DIODON VOL 35 No 2
Transcription
DIODON VOL 35 No 2
Décembre 2014 Vol 35 No.2 editorial Sommaire EDITORIAL VOYAGE PLONGEE : Requins marteaux à gogo… ACTUALITE : Tian Xiang : 18e récif artificiel à Maurice Chers amis lecteurs, D’après la NOAA, ce mois de septembre 2014, la planète a connu un coup de chaud sans précédent depuis le début des relevés de températures en 1880. En effet, La température moyenne mesurée sur les terres émergées a été de 15,7°C, soit 0,72 °C au-dessus de la moyenne du XXe siècle (15 °C). Sans pouvant pour autant faire un lien direct avec le réchauffement climatique, le climat global, n’étant analysable que sur des échelles de temps très longues (par-delà les fluctuations locales et momentanées), cette chaleur exceptionnelle s’inscrit dans la tendance à la hausse du XXe siècle : chacune des décennies étant plus chaude que la précédente, sauf pour les années 1940. Parallèlement, les dirigeants européens siégeant à Bruxelles sont parvenus le 24 octobre à un accord sur l’ampleur de la réduction des émissions de gaz à effet de serre : réduction de 40% d’ici 2030 par rapport aux niveaux de 1990. Mais quid des pays comme les Etats-Unis et la Chine ? Cet accord sera-t-il suffisant pour limiter la hausse de 2 degrés de la température mondiale qui se profile à l’horizon 2050? Rien n’est moins sûr. Depuis le dernier rapport du Giec en 2009 la situation s’est aggravée. En effet les émissions de gaz à effet de serre ne cessent de s’accélérer malgré les efforts engagés. Elles ont augmenté de plus de 30% entre 1990 et 2010. En cause: le retour en force du charbon, redevenu plus compétitif. Ce réchauffement affecte aussi les océans bien sûr, causant des bouleversements incessants de nos écosystèmes. Ainsi : - les espèces tropicales envahissent de plus en plus les mers tempérées comme en Méditerranée par exemple par le biais du Canal de Suez. En effet dans le sud de la France ont été péchés en 2010 des poissons qui jusqu’à lors ne se rencontraient que dans les eaux de la Mer Rouge ou même dans les eaux mauriciennes comme le barracuda ou le poisson flûte Fistularia commersonii ! - le blanchiment des coraux s’étend de plus en plus vers les zones hors tropicales, comme celui de grande amplitude survenu en juillet/août de cette année à Miami et en Floride en général, pourtant situé au dessus du tropique du cancer. - le corail se détériore de plus en plus. En effet les derniers relevés de 2014 indiquent que la Grande Barrière de Corail en Australie est dans le pire état jamais connu et qu’elle est en train de perdre sa capacité à se régénérer. Sa couverture corallienne a diminué de moitié depuis les années 1980 lorsque le récif a été répertorié comme un site du patrimoine mondial. - l’acidification des océans se poursuit : leur pH moyen étant passé de 8,16 au début du 19e siècle à 8,05 aujourd’hui. Or l’échelle de pH est « logarithmique » : une baisse de 1 unité reflète une concentration en ions H+ multipliée par 10 ! - etc…. les exemples sont trop nombreux pour tous les citer ici. Nous, avec nos partenaires (MSDA en particulier) si petit que nous soyons à l’échelle de la planète, nous poursuivons nos actions afin de lutter contre ce fléau. Les dernières ACTUALITE : Stranding of Dwarf Sperm Whale (Kogia Sima) ENVIRONNEMENT : Progress of the REMMOA aerial surveys conducted in the French EEZ and adjacent waters: contrasted cetacean habitats in the southwest Indian Ocean. (End) ENVIRONNEMENT : Coral reefs are the most diverse Earth ecosystem BIOLOGIE : MOLLUSQUES ENDÉMIQUES DE L’OCÉAN INDIEN Le Cône textile vaulbert, Conus (Cylinder) textile vaulberti ACTUALITE : Expedition to Agalega MONDE : Culler whales keep a balance 2 3 7 9 11 15 19 21 23 actions en date sont, entre autres, le coulage du Tiang Siang 137 comme 18e récif artificiel à Maurice ou encore l’exposition « Un point de vue sur les requins ». Vous pourrez avoir tous les détails de ce sabordage, ainsi qu’un livret présentant l’exposition dans ce Diodon. Vous pourrez aussi vous tenir au courant de certaines autres actions du MMCS comme l’expédition à Agaléga ou encore l’étude du cachalot nain échoué à Bambous Virieux en mars. De nombreux autres articles à ne mas manquer non plus dont un sur la plongée avec les requins marteaux et les raies mantas en Mer Rouge… Ainsi, sans plus tarder, je vous laisse découvrir ce nouveau Diodon. Bonne lecture! N. von Arnim DIODON Photo page de garde Corail mou : Dendronephthya klunzingeri Photo : Yann von Arnim Elphinstone, Mer Rouge. 2 voyage plongÉe Requins marteaux Paris, 21h, aérogare Charles de Gaule. Un brouhaha nous entoure. Attablés face à face, je sirote un thé aux agrumes pendant que mon mari, titille son sandwich aseptisé déballé il y a quelque minutes du cellophane. Notre vol pour Dubaï embarque dans 50 minutes. Cette ville où les hôtels de luxe et les plages chaudes sont la destination de nos nombreux voisins, n’est pourtant pas ce qui nous attire. Pour nous ce ne sera qu’une escale vers une destination beaucoup plus exotique : une croisière plongée en Mer Rouge au départ de Port-Soudan. Après avoir somnolé tant bien que mal pendant notre escale de 7h à Dubaï, puis avoir été tour à tour frigorifiés et ébouillantés dans l’avion qui nous menait à notre destination finale, il est déjà 17 heures quand nous nous préparons à embarquer sur l’Océanos qui sera notre bateau de croisière. La foule qui nous entoure s’affaire, dans un embouteillage de zodiacs, à diriger tous les plongeurs débarqués, du seul vol de la semaine, sur le bon bateau, ce qui n’est pas une mince affaire chacun s’interpellant avec animation dans une langue étrangère, qui en arabe, qui en italien, qui en français, qui en russe, qui en anglais, qui en espagnol, et j’en passe !! En attendant le sauf conduit des autorités pour quitter le port, nous déballons le matériel de plongée, tandis que le soleil, tel un artificier contrôlant à merveille sa pyrotechnie, déverse ses derniers rayons dans un flamboiement de couleurs, changeant progressivement de l’orange au violet …. Et c’est parti. Notre excursion sousmarine nous mènera au Nord de Port Soudan, dans les eaux limpides des atolls de Sanganeb et Shab Rumi avant de terminer sur l’incroyable épave de l’Umbria. Que ce soit à Sanganeb ou à Shab Rumi, nous plongeons sur des tombants descendant en escalier de 5 à plus de 200 mètres où patrouillent requins marteaux, requins gris de récif, barracudas en bancs serrés, caranges qui copinent avec les licornes pour former de vastes bancs bicolores, bécunes, thons, napoléons… A raison de 3 à 4 plongées par jour, débutons toujours dans le bleu où de nombreux requins marteaux (Sphyrna lewini), timides, viennent faire une brève apparition, avant de déguerpir, effarouchés par le banc de plongeurs que nous formons, surmonté de sa large colonne de bulles, mais curieux tout de même, ils pointent à nouveau leur nez, s’éloignent à nouveau, reviennent vérifier si nous sommes toujours là etc…. Après une dizaine de minutes à contempler leur ballet, DIODON 3 à gogo… nous nous arrachons avec peine aux -40 mètres du bleu et la plongée se poursuit le long du tombant que nous remontons progressivement pour éviter les paliers de décompression, et là, c’est l’explosion de couleurs : les gorgones d’espèces variées (Melithaea sp., Supergorgia hicksoni) allant du rouge au violet, disputent la place aux coraux durs de toutes formes et teintes comme le corail de feu (Millepora dichotoma) étalant ses éventails de dentelle brune bordée du rouge intense des éponges encroûtantes, ou le corail peau d’éléphant (Mycedium elephantotus) formant de véritables tables prêtes à recevoir la vaisselle fine, ou encore ces coraux imitant des fils de fer tordus (Cirripathes anguina), sans compter les patates de toutes sortes, comme des mamelles multiples, et j’en passe, ainsi qu’aux coraux mous du genre Dendronephthya, flamboyants dans leurs couleurs chatoyantes allant du rose au rouge vif et passant par tous les tons d’orangé et de violet. Entre les dédales de cette vie fixée, une kyrielle de poissons de récifs colorés s’agite en tous sens à notre approche. Une nuée de barbiers orange (Pseudoanthias squamipinnis), typiques de la Mer Rouge, virevoltent au gré du courant et des mouvements des plongeurs, les poissons ange géographes attirent notre regard de leur robe magnifique imitant une ile d’or au milieu d’une mer d’azur, quelques pseudochromis de Fridman (Pseudochromis fridmani), endémiques de la Mer Rouge, dansent un ballet en tutu violet. Mais mon préféré reste le poisson voyage plongÉe DIODON 4 voyage plongÉe DIODON 5 voyage plongÉe en transport de troupes pendant la 2e guerre mondiale, transportait bombes, obus, détonateurs, véhicules etc… quand le 9 juin 1940, arrivant en vue de Port Soudan il mouille sur le Wingate Reef. Malheureusement, le lendemain, l’entrée en guerre de l’Italie amène le capitaine à organiser le sabordage du navire : les différentes plaques d’obturation des prises d’eau étant brisées et l’équipage évacué sous couvert d’un hypothétique exercice d’évacuation. Ainsi, sur un fond de 38 mètres, remontant jusqu’à 3 mètres de la surface où affleurent les bossoirs tribord, l’Umbria git sur le côté babord tel un mastodonte, intact, sans traces d’explosion ni brèche, avec sa cargaison complète. Les mats, grues de chargements et la cheminée, tels de grands tentacules tordus, rejoignent le fond. Les parois du château, peu abimées, donnent une bonne idée de cette partie de l’épave, avec les quatre paires de bossoirs des chaloupes de chaque côté, et le large trou cylindrique d’où sortait la cheminée. Suivant prudemment notre guide, nous nous faufilons à travers couloirs et coursives : des cales avec ses murs de bombes, de munitions, et de voitures aux toilettes du capitaine, en passant par la cuisine et son four à pizza jusqu’aux montagnes de bouteilles de chianti, sans oublier la salle des machines ! Exceptionnel, même pour les non-amateurs d’épaves comme moi !!! papillon jaune (Chaetodon semilarvatus), toujours en couple et qui arbore une robe jaune fluo avec un œil maquillé de bleu. Nous ne voulons plus sortir la tête de l’eau ! Et pourtant la magie continue une fois remontés : dans les lagons de Sanganeb et Shab Rumi s’ébattent des familles de dauphins qui, curieux, sont attirés par notre zodiac sur le chemin du retour, et partagent avec nous des moments magiques en apnée. Le clou de la croisière restera l’épave de l’Umbria : nos trois dernières plongées du séjour. Ce cargo italien, transformé Nathalie von Arnim Bibliographie : • Amar et Isabelle Guillen ; L’épave de l’Umbria en Mer Rouge au large du Soudan • http://greec.free.fr; l’Umbria • Helmut DEBELIUS : Guide du récif corallien, Mer Rouge • Helmut Gothel : Guide de la faune sous-marine poissons, Mer Rouge – Océan Indien ; Editions Ulmer DIODON 6 ACTUALITES L’Épave du Tian Xiang, 18ème Récif Artificiel à Maurice Le 16 Juin 2014 le bateau de pêche chinois, le Tian Xiang No137, a été sabordé au large de Flic en Flac par 43 mètres de fond par la Mauritius Marine Conservation Society (MMCS) et la Mauritian Scuba Diving Association (MSDA). Avec le Water Lili en 1980, le Tug No2 en 1981, les Pneus en 1986, le St Gabriel en 1987, le Kei Sei No113 en 1987, le Stella Maru en 1989, le Carp en 1989, le Silver Star en 1991, l’Orient en 1992, le Hassen Mian en 1996, le Jabeda en 1996, le Star Hope en 1998, le Hoi Siong No6 en 2003, le Long Teh en 2010, la Baignoire en 2011 et en incluant les récifs crées par d’autres organismes tel le patrouilleur Amar sabordé en 1998 et le Pasifoo sombré accidentellement en 2013, Maurice compte maintenant 18 récif artificiels dont deux sont situés au Nord de l’ile, douze dans l’Ouest, trois dans l’Est et un au Sud. Le Tian Xiang 137 a longtemps navigué dans le Pacifique et l’Océan Indien comme palangrier. Enregistré sous pavillon chinois à la «Inter-American Tropical Tuna Commission» sous le No8451 et à la Commission des Thons de l’Océan Indien sous le NoIOTC00839 son indicatif d’appel radio fut BZYI. Construit en 1980, il mesurait 45.3 mètres de long par 8.5 mètres de large et sa jauge brute était de 496 tonneaux. Les propriétaires successifs furent la Seven Seas Marine S.A. basé à Belize ainsi que la Tianjin Deepsea Fishing Co., la Tixiang Fishing Co. et la Tianjin Tianxiang Fishing Co. basés en Chine avec comme agent à Maurice IBL Fishing Co. Ltd.. Pour le Tian Xiang, le remorquage depuis le port et le positionnement sur le site se sont déroulés sans problèmes. Avant de quitter le port le bateau avait été nettoyé de tout débris flottant, des ouvertures avaient été pratiquées dans les caissons étanches des cales, et les réservoirs de fuel avaient été vidés pour être de nouveau rempli avec de l’eau de mer. Par ailleurs pour faciliter le sabordage, quatre trous rectangulaires de 25cm par 35cm avaient été pratiqués de part et autre de la coque et ceci à l’avant et à l’arrière. Ces trous avaient été prédécoupés au port puis ouverts une fois sur le site. D’un point de vu « timing » le bateau a quitté le Port à 8h30 remorqué par le Sir Seewoosagur, il est arrivé sur le site à 11h00, le câble acier de la remorque fut lâché à 11h34, le premier trou dans la coque fut ouvert à 12h26, le deuxième à 12h43, le troisième à 12h50 et le dernier à 12h56. On s’apprêtait alors à ouvrir les vannes et à évacuer le bateau quand tout à coup le Tian Xiang prend l’eau par l’un des trous et commence à s’enfoncer. Ce fut alors avec célérité que l’évacuation fut terminée, Yann quittant en dernier le futur récif artificiel à 13h07 tandis que celui-ci s’inclinait sur tribord pour s’enfoncer par l’arrière pour toucher le fond à 13h18. Finalement au son des corps de brumes, celui-ci disparait complètement à 13h20. Ainsi, le sabordage, à partir du moment où le dernier trou fut ouvert dans la coque, n’a duré 24 minutes, ce qui fut un record! Plusieurs plongées d’inspection en juin et en juillet 2014 ont montré que l’épave du Tian Xiang s’est stabilisée sur un fond de sable à 44 mètres de profondeur et à environ 60 mètres à l’ouest du site choisi ce qui peut être considéré comme étant parfait pour un navire de 44m de long. Dans la plupart des cas, les récifs artificiels sont colonisés en quelques mois, en attirant de nombreuses espèces de poissons et d’invertébrés. Ils sont d’abord colonisés par des espèces pionnières, puis ils offrent un milieu de substitution à une biodiversité plus importante. C’est aussi le cas du Tian Xiang étant donné que des plongées effectués 4 à 6 semaines après le sabordage ont montré que