Déformation lithosphérique: forçages internes
Transcription
Déformation lithosphérique: forçages internes
Dynamique des Bassins Michel Séranne 1 1- Origin of Sedimentary Basins 1.1 Lithospheric deformation: Internal forcings 1.2 Sedimentation: External forçings 1.3 Sedimentary basins & societal issues 2 © NASA Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne 1- Origine des Bassins Sédimentaires • Déformation lithosphérique: forçages internes • Sédimentation : forçages externes • Bassins Sédimentaires et ressources naturelles 2- Cadre géodynamique des Bassins Sédimentaires • Analyse de la subsidence • Bassins liés à la divergence - rifts - marges passives • Bassins liés à la convergence - bassins foreland • Autre types de bassins 3- Évolution post-dépôt des Bassins Sédimentaires • Compaction - Diagenèse • Circulation des fluides • Cas de la matière organique • Systèmes pétroliers Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Bat 22, 3eme Étage Gauche Page perso: www.gm.univ-montp2.fr/MichelSeranne What is a sedimentary basin ? : it’s a depression filled with sediments Distribution of sedimentary basins (sediment accumulation > 1km) 3 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne => Study of sedimentary basins = analysis of processes responsible for the origin of: 1- the depression (mostly controlled by internal forcings « Earth machine ») 2- the sedimentary-fill (controlled by interaction of internal and external forcing) 1.1.Lithospheric deformation: Internal forçings Struture and rheology of the Earth envelopes Basin forming driving mechanisms are related to processes within the rigid, cooled thermal boundary layer of the Earth known as the Lithosphere. Lithosphere mantle => The Earth’s interior is composed of number of compositional and rheological zones. ⇒ The main compositional zones are the crust (low density rocks + sedim. cover), mantle (olivine) and core (metallic : iron & nickel). Solid crust Rigid Lithosphere mantle Outer core Molten outer C. Solid inner C. 4 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne atmosphere • Sedimentary basins are formed between solid and fluid envelopes of the Earth. • Continental & oceanic crusts are compositionally different from the underlying mantle • The outer mantle and the crust makes the lithosphere (rheological unit) • The outer mantle has the same compostion as the underlying convective mantle (asthenosphere) Definition of the outer envelopes of the Earth that interact to form sedimentary basins 5 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Basics about the Lithosphere • Definitions Characterization of the different layers of the lithosphere. Deformation of the lithosphere induces the formation of sedimetary basin. 6 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Basics about the Lithosphere • parameters controling lihosphere rheology Basics about the Lithosphere • Principle of isostacy mountain Continent (low density) • Total mass of each column must be equal. « anti-root » Mantle (high density) Mountain root Depth of equal pressure The Airy hypothesis: Blocks of the same density (material), but different thickness, floating about an equilibrium surface => uneven Moho (roots beneath mountains and rises beneath basins) . ! Yes Pratt model blocks of differing density (lighter beneath mountains and denser beneath basins) => flat Moho. Not d fie veri ta a d y b 7 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Ocean basin Local isostacy : model = snow cover load balanced vertically, beneath the load => lithosphere behaves like independant columuns => no rigidity Regional isostacy:model = trampoline Load distributed over a wide area => each segment of the lithosphere is linked to the next => flexural rigidity 8 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Basics about the Lithosphere • Principle of isostacy Basics about the Lithosphere • Principle of isostacy c y if Onl lly loca ated ! s n e omp 9 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne weight of a lithosphere column before basin formation = weight of a column after basin formation Basics about the Lithosphere • Principle of isostacy e rcis Basin moho Considering that seismic data provides the depth of basement beneath the basin (5km) , and that Initial crust thickness = 30km Density of crust = 2.7 t/m3 Density of sediments = 2.2 t/m3 Density of mantle = 3.3 t/m3 Considering isostatic equilibrum, what is the depth of the Moho beneath this basin ? 