels que publiée par l'OACI (Annexe 2 Appendix 3, Table des niveaux de vol en croisière, table a) en mettant l'accent sur les aspects suivants: • • • • • Avantages / Désavantagés opérationnels Effet sur la charge de travail du contrôleur et sur la charge du secteur Effet sur la sectorisation Interface entre deux Centres (ACC) ou plus, appliquant un FLAS Evaluation de l’impact sur les secteurs adjacents (n'appliquant pas de FLAS) qui préparent, ou reçoivent, le trafic de secteurs appliquant un FLAS 2. Evaluer l'impact opérationnel de l’inversion de la direction de vol sur les routes UN 852 et UN 853 dans l'espace aérien de Genève et de Reims. dans la Zone Cœur de l'Europe 3. Assurer la confiance des contrôleurs quant à la viabilité de l'introduction de la RVSM dans la Zone Cœur de l’Europe, ainsi que les avantages éventuels liés à un FLAS. 4. Compléter la validation des procédures ATC/RVSM développées par le sous-groupe Développement des Procédures ATM (APDSG) Zone de simulation La zone simulée recouvre cinq pays et comprend des parties des FIR/UIR de l'Autriche, la France, l'Allemagne, l'Italie et la Suisse (voir carte 1, Annexe A). Centres de contrôle Les Centres de Controle suivants ont participé à la simulation: Genève, Karlsrhue, Milan, Munich, Padua, Reims, Vienne et Zurich. Structure du réseau de routes La structure de route utilisée pour la simulation était le Plan Version 3 de l'ARN, proposition d'amendement pour le Plan EUR (EUR ANP). Plus précisément, le réseau de routes proposé était celui de la mise en oeuvre de la Phase 2 pour la France et Genève, de la Phase 3 pour l'Autriche, l'Italie et Zurich. La structure 48 Projet NAV-2-E4– Rapport CEE n° 349 RVSM5 Simulation en temps réel EUROCONTROL de route pour l'Allemagne correspondait généralement à celle planifiée pour la Phase 3 avec quelques adaptations résultant de la Simulation en Temps Réel GE98. Des modifications supplémentaires ont été intégrées, proposées par les experts des Etats au cours de la phase de préparation. DESCRIPTION DES SCENARIOS RVSM (référence) Scénario 1 La mise en œuvre de la RVSM entraîne l'introduction de six niveaux de vol supplémentaires. Dans la Zone à simuler, ces niveaux de vol ont été organisés en fonction de la direction de la route ou du segment de route survolé. D'une manière générale, le schéma a suivi une séparation Nord/Sud et les niveaux ont été respectivement alloués en niveaux pairs/impairs. Le but du scénario RVSM de Référence consistait à simuler l'organisation de l'espace proposé pour 2001 en utilisant un échantillon de trafic (projection pour 2001) distribué sur les niveaux RVSM en alternance simple (pair/impair alternativement). Hard FLAS Scénario 3 Le scénario RVSM de référence peut être divisé en schéma "quadrantal" tel qu’illustré dans le diagramme Figure 4. Ce schéma est à la base de deux variantes des FLAS simulées. Nommées le "Hard" et le "Soft" FLAS par le groupe de travail, elles ne représentent que deux variantes parmi une infinité de cas possibles d'application d'un système d'allocation de niveaux sur une grande échelle géographique. Il est important de noter que dans la simulation les secteurs allemands n’ont pas appliqué les FLAS à l'intérieur de leur espace. Cependant, parce que les Centres voisins devaient recevoir et donner le trafic à des niveaux de vol définis pour le FLAS, les contrôleurs de Munich (Session 1) et de Karslruhe (Session 2) ont eu la tâche supplémentaire de préparer le trafic aux niveaux définis pour ce FLAS. Cette disposition a été testée et mesurée au cours de la simulation. Le Hard FLAS implique une application rigide de la règle quadrantale sur les routes principales dans l'espace défini. La carte 3 en Annex A montre les routes sur lesquelles le Hard FLAS a été appliqué les couleurs des routes correspondant aux couleurs et niveaux décrits dans la Figure 4 Le but du Hard FLAS est de réduire la charge de travail du contrôleur grâce à la ségrégation automatique des niveaux en conflit aux principaux points de croisement. Ceci a été réalisé en allouant une série de niveaux spécifiques à des routes spécifiques, permettant ainsi un meilleur écoulement du trafic. La Figure 5 illustre le principe général de l'allocation de niveaux Hard FLAS. Dans cet exemple, le trafic sur deux routes Nord séquentes, a été stratégiquement "déconflicté". Trois niveaux de vol orientés-Nord sont disponibles pour chacun des deux flux de trafic et, au point de croisement, il n'y a pas de conflits potentiels entre avions en croisière. En théorie, la tâche de surveillance du contrôleur devrait être minimale. Dans la simulation, les routes sur lesquelles un Hard FLAS a été appliqué, ont été sélectionnées par les Experts des Etats et ont été définies pour satisfaire le Projet NAV-2-E4– Rapport CEE n° 349 49 RVSM5 Simulation en temps réel EUROCONTROL flux de trafic dominant et pour alléger la charge sur les contrôleurs aux points de convergences difficiles. A cause de la structure complexe du réseau, il a été impossible d'appliquer strictement le schéma quadrantal; de là certaines divergences du scénario Hard FLAS avec la Figure 4. Soft FLAS Scénario 2 Le Soft FLAS est une application plus flexible de la règle quadrantale imposée sur quelques unes des routes principales à l'intérieur de l'espace défini. L'intention du Soft FLAS est de réduire la charge de travail du contrôleur aux principaux points de croisement en résolvant