l’ensemble du navire est recouvert d’un duvet algal et qu’il a été colonisé par de nombreux jeunes poissons récifaux dont principalement : des demoiselles DIODON 7 à 3 taches (Dascyllus trimaculatus), des chromis à 2 couleurs (Chromis dimidiata), des rougets roses (Parupenaus rubescens), des poissons de verre (Parapriacanthus ransonneti), des poissons papillons de Klein (Chaetodon kleinii), des poissons papillon de Blackburn (Chaetodon blackburnii), des labres nettoyeurs (Labroides dimidiatus), des poissons chirurgien à marque orange (Acanthurus auranticavus), des balistes bleus (Odonus niger) et quelques poissons lion (Pterois volitans). Dorénavant le Tian Xiang prendra une retraite bien méritée et, telle une perle se formant lentement autour d’un nucleus, servira de support au développement d’un riche écosystème. Un grand merci à tous ceux qui nous ont aidés à faire de ce sabordage une belle réussite en particulier à l’équipe du MMCS et de la MSDA, à Nico Kux et à l’équipe des mécaniciens de la MPA ainsi que le Bureau du Premier Ministre, le Ministère de la Pêche, le Ministère de l’Environnement, le Commissaire de Police, les National Coast Guards, le Mauritus Ports Authority, IBL Fishing Ltd, le Mauritius Underwater Group, les Moulins de la Concorde sans oublier les centres de plongée de la côte ouest, Abyss, Ticabo, Exploration Sous-Marine, JP Appadu, Nemo, Euro Divers, Ocean Divers, Sea Urchin et Sun Divers. Yann von Arnim Bibliographie von Arnim Y., La Hausse de Lalouvière P., 2000, Artificial reefs in Mauritius. Diodon Vol. 21. Special Issue. von Arnim N., 2003, Un nouveau récif artificiel, le Hoi Siong No6. Diodon Vol.24 :1 p.20. Lieske E., Myers R.F., 1995, Guide des poissons des récifs coralliens. Delachaux et Niestlé. ACTUALITES Le Tian Xiang Les derniers instants du Tian Xiang Un nouveau terrain pour la vie marine DIODON Un recif artificiel est né 8 ACTUALITES Stranding of Dwarf Sperm Whale (Kogia Sima) T he Mauritius Marine Conservation society received phone calls from Albion Fisheries Research Centre and the Ferme Marine de Mahebourg alerting us to a stranded cetacean farm near the village of Bambous Virieux, on the 24th of March 2014. The identity of the cetacean caused confusion as it was reported as both a dolphin and a whale. The animal died that afternoon only 10 minutes after our arrival on site. It was identified easily on sight as a member of the Kogiidae family and Kogia genus. Determining which species, either a Pygmy Sperm Whale (Kogia breviceps) or a Dwarf Sperm Whale (Kogia Sima) was more difficult as they weren’t even considered as different species until the mid-1960’s. (1) of the total length. (Plön, 2004). The animal had a total length of 221cm and was male. As males of this species are known to reach 260cm it is believed this was a sub-adult between the ages of 2.9 and 15 years (3). Dwarf and Pygmy Sperm Whales share many characteristics. Several of these, such as the presence of a single blow-hole slightly left of center and the appearance of a false gill and an under slung jaw, can also cause them to be mistaken for sharks. (Plön, 2004). The whale that was stranded in Mahebourg Lagoon was identified as a Dwarf Sperm Whale because the length between its nose and dorsal fin, 100c m, was less than 50% of the total length, 221 cm, and because of the dolphinlike appearance of its dorsal fin located further to the posterior, at a distance back greater than 50% The whale underwent a necropsy to determine the cause for its stranding. The major organs (liver, kidneys and lungs) did not show obvious signs of parasites or cysts; however the fore stomach and main stomach had large numbers of endo-parasites. Plön (2004) reports that parasitism is prevalent in the Kogiidae family, and in particular there can be large amounts of nematodes in the stomach. DIODON This whale is rarely encountered and is extremely difficult to identify at sea. The Dwarf Sperm Whale seems to live mainly over the continental shelf and slope, off tropical and warm temperate coasts of all oceans (4). Mauritius matches this description with its tropical waters and location on the Mascarene Plateau, a continental shelf which stretches from the island of Reunion in the south to Saya de Malha in the north (5). Photos of these parasites were sent to Dr. Nahiid Stephens, a wildlife vet pathologist at Murdoch University, who suggested that the parasites 9 ACTUALITES were likely nematode worms known as Anisakids (from the family Aniskidae, a member of genus Contracaecum or Anisakis). These parasites were causing ulceration and swelling in the stomach wall. However, the level of infestation is unlikely to have contributed to the death of the animal. The heart was photographed as this species is known to be susceptible to heart failure (Bossart et al. 1985; Credle, 1988). However, the photos proved inconclusive. Other reasons for the live stranding could include possibilities that changes in the Earth’s magnetic field caused the whale to lose its sense of direction; earthquakes or storms caused the animal to panic; loud underwater sound from activities such as sonar or seismic activity caused its sonar system to fail; or the animal was simply lost or sick. (Carwadine, 2002). However, all of these are theoretical and very difficult to prove. Should you see a sick or stranded marine mammal (whale, dolphin, seal) or turtle please contact Albion Fisheries Research Centre 238 4100 and MMCS 483 7781. There are some basic things you can do to assist the animal. Determine whether the animal is alive by looking for breathing and eye movement. If the animal is on the shore, reef or shallow water you should: Try to keep it in the upright position, keep quiet and do not make sudden movements to avoid additional stress. Provide shade/ shelter if possible and cover the animal in a wet towel or sheet but DO NOT cover the blow hole. DIODON Dig shallow trenches under the flippers. If possible take a photograph of the animal or draw it. Do not try to apply sunscreen, go too close to the tail or attempt to move the animal until information has been collected and authorities informed. It is illegal to remove or kill any marine mammal in Mauritius. Alec Reade MMCS Volunteer (2014) Imogen Webster Scientific Coordinator References (1)http://www.iucnredlist.org/details/11048/0 (2) http://eprints.ru.ac.za/2799/1/Pl%C3%B6n-PHDTR05-154.pdf (3) http://www.environment.gov.au/cgi-bin/sprat/public/ publicspecies.pl?taxon_id=58 (4) http://www.cms.int/reports/small_cetaceans/data/K_ sima/K_sima.htm (5)http://www.vliz.be/projects/marineworldheritage/ sites/2_Masc%20Plateau_S%20Malha.php?item=The%20 Indian%20Ocean Bossart, G. D., Odell, D. K. and Altman, N. H. 1985. Cardiomyopathy in stranded pygmy and dwarf sperm whales. Journal of the American Veterinary Medical Association 187(11): 1137-1140. Carwardine, M. 2002. Whales, Dolphins and Porpoises. Credle, V. R. 1988. Magnetite and magnetoreception in stranded dwarf and pygmy sperm whales, Kogia simus and Kogia breviceps. M.Sc. Thesis. Division of Biology and Living Resources, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA. 86 pp. Plön, S. 2004. The status and natural history of pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales off Southern Africa. PhD Thesis, Rhodes University, South Africa. 