Abstract
Transcription
Abstract
Atelier « Asymptotiques des systèmes intégrables, matrices aléatoires et processus aléatoires, et universalité. Un hommage à l’occasion du e anniversaire de Percy Deift » – juin Workshop “Asymptotics in integrable systems, random matrices and random processes and universality: In honour of Percy Deift’s th birthday” June –, Singular value decomposition of a finite Hilbert transform defined on several intervals and the interior problem of tomography: the Riemann-Hilbert problem approach Alexander Tovbis* [email protected] We study the asymptotics of singular values and singular functions of a Finite Hilbert transform (FHT), which is defined on several intervals. Transforms of this kind arise in the study of the interior problem of tomography. We suggest a novel approach based on the technique of the matrix Riemann–Hilbert problem and the steepest descent method of Deift–Zhou. This is joint work with Marco Bertola and Alexander Katsevich. * Department of Mathematics, University of Central Florida, Building: MAP Office 218, P. O. Box 160000, Orlando, FL 32816, USA.
Documents pareils
Soccorsi Eric
Mathematical Methods in the Applied Sciences 33, 9 (2010), 1164-1180.
3) P. Briet, P. D. Hislop, G. Raikov, E. Soccorsi, Mourre estimates for a 2D quantum
Hamiltonian on strip-like domains, Contemp...