stratégiquement une partie des conflits, à des niveaux de vol sélectionnés, sans priver le contrôleur de sa liberté d'action tactique. Par ailleurs, le Soft FLAS offre à l'utilisateur une plus grande flexibilité dans son choix de niveaux de vol. Le Soft FLAS utilise le même principe général d'attribution de niveaux selon la direction du vol, mais contrairement au Hard FLAS, un seul niveau de vol, ou dans quelques cas deux, ont été gelés sur une route particulière (voir Annexe A Carte 2) La figure 6 illustre ce principe. Dans cet exemple les deux routes orientées Nord ont chacune 5 niveaux de vol utilisables avec un seul niveau gelé sur chacune d'entre elles. Le niveau FL320 n'est pas disponible sur la route orientée Nord/Ouest. Le niveau FL320 devient alors un "niveau protégé" ou un "niveau préféré" sur l'autre route, orientée Nord/Ouest. Ainsi les niveaux FL320 et 340 sont exempts de conflits sur cette paire de routes. De même que pour le Hard FLAS, les Experts des Etats ont sélectionnés les routes et les niveaux pour les exercices Soft FLAS. Le principe général était que les restrictions de niveaux seraient gardées minimales et ne seraient appliquées que sur les flux principaux de trafic. En plus, partout où un niveau de vol devait être gelé, cette disposition a été coordonné sur toute la longueur de la route pour éviter, aux opérateurs et aux contrôleurs, des changements de niveaux non nécessaires. PROCEDURES DE TRAVAIL ATC Des procédures de travail utilisées pendant la simulation correspondaient aux lettres d'accord existantes et aux instructions opérationnelles particulières. Toutes les sessions ont utilisé le "SSR" où le code était automatiquement corrélé pour indiquer l'identification de l'avion sur l'étiquette radar. Procédures RVSM - La réduction de la séparation de 2000' à 1000' entre FL 290 et FL 410 a été appliqué sur la base des Tables de Niveaux de Croisières recommandées par l'OACI (OACI doc Annexe 2, Appendix 3, table a). Pour pouvoir comparer les effets des différents FLAS, il était nécessaire de maintenir un certain nombre de variables (influences extérieures) à un niveau minimum. Le groupe de travail s'est mis d'accord pour que tous les avions soient considérés "approuvés RVSM". Les procédures spécifiques (phraséologie, séparation, inscription sur les strips) nécessaires pour la gestion des avions 50 Projet NAV-2-E4– Rapport CEE n° 349 RVSM5 Simulation en temps réel EUROCONTROL non-approuvés RVSM, n'ont donc pas été utilisées pendant la simulation. Aucun exercice impliquant des avions non-approuvés RVSM, la panne de communication R/T, la transition entre CVSM/RVSM, n'a été simulé. CONCLUSIONS Conclusions Générales L'utilisation d'un FLAS est une question qui n'a pas de réponse simple. Tout FLAS a une influence sur la distribution verticale du trafic et sur la charge de travail du contrôleur dans une zone géographique étendue. En particulier des tâches supplémentaires incomberont aux contrôleurs des ACCs préparant le FLAS. Bien que les contrôleurs aient considéré qu'un FLAS pouvait présenter des avantages à certains points de croisement en réduisant la tâche de surveillance, ils ont été aussi d'avis qu'un FLAS pouvait créer une charge de travail supplémentaire parce qu'il réduit le nombre de niveaux disponibles et complique la gestion de ces niveaux. La gestion/intégration du trafic a été jugée plus aisée quand tous les niveaux peuvent être utilisés. La mise en œuvre de la RVSM aura un impact important sur la sectorisation parce qu'elle modifiera la distribution verticale du trafic et le choix de la Division Verticale entre Secteurs (DFLs) sera primordial pour obtenir un équilibre entre les flux du trafic dans les secteurs superposés. Objectifs particuliers 1 Comparer l'utilisation d'un FLAS systématique (Hard FLAS) et d'un FLAS partiel (Soft FLAS) avec la Référence (No FLAS) des niveaux de vol RVSM telle que publié par l'OACI (Annexe 2 Appendix 3, Table des niveaux de vol en croisière, table a) en mettant l'accent sur les aspects suivants: • Avantages / Désavantages opérationnels Dans les exercices avec FLAS les avions ont atteint leur RFL (niveau de vol demandé) dans une moindre proportion que lors des exercices sans FLAS. Avec le Soft FLAS, la gestion de certains points de croisement a été facilitée, dans certaines cas, grâce à une réduction de la tâche de surveillance. Le Hard FLAS a contribué à réduire, pour certains points de croisement, la tâche de surveillance ainsi que le nombre de conflits et conflits potentiels. L'intégration du trafic en évolution a été plus difficile dans les exercices avec FLAS. Dans les exercices avec FLAS (et particulièrement avec le Hard FLAS), le manque de niveaux de vol disponibles en sortie du secteur a conduit à limiter en niveau des avions en montée ou à changer de niveau des avions en croisière, soit pour éviter un conflit, soit pour se conformer au FLAS défini. Ces actions ont entraîné un surplus de communications R/T et de coordinations. Projet NAV-2-E4– Rapport CEE n° 349 51 RVSM5 Simulation en temps réel EUROCONTROL • Effet sur la charge de travail du contrôleur et sur la charge du secteur Les données enregistrées en terme de charge de travail n'ont pas indiqué de tendance significative entre les différents scénarios. Cependant nombre de contrôleur ont ressenti un accroissement de la charge de travail au cours des scénarios avec FLAS. En général, les secteurs contrôlant