12 1.2. Sedimentation: External forcings
Transcription
12 1.2. Sedimentation: External forcings
23 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Different types of basins according to plate tectonic setting: spatial and temporal evolution from one type to another 1.2. Sedimentation: External forcings • Tides results from combined attraction of the Moon and the Sun on the oceans (& on the crust). • Sedimentation records variations of parameters external to the Earth Burdigalian (Digne foreland Basin) Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne • Tidal sediments = Sediment deposition controled by the tides (cyclic phenomenon). 24 Present: Baie du Mont Saint Michel External forcings • Periodic changes in the Earth’s orbital parameters affect the amount of radiation from the Sun. • The energy dissipated by the Sun varies with time => variation in radiation received by the Earth. ⇒ The total amount of solar radiation received on the Earth’s surface governs long-term (100’s of millions of years) and short-term (10-1000’s years) temperature of the atmosphere and hydrosphere. Through complex feedback loops, this has direct and indirect consequences on Climate and associated exogenic transfer processes. => Climate forcing affects the way the sedimentary basins are filled 25 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Energ y tilt Sun’s energy 45° 1.41 m2 ->242W/m2 90° 1m2 ->342W/m2 • High latitudes receives less energy than inter-tropical areas • Insolation seasonal variation Sun’s energy n he Su rom t ergy f y g Ener 000 x en rth a = 10 nal E inter m o r f NO tilt • No seasonal variation of insolation • Increased yearly average temperature 26 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Insolation : sun’s energy Milankovitch cycles P = precession E = eccentricity • Orbital parameters of the Earth have been acting over the whole history of the planet (albeit changes in periodicity and amplitude). • Milankovitch cycles have been recorded in sediments with different intensity through time. • During Quaternary, Milankovitch cycles are particularly well expressed (Glaciations stages) 27 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne T= tilt or obliquity insolation => climate => sedimentation Atmosphere Hydrosphere Biosphere ©ArthusBertrans Temperature, pluviometry, seasonnallity, … Erosion, weathering, life, river transport, ocean circulation… sedimentation ©NASA 28 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Sun energy Hettangian (S-Cevennes) records cyclic flooding and desiccation of shallow carbonate platform. Sedimetary record counts tens of cycles subdivided into 5 smaller cycles; interpreted as eccentricity (100ky) combined with precession (20ky) forcing © M. Séranne © Y. Hamon Oligocene evaporites (Portels/Corbières) record of seasonnal, cyclic desiccation of lagoon © Y. Hamon 29 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Periodic changes in forcings => sedimentary cycles Periodic changes in forcings => cycles • Combination of stacking of several signals => complex stratigraphic record - Basin analysis aims at deciphering these signals - sedimentary basinfill contains these signals => Archives • Signals of different time/ space scale => record of stacked (nested) cycles - several nested sequences in the stratigraphic record 30 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne • Periodic (or not) changes in the controlling processes => record cycles re iai t r Te ét Cr é ac © M. Séranne Chicxulub impact 31 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Non-periodic changes in forcings => catastrophic events Non-periodic changes in forcings => record of events Tonga, March 2009 One cinerite bed (ashes layer) interbeded the continental cyclic lacustrine siltites of the Permian Lodève Basin. 32 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Volcanism -> ashes in atmosphere -> modify climate Volcanism -> ashes -> widespread & contemporaneous deposits -> correlation & dating Sediment or not sediment ? Stratigraphy (≠ sedimentology) = study of sediment stacking pattern 33 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Sediments are deposited and preserved in some parts of the basins, not everywhere, not at all time ⇒ incomplete and inhomogeneous record related to basin depositional evolution ⇒ Basin dynamics accounts for sediment distribution in space and time Sediment accumulation rate Sedimentary deposits are an uncomplete and distorted record of time Deposits age (Ma) Modeled from several datings hiatus Time hiatus = no deposit correlates with this time interval => Eroded or never deposited? Slow accumul. rate Fast accumul. rate •Sediment accummulation rate varies through time in basins. • Depends on sedimentary processes, paleogeography, sediment flux, subsidence… 34 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Deposits age (Ma) Sediment thickness (m) Sediment thickness (m) Observed Exercise : Sediment accumulation rate Languedoc Synthetic lithostratigraphy and tectonic evolution of Languedoc 140Ma Slope Berriasian Bathonian Dogger "Marly" Lias 190Ma "Calcareous" Lias 200Ma 2 1 Aalenian Toarcien Domerian Carixian Sinemurian Lagoonal platform 0 Hettangian Late Triassic Triassic 250Ma Early Triassic Variscan basement Sabkha Fluviatile onset of Tethyan rifting 35 sandstone lacustrine limestone dolomite marly limestone bioclastic limestone conglomerate marl & silts evaporites limestone grainstone Sediment accumulate in basins if: 1- there is a gravity-driven flux of sediment (erosion/ transport/ deposition) => base level 2- there is space available to trap the sediment => accommodation space Sediment are generated if: • Deformation of the topographic surface of the lithosphere induced by internal forcing (mountain-building, volcanism, thermal uplift…). ⇒ Erosion of the topography, mobilization of detritals, transport, deposition. ⇒ All processes governed by gravity. ⇒ Processes strongly dependent on external forcing (climate…). • Biological activity contributes to sediment flux. ⇒ in-situ carbonate production in favourable environments (« carbonate factory » in ocean, lakes) -> climate-dependent ⇒ reworked carbonates behaving as detritals ⇒ plants residues (coal) • (Bio-) Chemical activity = weathering, alteration, evaporation, precipitation. 36 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne 0 Carbonate ramp Bajocian 0 gravitational listric faulting 175Ma 0.5 L. Oxfordian Callovian deepening-up 1 Gulf of Lion Margin Emmersion Reef platform Kimmeridgian 160Ma Renewed subsidence Basin 150Ma Malm 3 mid-Cretaceous Erosion e Valanginian Portlandian 1.5 uxit ba 50 rifting 145Ma E.Pyrenean unconformity Fluviatile/lacustrine Sediment thickness (km) Early Cretaceous (Neocomian) Alluvial fans 100 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Lacustrine Lutetian 150 Pyrenean foreland basin Alluvial fans Bartonian 50Ma E. Eocene 60Ma Paleocene Late 70Ma Cretaceous Maastrichtian 100Ma 130Ma rifting unconformity Deposits age (Ma) 200 Vocontian period Fluviatile Compare sediment record and time: construct the accummulation curve for the Languedoc area "Bassin du Sud-Est" (Tethyan aborted rift) Priabonian North Tethyan Margin 30Ma continental Alluvial fans L. Rupelian Marine 2 break-up unconformity cont. Oligocene Eocene 2.5 20Ma Aquitanian 3 Messinian erosion Mediterr. desiccation Thermal subsidence Shoreface E. Miocene shallowing-up ¹3ÏRANNE Burdigalian Rifting Langhian 16Ma 3.5 Thrusting & growth strata Gilbert-deltas Tectonics Thermal subsidence 5Ma Discontinuities inversion Sedimentary environments Fluviatile Pliocene cont. Lithographic column 0Ma marine Stratigraphy Pliocene marine approx. thickness km Base-level upstream 1 Base level (Wheeler, 1964) : • is an abstract, non physical dynamic surface ; can be assimilated to an upstream-downstream profile in 2D sections • is above the earth surface where deposition occurs, below where erosion occurs, and equal to the earth srface where there is an equilibrium (e.g., bypass) ; • represents the surface where sediment flux would be constant (i.e., a balance would exist between sediment supply and removal) ; • is a potentiometric surface (i.e., the surface along which the energy of sediment flux is minimized) ; • is a dynamic surface (i.e., it vibrates with respect to the physical surface in time and space) ; • exists in a system where space, energy and mass are conserved. 37 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne downstream Available space => Accommodation 2 Basin subsidence Eustacy Intraplate deformation Accommodation : it is the rate (measured in m/Ma) at which space is being made available for sediments to be trapped in the basin. It is the result of the vertical movements of the basement (subsidence + lithoshere deformation) and of eustacy (World ocean level). Sediment flux may or may not fill the availlable space. This is determined by the balance of sediment rate and accommodation. Sed. Rate < Accomm => underfilled basin, water depth increases (starved basin, condensation surface) Sed Rate = Accomm => basin remains at the same water-depth => persistance of sedimentary facies through time Sed. Rate > Accomm => basin being filled, water-depth decreases, coarsening and shallowing up sequences. 