10 ENVIRONNEMENt SC/64/E14 Progress of the REMMOA aerial surveys conducted in the French EEZ and adjacent waters: contrasted cetacean habitats in the southwest Indian Ocean. (End) SOPHIE LARAN, GHISLAIN DORÉMUS, LAURA MANNOCCI, OLIVIER VAN CANNEYT, PIERRE WATREMEZ, ADÈLE CADINOUCHE, VIOLAINE DULAU-DROUOT, FRANÇOIS-XAVIER MAYER, DEVIS MONTHY, NORBERT ANDRIANARIVELO, YVETTE RAZAFINDRAKOTO, ANLI TOILIBOU & VINCENT RIDOUX Habitat modeling Models of density surface were obtained for seven groups of cetaceans: small delphininae (29% of the deviance explained), large delphininae (19%), small globicephalinae (25%), Risso’s dolphin (49%), large globicephalinae (29%), beaked whales (20%) and Physteroidea (Kogidae and Physeteridae; 33%). As examples, only the small delphininae and the Risso’s dolphin models are described below. The best model for density of small delphininae selected longitude, latitude, depth, distance to the 200 m contour, gradient of chlorophyll, sea surface temperature (p=0.000), then slope and primary production (p=0.001) as significant covariates. It explained 29% of the deviance. Prediction was produced for the whole region with the environmental conditions as of December 2009 (figure 7 left). For the Risso’s dolphin the best model selected longitude, latitude, depth, slope, distance to the 2 000 m contour, gradient of chlorophyll, primary production and sea surface temperature (p=0.000), then chlorophyll with a time lag of 2 months (p=0.01) as significant covariates. This model explained 49% of the deviance (figure 7 right). Predictions for the seven cetacean taxa were then made for the whole region and pooled together. This prediction clearly highlighted the importance of the Mozambique Channel and the Seychelles Plateau for cetaceans (Figure 8). Figure 7. Predicted density distributions and sightings for small delphininae (left) and Risso’s dolphin (right) with environmental conditions as of December 2009. DIODON 11 ENVIRONNEMENt SC/64/E14 air are well known and include the heavier logistic constraints placed on survey design (aircrafts are ‘central-place’ survey platforms); higher number of sightings that cannot be identified to species; difficulty to implement the double platform methodology and hence to estimate detection probability on survey track. In the case of the REMMOA survey series, cost related issues were key elements of the decision because of the vast geographical span of the project, which made a series of ship surveys too expensive. Some of the aircraft-specific limitations can be mitigated. Figure 8: Pooled predicted density distribution pooled for seven cetacean taxa: small delphininae, large delphininae, small globicephalinae, Risso’s dolphin, large globicephalinae, beaked whales and Physteroidea (Kogidae and Physeteridae) with environmental conditions as of December 2009. DISCUSSION AND PERSPECTIVES General Regarding the choice of the survey platform, aircrafts versus ships, the advantages and limitations of both types are well known. Vessels allow a higher proportion of sightings to be identified at species level; thanks to their higher passenger capacity, they also allow double platform methodology to be implemented and therefore the detection probability on track line to be estimated; finally, because of their much longer autonomy, logistic constraints on survey design are lower. Their drawbacks include the limited flexibility of vessel utilization during survey period which generally precludes quick reaction to changing weather and sea conditions, hence resulting in a lower rate of platform usage in optimal detection conditions; ships generate positive and negative interaction biases with the survey target species (either cetaceans or birds) which imply speciesspecific analyses; because of limited steaming speed, several ships are needed to cover extended survey areas if sufficient spatial resolution is needed for modelling; finally cost and carbon print per unit effort (km surveyed in effort) are higher. For aircrafts, the higher flexibility of utilization allows an optimal rate of platform usage under good detection conditions; there is no evidence of survey target species reaction to survey platform (this may be different with a helicopter); extended areas can be surveyed in a limited amount of time; costs and carbon print are lower per unit effort flown (km surveyed in effort). Several limitations to surveying from the DIODON 12 Distribution patterns in the SW Indian Ocean The southwest Indian Ocean is an oceanographically contrasted region where three broad systems can be recognized: the Seychelles, the Mascarene Islands and the Mozambique Channel, that belong to three distinct Large Marine Ecosystems (the Indian monsoon gyre, the East African coastal and the Indian south subtropical gyre provinces respectively) as defined by Longhurst (1998) largely on the basis on oceanographic processes. Marine Ecoregions Of the World (MEOW) is another system of bioregionalization that incorporates more biological element and focus on shelf habitats (Spalding et al., 2007). In this latter context, the whole study region of the present paper belongs to one single province called the Western Indian Ocean and our surveyed areas belong to several of its marine ecoregions: Seychelles, Cargados CarajosTromelin, Mascarene Islands and Western to Northern Madagascar. ENVIRONNEMENt The preliminary analyses conducted on the REMMOA data set tend to fit well within these bioregionalization systems. In particular encounter rates, relative densities and prediction of preferred habitats all concur to oppose areas of the Mozambique Channel and the Seychelles characterized by generally higher values with areas of the Mascarenes characterized by much lower values in general. A closer look at the data would suggest that not all cetaceans, and by extension pelagic megafauna, would respond similarly to differences in oceanographic processes between areas. In particular, it appears that deep divers may be more equally distributed between areas suggesting that they would be less sensitive to the oceanographic parameters classically used to describe surface marine productivity. To develop further these analyses and better interpret the causal relationship underlying the variety top predator distribution patterns, data on the distribution of their prey would be essential. However, direct measurements of prey field or prey densities in the different water layers of interest to cetaceans are unlikely to be available in the southwest Indian Ocean in a near future. SEAPODYM is a model initially developed for investigating spatial population dynamics of tuna under the influence of both fishing and environmental effects (Lehodey, 2004 a, b; Lehodey and Senina, 2009). This model allows prediction of both temporal and spatial distribution of secondary consumers in oceanic ecosystems at various water depths and therefore has the potential to provide additional covariates of direct interest to top predator ecology. Perspectives In the near future the immediate priority is to complete the first series of REMMOA surveys. The next REMMOA aerial survey is planned in the southwest Pacific Ocean