fundamental theorem of calculus chain rule
Transcription
fundamental theorem of calculus chain rule
INTEGRATION FORMULAS: ! f (x) dx = F(x) + C, where F ' (x) = f (x) d dx ! x a f (t) dt = f (x) Remember the Chain Rule!!!: " b a [First Fundamental Theorem] d u f (t) dt = f (u) " Du dx ! a f (x) dx = F(b) ! F(a), where F ' (x) = f (x) [Second Fundamental Theorem] u n+1 ! u du = n + 1 + C, n " #1 ! u u ! e du = e + C u ! a du = " sinu du = ! cosu + C ! cosu du = sinu + C ! sec u du = tan u + C ! csc u du = " cot u + C ! sec u • tan u du = secu + C " csc u • cot u du = ! cscu + C ! secu du = ln sec u + tan u + C ! tan u du = ln sec u + C " cscu du = ln csc u ! cot u + C ! cot u du = ln sinu + C n 2 1 1 ! sin u du = 2 u " 4 sin 2u + C 2 " "u du #u = sin !1 $ %& + C 2 a a !u 2 du 1 !1 u = • sec +C a u2 ! a 2 a " u dv = uv ! " v du du = ln u + C u au + C, ( a > 0, a " 1) ln a 2 1 1 ! cos u du = 2 u + 4 sin 2u + C 2 !a 2 "u du 1 #u • tan "1 $ %& + C 2 = +u a a 2 du 1 # u ! a& ln % (+C 2 = !a 2a $ u + a '
Documents pareils
A.P. Calculus Formulas
If a function is continuous between a and b ,
then it takes on every value between f ( a ) and
f (b ) .
f ( x + h) − f ( x )
f ′( x ) = lim
h→ 0
h
Diff and Integ Rules Final
csc u cot u du csc u C
tan u du ln sec u C ln cos u C
cot u du ln csc u C ln sin u C
sec u du ln sec u tan u C ln sec u tan u C
csc u du ln csc...