plus de 50 avions en taux d'entrée par heure, ont présenté une charge de travail inacceptable, quel soit le scénario, avec ou sans FLAS principalement due à la charge R/T et à la gestion des strips. Tout FLAS a eu un impact sur la répartition du trafic entre secteurs supérieurs et inférieurs. • Effet sur la sectorisation Quelques problèmes de sectorisation ont été rencontrés, relatifs au choix de la séparation vertical (DFL) (mise en cause en particulier par des exercices avec FLAS). Plusieurs secteurs ont présenté des difficultés liées à leur nouvelle délimitation géographique. Le DFL 335 a été généralement jugé acceptable, mais ce choix dépendra de la localisation du secteur, de sa nature (survols purs, avions en évolutions) et de la distribution verticale constatée du trafic. • Interface entre deux Centres (ACC) ou plus, appliquant un FLAS On a constaté une augmentation de la charge de coordination entre secteurs lors des exercices avec FLAS. • Evaluation de l’impact sur les secteurs adjacents (n’appliquant pas de FLAS) qui préparent, ou reçoivent, le trafic de secteurs appliquant un FLAS Préparer le trafic (c'est à dire ajuster les niveaux de vol pour se conformer au FLAS défini) augmente la charge et la difficulté du travail à cause du nombre plus réduit de niveaux de vol disponibles en sortie. Les contrôleurs ont aussi reconnu une plus grande difficulté pour intégrer le trafic en évolution. Enfin, il a été estimé que davantage de coordination étaient nécessaire à l'interface FLAS/non FLAS. Objectif particulier 2 Evaluer l'impact opérationnel de l'inversion de la direction de vol sur les routes UN 852 et UN 853 dans l'espace aérien de Genève et de Reims. Reims: Des difficultés ont été rencontrées avec des nouvelles procédures pour les routes "Arrivées/Départs" dans les secteurs UH/UE. Les contrôleurs ont considéré que la capacité secteur pourrait être réduite par rapport à la structure d'espace actuelle. Le Centre de Reims, est déjà confronté à des problèmes de capacité. Les contrôleurs ont jugé que l'inversion accentuerait ce problème. 52 Projet NAV-2-E4– Rapport CEE n° 349 RVSM5 Simulation en temps réel EUROCONTROL Genève: Les secteurs supérieurs n'ont pas relevé des problèmes particuliers avec l'inversion, du fait que le trafic en survol disposait de routes unidirectionnelles plus directes. Parmi les avantages mentionnés, l'angle de croisement à MILPA a été amélioré et le point de croisement GILIR évité. D'autres études seront nécessaires pour évaluer l'effet de l'inversion sur les secteurs inférieurs. Objectif particulier 3 Assurer la confiance des contrôleurs quant à la viabilité de l'introduction de la RVSM dans la Zone Cœur de l'Europe, ainsi que les avantages éventuels liés à un FLAS. Tous les contrôleurs se sont rapidement adaptés à l'utilisation des niveaux de vol RVSM et ont été très positifs quant à l'utilisation de la RVSM dans leur espace. La RVSM leur a offert une plus grande flexibilité et a permis une augmentation du taux de trafic en entrée dans le secteur. Le changement de niveau a été régulièrement utilisé comme méthode de résolution de conflit par opposition à la technique du cap radar. Cependant, les contrôleurs étaient conscients qu'ils opéraient dans un environnement où tous les avions étaient supposés qualifiés RVSM, et, au cours de la simulation, nombre de questions relatif aux procédures ont été soulevées concernant le trafic non approuvé RVSM, la turbulence de sillage et des futures limites de capacités secteurs. Il a été généralement admis que l'utilisation de la RVSM ne devrait pas affecter les restrictions de niveau qui existent actuellement pour les court-courriers entre deux villes ainsi que les contraintes ATC et les lettres d'accords (LoAs). Des modifications ont pu être nécessaires là où les DFL ont été modifiés. A la fin de la simulation aucun contrôleur n'a signalé avoir eu de difficultés avec le changement de parité de niveaux FL310/FL350/FL390 (seulement quelques hésitations lors des deux/trois premiers jours). Point de vue des contrôleurs sur le FLAS : voir objectif particulier 1. Objectif particulier 4 Compléter la validation des procédures ATC/RVSM développées par le sous-groupe Développement des Procédures ATM (APDSG) La seule procédure appliquée pendant la simulation a été la réduction de la séparation de 2000 pieds à 1000 pieds, entre FL 290-410. Les contrôleurs n'ont rencontré sur ce plan aucun problème et ont bien accueilli l'utilisation des six niveaux de vol supplémentaires. Projet NAV-2-E4– Rapport CEE n° 349 53 RVSM5 Simulation en temps réel EUROCONTROL RECOMMANDATIONS En conformité avec les résultats de la simulation, il est recommandé que, pour l'organisation de l'Espace, en vue de la mise en œuvre de la RVSM: 54 • les Etats évitent, autant que possible, la mise en place d'un Schéma d'Allocation de niveau de Vol (FLAS). Cependant, si les circonstances imposent un FLAS, celui-ci devra être soigneusement coordonné avec les Centres voisins, conçu sur une règle commune et élaboré pour une application temporaire (pas H24) ou une application assez flexible, • les séparations verticales entre secteurs (DFLs) soient étudiées en détail et une évaluation soit menée sur des nouvelles divisions entre secteurs, les mieux adaptés à la future distribution de trafic. • des études complémentaires pour l'inversion des routes UN 852/3 soient entreprises. Elle devront inclure les Centres