between November 2012 and March 2013, and the eastern Caribbean/Guiana plateau region is planned to be surveyed regionally later on (Table 1). Lessons drawn from the first steps are extremely useful for the continuation of the project. In the southwest Pacific, the French EEZ (2,040,000 km²) is split into two sub-units: the large New Caledonia and the smaller Wallis and Futuna area that are located some 15° longitude apart. The long term objectives of the REMMOA surveys is to establish an initial situation of cetacean and other pelagic megafauna diversity and relative abundance and to build up a monitoring strategy to be implemented from this point onwards. In 2013-2014 a workshop is planned to be hold in order to examine the statistical properties of the complete data set and infer recommendations for monitoring strategies in the future. In this exercise, expertise from the marine mammal, seabird and fish scientific communities would be most welcome and the outcomes of this work extremely useful for all stakeholders and managers in charge of monitoring cetaceans across the tropics. DIODON 13 SC/64/E14 ACKNOWLEDGMENTS The French Ministry in charge of the environment (Ministère de l’Ecologie, du Développement Durable, du Logement et du Transport, MEDDLT) and the Agency for marine protected a r e a s ( A g e n c e d e s a i re s marines protégées, AAMP) funded the project. The Indian Ocean Commission (IOC), the Governments of all Member States (Comoros, FranceRéunion Island, Madagascar, Mauritius, Seychelles) and the prefecture of the Terres Australes et Antarctiques Françaises considerably facilitated the regional approach conducted in the SW Indian Ocean. The French Ministry of Foreign Affairs (Ministères des Affaires Etrangères et Européennes), the French Embassies in Madagascar, Mauritius and the Seychelles offered their help in contacting the appropriate authorities and the French ONCFS in Mayotte. Civil Aviation authorities in Madagascar, Mauritius, the Seychelles and French Polynesia were extremely helpful with all aspects related with the flights. Non-governmental organisations C e t a M a d a i n M a d a g a s c a r, Globice in Réunion, Mauritius Marine Conservation Society in Mauritius, Megaptera in Réunion, Naturalistes de Mayotte in Mayotte. All other observers: Rebecca Guezel, Aurélie Hermans, Morgane Perri, Claire Pusineri, who were very professional in the air and friendly project mates on land. Finally, we are particularly indebted to all aircraft crew members of Aerosotravia, France and Madagascar Trans Air, for their continuous high level of professionalism and enthusiasm despite hundreds of hours flying in strait lines over the ocean. environnement SC/64/E14 REFERENCES Buckland, S.T., Anderson, D.R., B u r n h a m , K . P. , L a a k e , J . L . , Borchers, D.L. and Thomas L. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, Oxford UK.vi+xv+432pp. Hiby, A.R. and Lovell, P. 1998. Using aircraft in tandem formation to estimate abundance of harbour porpoise. Biometrics 54: 1280-1289. Kahru, M. 2010. Window Image Manager 1991-2010. Version 6.60 Build 0722. Marques, F. F. C.; Buckland, S. T. In Advanced Distance Sampling; Buckland, S. T., Anderson, D. R., Burnham, H. P., Laake, J. L., Borchers, D. L., Thomas, L., Eds.; Oxford: New York, 2004. Laran, S., Van Canneyt, O., Dorémus, G., Mannocci, L., Ridoux, V. and Watremez, P. 2012. Distribution et abondance de la mégafaune marine dans le sud-ouest de l’océan Indien tropical. REMMOA- Océan Indien. Final report for the French Marines Protected Area Agency [unpublish, in french]. 168p. Lehodey, P. 2004a. A Spatial Ecosystem And Populations Dynamics Model (SEAPODYM) for tuna and associated oceanic toppredator species: Part I Lower and intermediate trophic components. 17th meeting of the Standing Committee on Tuna and Bill fish, Majuro, Republic of Marshall Islands, 9-18 Aug. 2004, Oceanic Fisheries Programme, Secretariat of the Pacific Community, Noumea, New Caledonia, Working Paper: ECO-1: 26 pp. http://www.spc.int/OceanFish/ Html/SCTB/SCTB17/ECO-1.pdf Lehodey, P. 2004b. A Spatial Ecosystem And Populations Dynamics Model (SEAPODYM) for tuna and associated oceanic top-predator species: Part II Tuna populations and fisheries. 17th meeting of the Standing Committee on Tuna and Bill fish, Majuro, Republic of Marshall Islands, 9-18 Aug. 2004, Oceanic Fisheries Programme, Secretariat of the Pacific Community, Noumea, New Caledonia, Working Paper: ECO-2: 36 pp. http://www.spc. int/OceanFish/Html/SCTB/SCTB17/ ECO-2.pdf Lehodey P. and Senina, I. (2009) A user manual for SEAPODYM version 2.0: application with data assimilation. Available at http://www. wcpfc.int/system/files/documents/ meetings/scientific-committee/5thregular-session/ecosystem-andbycatch-swg/information-pa/SC5-EBIP-13BSeapodym_user_manual.pdf Longhurst, A. 1998. Ecological Geography of the Sea. San Diego: Academic Press. Mannocci, L., Monestiez, P., BolañosJiménez, J., Dorémus, G., Jeremie, S., Laran, S., Rinaldi, R., Van Canneyt, O. and Ridoux, V. (in review). Top predator communities from two contrasting ecosystems in the Western tropical Atlantic. Submitted to Journal of Marine Systems. Ridoux, V., Certain, G., Dorémus, G., Laran, S., Van Canneyt, O., Watremez, P. 2010. Mapping diversity and relative density of cetaceans and other pelagic megafauna across the tropics: general design and progress of the REMMOA aerial surveys conducted in the French EEZ and adjacent waters. DIODON 14 Paper SC/62/E14 presented at the Scientific Committee meeting of the International Whaling Commission, May 31st –June 11th, 2010, Agadir, Maroc. Spalding, M.D., H.E. Fox, G.R. Allen, N. Davidson, Z.A. Ferdaña, M. Finlayson, B.S. Halpern, M.A. Jorge, A. Lombana, S.A. Lourie, K.D. Martin, E. McManus, J. Molnar, C.A. Recchia and J. Robertson. 2007. A bioregionalization of coastal and shelf areas. Bioscience 57(7): 573-583. Thomas, L., Buckland, S. T., Rexstad, E., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, F. F. C. & Burnham, H. P. 2010. Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology, 47, 5-14. Van Canneyt, O., Dorémus, G., Certain, G., Ridoux, V., Jérémie, S., Rinaldi, R. and Watremez, P. 2009. Distribution et abondance des Cetaces dans la Zone Economique Exclusive des Antilles françaises par observation aerienne. Final report for the French Marines Protected Area Agency [unpublish, in french]. 44p. Van Canneyt, O., Certain, G., Dorémus, G., Laran, S., G., Ridoux, V., Bolaños, J., Jéremie, S., and Watremez, P. 2010. Distribution et abondance de la mégafaune marine en Guyane française. Campagne REMMOA. Final report for the French Marines Protected Area Agency [unpublish, in french]. 