10 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne e xe Internal driving forces of the Earth machine Global Heat Flow Map • Energy of accretion at the time of its formation ; • Energy related to formation of iron-rich core ; • Energy from decay of radioactive elements (mostly in the crust) => Responsible for mantle dynamics (convection) => Makes the plates moves at the surface => Energy loss to space = surface heatflow Mantle convection 3D simulation Nataf & Sommeria, 2000 11 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne The Earth internal flux of energy = sum of: The internal heat is continuously dissipated outwards from the centre of the Earth in 3 ways : • Conduction : Thermal energy transmitted between atoms ⇒ Inner core and Lithosphere • Advection : Movement of hot material to surface => Volcanoes and hot spot ; • Convection : Movement of material in the mantle and outer core by density differentiation of the plastic material => Plate tectonics 12 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Internal driving forces of the Earth machine Plate tectonics: lithosphere movements Subduction zone America Relative Atlantic Ocean movement Acretionary ridge W. Europe Lithosphere Asthenosphere Convection cells • Earth internal energy = Energy of accretion at the time of its formation + Energy related to formation of iron-rich core + Energy from decay of radioactive elements => dissipated at surface = heat flux. •The heat flux propagated by convection in the plastic upper mantle is converted into mechanical energy (and localized partial melting) at the base of the Lithosphere and dissipated by plate motion and deformation. • Lithospheric plates movements (1000’s km laterally , 1000’s m vertically). 13 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Pacific Ocean Lithospheric surface of the Earth showing plate tectonics (plate boundaries, earthquakes and volcanoes). 14 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Plate tectonics Distribution of sedimentary basins (sediment accumulation > 1km) Continental passive margins , subduction zones, foreland of present or ancient mountain belts, centre of cratons. 15 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Sedimentary basins and Plate tectonics www.marlimillerphoto.com/ Fort Proctor Louisiana (Gulf of Mexico): - subsidence > 1 m since1850 16 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne How to create a depression ? How to create a depression ? 20°C 20°C 1- Cooling 1300°C 1300°C 2- Stretching/ thinning 3- Loading Any sedimentary basin subsidence results from one of these 3 processes or a combination of them 17 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne -> 3 lithospheric processes account for subsidence Stretching/Thinning Sand-box Analog modeling © Michon, 2000 Reflexion seismic - North Sea Rift Copyright © 2008 Virtual Seismic Atlas Marsden et al.'s (1990) interpretation of BIRPS' NSDP84-1 deep seismic line. MARSDEN, G, YIELDING, G, ROBERTS, A & KUSZNIR, N. 1990 18 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Stretched lithosphere is thinned because of mass conservation - faulting in upper crust, - rising of basal lithosphere Age of the oceanic Lithosphere (oceanic floor) Lithosphere emplaced at midoceanic ridges (accretion) and then moves apart symetrically (seafloor spreading) 0 80 180 Ma 2km Bathymetry of the oceanic Lithosphere (oceanic floor) increases away from oceanic ridges 5km http://jules.unavco.org/Voyager/Docs/EarthScope 19 http://topex.ucsd.edu/WWW_html/mar_topo.html Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Cooling: example Accretion Very high geotherm • Cooling of oceanic lithosphere • Increasing bathymetry of oceanic floor • Increasing thickness of oc. lithosph. age & distance Sea level -2km -5km 0°C Carlson&Johnson, 1994 z 1300°C geotherms Depth or subsidence of oceanic lithosphere = f[lithosphere age] 1/2 20 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Thermal contraction of the Oceanic Lithosphere Loading of the lithosphere => flexure Congo drainage area Atlantic accre Congo fan Sedimentary load of the Congo deep-se-fan ( > 5km thick) => Deflexion by flexure of the oceanic lithosphere (subsidence) Modifié d ’après Uchupi, 1992 21 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne tionary ridge Niger fan Loading of the lithosphere => flexure load flexure flexure Uplift (Plume) flexure Hawai Plume 22 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne 500km 23 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Different types of basins according to plate tectonic setting: spatial and temporal evolution from one type to another 1.2. Sedimentation: External forcings • Tides results from combined attraction of the Moon and the Sun on the oceans (& on the crust). • Sedimentation records