adjacents pour permettre de trouver une solution aux routes arrivée/départ dans l'espace de Reims. Le centre de Reims a jugé que l’inversion n’était en aucun cas un préalable à la mise en œuvre de la RVSM. Projet NAV-2-E4– Rapport CEE n° 349 Annex A: MAPS RVSM5 LOVIN KENUM BAT2 BULUX MAUBE FREQUENCIES LARED NITAR UE (195-305) 127.55 UH (195-325) KOPOR XH (325-460) 133.82 WU (285-335) 132.90 CDG GX PON SOTOR (335-460) MILPA (285-335) 133.15 MILPU (335-460) 133.62 MOLUS (285-335) 134.85 MOLUU (335-460) 128.15 WST (335-460) 126.27 WSU (285-335) 133.60 RIDAR (285-460) 133.75 AYING (285-460) 133.67 VILER CLM EST NSU (285-335) (335-460) (285-335) 133.80 PERNO 118.95 SSU (285-335) 132.60 SST EUU EU ALPEN ALGOI (335-460) (335-460) (285-335) (325-460) (285-325) 135.05 134.05 POGOL TRO MELCO MANAG PTV RESPO IXILU NT 125.90 ANTON LEGRO RIGNI BENIP ATN MOU TONUS LUGNY LESPI BOBSI TALAR THR LFLL PILAT TDP ARBON ETRAC EDUAR AOSTA OMETO BAVMI ALPEN ALGOI GONBA RIDAR ANKER WLD RIDAR MBG MD3 ETSM KPT FUSSE LIMW AYING KODOK BW1 PETEN LIMRA ARASA NST NSU WALSE LOWI SCHNE BIRGI LIZUM INN ENKUN PX11 RIEMA BRUCK WST WSU PITAR MATAR KATSA KUKUT KIKIT KLIMT GRZ SPITA MALUG VIW ARNOS BERVA WGM WELLS GOTAR TIROL LOWG DETSA CESAR EST ESU HOLIN ENTAR BRENO SVR SST SSU KFT LOWK LUSIL VIC NIGOT TOMPA ZAG BABIT JESSE LDZA ILB LIPZ AKADO VINOS SLOVO BUCCO LAREN LDRI TITOV DORIN ZEPPO GEN EUU EU PAR OMA PUL FER ELENA BOA BORGA LIMJ SENIC CHI LIMBA VOG LAGEN ISTRI VURDI Y3VOG PAMLA PODET TRE ADOSA LIPX MG DOL VOLVO LIPQ RON VALPO SCALA LJLJ NTU NT FEDER IMA SRNXA SRN PETRO LIMC CHICO TZO NOV LIML FARAK BEKAN LIN CALAS RIGON CDO TOP WUU WU MTL PAVLI SAMBA CIFER NITRA SLC TOTOV OKRXD GANTA SEPPI GUSTA LOWW OKR JAN JOZEF SOLEN AW1 AW2 MORIZ ELMUT HEIDI BEATE VYDRA SISSI MESSY SNU MALKO OKI BUMAS UDVAR GYR ABETI GOLEM TORNO ROBOT GABEL PUBEG PINKA VELAT STO LNZ LOWL SIMBA AYING PLOTO TALSA PRITZ SBG HOLZI LOWS LOFER CHIEM RIEMU ERKIR EUR KREMS FRE MDF ALGOI INTER COGNE ISOAR NOFRE PONTE STAUB FRANZ MAIRA EDDM ETSF ANDEC TULSI DISUN KONIN MANAL SULUR VEVAR NOUGA SUMEK A75 NDG LSZA BLONA LALIN SUMIR MEDAM VERCI LIMF Y2TOP SIRLO TORIN CIRGA MOZAR ABENA ODINA LSGS GIPNI LKTB BNO BZO MOLUU MOLUS VANAS HLV TILSI RDG HERTA AALEN ZUR BLOMO KALOD ANORA UH MILPU MILPA FELSI CERNO MARCO CHATO TOLNA LFLB BALSI LSA MADOC MEN LUKAS RALIX BOJOL ARGIS CBY LMG DKB ARPUS GALBI LIRKO MOLUS MOREG CRANA MILPA LSGG TONON GVAXR GVA GVAXA GVAXD PASRI PAS GOLEB OTKOL PITON VIGOR KASUL HAROM HEUSE VLM SALEM EDDN SPEDY KARLU KARLS AKOSI ZAB LAUFE ETHN ANSBA TIRSO XH LUL EKROT VESOX ERLLI ERL HARRY WURST KRAUT BADEN OKREN SAFFA KONSA FHA2 TRA BLM EDNY BRINA BODAN ZUE TRASA TROUE LFSB DELOX EKRON KLO HR LASNO REKLA MONEY TORPA VERDI HOC AMINO LSZH SARME LASON MOROK AARAU PENDU LFSD DIJ ALOGA OLBEN ELMUR RIPUS ODIGA GILIR RIVEL SHU LEO BERSU BENEM MUR LSZB DIMIL VADEM KORED TUROM BERSO TALED ZURH RLP MIRJA PEROS LIPE JULIX ANTIK RETNO BARSO MEZEL IDONA VAMTU PUGET SUTIF 136.72 PSASE LOLLI WILLI MIRGU OKRIX LKPR LKPR OKL RAK OKG SULUS RID BEGAR JURGE RAKIS SPEZL SCHMA SALAT LASAT PILON 132.87 KARLU (335-460) GELNI FFM EDDF BRASU LBUXD WEKAR LBU EDSB KARLS NOTAG EDDS ZWERG MAMBO MARCY LFST TGO BOSSA TEGOS STR OBORN SUL GIVOR EPL LUVAL 127.37 120.92 TAUER NKR TOMPI GTQ XE UE 134.52 KARLS (295-335) EDDR BITNI WASAR FULDI ETAR RINAX GELTA 134.35 (335-460) MOSET SORAL SUSIN 129.12 NST GED TAU SAA GISCA ESU GIMER GABOR FUL MARTY ROUSY KOTUN BUBLI BRY COL OKX MESSE OHMAR P63 WISOS ADENU GOA NTM BUEWE NORPA BANKOETAD DIK IDARO RUWER ELLX IDOSA SEXYS LUXXD LUXIE MMD HDO SALZU NETMA MEDIX CTL MEL TELBO 136.77 RELAN EXIDU LFPB GY OL OYE RBT TOLPA WUU GORTU DIDOR 134.40 RAPOR XERAN NOR NARSI BULTO LEQX VINKE KBO2 DRN LARIT ALFAS RAPNE BATTY BARAK VESAN 119.75 ARKOL WYP ARDEN (305-460) TWIST ZED1G 4 OCT - 26 NOV 99 XE LEG NORRA WRB BEROK FRZ ABN2 TRUFO LFMN NIZZA PANIS DRAMO BLCX UNITA ZIDAN COLIN PIS LIRP VALEN PRTXA LIRQ SAR PRTXD URBAN TOWER ANC SPL AMORE TORTU NISAP MAREL AKUTI STP ERTOL SODRI (285-335) NTU (335-460) 120.72 ZUR (285-335) 134.60 ZURH (335-460) 133.40 BABAR ELB ABRON VAREK GRO BOL UGLUK DBK KISTO OMEDA AJO Véro:29.06.99 AMN UNIT RVSM CORE AREA STUDY : MAP 2 SOFT FLAS DATE:26.11.99 350 FL 350 FL 310 FL 250 FL 360 FL 340 FL 240 FL 330 FL 290 FL 290 FL 330 FL 360 FL 320 FL 260 FL 290 FL 300 FL 320 FL 350 FL 330 FL 360 FL 350 FL 290 FL 350 FL 360 FL 340 FL 320 FL 330 FL 330 FL 350 FL 330 FL 350 FL 310 FL 330 FL 340 FL 350 FL 330 FL 320 FL 340 FL 360 FL 320 FL 330 FL 330 FL 330 FL 320 FL 340 FL 350 FL 320 FL 330 FL 330 FL 340 FL 340 FL 330 FL 310 FL 320 FL 310 FL 310 FL 340 FL 350 FL 330 FL 360 FL 360 FL 350 FL 320 FL AMN UNIT RVSM CORE AREA STUDY : MAP 3 HARD FLAS GED BULTO TAU TAUER DATE:26/11/99 FULDI GELNI EDSB NITAR NORPA RAK GOA NTM ADENU BUEWE P63 FFM SPEZL EDDF DIK BANKO RUWER MTD KOPOR OKL EKROT ZAB VESOX LKMT PSASE RID VLM LOLLI XERAN VINKE RAPOR RELAN GIMER ERLLI ERL LAUFE SEXYS ELLX LUX.D LUXIE MOSET ROUSY GORTU VILER LKPR OKG IDARO IDOSA DIDOR JURGE RAKIS SULUS AKOSI HARRY MMD HLV EDDN WURST CREME MEDIX FELSI SORAL NKR CTL WDG CDG PERNO LFPG TOMPI SAA RINAX EXIDU OL LFPO KALOD DKB P75 LUKAS ANORA KOTUN WEKAR GTQ GTQ.A LFJL OYE RDG SUMEK LBU.D LBU BUBLI SUSIN AALEN KARLS GELTA POGOL TRO MELCO LUVAL EDDS GONBA TGO.D TGO TGO.A TEGOS MARCY LFST STR.A STR OBORN STR.D BERVA LALIN NDG ZWERG BRY HERTA A75 NOTAG GIVOR MEL TELBO BNO LKTB CERNO SPEDY HAROM CLM MASOR ANSBA WILLI SCHMA EDDR