Recent progress in global weather modelling A tale about signal
Transcription
Recent progress in global weather modelling A tale about signal
Recent progress in global weather modelling A tale about signal, noise, error and value zThe quest for perfect forecasts zExtreme Events – could we be warned earlier? zDecision making in chaotic environments François Lalaurette, European Centre for Mediun-Range Weather Forecasts IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF ECMWF Member States Belgium Denmark Germany Spain France Greece Ireland Italy Luxembourg The Netherlands Norway Austria Portugal Switzerland Finland Sweden Turkey United Kingdom Co-operation agreements or working arrangements with: Czech Republic Croatia Iceland Hungary Romania Serbia & Montenegro Slovenia ACMAD EUMETSAT WMO JRC CTBTO IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Recent progress 500hPa GEOPOTENTIAL ANOMALY CORRELATION N.HEM 9 FORECAST SCORE REACHES 60.00 SCORE REACHES 60.00 MA LAT 20.000 TO 90.000 LON -180.000 TO 180.000 Forecast Day MA = 12 Month Moving Average 8.5 8 7.5 7 6.5 6 5.5 5 4.5 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF No Sat Recent progress: a NH tribute to 1) meteorological No RS satellites 2) advanced methods for data assimilation (4D-var) SH No RS Satellite data are now the main source of information even in the NH No Sat IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Number of observations used by ECMWF 10 3.6 millions 1 6h 3D 6h 4D millions 12h 4D 25r4/26r1 0.1 AIRS 0.01 1997 1998 1999 2000 2001 2002 2003 IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Recent progress: Rainfall events distribution Distribution of daily precipitation events Northern Extratropics (>20N) Dec.-Jan.-Feb., 1500 stations 100 2002-03 SYNOP reports 1999-00 SYNOP reports 10 CDF 4% 1 Of SYNOP reports exceed 0.1 0.01 1 10 10mm/day 100 1000 Daily rainfall (mm) IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Recent progress: Rainfall events distribution Distribution of daily precipitation events Northern Extratropics (>20N) Dec.-Jan.-Feb., 1500 stations 100 1999-2000: Too many light rain… 2002-03 SYNOP reports 18-42h forecasts (DJF 1999-00) 1999-00 SYNOP reports CDF 10 1 … too few heavy rain events 0.1 0.01 1 10 100 1000 Daily rainfall (mm) IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Recent progress forecasting rainfall: a tribute to better physical representations and increased resolution Distribution of daily precipitation events Northern Extratropics (>20N) Dec.-Jan.-Feb., 1500 stations 100 2002-2003: less light rain… 18-42h forecast (DJF2002-03) 2002-03 SYNOP reports 18-42h forecasts (DJF 1999-00) 1999-00 SYNOP reports CDF 10 1 … and more heavy rain events 0.1 0.01 1 10 100 1000 Daily rainfall (mm) IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Resolution changes T319 T106 T511 (2000) (1987) (2001) T63 T213 (1993) IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Summer 2003 European heat wave: a 40 years perspective 2mT monthly daily means averaged over Europe: land points only 24 wJJA2003 (Ops) 23 C 22 21 20 19 18 1957 1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 YEAR IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF 1996 1999 2002 ECMWF European Heat wave from a local point of view 2m-Temperature o Chartres (near Paris), France, August 2003 40 SYNOP 3-hourly reports D-2 forecast (48-69h range, 3-hourly) D-5 forecast (120-141h range, 6-hourly) o o 30 o 2m temperature ( C) 35 w9 days with Tx>35C and o 25 