variations of parameters external to the Earth Burdigalian (Digne foreland Basin) 24 Present: Baie du Mont Saint Michel Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne • Tidal sediments = Sediment deposition controled by the tides (cyclic phenomenon). y External forcings • Periodic changes in the Earth’s orbital parameters affect the amount of radiation from the Sun. • The energy dissipated by the Sun varies with time => variation in radiation received by the Earth. ⇒ The total amount of solar radiation received on the Earth’s surface governs long-term (100’s of millions of years) and short-term (10-1000’s years) temperature of the atmosphere and hydrosphere. Through complex feedback loops, this has direct and indirect consequences on Climate and associated exogenic transfer processes. => Climate forcing affects the way the sedimentary basins are filled 25 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Energ Insolation : sun’s energy Sun’s energy 45° 1.41 m2 ->242W/m2 90° 1m2 ->342W/m2 • High latitudes receives less energy than inter-tropical areas • Insolation seasonal variation Sun = m the from o r f y Energ 0 x energy 10 00 rnal Earth inte Sun’s energy NO tilt • No seasonal variation of insolation • Increased yearly average temperature 26 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne tilt Milankovitch cycles P = precession E = eccentricity • Orbital parameters of the Earth have been acting over the whole history of the planet (albeit changes in periodicity and amplitude). • Milankovitch cycles have been recorded in sediments with different intensity through time. • During Quaternary, Milankovitch cycles are particularly well expressed (Glaciations stages) 27 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne T= tilt or obliquity insolation => climate => sedimentation Sun energy ©ArthusBertrans Temperature, pluviometry, seasonnallity, … Erosion, weathering, life, river transport, ocean circulation… sedimentation 28 ©NASA Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Atmosphere Hydrosphere Biosphere Hettangian (S-Cevennes) records cyclic flooding and desiccation of shallow carbonate platform. Sedimetary record counts tens of cycles subdivided into 5 smaller cycles; interpreted as eccentricity (100ky) combined with precession (20ky) forcing © M. Séranne © Y. Hamon Oligocene evaporites (Portels/Corbières) record of seasonnal, cyclic desiccation of lagoon © Y. Hamon 29 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Periodic changes in forcings => sedimentary cycles Periodic changes in forcings => cycles • Combination of stacking of several signals => complex stratigraphic record - Basin analysis aims at deciphering these signals - sedimentary basinfill contains these signals => Archives - several nested sequences in the stratigraphic record Guillocheau 2000 • Signals of different time/space scale => record of stacked (nested) cycles 30 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne • Periodic (or not) changes in the controlling processes => record cycles r iai rt Te e ac ét Cr é © M. Séranne Chicxulub impact 31 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Non-periodic changes in forcings => catastrophic events Non-periodic changes in forcings => record of events Tonga, March 2009 One cinerite bed (ashes layer) interbeded the continental cyclic lacustrine siltites of the Permian Lodève Basin. 32 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Volcanism -> ashes in atmosphere -> modify climate Volcanism -> ashes -> widespread & contemporaneous deposits -> correlation & dating Sediment or not sediment ? Stratigraphy (≠ sedimentology) = study of sediment stacking pattern thickness Time control Time control 33 distance Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Sediments are deposited and preserved in some parts of the basins, not everywhere, not at all time ⇒ incomplete and inhomogeneous record related to basin depositional evolution ⇒ Basin dynamics accounts for sediment distribution in space and time Sediment accumulation rate Sedimentary deposits are an uncomplete and distorted record of time Deposits age (Ma) Modeled from several datings hiatus Time hiatus = no deposit correlates with this time interval => Eroded or never deposited? Slow accumul. rate Fast accumul. rate •Sediment accummulation rate varies through time in basins. • Depends on sedimentary processes, paleogeography, sediment flux, subsidence… => Part of the record of Basin dynamics 34 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Deposits age (Ma) Sediment thickness (m) Sediment thickness (m) Observed Exercise : Sediment accumulation rate