SemanVc Web MoVvaVng Example
Transcription
SemanVc Web MoVvaVng Example
1/31/12 A Mo+va+ng example Seman+c Web Mo+va+ng Example We start with a book... • Here’s a mo+va+ng example, adapted from a presenta+on by Ivan Herman • It introduces seman+c web concepts • and illustrates the benefits of represen+ng your data using the seman+c web techniques • And mo+vates some of the seman+c web technologies A simplified bookstore data ID ISBN 0-00-6511409-X ID Author Title Publisher id_xyz The Glass Palace id_qpr Name id_xyz Ghosh, Amitav ID id_qpr Homepage http://www.amitavghosh.com Publisher’s name Harper Collins Year 2000 City London 1 1/31/12 Export data as a set of rela&ons The Glass Palace 2000 London Harper Collins Notes on exporting the data a:title • Rela+ons form a graph h"p://…isbn/000651409X a:year a:city e ish ubl a:p – Nodes refer to “real” data or some literal – We’ll defer dealing with the Graph representa+on r • Data export doesn’t necessarily mean physical conversion of the data a:author e a:p_nam – rela+ons can be generated on-‐the-‐fly at query +me a:name Ghosh, Amitav • All of the data need not be exported a:homepage h"p://www.amitavghosh.com Same book in French… Bookstore data (dataset “F”) A 1 2 B ID ISBN 2020286682 C Titre Le Palais des Miroirs D Traducteur $A12$ Original ISBN 0-00-6511409-X 3 4 5 6 7 ID ISBN 0-00-6511409-X Auteur $A11$ 8 9 10 Nom 11 Ghosh, Amitav 12 Besse, Christianne 2 1/31/12 Export data as a set of rela&ons h"p://…isbn/000651409X Start merging your data The Glass Palace a:title 2000 a:year h"p://…isbn/000651409X Le palais des miroirs f:o rig in al f:auteur London e itr f:t Harper Collins she ubli a:p a:city r a:author e a:p_nam a:name h"p://…isbn/2020386682 h"p://…isbn/000651409X a:homepage l ina rig f:o f:traducteur Ghosh, Amitav h"p://www.amitavghosh.com e itr f:t f:auteur f:nom Le palais des miroirs h"p://…isbn/2020386682 f:nom Ghosh, Amitav f:traducteur f:nom Besse, ChrisJanne f:nom Ghosh, Amitav Besse, ChrisJanne Merging your data The Glass Palace a:title 2000 a:year London Harper Collins Merging your data h"p://…isbn/000651409X she ubli a:p a:city Same URI! r a:author e a:p_nam The Glass Palace a:title 2000 a:yea r London Harper Collins a:name h"p://www.amitavghosh.com f:auteur r a:author e a:p_nam f:original f:auteur a:homepage l ina rig f:o Ghosh, Amitav she ubli a:p a:city a:name h"p://…isbn/000651409X a:homepage h"p://…isbn/000651409X Le palais des miroirs Le palais des miroirs Ghosh, Amitav h"p://www.amitavghosh.com e itr f:t e itr f:t h"p://…isbn/2020386682 h"p://…isbn/2020386682 f:traducteur f:traducteu r f:nom Ghosh, Amitav f:nom Besse, ChrisJanne f:no m Ghosh, Amitav f:nom Besse, ChrisJanne 3 1/31/12 However, more can be achieved… Start making queries… • User of data “F” can now ask aout the +tle of the original • This informa+on is not in the dataset “F”… • …but can be retrieved by merging with dataset “A”! • Maybe a:author & f:auteur should be the same • But an automa+c merge doesn’t know that! • Add extra informa+on to the merged data: – a:author same as f:auteur – both iden+fy a “Person” – Where Person is a term that may have already been defined, e.g.: • A “Person” is uniquely iden+fied by a full name, a homepage, facebook page, G+ page or email address • It can be used as a “category” for certain type of resources Use this extra knowledge The Glass Palace a:title 2000 a:year • User of dataset “F” can now query: h"p://…isbn/000651409X Le palais des miroirs f:original London Harper Collins a:city a