Tn>20C o 20 o 15 o 10 07-Aug 00UTC IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP 14-Aug 00UTC F. Lalaurette, ECMWF ECMWF 19-21 March 2004 Storms: Satellite and gust reports IABM conference, Forum 2004, Barcelona, 3 June 2004 90-108km/h • 108-126km/h Recent Progress in NWP • >126km/h F. Lalaurette, ECMWF ECMWF 19 March 2004 storm: Max Wind gusts Reports 25 - 30 •90-108km/h 20°W Forecast (12-36h range) 30 - 35 35 - 99• >126km/h • 108-126km/h 0° Thursday 18 March 2004 12UTC ECMWF Forecast t+(33-36) VT: Saturday 20 March 2004 00UTC Surface: **wind gust at 10m 20°E 0° 20°W 20°E 6. 15. 4. 24. 60°N 60°N 20°E 20°E 13. 27. 17. 30. 33. 17. 50°N 50°N 20. 23. 20°W 2. 18. 10. 16. 5. 0° 0° IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Recent progress in global weather modelling z Satellite observations and the use of advanced (4D-var) assimilation techniques have resulted in much improved forecasts over the last 5-10 years z Physical processes are now handled in a way that makes it possible to compare model and observed values for rainfall, wind and temperatures Î There are however still severe limitations (local effects, impact of convective downdrafts on wind gusts) z … but not all model improvements result into better forecasts IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Error or Chaos? ? “Why is it so difficult for meteorologists to forecast the weather with some success? (…) We see that perturbations usually happen to be where the atmosphere is in a state of unstable equilibrium. The meteorologist sees very well that the equilibrium is unstable, that a cyclone will be formed somewhere, but exactly where they are not in a position to say; a tenth of a degree more or less at any given point, and the cyclone will burst here and not there, and extend its ravages over districts it would otherwise have spared. If they had been aware of this tenth of a degree, they could have known it beforehand, but the observations were neither sufficiently comprehensive nor sufficiently precise, and that is the reason why it all seems due to the intervention of chance.” IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Erreur ou Chaos? « Pourquoi les météorologistes ont-ils tant de peine à prédire le temps avec quelque certitude ? (…) Nous voyons que les grandes perturbations se produisent généralement dans les régions où l’atmosphère est en équilibre instable. Les météorologistes voient bien que cet équilibre est instable, qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de le dire ; un dixième de degré en plus ou en moins en un point quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième de degré, on aurait pu le savoir d’avance, mais les observations n’étaient ni assez serrées, ni assez précises, et c’est pour cela que tout semble dû à l’intervention du hasard. » Henri Poincaré « Science et Méthodes » (1908) Chap IV: Le Hasard; section II Quoted by E. Lorenz (The Essence of Chaos, 1993, p. 119) IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Verifying Analysis Modelling the chaos: ECMWF ensemble H OPER T511 Cntr T255 OPER T511 Cluster 1 H H L 0 0 L 10 10 1 01 L 1 01 L L H Day 4 forecast valid 20 March 2004 L L 10 10 H H Member 2 Cluster 1 L Member 7 Cluster 1 Member 9 Cluster 1 Cluster 1 L Member 10 Cluster 1 H L 1 01 L L L L 1 01 10 10 5 10 10 L Member 8 Cluster 1 H L L L L L L L L L L L L 5 L 1 01 5 L H Member 6 Cluster 1 H 9 90 5 L Member 5 Cluster 1 H H 1 01 L Member 4 Cluster 1 0 L Member 3 Cluster 1 1 01 H H H L ECMWF ENSEMBLE