Languedoc Synthetic lithostratigraphy and tectonic evolution of Languedoc Lacustrine Lutetian 50Ma E. Eocene Slope Berriasian 190Ma "Calcareous" Lias 200Ma 0 Aalenian Toarcien Domerian Carixian Sinemurian Lagoonal platform 0 Hettangian Late Triassic Triassic 250Ma Early Triassic Variscan basement Sabkha Fluviatile onset of Tethyan rifting 35 sandstone lacustrine limestone dolomite marly limestone bioclastic limestone conglomerate marl & silts evaporites limestone grainstone Sediments accumulate in basins if: 1- there is a gravity-driven flux of sediment (erosion/ transport/ deposition) => base level 2- there is space available to trap the sediment => accommodation space Sediments are generated if: • Deformation of the topographic surface of the lithosphere induced by internal forcing (mountain-building, volcanism, thermal uplift…). ⇒ Erosion of the topography, mobilization of detritals, transport, deposition. ⇒ All processes governed by gravity. ⇒ Processes strongly dependent on external forcing (climate…). • Biological activity contributes to sediment flux. ⇒ in-situ carbonate production in favourable environments (« carbonate factory » in ocean, lakes) -> climate-dependent ⇒ reworked carbonates behaving as detritals ⇒ plants residues (coal) • (Bio-) Chemical activity = weathering, alteration, evaporation, precipitation. 36 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne 0 1 Bajocian 50 gravitational listric faulting "Marly" Lias Carbonate ramp 2 Thermal subsidence Bathonian Dogger 175Ma 0.5 L. Oxfordian Callovian deepening-up 1 Gulf of Lion Margin Emmersion Reef platform Kimmeridgian 160Ma Renewed subsidence Basin 150Ma Malm 3 mid-Cretaceous Erosion e Valanginian Portlandian 1.5 uxit ba 140Ma 145Ma E.Pyrenean unconformity Fluviatile/lacustrine 100 rifting Early Cretaceous (Neocomian) Alluvial fans Sediment thickness (km) 60Ma Paleocene Late 70Ma Cretaceous Maastrichtian 100Ma 130Ma 150 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Alluvial fans Bartonian rifting unconformity Marine Eocene Fluviatile North Tethyan Margin Priabonian continental 30Ma Deposits age (Ma) 200 Pyrenean foreland basin Alluvial fans L. Rupelian cont. Oligocene 2.5 2 break-up unconformity Vocontian period 20Ma Aquitanian 3 Messinian erosion Compare sediment record and time: construct the accummulation curve for the Languedoc area "Bassin du Sud-Est" (Tethyan aborted rift) Shoreface E. Miocene shallowing-up ¹3ÏRANNE Burdigalian Mediterr. desiccation Thermal subsidence Langhian 16Ma 3.5 Rifting Gilbert-deltas Tectonics Thrusting & growth strata 5Ma Discontinuities inversion Sedimentary environments Fluviatile Pliocene cont. Lithographic column 0Ma marine Stratigraphy Pliocene marine approx. thickness km Base-level upstream Base level (Wheeler, 1964) : • is an abstract, non physical dynamic surface ; can be assimilated to an upstream-downstream profile in 2D sections • is above the earth surface where deposition occurs, below where erosion occurs, and equal to the earth srface where there is an equilibrium (e.g., bypass) ; • represents the surface where sediment flux would be constant (i.e., a balance would exist between sediment supply and removal) ; • is a potentiometric surface (i.e., the surface along which the energy of sediment flux is minimized) ; • is a dynamic surface (i.e., it vibrates with respect to the physical surface in time and space) ; • exists in a system where space, energy and mass are conserved. 37 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne downstream Available space => Accommodation Eustacy Basin subsidence Intraplate deformation Accommodation : it is the rate (measured in m/Ma) at which space is being made available for sediments to be trapped in the basin. It is the result of the vertical movements of the basement (subsidence + lithoshere deformation) and of eustacy (World ocean level). Sediment flux may or may not fill the availlable space. This is determined by the balance of sediment rate and accommodation. Sed. Rate < Accomm => underfilled basin, water depth increases (starved basin, condensation surface) Sed Rate = Accomm => basin remains at the same water-depth => persistance of sedimentary facies through time Sed. Rate > Accomm => basin being filled, water-depth decreases, coarsening and shallowing up sequences. 