RIDAR WLD ANKER ERNST MBG STO MD3 SUL EPL OKR LZIB OKR.D STAUB SEPPI A/1 MAIRA MDF FRANZ MANAG B/1 EDDM ANTON RLP HEUSE MIRGU RESPO BADEN ANDEC ARPUS DELOX MOROK RIGNI LEGRO EKRON LASON KONSA HOLZI PRITZ LOFER FUSSE HOLIN BIRGI RIPUS INN LOWI LIZUM GOTAR ELMUR BERSU BENEM PITAR SHU TUROM LOWG LEO GRZ MUR BRENO MATAR KORED LSZB VADEM TALED GALBI DETSA LIRKO 6 OTKOL PINEL BZO HARPO LJLJ LSGS ABENA DOL 10AA ARGIS ZAG LUSIL LSZA LFLC ISTRI CBY CHATO LSA MADOC PODET MG ODINA BOJOL TALAR THR KFT ARNOS XIII BOBSI LESPI LOWK 5AB 7 7AA MOLUS 8A8AA 7AB 7A 9 1A 1 9AA TONON XIV 1BCRANA 9A XII V. IXA 3A GVA.D GVA.A GVA 3B IXB IX LSGG 4A XA PAS X. XIC GOLEB XIA PITON XI MILPA LUGNY VIW MALUG TONUS O PINKA ENKUN ALGOI LSZH AMINO AARAU OLBEN SARME PUBEG MA1 WALSE RIVEL BERSO GYR BUMAS ERKIR BODAN MONEY BENIP ATN MALKO EDNY KLO ODIGA MOU SISSI HEIDI CHIEM KPT FHA2 BRINA ZUE HOC PENDU ALOGA DIJ LFSD SAFFA TRA BLM LFSB TROUE BLM.D HR TORPA NEV SNU LOWS LUL REKLA TULSI MANAL KONIN TIRSO IXILU AW2 SNU.A SBG.A SBG RALIX BEGAR VYDRA LOWW A/2 LIMRA PETEN SIMBA AYING MA2 MARCO AOSTA LFLL TOLNA SLOVO RON VALPO LDZA SULUR SRN.A OMETO LFLB PILAT INTER TDP VANAS BALSI CIRGA IMA SRN LIMC FEDER ADOSA FARAK ARBON VIC LIN.D LIML LIN LIN.A NOV TRE BUCCO VINOS LAREN ETRAC VERCI *2TOP MEDAM LIMF ILB LIPZ CHICO TZO COGNE AKADO LIPX CDO SIRLO DORIN OMA EDUAR CHI *3VOG BLONA PAMLA TOP VERDI VOG PUL LIMBA MEN LDPL PAR FER NOUGA ELENA VEVAR MTL MENSU ZEPPO ISOAR MIRJA BOA LIPE LAGEN RETNO LIMJ PEROS GEN BARSO LDZD BEROK IDONA ABN2 FRZ TRUFO GIGNA LUNEL VALEN MEZELAMFOU FJR PRT.A PRT.D LIRQ ZEBRA LFMT COLIN VENTA BERRE NIZZA LFMN URBAN PIS LIRP PANIS ANC LFML LIPY MTG NIBAR DRAMO POMEG TORTU NISAP TABIT STP ERTOL AKUTI SODRI MAREL S JAN JOZEF LNZLOWL OKRIX NITRA CIFER WGM FRE SPL LDSP RVSM5 DRN SESSION 1 HDO 4 OCT - 15 OCT 99 FNW 999 000 FUL WASAR GED TAU BITNI FULDI TAUER GELNI FFM P63 EDDF SPEZL PSASE RID FNW FNE FSE FSW (000-unl) 124.02 SPEDY WILLI HAROM (000-unl) 134.72 (000-unl) 128.87 (000-unl) 126.27 WSU (285-335) 133.60 (285-460) 133.75 AYING (285-460) 133.67 ESU (285-335) 133.80 EST NSU NST SSU SST ETSF ETSM DISUN KRAUT SAFFA KONSA KPT FHA2 EDNY BRINA EKRONTRASA KLO ZUE BODAN MONEY SARME LSZH RIPUS FRANZ EDDM ANDEC TULSI FUSSE EUR ELMUR LOWI SCHNE PITAR RIVEL LEO INN 129.12 (285-335) 134.35 (335-460) 118.95 (285-335) 132.60 135.05 TALSA HOLZI SBG PRITZ LOWS CHIEM STO GANTA RIEMU BW1 ARASA NST NSU FNE LIZUM BRENO CESAR MALUG BZO JAN VYDRA MALKO UDVAR TORNO PINKA VELAT GABEL WELLS KLIMT LOWG ARNOS TOTOV NITRA HOLIN ENTAR TIROL VIW JOZEF MORIZ SAMBA GOLEM SPITA DETSA CIFER OKR GYR RIEMA KATSA LOWW SNU PUBEG WST WSU FSE SLC AW1 AW2 MESSY KUKUT BERVA WGM GUSTA LIMRA PETEN ENKUN BRUCK MATAR FSW 999 000 FRE LNZ SIMBA AYING PLOTO BIRGI KREMS LOWL LOFER ERKIR WALSE ALGOI STAUB MDF MANAL KONIN EST ESU FNE NOFRE PONTE AYING FNW MD3 KIKIT SUMEK GONBA MBG TALED (335-460) (335-460) WLD MAIRA RALIX LALIN RIDAR ANKER NDG HEUSE BNO MOZAR RIDAR FNW HLV LKTB CERNO RDG HERTA SUL OKREN TRA TILSI ANORA AALEN ZAB VIGOR FELSI LUKAS DKB LBU NOTAG KARLS EDDS ZWERG MAMBO TGO BOSSA TEGOS MARCY ANTON (335-460) EDDN KASUL LBUXD VLM SALEM KALOD EDSB 127.37 WST RIDAR BRASU WEKAR AKOSI LAUFE ETHN SCHMA FNE 999 000 VESOX ANSBA WURST NKR EKROT OKL ERLLI ERL LOLLI FREQUENCIES LKPR RAK SULUS HARRY SEXYS OKG JURGE RAKIS GRZ KFT LOWK SST SSU FSE GOTAR SVR SUMIR LJLJ ODINA ABENA MG LSZA LUSIL MARCO RIGON Y3VOG SCALA ADOSA VINOS ISTRI PODET SLOVO TOMPA ZAG BABIT RON LDZA JESSE ILB BUCCO FSE LDRI LAREN DORIN VURDY VOG PAR 999 000 TITOV SENIC CHI FER ZEPPO TRE LIPZ AKADO LIPX LIMBA PAMLA VIC CHICO VOLVO LIPQ VALPO SULUR BAVMI IMA SRNXA FEDER OMETO SRN LIMC PETROTZO INTER LIML FARAK BEKAN NOV LIN CALAS CDO SIRLO DOL OMA PUL ELENA Véro:30.06.99 999 000 FN RVSM5 SESSION 2 ARKOL RAPNE KBO2 KENUM FN (000-unl) FE (000-unl) FSW (000-unl) 124.20 TAU FSE (000-unl) 135.00 FW (000-unl) 133.82 (335-460) 134.05 EU (285-335) 134.52 ALPEN (325-460) 127.37 (285-325) 132.87 ALGOI KARLS (295-335) 120.92 KARLU (335-460) 136.72 NT (285-335) 125.90 NTU (335-460) 120.72 ZUR (285-335) 134.60 ZURH (335-460) 133.40 BITNI FULDI GELNI GTQ SPEZL FFM LOLLI HARRY MIRGU ERLLI ERL WURST SPEDY ETHN ANSBA KASUL DKB LUKAS HEUSE CRANA TONON LSGG GVAXA GVA GVAXD PAS GOLEB PITON NDG ALPEN ALGOI FE PONTE MAIRA FRANZ EDDM ETSF ANDEC TULSI DISUN KONIN MANAL ETSM KPT FUSSE AOSTA OMETO BAVMI LIMW VANAS COGNE MEDAM VERCI LIMF Y2TOP SIRLO TORIN LNZ LOWL KODOK BLONA WALSE ALGOI LOWI SCHNE BIRGI LIZUM INN MATAR ENTAR KATSA BRENO DETSA CESAR SPITA VIW MALUG BZO NTU NT FSE VIC ADOSA LJLJ LIPQ RON VALPO ISTRI TRE LIPZ AKADO VINOS LIPX ILB BUCCO LAREN DORIN VURDI CHI SENIC LIMBA VOG VEVAR LOWK ARNOS LUSIL SRNXA FEDER SRN PETRO INTER LIMC TZO CHICO NOV LIML BEKAN FARAK LIN CALAS RIGON CDO ZEPPO GEN LAGEN PX11 ENKUN BRUCK PITAR IMA TOP PETEN LIMRA SIMBA AYING PLOTO TALSA PRITZ SBG HOLZI LOWS LOFER CHIEM RIEMU ERKIR EUR SULUR Y3VOG PAMLA FRE STAUB MDF ABENA SCALA NOFRE MBG LSZA BLOMO ISOAR GONBA SUMIR ODINA LALIN RIDAR ANKER WLD MD3 MARCO EDUAR MOZAR A75 ZUR FN LSGS TILSI RDG HERTA AALEN KRAUT SAFFA KONSA FHA2 TRA IXILU BLM ARPUS EDNY BODAN BRINA TROUE LFSB TRASA ZUE DELOX EKRON KLO HR LASNO TORPA MONEY HOC AMINO LSZH SARME MOROK LASON PENDU AARAU OLBEN RIPUS ELMUR ODIGA RIVEL SHU LEO BENEM BERSU MUR TUROM LSZB VADEM KORED TALED GALBI ZURH MOLUS KALOD FELSI ANORA BADEN OKREN LUL SALEM CERNO HAROM RALIX AKOSI LAUFE EDDN NKR KARLU KARLS FN ANTON BEGAR OKL PSASE