FORECASTS Tuesday 16 March 2004 12UTC ECMWF Forecast t+96 VT: Saturday 20 March 2004 12UTC Surface: mean sea level pressure MSLP (countour every 5hPa) and Temperature at 850hPa (only -6 and16 isolines are plotted) L H Member 1 Cluster 1 Verifying Analysis Cluster 1 L L 1 01 5 H H L H L H 1 02 0 H H L 10 10 L H L L L L L L L L Cluster 1 H 1015 L L 0 L H L 15 10 L Cluster 1 Member 30 Cluster 1 Member 29 H L 1 01 9 85 10 10 L 5 L L H 101 5 5 L H H Cluster 1 Member 28 Cluster 1 Member 27 Cluster 1 Member 26 Cluster 1 Member 25 10 10 L 5 1 01 1010 1 01 L L H H H H 1 01 H L L H H H Cluster 1 Member 24 10 10 L H H Cluster 1 Member 23 Cluster 1 Member 22 H H H L H L L H L H Member 21 Cluster 1 L L L L H H H L 1015 Member 3 L 10 10 Cluster L L L L L 10 10 L L Member 11 H L H 10 10 0 15 1 0 01 0 1 1 01 5 1 01 1 0 10 L H L L Cluster 1 H L L H Cluster 1 Member 20 L H L H Cluster 1 Member 19 Cluster 1 Member 18 Cluster 1 Member 17 H H H H Cluster 1 Member 16 Cluster 1 Member 15 Cluster 1 Member 14 H L L H H Cluster 1 Member 13 Cluster 1 Member 12 Member 11 H L H H H H H H H H L H H 5 1 0101 0 1 H H H H L H L 1 01 5 IABM conference, Forum 2004, Barcelona, 3 June 2004 1 02 0 H H 1015 H L 10 05 H L H Recent Progress in NWP H L H H L F. Lalaurette, ECMWF H Cluster 1 H L H L L H H H H Cluster 1 Member 50 H L L 1015 L H H H L L H H Cluster 1 Member 49 Cluster 1 Member 48 H L H H H H 1 01 0 H L L 10 10 L H 1000 5 L L H Cluster 1 Member 47 H H 1 01 0 L 1015 H H L H H L Cluster 1 Member 46 Cluster 1 Member 45 Cluster 1 Member 44 1 01 L 5 H H L H 1 01 5 H L Cluster 1 Member 43 Cluster 1 Member 42 Member 41 H H H H H L 1 01 H L H L L H L H 10 10 5 H H L L L Cluster 1 L H H L 1 00 L L L H 5 -6 L L H Cluster 1 Member 40 Cluster 1 Member 39 Cluster 1 Member 38 Cluster 1 Member 37 H H H L H 1 01 L 0 H H Cluster 1 Member 36 Cluster 1 Member 35 10 10 L L 1 01 1005 15 1 0 01 0 1 L L L Cluster 1 Member 34 Cluster 1 Member 33 H H H 1020 L H Cluster 1 Member 32 Member 31 H H H H H H H H H H H H ECMWF Making decisions based on a balance of probabilities is nothing new z Traditionally, probabilities have been used (implicitely) to make decisions in uncertain environments Î I cannot forecast the temperature in Barcelona in a year’s time, but I know that it is likely to be warmer than in London Î Even if I know that by betting for an outsider I am most likely to lose, I may be likely to make a profit if I have some piece of information unknown from the bookmaker (his odds are too high) Î In a meteorological context, you may think of the bookmaker as the one making his decision on a climatology basis, and the informed bet-taker as the one with a good knowledge of the meteorological forecast z What is important is by how much the new piece of information (e.g. the meteorological forecast) is shifting the probabilities IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF 20 March 2004 storm: Max Wind gusts Reports 25 - 30 •90-108km/h 20°W Forecast (12-36h range) - 35 35 - 99• >126km/h •30 108-126km/h 0° Friday 19 March 2004 12UTC ECMWF Forecast t+(33-36) VT: Sunday 21 March 2004 00UTC Surf ace: **wind gust at 10m 20°W 20°E 0° 20°E 9 13. 6. 15. 4. 60°N 60°N 20°E 20°E 30. 3 26. 21. 37. 50°N 50°N 20°W 3 21. 3. 24. 5. 8. 