38 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne accommodation « Eustacy » vs « Relative sea-level change » Several Eustatic Curves have been compiled and progressively improved (Haq, Miller, Kominz,…). They can be applied everywhere. Haq Eustatic Curve Relative sea-level change = variation of water depth in one basin. It’s the combination of eustacy, and local constraints: subsidence/uplift and sediment flux. sediment flux Relative sea-level change in a basin can be approached by analysis of the stratal architecture combined with sedimentary facies. Eustacy Relative sea-level Bst vertical mvt 39 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Eustacy = variation of the global World Ocean (all seas & oceans being connected) this is due to changes in the shapes of the ocean floor ( variable rates of sea-floor spreading, mantle-convection induced uplift,…) or of the volume of water in the World Ocean (growth or decay of polar ice-caps, soil moisture, water thermal expansion…). Stratal geometry (for beginners…) Condensed section aggradation Canterbury Basin, New Zealand 2 mains patterns: several possible causes f(subsidence, sediment flux, sea-level) Aggradation: Sed. Rate ≤ Accomm Divergent: Differential subsidence Progradation : Sed Rate ≥ Accomm Onlap Sed. Rate > Accomm Sed. Rate < Accomm gin Mar VS in Bas bathymetry Down-lap 40 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne progradation Sedimentation pattern of Neogene passive margins -50 Eustacy 0 +50 +100 0 Slope shales Reworked 10 clastics Miocene 20 Maximum Flooding Surface Modifié d’après Bartek et al, 1991 30 Oligocene sequence boundary 41 Orbital parameters of the Earth variable sun energy received outer envelopes temperatures climate sedimentation Stratigraphic record Valanginian, S. France 42 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Fluvial & delta Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Pliocene Sedimentology : lithofacies Lithofacies = Lithology Mineralogy, granulo, morphometry Source, transport, duration, environment,bathymetry Texture Mode of association of constitutive elements Mode of transport & deposition structure Geometry of the sedimentary body Hydrodynamics biochemicals, biological indicators 43 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Lithofacies is the set of physical features of a sedimentary rock. Lithofacies provides info on depositional conditions. Sedimentary basins result from the complex interaction of internal and external forcings. “Reading” the sedimentary record allows to decipher the controlling factors and their temporal evolution. 44 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne synthesis Stratal geometry NW NW Marocco margin Interpret the seismic profile (line-drawing) 45 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne SE 1.3.Sedimentary basins & societal issues Salt éab es les im Geothermy Aquifers Stones Natural resources Iron ore Gas storage Fossil energy 46 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne sequestration Argil m per Natural Reactor = ore formation s Sediment deposition & ions precipitation Sediments ores © P.J.Combes subsidence 47 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Dissolved metallic ion erosion & weathering eosion & weathering Natural Reactor = hydrocarbons generation Biosphere Organic mater (anoxiclake) sol migra soil tion © M. Séranne oil burial Maturation f(temperature, pressure, time): Organic matter -> kerogene -> Oil -> gas! 48 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Biosphere (Carbon) Ressources minérales Énergie fossile La vaste majorité des ressources naturelles provient des bassins sédimentaires 49 (estimations en 2000) 50 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne eau Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Consommation ressources naturelles /an / personne Réserves mondiales de Charbon Réserves & ressources mondiales de Pétrole et de Gaz non-conventionnel Pétrole Ressource > 15000 Gtec ; Production = 5Gtec/an Gtec: 109 tonnes équivalent charbon Mauriaud & al, 2013 « La faim du pétrole » Gaz Pétrole : 2000 Gbep (dont 80% conventionnel) Gaz : 2500 Gbep (dont 49% conventionnel) Gbep: 109 barils équivalent pétrole en 2010 Réserves mondiales de pétrole & gaz= 2665 Bboe Bboe: Billion Barrel Oil Equivalent = 109 barils équivalent pétrole 51 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne conventionnel Mass of carbon estimated to be sequestrated as natural gas hydrates compared to other carbon sources. Modified from various sources. Beauchamp, 2004 Comptes Rendus Geoscience, Volume 336, Issue 9, July 2004, Pages 751-765 52 Master1 Géologie des Réservoirs Dynamique des Bassins - Michel Séranne Gas hydrates
Documents pareils
12 1.2. Sedimentation: External forcings
⇒ Erosion of the topography, mobilization of detritals, transport, deposition.
⇒ All processes governed by gravity.
⇒ Processes strongly dependent on external forcing (climate…).
• Biological ac...