RID BRASU LBUXD WEKAR LBU EDSB NOTAG KARLS EDDS ZWERG MAMBO TGO MARCY LFST STR BOSSA TEGOS OBORN SUL SALAT LASAT LKPR JURGE SULUS FW 999 000 POGOL RAK OKG RAKIS EDDF WILLI TIRSO EUU WASAR TAUER SAA EPL FE 999 000 FUL NARSI GIVOR HDO GABOR GED 124.02 MESSE OHMAR P63 WISOS ADENU NTM GOA BUEWE BANKO ETAD DIK IDARO RUWER ELLX SEXYS LUXIE LUXXD MOSET ETAR ROUSY TOMPI SCHMA SORAL EDDR 133.67 SALZU ALFAS COL NETMA FREQUENCIES DRN LARIT MARTY 18 OCT - 29 OCT 99 TWIST ZED1G WYP NOR LEG NORRA WRB EUU EU FSW PAR FSE 999 000 BOA BORGA LIMJ PUL FER LIPE PEROS ANTIK BARSO PUGET MEZEL SUTIF VALEN PRTXA LIRQ PRTXD FRZ UNITA ZIDAN 999 FSW 000 NISAP STP BEROK ABN2 TRUFO LFMN NIZZA PANIS DRAMO COLIN IDONA VAMTU PIS LIRP TOWER TORTU AKUTI URBAN ANC AMORE MAREL Véro:28.09.99 NORRA WRB ZED1G RVSM5 ARKOL WYP LOVIN BAT2 SESSION 3 ARDEN LARED VESAN MAUBE 999 FNW 000 LEQX NORPA WISOS ADENU GOA BUEWE IDARO RUWER ELLX LUXXD LUXIE MOSET ROUSY WASAR TAUER GELNI P63 SPEZL FFM EDDF SULUS PSASE RID LOLLI IDOSA VINKE KOPOR (000-unl) FNE (000-unl) FSE (000-unl) SOTOR 136.72 XE (305-460) 119.75 UE (195-305) 127.55 UH (195-325) 134.40 XH (325-460) 133.82 ZURH (335-460) 133.40 ZUR (285-335) 134.60 VILER MMD GIMER CLM RINAX KOTUN BUBLI SUSIN BRY TOMPI GELTA GTQ SPEDY SCHMA EPL LUVAL POGOL MANAG PTV LASAT PILON OKRIX ANTON BEGAR MIRGU LEGRO ATN MOU TONUS LUGNY GISCA LESPI BOBSI TALAR THR LIRKO MOREG CRANA MILPA LSGG GVA PASRI PAS OTKOL PITON WLD MAIRA ETSF HEUSE ETSM DISUN TDP ARBON ALGOI LOWI SCHNE BRENO BZO SUMIR ABENA ODINA LSGS GOLEB LSZA LUSIL 999 FSE 000 MARCO BLOMO AOSTA OMETO BAVMI LIMW VANAS EDUAR BLONA SULUR FEDER IMA SRNXA SRN PETRO LIMC CHICO TZO NOV LIML BEKAN FARAK LIN CDO CALAS RIGON INTER COGNE MEDAM VERCI LIMF Y2TOP SIRLO TORIN TOP KODOK SCALA VALPO ADOSA LIPX DORIN VURDI Y3VOG LIMBA PAMLA VOG VEVAR PAR ZEPPO ISOAR BOA MTL GEN LAGEN NIGOT BORGA LIMJ LIPE ANTIK RETNO BARSO VAMTU PUGET MEZEL PITAR MATAR TONON CIRGA NOUGA EUR FUSSE MOLUS GIPNI ETRAC KPT ZUR FSE CHATO TOLNA LFLB BALSI LFLL PILAT MEN A75 NDG BADEN OKREN TIRSO LSA MADOC FSW 999 000 HERTA AALEN RALIX BOJOLARGIS CBY LMG ANORA KRAUT SAFFA KONSA FHA2 RESPO LUL TRA BLM ARPUS EDNY IXILU BRINA BODAN LFSB ZUE TROUE TRASA DELOX EKRON KLO HR LASNO REKLA MONEY LSZH XH TORPA HOC AMINO VERDI SARME LASON MOROK UH AARAU PENDU LFSD DIJ ALOGA OLBEN FNW ELMUR RIPUS ODIGA GILIR RIVEL SHU BENEM BERSU LEO MUR LSZB DIMIL VADEM KORED ZURH TUROM BERSO GALBI TALED RLP BENIP DKB LBUXD SALAT MELCO RIGNI HAROM WILLI WEKAR LBU EDSB NOTAG KARLS EDDS ZWERG MAMBO LFST MARCY TGO BOSSA TEGOS STR OBORN SUL GIVOR TRO ETHN ANSBA NKR BRASU XE UE FNW EDDN WURST ETAR SAA PERNO ERLLI ERL HARRY SEXYS EDDR SORAL MEDIX EXIDU MEL TELBO RAPOR RELAN CTL LFPB GY OL OYE RBT TOLPA 134.05 128.15 CDG GX PON 132.27 (000-unl) FSW GORTU DIDOR FREQUENCIES FNW XERAN SALZU FULDI TAU NTM BANKO ETAD LARIT FUL GED NARSI NETMA DIK OHMAR COL MARTY BULTO NITAR ALFAS RAPNE KBO2 NOR BATTY BARAK BULUX 8 NOV - 12 NOV 99 KENUM FNE 999 000 TRUFO IDONA UNITA ZIDAN BEROK FRZ ABN2 LIRQ Véro:30.06.99 NORRA WRB ZED1G RVSM5 WYP LOVIN BAT2 SESSION 4 BULUX LEQX XERAN DIDOR FREQUENCIES FNE (000-unl) 133.40 FSE (000-unl) 134.05 FSW (000-unl) 119.75 UE (195-305) 127.55 UH (195-325) 134.40 XH (325-460) 133.82 WU (285-335) WUU (335-460) MOLUS (285-335) MOLUU (335-460) SOTOR EXIDU CLM PERNO RINAX RUWER ELLX IDOSA LUXXD LUXIE MOSET ROUSY GELTA TRO MELCO PTV MANAG EDDR ERLLI ERL LOLLI HARRY WURST NKR SCHMA HAROM WILLI LASAT SALAT PILON ANTON BEGAR DKB ANORA HERTA AALEN A75 NDG ETSM RALIX DISUN KRAUT SAFFA KONSA FHA2 LUL TRA BLM IXILU ARPUS EDNY BRINA BODAN ZUE TROUE LFSB TRASA DELOX EKRON HR LASNO KLO REKLA MONEY HOC AMINO XH TORPA VERDI LSZH SARME LASON UH MOROK AARAU PENDU OLBEN LFSD DIJ ALOGA FNW ELMUR RIPUS ODIGA GILIR RIVEL SHU BENEM BERSU LEO TUROM MUR DIMIL LSZB VADEM KORED GALBI BERSO TALED RIGNI LEGRO BENIP ATN WLD MAIRA ETSF HEUSE BADEN OKREN TIRSO EDDN ETHN ANSBA SPEDY BRASU LBUXD LBU EDSB KARLS EDDS ZWERG NOTAG MAMBO MARCY TGO LFST BOSSA TEGOS STR OBORN SUL POGOL RLP KPT FUSSE EUR ALGOI LOWI SCHNE PITAR MATAR BRENO MOU TONUS LUGNY 133.15 GISCA LESPI BOBSI TALAR LIRKO MOREG MOLUSMOLUU CRANA MILPA MOLUS TONON LSGG FSW GVAXR GVA GVAXA GVAXD PASRI PAS LSGS GOLEB OTKOL PITON BOJOLARGIS CBY 128.15 SULUS PSASE RID TOMPI MIRGU 136.77 134.85 SPEZL EDDF ETAR GIVOR OKRIX 132.90 133.62 P63 GELNI SEXYS GTQ EPL LUVAL WASAR WEKAR XE UE FNW SUSIN BRY WISOS ADENU GOA BUEWE IDARO TAUER FFM SAA KOTUN BUBLI OYE MEL TELBO NTM BANKO ETAD SORAL SALZU FULDI NORPA GIMER LARIT FUL GED NETMA MEDIX CTL RBT TOLPA MMD OHMAR NARSI RESPO (305-460) MILPU (335-460) GY LFPB OL 128.77 XE MILPA (285-335) CDG GX PON RAPOR RELAN VILER ALFAS COL FNE 999 000 MARTY BULTO DIK GORTU VINKE RAPNE KBO2 NOR TAU MAUBE 999 FNW 000 KOPOR 132.27 LARED VESAN NITAR (000-unl) KENUM BATTY BARAK ARDEN 15 NOV - 26 NOV 99 FNW ARKOL LMG THR MADOC FSW 999 000 CHATO TOLNA LFLB BALSI LSA LFLL PILAT TDP ARBON MILPU MILPA FSW LSZA BLOMO AOSTA OMETO BAVMI LIMW VANAS GIPNI MEDAM VERCI LIMF Y2TOP SIRLO TORIN EDUAR 999 FSE 000 FEDER IMA SRNXA SRN PETRO LIMC CHICO TZO NOV LIML FARAK BEKAN LIN CDO CALAS RIGON SCALA ISOAR WUU WU FSE NIGOT ADOSA LIPX DORIN LIMBA VOG KODOK TOP VALPO VURDI Y3VOG PAMLA VEVAR NOUGA MTL LUSIL SULUR INTER COGNE BLONA MEN SUMIR ABENA ODINA MARCO CIRGA ETRAC BZO PAR ZEPPO GEN LAGEN BOA BORGA LIMJ LIPE ANTIK RETNO BARSO IDONA VAMTU LFMN COLIN SUTIF DRAMO PRTXA UNITA PUGET MEZEL FRZ BEROK ABN2 TRUFO NIZZA