SMOOTH MINIMUM DISTANCE ESTIMATION AND TESTING IN
Transcription
SMOOTH MINIMUM DISTANCE ESTIMATION AND TESTING IN
UNIVERSITE LIBRE DE BRUXELLES DEPARTEMENT DE MATHEMATIQUE INSTITUT DE RECHERCHE EN STATISTIQUE (ECARES) SEMINAIRE SMOOTH MINIMUM DISTANCE ESTIMATION AND TESTING IN CONDITIONAL MOMENT RESTRICTIONS MODELS : UNIFORM IN BANDWIDTH THEORY. Pascal LAVERGNE Simon Fraser University and CREST-ENSAI (joint work with Valentin PATILEA, INSA-IRMAR and CREST-ENSAI) VENDREDI 6 MARS 2009 à 14 H 30 Campus Plaine – Bâtiment NO – 9ème étage – Salle des Professeurs ABSTRACT We propose a new class of estimators for models de ned by conditional moment restrictions. Our generic estimator minimizes a distance criterion based on kernel smoothing. We develop a theory that focuses on uniformity in bandwidth. We establish a pnasymptotic representation of our estimator as a process depending on the bandwidth within a wide range including xed bandwidths and that applies to misspecied models. We also study an ecient version of our estimator. We develop inference procedures based on a distance metric statistic for testing restrictions on parameters and we propose a new bootstrap technique. Our new methods apply to non-smooth problems, are simple to implement, and perform well in small samples 2008-2009/14
Documents pareils
SEMINAIRE STATISTICAL ANALYSIS OF NOISY POINT
UNIVERSITE LIBRE DE BRUXELLES
DEPARTEMENT DE MATHEMATIQUE
INSTITUT DE RECHERCHE EN STATISTIQUE (ECARES)