he blis :pu r f: a:author e a:p_nam • The informa+on is not in datasets “F” or “A”… • …but was made available by: h"p://…isbn/2020386682 f:auteur f:traducteur r:type a:name a:homepage h"p://…foaf/Person f:nom Besse, ChrisJanne Ghosh, Amitav h"p://www.amitavghosh.com – “donnes-‐moi la page d’accueil de l’auteur de l’original” • well… “give me the home page of the original’s ‘auteur’” e titr r:type f:nom This enables richer queries – Merging datasets “A” and datasets “F” – Adding three simple extra statements – Inferring the consequences 4 1/31/12 Merge with Wikipedia data Combine with different datasets • Using, e.g., the “Person”, the dataset can be combined with other sources • For example, data in Wikipedia can be extracted using dedicated tools The Glass Palace 2000 a:title h"p://…isbn/000651409X a:year Le palais des miroirs f:original London Harper Collins a:city a he blis :pu r re f:tit a:author e a:p_nam h"p://…isbn/2020386682 f:auteur r:type – e.g., the “dbpedia” project can extract the “infobox” informa+on from Wikipedia already… f:traducteur a:name r:type h"p://…foaf/Person a:homepage f:nom f:nom r:type Besse, ChrisJanne Ghosh, Amitav h"p://www.amitavghosh.com foaf:name w:reference h"p://dbpedia.org/../Amitav_Ghosh Merge with Wikipedia data The Glass Palace 2000 a:title The Glass Palace h"p://…isbn/000651409X 2000 a:year London a:city a he blis :pu r re f:tit a:author e a:p_nam r:type a:name f:nom a:homepage Harper Collins h"p://…foaf/Person a h"p://dbpedia.org/../The_Glass_Palace w:reference a:homepage f:nom foaf:name Besse, ChrisJanne h"p://www.amitavghosh.com h"p://dbpedia.org/../The_Glass_Palace w:reference w:author_of h"p://dbpedia.org/../Amitav_Ghosh w:born_in w:author_of h"p://dbpedia.org/../Kolkata h"p://dbpedia.org/../The_Hungry_Tide w:long w:author_of h"p://dbpedia.org/../The_Calcu"a_Chromosome r:type w:isbn w:author_of h"p://dbpedia.org/../The_Hungry_Tide f:traducteur h"p://…foaf/Person r:type Ghosh, Amitav w:author_of h"p://dbpedia.org/../Amitav_Ghosh h"p://…isbn/2020386682 f:auteur f:nom Besse, ChrisJanne Le palais des miroirs re f:tit a:author e a:p_nam a:name f:nom h"p://www.amitavghosh.com r r:type r:type w:isbn foaf:name a:city he blis :pu f:traducteur r:type Ghosh, Amitav h"p://…isbn/000651409X a:year f:original London h"p://…isbn/2020386682 f:auteur a:title Le palais des miroirs f:original Harper Collins Merge with Wikipedia data w:lat w:author_of h"p://dbpedia.org/../The_Calcu"a_Chromosome 5 1/31/12 Is that surprising? • It may look like it but, in fact, it should not be… • What happened via automa+c means is done every day by Web users! • What is needed is a way to let machines decide when classes, proper+es and individuals are the same or different This can be even more powerful • Add extra knowledge to the merged datasets – e.g., a full classifica+on of various types of library data – geographical informa+on – etc. • This is where ontologies, extra rules, etc., come in – ontologies/rule sets can be rela+vely simple and small, or huge, or anything in between… • Even more powerful queries can be asked as a result So where is the Semantic Web? • The Semantic Web provides technologies to make such integration possible! • Hopefully you get a full picture at the end of the tutorial… 6
Documents pareils
Representacion del Conocimiento-Web Semantica
Para definir una red semántica que trate sobre un dominio
concreto deberemos en primera instancia conocer los elementos
que lo conforman y las relaciones entre ellos. Una vez conocemos