41p. environnement Coral reefs are the most diverse Earth ecosystem Martin Pêcheux; Institut des Foraminifères Symbiotiques - 16, rue de la Fontaine de l’Espérance - 92160 Antony - France; martin.pecheux@ free.fr Key-words: reef, coral, biodiversity, tropic, forest, symbiosis. Abstract: Comparisons are made of biodiversity between coral reefs and tropical rain forests. It is clear that coral reefs are the most diverse ecosystem of the Earth with its spectrum of variability and when ecological processes are considered, not just species numbers. Reefs are often quoted as one of the most diverse marine ecosystems (Reaka-Kudla, 1997). No. Reefs are the most diverse of all Earth ecosystems. We do not have to count biodiversity just in term of number of species, but in term of processes/patterns, of original enzymatic pathways till innate comportments, of fit to and evolving in a particular ecological niche, with both abiotic (“Court Jester”, Barnosky, 2001) and biotic (“Red Queen”) factors, at different time and spatial scales, i.e. of life invention. Of course this is not quantifiable, but a good measure is given by DNA divergence (although, with my Y chromosome – 1.61% length -, I am nearer to male bonobos– 1.23% difference - than to woman). An approximation of this divergence is the number of phyla. For animals, reefs are the richest Earth ecosystem with 30 represented phyla whereas there is only 19 terrestrial ones (Paulay, 1997). The only animal phylum found on land and not in reefs is the anecdotal Onychophora (cousins of arthropods and tardigrades, marine at first in the Precambrian, actually 11 genera). Three other animal phyla are marine but not found in reefs; Orthonectida, 24 species of parasitic worms of marine invertebrates, Cycliophora, 3 microscopic species, one undescribed, cousin of rotifers, living on Atlantic and Mediterranean crustacean buccal pieces, and the famous Pogonophores, the big red annelids living from H2S near rift events (of which half of taxonomists make it a class or put it in an other family) (for all, source: Wikipedia). DIODON 15 Of course, the oldest, the more time for radiation and DNA divergence. Reefs are the oldest biotope on the Earth since 3.4 billion years ago with reef stromatoliths (Allwood et al., 2007), and the prominent place of life till planktonic appraisal (500 My at least, from isotope, Saltzman, 2011) and land conquest (in Silurian, 425-475 My by Rhynia, Cooksonia from green algae). I will not consider the case of the bentic deep sea ecosystem, said to be surprisingly rich, with so wide an areal surface extent. It is often quoted that reefs are the rain forests of the sea. No: rain forests are the reefs of the land. Tropical rain forests are the most diverse land ecosystem, said to be the one with 40%-70% of all biotic species, etc… In fact, tropical rain forests are said to be especially diverse primarily by the number of arthropods species. Erwin (1982, in Strain, 2011) and his colleagues gassed 19 trees in Panama, collecting about 1000 unique beetle species. So, they extrapolate this number to 30 million species. Hamilton et al. (2010) estimate more reasonably that there are 2.5-3.7 million tropical environnement arthropod species. It is very difficult to know exactly, but insects would represent about 80% of all forest species (T. Bourgoin, specialist of tropical insects, Collection Director at National Museum of Natural History, Paris, com. pers.). Why a so great number of species? They don’t seem to play exceptional ecological roles: predation on plants, and between them, decomposition, recently pollinisation, even if each one is at its own place. It appears that there are so man beetles in part because they are more or less specialized feeders on few tree species (cf. May, 2010). perfect. Curiously, the number of hermatypic coral species is similar to the number of genera of tropical trees: Hubbell et al. (2008) report that 514 tree genera have been found in the Amazon in over 300,00 samples. Symbioses of corals with zooxanthellae, though, is less evolved by less intricated than endosymbioses of trees with chloroplasts. Diversity of zooxanthellae clades appears usual for dinoflagellates, but a priori greater than chloroplasts with their own short DNA. The accessory groups of the primary trophic level in forests (small plants, grasses, epiphytes, lichens, bryophytes and particularly vines) are somewhat like trees, whereas in reefs there is a huge diversity: green, brown, red fleshy and crustose algae, angiosperm sea-grasses, Tridacna molluscs with zooxanthellae, seven order of sponges associated with zooxanthellae or cyanobacteria, large foraminifers symbiotic with zooxanthellae, diatoms, chlorophytes, rhodophytes or free undigested chloroplasts, and the chordate ascidians with the particular pro-eu-karyotic Prochloron sp. (synthesis in Pecheux, 1998). Rare species contribute surely over all equally to complex ecosystem stability (cf. Isbell et al., 2011), the best measure of fit biodiversity. For the main primary trophic level and equivalently morphological shaping groups of the ecosystem, in reefs, there are about 108 genera and 800 species of hermatypic corals. Hubbell et al. (2008) estimate the number of Amazon tree species to be 12 500, and Hamilton et al. (2010), for whole tropics, to be 50 000. But introgression by common pollinisators, the presence of interspecific hybrids allowing a flux of genetic pools between related species, might be more important than currently evaluated (Danthu, 2011). Such phenomenon is also current in corals (Vollmer and Palumbi, Main groups of the upper trophic 2002), where the morphological level seem roughly at equality, definition of species is not echinoderms, crustaceans, big DIODON 16 molluscs and above, numerous fishes and few marine upper vertebrates (sea serpents, seven marine turtles of two separated lineages, few iguana and crocodiles, sea birds, cetaceans), compared to freshwater fishes, amphibians, reptiles, birds, and above, mammals. Groups of the intermediate levels seem of small size, which could hypothetically explain their species number, as for example of micro-molluscs, micro-arthropods, foraminifers, worms, compared to insects, arachnids, worms. Molluscs and arthropods are protostomians which may influence size. Nematods and plathyhelminths too, but the annelids (“true worms”, rough 15 000 species) appeared to me, aside the evolved deuterostomiana, as a third superphyllum, with mouth and anus derived from blastopore (“schizostomian”). And for micro-organisms, most remains to be known. Reefs have the “help” of been bathed by the whole planktonic ecosystem, of course, important in their economy. Regionalism is similar, with two main provinces in reefs, Caribbean and Indo-Pacific, and three in tropical forests, Amazon, Congo basin and South-East Asia, and many ACTUALITES Dive with the best Mauritian Scuba Diving Association Tel./Fax: (230) 454 0011 Email: [email protected] www.msda.mu 50 centres de plongées à Maurice Affiliated to CMAS DIODON DIODON 17 17 environnement minor ones. There is a great difference between coral reefs and tropical forests: Tropical forests occupied in the past about 10%-15%, and now 5%-7% of Earth surface (convergent sources), whereas reefs, with 284 803 km2 (Spalding et al., 2001, but deeper water not evaluated) on Earth (mean radius 6 371 km), occupy only 0.558%. How can an ecosystem with twenty times less spatial distribution have more variability? It is quite amazing. Moreover, many reefs like those scattered across the Pacific Ocean are isolated (Volkov et al., 2007). Why are tropics more diverse? An old question. Because they are old stable ecosystems (Jetz et al. 2012)? But there are migrations. Perhaps because with temperature, energy activation of