LIRQ ZIDAN PANIS PIS LIRP TOWER Véro:30.06.99 GIVOR XE UE FNW ARR LSZH/LSG/FL SURVOLS NORD-SUD Zoom Inversion EPL LFST STR OBORN POGOL TASAL LF ST PILON AR R BEGAR MIRGU SORTI ARR LSZH AR R LF BADEN TIRSO LUL P ARPUS EPOXI HR DE IXILU LF ST SB DELOX REKLA BLM DEP LSZH B FS PL CORDE ARR LSG/LFL DE XH UH FNW LASNO TORPA MOROK LASON OLBEN ODIGA GADOI BENEM LS G LIRKO SHU MUR SURVOLS + ARR SUD - NORD AR R LF L AR R GALBI MOLUS LFSB HOC TROUE KORED BERSU LSZB Annex B: OPERATIONS ROOM LAYOUT The OPS Room during Session 4. The RVSM5 Operations room layout was common for all 4 sessions. The layout shown below details the Session 1 configuration. The table following the diagram details the position of the sectors for the Sessions 2-4. RVSM 5 ESU 30 31 32 33 28" 28" 28" 28" EXC 28" 5 PLC 28" 15 133.8 28" DEMO 37 28" Strp.pr. V I E N N A TID TID Hybrid Hybrid Hybrid FNE FSE FSW 134.72 14 28" PLC 4 28" EXC 128.87 127.37 Hybrid FNW Hybrid EST 129.12 124.02 NSU TID 13 28" PLC 3 28" EXC 28" 6 PLC 28" 16 TID 134.35 Strp.pr. EXC WST 126.27 28" 7 PLC 28" 17 TID NST Strp.pr. EXC WSU 133.6 Strp.pr. Strp.pr. EXC 28" 8 PLC 28" 18 V I E N N A 118.95 Strp.pr. M U N C H E N TID 12 28" PLC 2 28" EXC TID RIDAR 133.75 SSU Strp.pr. EXC 28" 9 PLC 28" 19 132.6 Strp.pr. TID 11 28" PLC 1 28" EXC TID AYING 133.67 SST Strp.pr. EXC 28" 10 PLC 28" 20 135.05 TID Strp.pr. SUPERVISION SESSION 1 : 4 - 15 OCT 24.08.99/SLI CONTROL ROOM POSITIONS FOR SESSION 2-4 SECTOR NUMBER SESSION2 SESSION 3 Controller/Planner 1/11 ALGOI 2/12 ALPEN 3/13 EU ZUR 4/14 EUU ZURH 5/15 KARLS UE 6/16 KARLU XE 7/17 NT UH 8/18 NTU XH 9/19 ZUR 10/20 ZURH SESSION 4 MOLUS MILPA MILPU MOLUU UE XE UH XH WU WUU A maximum of 13 Pilot positions was used during the simulation. The diagram below shows an example of the Pilot Room layout for Session 1. 20 25 26 27 28 29 30 19 18 17 21 22 23 24 EST NSU 129.12 134.35 7 8 NST SSU 118.95 132.6 9 SST 135.05 16 (NST) (118.95) 15 14 10 11 12 (134.35) AYING RIDAR WSU 133.67 133.75 133.6 WST ESU 126.27 133.8 (NSU) 13 (AYING) (133.67) RVSM 5 1 2 3 4 5 6 02.06.99/SLI SESSION 1 Annex C: SIMULATION PARTICIPANTS RVSM5 SIMULATION PARTICIPANTS EUROCONTROL – Airspace Management and Navigation Division Alain DUCHÈNE Karin BARBARINO Kevin HARVEY Core Area Study Project Manager Assistant Project Manager Assistant Project Manager EUROCONTROL – Experimental Centre Bretigny Roger LANE Steven BANCROFT Veronique BEGAULT Josee BRALET Christine CHEVALIER Robin DERANSY Sandrine GUIBERT Marie Christine LEDUC Hugh O’CONNOR Elisabeth PLACHINSKI Francoise ROTH Peter SLINGERLAND RTS Project Manager Assistant Project Manager Map Preparation Pilot Supervisor Simulation Technical Coordinator Data Analysis Data Analysis Data Preparation Assistant Project Manager Mission Office Administration OPS Room Supervisor Bertram UNFRIED Ralf BECKER Ralf EVERLING Hans ZABL Sabine ZÄCH Herbert FORSTER Hans Joachim KOCH Wolfgang NOLTE DFS – Munich Supervisor and Feed DFS Munich Controller DFS Munich Controller DFS Munich Controller DFS Munich Controller DFS Munich – Feed Controller DFS Munich – Feed Controller DFS Munich – Feed Controller Ernst HOFMANN Austro Control Vienna– Supervisor SESSION 1 Austro Control Vienna Controllers Andreas BAUER Alex GESSKY Thomas HOFBAUER Bernhard HOFMANN Thomas HORVATH Gerald KASCHA Alexander KANTZ Thomas KIHR Peter KNEZEK Günter MELCHERT Ralph MICHALKE Erwin OBERGRUBER Nikolaus REIDINGER Wolfgang SCHEIDL Nikolaus SELINGER Andreas STUHLIK Günter VONES Harald WITTMANN Klaus LIENEN Markus BADER Cindy BLECH Gerhard LEIPERT Heinz STEHR DFS Karlsruhe –Supervisor/Controller DFS Karlsruhe Controller DFS Karlsruhe Controller DFS Karlsruhe Controller DFS Karlsruhe Controller Bernd FREESE Uli DIETMAR Thomas HOPF Theo KEBER WIRSCHING STUMBAUM Karl-Heinz LOHÖFER DFS Munich Supervisor and Feed DFS Munich Controller DFS Munich Controller DFS Munich Controller DFS Munich Controller DFS Munich – Feed Controller SESSION 2 Anton MAAG Judith BAUMANN Simon SPIRI Ernst HINNEN Sabine ZIMMERMANN Jean Pierre GRAF Erwin SCHÄR Georgio BRUDERER Swisscontrol Supervisor Swisscontrol Zurich Controller Swisscontrol Zurich Controller Swisscontrol Zurich Controller Swisscontrol Zurich Controller Swisscontrol Genève Controller Swisscontrol Genève Controller Swisscontrol Genève Feed Controller Philippe DALMONT CRNA-E Reims Feed Controller Pietro PAGLIA Giusepe NOCERINO Stefano GHILARDI Fabio MASCELLI Carlo DE VITA Michele FILETI Fabio STRAPPA Massimo MANICCIA Walter RECCHIA Luca CAVESTRO Paolo PINNA ENAV Milano – Supervisor ENAV Milano Controller ENAV Milano Controller ENAV Milano Controller ENAV Milano Controller ENAV Milano Feed Controller ENAV Padua Controller ENAV Padua Controller ENAV Padua Controller ENAV Padua Controller ENAV Padua Controller Kurt DUSS Ernst HINNEN A. HABERMACHER W. MÜLLER R. SIMMLER R. STAUFFER Georgio BRUDERER Swisscontrol -Zurich – Supervisor Swisscontrol Zurich Controller Swisscontrol Zurich Controller Swisscontrol Zurich Controller Swisscontrol Zurich Controller Swisscontrol Zurich Controller Swisscontrol Genève Feed Controller Cindy BLECH DFS Karlsruhe Feed Controller SESSION 3 SESSION 3 and 4 Herve GRANGE CRNA-E Reims Supervisor CRNA-E Reims Controllers Gérard BARZELLINO Xavier COTTON Xavier ESTIENNE Cyril GAUTRON Philippe GONDOIN Véronique MEYER Joseph ROCHELLE Yves SANJIVY Max SINTES Georgio BRUDERER Swisscontrol Genève – Supervisor SESSION 4 Swisscontrol Genève Controllers