Practice Mini-test: Complex Numbers
Transcription
Practice Mini-test: Complex Numbers
Name: ______________________ Class: _________________ Date: _________ ID: A Practice Mini-test: Complex Numbers 4.8.1: I can identify i and simplify imaginary numbers. 1. a.) −225 b.) c.) −3 −400 4.8.2: I can write numbers in complex form and use the properties of real numbers to add, subtract, and multiply. 2. Write the following number in complex form: a.) −121 + 56 b.) −20 − 90 c.)(−4 − 8i) 2 3. Simplify a.) (9 + 7i) + (6 − 2i) b.) (3 + 11i) + (10 + 9i) c.)(3 − 8i) − (−4 + 9i) e.)(−8i) 2 f.)(1 − 9i)(3 + 2i) d.) (4 + i) − (3 + 2i) g.) (2 + 4i) 2 4.8.3: I can divide complex numbers. 4. a.) 2 − i 4 + 3i b.) −6 + 2i c.) 4 − 2i 3 − 3i −2 − 4i 4.8.4/5.3.2/5.6.2: I can find the solutions (real and imaginary of polynomials using a variety of techniques. 5. a.)x 2 + 4 = 0 b.)2x 2 + 4 = −124 c.)3x 2 − 4 = −31 6. a.) 2x 2 + 6x + 7 = 0 b.) −2x 2 − 4x − 3 = 0 c.) −4x 2 + 4x = 22 7. a.) x 3 + x 2 + 4x + 4 = 0 b.) x 4 + 4x 3 + 7x 2 + 16x + 12 = 0 1 c.) x 5 − 8x 3 − 9x = 0 ID: A Practice Mini-test: Complex Numbers Answer Section SHORT ANSWER 1. ANS: a.) 15i b.) i 3 c.) 20i PTS: 1 2. ANS: a.) 56 + 11i b.) −90 + i 20 c.) −48 + 64i PTS: 1 3. ANS: a.) 15 + 5i b.) 13 + 20i c.) 7 − 17i d.)1 − i e.)64i 2 = −64 f.)21 − 25i g.)−12 + 16i PTS: 1 4. ANS: a.) 1 + −2 i 5 5 4 −2 b.) − + i 3 3 c.) i PTS: 1 5. ANS: a.) x = ±2i b.) x = ±8i c.) x = ±3i PTS: 1 1 ID: A 6. ANS: i a.) − 3 ± 2 b.)−1 ± i 20 4 8 −4 i 336 c.) 1 ± 4 −16 PTS: 1 7. ANS: a.) -1, i, -i b.) -3, -1, -2i, 2i c.) -3, 0, 3, i, -i PTS: 1 2
Documents pareils
Erémic JeanBClaude (alias JEAN ART) 31B33 av Jean
''''''''''''''''''''''''''''''''''''''3/A)/"Q'&<$O<2%A)/"Q'%+A)"O"TA)Q'FN*%'A
Plus en détail
Pour une politique du logement..
I-)&-G-,.4-)&?&)3+C0-&N&
A"/.-,3A%22%,%22%<)#'%)K"'%)*01,./0%)*5#(-,-(0)C#4,-H#%)9),.)2"/(-%)'"/*)*%);"/(3.#3;/-'1%).:-')*%)/%,"F%/)
,%2) 2-'-2(/02<) .) 0(0) *.'2) #') C/%&-%/) (%&C2) %'$.B-) C./) ...
Bezoutians, Euclidean Algorithm, and Orthogonal Polynomials
terms of the remainders for the Euclidean algorithm. In case of two polynomials of the same
degree, or of consecutive degrees, this allows us to interpret their Bezoutian as the ChristoffelDarboux ...