enzymes is lower, allowing a greater facility to create new pathways. Why are tropical animals so coloured? That, I really don’t know. So, to conclude, it appears to me clearly that reefs are the most diverse Earth ecosystem. This is a supplementary reason to worry of strong reef decay for a global cause, CO2, whereas we “know” how to stop rapidly deforestation. Acknowledgments I am grateful to Charles Birkeland, who helped me with data and correction of the English. This work was supported by French AAH n°2504010. References Allwood AC, Walter MR, Burch IW, Kamber BS (2007) 3.43 billionsyear-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem scale insights to early life on Earth. Precambrian Res 158:198-227. Note: that calcification is evaporitic, who will believe them? Barnosky AD (2001) Distinguishing the effects of the Red Queen and Court Jester on Miocene mammals evolution in the Northern Rocky Mountains. J Vertebr Paleontol 21:172-185 Danthu P (2011) Pour une gestion durable des baobabs et des écosytèmes à baobabs des Îles de l’Océan Indien: approche de la diversité biologique, des usages et des représentations des espèces du genre Adansonia à Madagascar, aux Comores et à Mayotte. In: FRB (ed). La biodiversité des îles de l’océan Indien, Colloque 14-15 December, Paris. pp 39-41 Hamilton AJ (2010) Quantifying uncertainity in estimation of tropical Arthropod Species richness. Am Nat 176:90-95 Hubbell SP, He F, Condit R, Bordade-Agua R, Kellner J, ter Steege H (2008) How many species are there in Amazon and how many of them will go extinct ? Proc Nat Acad Sciences US, 105:11498-11504 Isbell F and 14 authors (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199202 DIODON 18 Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers O (2012) The global diversity of birds in space and time. Nature 491:444-448 May RM (2010) Tropical Arthropod Species, More or Less? Science 329: 41-42. Paulay G (1997) Diversity and distribution of reef organisms. In Birkeland C (ed) Life and Death of Coral Reefs. Chapman & Hall, London, pp 298-353 Pecheux M (1998) Review on coral reef bleaching. Atoll Res Bull, Edilivre, Paris, France, printed in 2013, 255 pp. Available at www. reefbase.org or martin-pecheux.fr Reaka-Kudla ML (1997) The global biodiversity of coral reefs: a comparison with rain forests. In: Reaka-Kudla ML, Wilson PE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological ressources. Joseph Henry Press, Washington DC, pp 83-108 Saltzman M (2011) Plankton key to origin of Earth’s first breathable atmosphere. Proc Nat Acad Sciences US, 140:8456-8460. Note: I am not sure of that. And there was nobody to breath. Spalding M, Ravilious C, Green E (2001) World Atlas of Coral Reefs. UNEP World Conservation Monitoring Center, University of California Press, 424 pp. Available from.http://www.reefbase.org Strain D (2011) 8.7 million: a new estimate for all the complex species on Earth. Science 333:1083 Volkov I, Banavar JR, Hubell SP, Maritan A (2007) Pattern of relative species abundance in rain forests and coral reefs. Nature 450:45-49 Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of coral reef diversity. Science 296:2023-2025 biologie MOLLUSQUES ENDÉMIQUES DE L’OCÉAN INDIEN 1 4. Le cône textile vaulbert, Conus (Cylinder) textile vaulberti Lorenz 2012 Le célèbre cône textile, Conus textile Linnaeus 1758, connu pour sa beauté et sa dangerosité, se rencontre dans tout l’ouest de l’Océan Indien et la Mer Rouge dont l’Ile Maurice. Lors d’une récente visite dans la région en 2012, dont à St Brandon (Cargados Carajos), le Dr. F. Lorenz a isolé la population de cônes textiles de St. Brandon en une sous-espèce : le cône textile vaulbert, Conus textile vaulberti Lorenz 2012. Certains autres Figure 1 : Le célèbre cône malacologistes en feraient textile même une espèce à part : Conus vaulberti. D’autres tentatives en ce sens avaient déjà étaient faites dans le passé. En effet un spécimen hypothétiquement originaire de St Brandon avait été nommée Conus textile f. scriptus par Sowerby en 1858. Cependant le nom scriptus ayant déjà été utilisé par Deshayes par deux fois pour nommer des cônes (en 1823 et en 1831), et Sowerby n’ayant décris scriptus que brièvement sans citer la localité d’origine, le Dr. Lorenz décida de décrire à nouveau l’espèce sur de nouvelles bases et avec une origine certaine. Ce cône textile vaulbert diffère des autres cônes textiles par plusieurs caractères : sa coquille est plutôt petite, ne dépassant pas 50 mm, alors que celle du cône textile peut aller jusqu’à plus de 100 mm. Elle est par ailleurs plus légère, moins épaisse, avec une forme plus cylindrique. De plus le graphisme, plus finement dessiné, ne présente que deux couleurs : un fond blanc avec un motif tireté en forme de tente, mais plus triangulaire, de couleur marron foncé sans aucune ombre bleutée, jaune orangée ou rouge orangée, ni condensé en taches plus sombres. L’apex est aussi blanc au lieu d’être rose pâle à rouge orangé. L’ouverture est plus large, en particulier dans sa partie antérieure, la partie postérieure étant plus resserrée. L’habitat du Conus textile vaulberti est représenté par des zones peu profondes du lagon de St Brandon, sous des rochers et à moitié enterré dans un sable fin et propre. On ne le trouve aucune part ailleurs. Dans la communauté Figure 3 : Conus textile des malacologistes, on a vaulberti l’habitude d’utiliser le nom scriptus pour les spécimens de cônes textiles qui présentent une variante plus pâle de leurs motifs, et que l’on peut trouver dans le sud de Madagascar ou ailleurs dans l’Océan Indien, mais en aucun cas ces cônes n’ont la forme plus étroite et plus cylindrique du cône textile vaulbert, ni leur coquille plus légère et moins épaisse, ni l’apex blanc, ce qui fait bien de cette sous-espèce, une sous-espèce endémique de St Brandon. Nathalie von Arnim Références : Lorenz F. (2012) A new subspecies of Conidae from Mauritius (Gastropoda). Schriften zur Malakozoologie 27: 21-24. [30 December 2012] WoRMS taxon details (http://www.marinespecies. org/); Conus (Cylinder) textile vaulberti Lorenz, 2012 Eric Le Court de Billot & David Touitou, Conidae from Mauritius. Seashell collector.com [november 2013 Last Update : January 2014] Figure 2 : Conus textile vaulberti DIODON 19 biologie Figure 4 : Conus textile Figure 5 : Conus textile vaulberti DIODON 20 ACTUALITES Expedition to Agalega observations from shore, of cetaceans inhabiting the surrounding waters was recorded. The goal of this expedition was to obtain baseline information on marine mega-fauna to be used as a reference for future expeditions and to enable longterm monitoring. These data will also be useful when making decisions regarding the future of the island and its management in terms of marine resources. In addition, it is hoped that data will be used to develop a more sustainable balance between fishing activities, development, economic growth and the conservation of the marine environment and resources. 