A.P. Calculus Formulas
Transcription
A.P. Calculus Formulas
A.P. Calculus Formulas 2004-2005 1. floor function (def) x 2. Greatest integer that is less than or equal to x. (graph) 3. a 3 + b3 = 4. a 3 − b3 = 5. f ( x) = ba + bgca − ab + b h ba − bgca + ab + b h 2 2 2 2 1 (graph) x 3 2 1 -3 -2 -1 0 1 x 2 3 -1 -2 -3 ln x ln a Change of base rule for logs: log a x = 7. Circle formula: ( x − h) 8. Ellipse formula: x2 y2 + =1 a 2 b2 6. p34 1 2 + ( y − k ) = r2 2 c = a 2 − b2 9. Hyperbola formula: x2 y2 − =1 a 2 b2 10. sin 2 x + cos2 x = 1 11. 1 + tan 2 x = sec 2 x 12. sin u ± v = 13. b g cosb u ± vg = 14. sin(2u) = 2 sin u ⋅ cos u 15. cos(2u) = cos2 u − sin 2 u 16. sin 2 u = 17. cos2 u = sin u ⋅ cos v ± cos u ⋅ sin v cos u ⋅ cos v sin u ⋅ sin v 1 − cos 2u 2 1 + cos 2u 2 sin x x →0 x sin x lim x →∞ x lim 18. p57 19. p67 20. p79 Intermediate Value Theorem 21. p95 definition of derivative 22. p112 d ( c) = dx 0 bg 1 d cu = dx bg cu′ d n u = dx nu n−1u ′ 24. 25. 1 0 If a function is continuous between a and b , then it takes on every value between f ( a ) and f (b ) . f ( x + h) − f ( x ) f ′( x ) = lim h→ 0 h d x = dx 23. p113 c = a 2 + b2 2 b g 26. p114 d u±v = dx u′ ± v ′ 27. p115 d (uv ) = dx uv ′ + vu ′ 28. p117 d u = dx v F I G HJK vu ′ − uv ′ v2 29. p135 d sin u = dx cosu ⋅ u ′ 30. p136 d cos u = dx − sin u ⋅ u ′ 31. p138 d tan u = dx sec 2 u ⋅ u ′ 32. p138 33. p138 34. p138 35. 36. 37. 38. p144 p157 p159 d cot u = dx d sec u = dx − csc 2 u ⋅ u ′ sec u ⋅ tan u ⋅ u ′ d csc u = dx − csc u ⋅ cot u ⋅ u ′ slope of parametrized curve: dy dy = dt dx dx dt df −1 dx derivative formula for inverses = x= f (a) u′ d sin −1 u = dx 1 − u2 −u ′ d cos −1 u = dx 1 − u2 3 1 df dx x =a 39. p159 d tan −1 u = dx u′ 1 + u2 40. p164 d u e = dx euu′ 41. p166 d ln u = dx 1 u′ u d u a = dx a u ln a ⋅ u ′ 42. 43. p178 Extreme Value Theorem If f is continuous over a closed interval, then f has a maximum and minimum value over that interval. 44. p186 Mean Value Theorem (for derivatives) If f ( x ) is a differentiable function over a , b , then at some point between a and b : f (b ) − f ( a ) = f ′ ( c) b−a 45. p221 linearization formula L( x ) = f (a ) + f ′(a ) ⋅ ( x − a ) 46. p269 ∫ k ⋅ f ( u) k ∫ f ( u ) du 47. p269 48. p272 z du = z z f ( u) ± g (u) du = f (u)du ± g (u)du If f is continuous on [ a, b ] , then at some 1 b f ( x ) dx point c in [ a, b ] , f ( c ) = b − a ∫a Mean Value Theorem (for definite integrals) 49. p277 Second fundamental theorem: d u f (t )dt = f (u ) ⋅ u ′ dx ∫a 50. p290 Trapezoidal Rule: T= 51. z du = u+c 4 b h y0 + 2 y1 + 2 y2 +...+2 yn −1 + yn 2 g z u n+1 +c n +1 p317 ∫ sin u du = − cosu + c 54. p317 ∫ cos u du = sin u + c 55. p317 ∫ sec 2 u du = tan u + c 56. p317 ∫ csc 2 u du − cot u + c 57. p317 ∫ sec u ⋅ tan u du = sec u + c 58. p317 ∫ csc u ⋅ cot u du = − csc u + c 52. p315 53. 59. 60. 61. u n du = z z z 1 du = u ln u + c e u du = eu + c a u du = 1 u a +c ln a n ≠ −1 62. ∫ tan u du = − ln cosu + c 63. ∫ cot u du = ln sin u + c 64. ∫ sec u du = ln sec u + tan u + c 65. ∫ csc u du = − ln csc u + cot u + c 66. 67. z z du a −u 2 2 u arcsin + c a = du = a + u2 1 u arctan + c a a 2 5 exponential change: y = y0e kt 69. continuous compound interest: A(t ) = Ao e rt 70. F1 + x IJ = limG H nK 68. p330 n ex n→∞ 6
Documents pareils
liste des produits 2015
CHOPPER COMBI 24V 150A+150A
COMBI SEM CESAB (Code 2933003)
CHOPPER SEM 0
CHOPPER SEM 1
CHOPPER SEM X
CHOPPER SEM 3
CHOPPER DUAL SEM
CARTE FM104 (Code 3602001)
CARTE FM105
CARTE FM106
CARTE CESAB (C...
fundamental theorem of calculus chain rule
! f (x) dx = F(x) + C, where F ' (x) = f (x)
d
dx