Daniel ARN Lukas BISSIG Alain GABERELL Eric JEMELIN René LEHNER Gregor MÖGLI Bernard PATTUSCH Bruno PULIAFITO Erwin SCHÄR W. MÜLLER Swisscontrol Zurich Feed Controller Pietro PAGLIA ENAV Milano – Supervisor Ugo DI LABIO Mario CONSOLI Andrea QUERCIA Giulio CILIA Michele FILETI ENAV Milano Controller ENAV Milano Controller ENAV Milano Controller ENAV Milano Controller ENAV MilanoFeed Controller Annex D: SIMULATION SCHEDULE START STOP SCENARIO/ACTIVITY 0915 1100 1330 1500 1030 1200 1445 1615 INTRODUCTION TO RVSM5 AND THE EEC Training exercise Training exercise Training exercise TTNG1 TTNG1 TTNG1 TUE 5 Oct 1000 1300 1500 1130 1430 1630 Exercise 1 Exercise 2 Exercise 3 TMR1 TAR1 TMR1 WED 6 Oct 0930 1115 1345 1415 1545 1045 1230 1415 1530 1630 Exercise 1 Exercise 2 RVSM Presentation (Ireland) Exercise 3 Debrief TAR1 TMR1 AE03 TAR1 THU 7 Oct 0930 1115 1400 1545 1045 1230 1530 1630 Exercise 1 Exercise 2 Exercise 3 Debrief TMS1 TAS1 TMS1 FRI 8 Oct 0900 1100 1345 1415 1030 1230 1415 1530 Exercise 1 Exercise 2 RVSM Presentation (ATC Procedures) Exercise 3 TAS1 TMS1 AE04 TAS1 MON 11 Oct 0900 1045 1330 1445 1600 1015 1230 1400 1600 1630 Exercise 1 Exercise 2 Training Exercise for Hard FLAS Exercise 3 Debrief TMS1 TAS1 TTNGH1 TMH1 TUE 12 Oct 0900 1045 1330 1500 1030 1200 1445 1600 Exercise 1 Exercise 2 Exercise 3 RVSM Presentation (Height monitoring) TAH1 TMH1 TAH1 AE04 WED 13 Oct 0905 1045 1345 1515 1020 1200 1500 1600 Exercise 1 Exercise 2 Exercise 3 Debrief TMH1 TAH1 TMH1 THU 14 Oct 0900 1100 1400 1530 1030 1230 1515 1600 Exercise 1 Exercise 2 Exercise 3 RVSM Presentation (RVSM Programme) TMR1 TAS1 TMS1 AE04 FRI 15 Oct 0900 1100 1030 1200 Exercise 1 Debrief TAS1 Date WEEK 1 MON 4 Oct TRAFFIC CODE SESSION 1 WEEK 2 SESSION 1 WEEK 3 MON 18 Oct SESSION 2 0915 1100 1330 1500 1030 1200 1445 1615 INTRODUCTION TO RVSM5 AND THE EEC Training exercise Training exercise Training exercise TUE 19 Oct 0900 0930 1100 1400 1545 0930 1045 1215 1530 1630 RVSM Presentation (Ireland) Exercise 1 Exercise 2 Exercise 3 Debrief AE04 TMR2 TAR2 TMR2 WED 20 Oct 0900 1100 1345 1530 1030 1230 1530 1600 Exercise 1 Exercise 2 Exercise 3 Debrief (Questionnaire) TAR2 TMR2 TAR2 THU 21 Oct 0900 1100 1400 1530 1015 1230 1530 1600 Exercise 1 Exercise 2 Exercise 3 Debrief TMS2 TAS2 TMS2 FRI 22 Oct 0905 1045 1330 1015 1200 1500 Exercise 1 Exercise 2 Exercise 3 TAS2 TMS2 TAS2 WEEK 4 TTNG2 TTNG2 TTNG2 SESSION 2 MON 25 Oct 0900 1100 1400 1545 1030 1230 1530 1630 Exercise 1 Training Exercise Hard FLAS Exercise 2 Debrief TMS2 TTNGH2 TAH2 TUE 26 Oct 0900 1045 1330 1400 1530 1030 1200 1400 1530 1600 Exercise 1 Exercise 2 RVSM Presentation (ATC Procedures) Exercise 3 Debrief TMH2 TAH2 AE04 TMH2 WED 27 Oct 0900 1100 1330 1515 1030 1230 1500 1600 Exercise 1 Exercise 2 Exercise 3 Debrief (Questionnaire) TAH2 TMH2 TAH2 THU 28 Oct 0900 1100 1400 1545 1030 1230 1530 1630 Exercise 1 Exercise 2 Exercise 3 Debrief TAH2B TAH2B TMR2 FRI 29 Oct 0900 1100 1030 1200 Exercise 1 Debrief TAR2 WEEK 5 MON 8 Nov SESSION 3 0915 1030 1200 1445 1615 INTRODUCTION TO RVSM5 AND THE EEC Training exercise Training exercise Exercise 1 1045 1330 1500 TTNG3 TTNG3 TMR3 TUE 9 Nov 0900 1100 1330 1515 1030 1230 1500 1645 Exercise 1 Exercise 2 Exercise 3 Exercise 4 TMR3 TMR3 TAH3 TMH3 WED 10 Nov 0900 1100 1400 1545 1030 1230 1530 1630 Exercise 1 Exercise 2 Exercise 3 Debrief TAH3 TMH3 TAH3 THU 11 Nov 0900 1110 1330 1500 1000 1230 1445 1615 Training Exercise Inversion Exercise 1 Exercise 2 Exercise 3 TNG3i TIMR3 TIMR3 TIMR3 FRI 12 Nov 0900 1045 1330 1015 1230 1500 Exercise 1 Exercise 2 Exercise 3 TIAH3 TIAH3 TIAH3 TSAM M A RVSM 3 3 SOFT 3 3 HARD 2 3 WEEK 6 MON 15 Nov RVSM-INV 3 3 SOFT-INV 3 3 HARD-INV 3 3 SESSION 4 0915 1030 1100 1330 1500 1200 1445 1615 INTRODUCTION TO RVSM5 AND THE EEC Training exercise Training exercise with ISA Busy Training exercise TUE 16 Nov 0900 1045 1330 1400 1530 1015 1200 1400 1515 1600 Exercise 1 Exercise 2 RVSM Presentation (Ireland) Exercise 3 Debrief TAR4 TMR4 AE04 TAR4 WED 17 Nov 0915 1115 1400 1545 1030 1230 1530 1630 Exercise 1 Exercise 2 Exercise 3 Debrief (Questionnaire) TMR4 TAR4 TMR4 THU 18 Nov 0930 1100 1330 1400 1545 1045 1230 1400 1530 1630 Exercise 1 Exercise 2 RVSM Presentation (ATC Procedures) Exercise 3 Debrief TAS4 TMS4 AE04 TAS4 FRI 19 Nov 0900 1045 1330 1015 1200 1500 Exercise 1 Exercise 2 Exercise 3 TMS4 TAS4 TMS4 TNG4 TNG4 TAR4 WEEK 7 SESSION 4 MON 22 Nov 0900 0930 1300 1415 1500 0915 1045 1415 1530 1615 Hard FLAS Briefing Training Exercise Hard FLAS Exercise 1 Exercise 2 Exercise 3 AE04 TNG4H TAH4 TMH4 TAH4 TUE 23 Nov 0900 1045 1330 1400 1530 1015 1215 1400 1515 1600 Exercise 1 Exercise 2 Questionnaire Exercise 3 RVSM Presentation (Height Monitoring) TMH4 TAH4 AE04 TMH4 AE04 WED 24 Nov 0930 1030 1330 1515 1015 1200 1500 1645 Training Exercise Inversion Exercise 1 Exercise 2 Exercise 3 TNG4i TIAR4 TIMR4 TIAR4 THU 25 Nov 1000 1300 1445 1600 1115 1415 1600 1630 Exercise 1 Exercise 2 Exercise 3 Debrief TIMR4 TIAR4 TIMR4 FRI 26 Nov 1000 1200 Presentation of Initial results AE41/42 TSAM M A RVSM 3 3 SOFT 3 3 HARD 3 3 RVSM-INV 3 3 SOFT-INV HARD-INV Traffic sample data decode Traffic sample data is displayed by an orderly group of letters/numbers e.g. T T TNG A M R H S IMR IMH IMS 1-4 = = = = = = = = = = = Traffic Training Afternoon Traffic Morning Traffic Org 1-RVSM Org 2-HARD FLAS Org 3-SOFT FLAS RVSM with Inversion HARD FLAS with inversion SOFT FLAS with inversion Session number