10°25’S, 56’40’E and about 560 km south of Mahe (Seychelles). The trip north was rough with constant wind and occasional showers. We arrived at the islands midmorning on June 26th. Our stay was scheduled to be 3 or 4 days however, due to rough sea conditions which made unloading the cargo difficult, we did not depart the island until the afternoon of the 2nd July. The return trip was a lot smoother and we were able to record more sightings. While some basic rapid assessments of birds, turtles and other marine resources have been conducted, they are limited in number, and no previous cetacean surveys have been conducted. The Mauritius Marine Conservation Society (MMCS) is currently running a project concerning the diversity of marine mega-fauna around Mauritius – this trip was an opportunity to include a larger area in this study. Overall 10 observations of cetaceans were recorded along with 232 bird and 12 marine debris sightings during 35h35 and 988.5km of observation effort. No turtles were observed while at sea. Eleven species of bird and five species of cetacean were recorded in addition to some unidentified (Table 1). Data collection began the day of departure, June 24th 2013. The research focused primarily on occurrence and distribution of cetaceans (whales and dolphins), marine turtles and seabirds during the voyage. On the island, any evidence, such as bones, accounts from locals or Table 1: List of seabird and cetacean species encountered during the voyage. Bird Species Sightings Cetacean Species Sightings Common Noddy, Anous stolidus 16 Spinner dolphin, Stenella longirostris 1 Lesser Noddy, Anous tenuirostris 1 Humpback Whale, Megaptera novaeangliae 1 Sooty tern, Sterna fuscata 132 Unidentified whale 1 Tropicbird, Phaethon sp. 7 Unidentified dolphin 2 Red-tailed Tropicbird, Phaethon rubricauda 14 Unidentified Beaked whale 1 White-tailed Tropicbird, Phaethon lepturus 2 Pilot whale, Globicephala macrorhynchus 3 Fairy tern, Gygis alba 39 Sperm Whale, Physeter macrocephalus 1 Masked Booby, Sula dactylatra 6 Sub-antarctic Skua, Catharacta Antarctica1 Frigate, Fregata sp 1 Petrel/Shearwater Pterodroma spp. / Puffinus spp. 4 Unidentified 8 DIODON 21 ACTUALITES Locals informed us that whales would occasionally strand on the south west of both the north and south islands. One local was wearing a necklace made with the tooth of a whale, likely a beaked whale, and also showed us a skull. Turtles were seen in the lagoon on both sides of North Island and an adult green turtle (Chelonia mydas) was observed surfacing to breath in the vicinity of the anchored ship (outside the lagoon) as loading was occurring for departure. Unfortunately, we also found the remains of nine adult individuals while we walked around the islands including some egg shells. Seabirds were observed nesting on both islands but seemed to be concentrated on South Island. The most common species included Fairy terns, and common and lesser Noddys. Sooty terns and Frigate birds were only seen in flight and in very small numbers. While we focused on the cetaceans, turtles and seabirds, with the additional time we also took the opportunity to collect information on invasive species, conducted marine debris transects, and also distribution data on the Agalegan Day Gecko. We were lucky to observe the Sacred Ibis (there are only about 20-25 individuals on the islands) but did not manage to find the coconut crabs. The information collected during this expedition will be included in the final report for the Diversity Project due to be completed in October this year. The additional data will be shared and hopefully published to On the island, we found evidence that cetaceans certainly inhabit the increase awareness of environmental surrounding waters. The head of a dolphin was found on the beach on the issues such as marine debris and turtle north east coast, North Island. Head shape, colouration and teeth count indicate poaching. a spinner dolphin (Stenella longirostris). This one appeared to have been partially eaten by a shark. Imogen Webster Scientific Coordinator Only larger cetacean species were encountered on the return trip including humpback whales (Megaptera novaeangliae), pilot whales (Globicephala macrorhynchus), beaked whales and sperm whales (Physeter macrocephalus). There was an additional sighting of an unidentified whale. DIODON 22 monde Culler whales keep a balance Victoria Laurie MIRG researchers watch killer whales off Ningaloo Reef. THE triumphant return of humpback whales along the West Australian coast is a rare recovery story in conservation that lifts the spirits. After several decades of commercial slaughter, humpback sightings are now commonplace as they migrate along the coast. “It’s probably just a matter of time before we see a decrease to a more sustainable level,” he said. The WA researchers, working with scientists from the US National Oceanic and Atmospheric Administration, have been tracking the seasonal appearance of killer whales in the region since 2008, using satellite tagging and the collection of tissue samples. Pods of a few hundred remaining animals in the 1960s have grown by about 10 per cent each year; an estimated 30,000 now move between their feeding grounds in Antarctica and calving grounds as far north as Camden Sound in the Kimberley. They have observed the killer whales targeting newborn humpback calves off the Cape Range Peninsula and Ningaloo coast. “A huge food source of 3000 vulnerable calves per year simply can’t be ignored for too long,” says Mr Totterdell. Yet there is another recovery story that may ensure that humpbacks are kept in healthy but not excessive numbers. “From only very sporadic reports in previous decades, killer whales are now seen consistently throughout winter.” A team of Australian and US researchers has observed a small increase in killer whales, or orcas. The result is more predators hunting down and killing the humpbacks’ calves. The joint team has submitted its first scientific paper on Ningaloo’s killer whales for publication. But the real thrill lies in witnessing survival behaviour at play in the natural world, says Mr Totterdell. The cycle of survival and sacrifice in the wild constitutes a natural check on exploding species numbers, says researcher John Totterdell, from the WA-based Marine Information & R esearch Group. “Being there to document the return of the apex predator in this ecosystem is pretty special.” Reprint from : « The Australian » September 3rd 2014 The estimated stable population before commercial whaling was about 18,000 so the population of 30,000 is unlikely to last, Mr Totterdell said. DIODON 23 DIODON Bulletin de l’Association pour la Protection et la Sauvegarde de la Mer. Le MMCS est également la commission scientifique de la Mauritian Scuba Diving Association. The Mauritius Marine Conservation Society c/o The Mauritius Underwater Group Railway road Phoenix REPUBLIQUE DE MAURICE Tel : (230) 696.53.68 E-mail : [email protected] Site web : www.mmcs-ngo.org Rédacteur en chef Nathalie von Arnim Equipe de rédaction Nathalie von Arnim, Sophie Laran, Ghislain Dorémus, Laura Mannocci, Olivier van Canneyt, Pierre Watremez, Adèle Cadinouche, Violaine Dulau-Drouot, François-Xavier Mayer, Devis Monthy, Norbert Andrianarivelo, Yvette Razafindrakoto, Anli Toilibou, Vincent Ridoux, Alec Reade, Imogen Webster, Martin Pecheux, Yann von Arnim. Photo : Kelsey Roberts Blanchiment du corail de feu en plaque (Blade Fire Coral) Millepora Complanata, en Floride (juillet 2014)