38 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne accommodation « Eustacy » vs « Relative sea-level change » Several Eustatic Curves have been compiled and progressively improved (Haq, Miller, Kominz,…) . They can be applied everywhere. Haq Eustatic Curve Relative sea-level change = variation of water depth in one basin. It’s the combination of eustacy, and local constraints: subsidence/uplift and sediment flux. sediment flux Relative sea-level change in a basin can be approached by analysis of the stratal architecture combined with sedimentary facies. Eustacy Relative sea-level Bst vertical mvt 39 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Eustacy = variation of the global World Ocean (all seas & oceans being connected) this is due to changes in the shapes of the ocean floor ( variable rates of sea-floor spreading, mantleconvection induced uplift,…) or of the volume of water in the World Ocean (growth or decay of polar icecaps, soil moisture, water thermal expansion…). Stratal geometry (for beginners…) Condensed section aggradation Canterbury Basin, New Zealand 2 mains patterns: several possible causes f(subsidence, sediment flux, sea-level) Aggradation: Sed. Rate ≤ Accomm Divergent: Differential subsidence Progradation : Sed Rate ≥ Accomm Onlap Sed. Rate > Accomm Sed. Rate < Accomm gin Mar VS in Bas bathymetry Down-lap 40 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne progradation Sedimentation pattern of Neogene passive margins 0 -50 Eustacy 0 +50 +100 Slope shales Reworked clastics 10 Miocene 20 Maximum Flooding Surface Modifié d’après Bartek et al, 1991 30 Oligocene sequence boundary 41 Orbital parameters of the Earth variable sun energy received outer envelopes temperatures climate sedimentation Stratigraphic record Valanginian, S. France 42 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Fluvial & delta Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Pliocene Sedimentology : lithofacies Lithofacies = Lithology Mineralogy, granulo, morphometry Source, transport, duration, environment,bathymetry Texture Mode of association of constitutive elements Mode of transport & deposition structure Geometry of the sedimentary body Hydrodynamics biochemicals, biological indicators 43 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Lithofacies is the set of physical features of a sedimentary rock. Lithofacies provides info on depositional conditions. Sedimentary basins result from the complex interaction of internal and external forcings_ “Reading” the sedimentary record allows to decipher the controlling factors and their temporal evolution. 44 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne synthesis 1.3.Sedimentary basins & societal issues Salt Geothermy Aquifers Stones Natural resources Iron ore Fossil energy Gas storage 47 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne es l sequestration Argi es abl mé r e imp Natural Reactor = ore formation Dissolved metallic ion s Sediments Sediment deposition & ions precipitation ores © P.J.Combes subsidence 48 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne erosion & weathering eosion & weathering Natural Reactor = hydrocarbons generation Organic mater (anoxiclake) sol © M. Séranne migra tion soil oil burial Maturation f(temperature, pressure, time): Organic matter -> kerogene -> Oil -> gas! 49 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Biosphere Biosphere (Carbon) Ressources minérales eau Énergie fossile La vaste majorité des ressources naturelles provient des bassins sédimentaires 50 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Consommation ressources naturelles /an / personne 51 Réserves mondiales de Charbon Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne (estimations en 2000) Réserves & ressources mondiales de Pétrole et de Gaz non-conventionnel Pétrole Ressource > 15000 Gtec ; Production = 5Gtec/an Gtec: 109 tonnes équivalent charbon Mauriaud & al, 2013 « La faim du pétrole » Gaz Pétrole : 2000 Gbep (dont 80% conventionnel) Gaz : 2500 Gbep (dont 49% conventionnel) Gbep: 109 barils équivalent pétrole en 2010 Réserves mondiales de pétrole & gaz= 2665 Bboe Bboe: Billion Barrel Oil Equivalent = 109 barils équivalent pétrole 52 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne conventionnel
Documents pareils
Déformation lithosphérique: forçages internes
• Biological activity contributes to sediment flux.
⇒ in-situ carbonate production in favourable environments (« carbonate factory » in ocean,
lakes) -> climate-dependent
⇒ reworked carbonates be...