0° 0° IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF 2 20 Mars 2004 storm (Extreme Forecast Index, Day 4 Forecast) IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Rhone & Marseille floods, 1-5 December 2003 (Le Provencal, 5/12) IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF 1-3 December observed rainfall (courtesy Meteo-France) Hauteurs des précipitations en 3 jour YS S I N 1 4 4 H5 UE Z Is ère M1 7 A S 1 R A LE P E 1 5 9 Romanche V IL L A 9 1 RC OH E 1 5 6 CL OM O 1 9 6 HA S P C 1 4 3 CL O IT 1 0 1 CHA DR 1 5 4 L E U P 1 6 3 MR E CU 1 8 5 RM OA N 1 7 0 M1 7 A E 8 Z T S A NT I 1 1 7 COL OM 2 1 2 0 S 1 A7 I N T BRIAN CO N ROCH E 1 5 7 B4 R0 A NC S A I T N 2 0 5 RU YN E 9 7 L AH C 9 3 CM AP S 4 7 B IR N A 2 L A U M 3 5 S A UG U 1 3 9 V IL L A 1 Rhôn e L EC H 2 7 9 C HA BE 1 6 5 Du ra nce E S L E 1 8 8 Dordogne VE R NO 2 3 0 C O MB O 1 5 1 Allie r DEX U1 0 3 E T IO L 1 9 2 S AI N T 2 7 2 BA EUF 1 1 7 L R V I O 2 2 2 6 N1 A U7 S Tr uyère H UP R A 8 8 S A IN T 2 9 1 ANT RA 2 7 0 Ar d èc AS BI N 9 9 M BU OR D 1 5 6 M S A NT I 1 1 5 M MENDE C H IR A 1 1 8 S AI N T 9 8 AL B -A 2 4 5 LAN AS 1 9 7 BE LE 1 5 0 O T B N 2 2 0 M B AR CE 1 7 RM EUZ 1 0 4 T U AL I 1 7 4 VT R I O 3 3 DO NZE 2 0 5 L E S V 1 7 1 120 E ygues RS OA N 1 0 0 G OS R P 2 1 1 VA L L O 2 2 3 M2 0 O T 8 N S Aveyron C7 O L8 OM BARCELO NNETTE ALL A T 2 7 ABL L A 1 9 8 V IL L E 2 3 6 AL L E S 8 2 V IL L E 6 5 L EA S 1 1 2 A2 L4 IE 5 T L EL B 2 8 2 150 km V AL DR 2 1 O TJ N 1 9 0 BE RNO 1 6 9 Lot EB MU R 5 de o n La c Po nç rr e Se L6 A6 A F O NT E 2 1 2 F 7 IG 9 E A DE A CZ 7 4 G AP L C U -E 1 2 5 P U Y -S 1 9 5 M R IA B 1 5 8 Drac A S A R 2 0 1 AU BEN 1 6 9 10 000 km² S A IN T 9 L U S -L 1 2 7 GA L ND 2 3 5 BE Z E R 2 5 9 he S 8 A N3 IT C2 H2 O M6 E BAR A N 3 2 6 Lot A5 R VI E D IE 1 2 Drôme 1 8 D6 IV AJ MU R AS 6 3 ye L A ND O 2 1 3 Loire Ub a AU R I L 7 9 S A IN T 1 2 4 S A N IT 1 6 7 F LORAC S A NT I 1 8 2 N YO NS 1 3 5 LA RG 7 6 1 V3 IN S 9 O V IS A N 1 9 0 S A I N T 1 2 5 S 1 A IN 8 T7 B U IS 1 3 3 S A IN T 1 8 7 G ard dA ' l on ès AL S L O 1 6 9 VA I S O 1 4 7 RB I IE 7 3 Ouvèze M CA IR A 2 0 3 E JA N 2 9 0 S A NT I 2 3 1 Ga r de Mdo n ia le t M IL L A 1 0 6 Ga dA ' n r do du n ze S A IN T 2 5 4 T N AU S 8 3 V AL L E 2 7 6 G A ig ALES 5 000 km² bi e S 6 IS 3 T E MO L L A 1 8 2 Bléone L 1 A7 R G4 S A IN T 1 2 0 Viaur V és u BS EI G 1 7 0 AP A L L 2 2 8 Ta rn S E DE R 1 9 4 ue s S A VO I 9 7 D IG NE-LES -BAINS BD E OI 1 3 1 100 B E IU L 9 0 P EO NE 6 3 V AL E D 1 0 1 O1 A9 R N G9 C1 H9 U6 S C D IG N E 3 2 CARP ENTRAS CAR P E 1 3 4 3 C2 H0 A TE C HA E T 3 1 S AU T L 1 1 2 M1 7 O R6 O M S 1 A N4 T I 9 E NR 1 8 3 80 B5 E R4 I L CR A DE 1 6 4 C2 O L 2 G O1 F ORCALQ UIER S AI N T 1 6 4 CRU I V 1 3 5 AVIGN ON LE V I 2 2 1 L AC A 1 1 8 Gar d M U RS 1 2 6 S A I N T 1 3 7 AP T CA HT E 1 6 3 e ôn B1 A8 R B3 E Rh CR O NU 1 4 4 L 7 E7 E S M NIMES O NT L 9 6 1 A5 V G8 IN CB AR I 1 5 6 D AU P H 7 5 BN ON I 1 6 5 CAS T E 6 7 CV AA I 1 4 1 N IM ES 1 5 0 LE A C 1 2 5 Dur a nce LEVIG AN Ta rn LO DEVE Le rg S O U MO 1 5 7 LC AU A 1 2 8 LV A AU 7 9 L U AT R 8 9 ue BEA DR 1 2 1 MR U T A 1 5 8 Agout S A N IT 1 4 8 E YR AG 1 3 2 Hé rault B2 E0 RE Var e cd o xi La e C r St AI G I U 7 9 E TO N 1 5 60 NICE N IC E 2 3 Verdo n CU AS 1 1 7 COM P S 1 1 7 T OU RR 3 1 GRAS S E S A I N T 5 7 VI N ON 6 8 G S A I T N 3 8 AU P S 7 4 L M AB E 1 3 6 M P E I L 2 4 M BR AG E 5 6 O AN U 3 2 VA BL O 2 9 1 000 km² S 1 A1 I N T N IC E 1 3 R S S A 3 6 AN T B I 2 1 40 T3 U O7 R LE U P 1 4 0 GG I N A 1 5 1 MONTPELLIER P E YR O 1 1 2 A IG U E 1 2 3 e ti t P ône Rh AIX-EN-P ROVENCE ôn 1 A6 R E 9 L S CU ORN 1 4 9 1 M1 2 O TF N L E S A 6 8 F R EU J 1 9 BRIG NOLES T RT E S 1 1 5 M A I G R 8 3 P O RT 9 6 Argens S A N IT 1 0 2 ME Y R E 9 3 e L E R G 1 0 9 AI X -E 1 6 LABAS 1 2 4 CN AN E 1 9 DR AG U 5 9 A IX -E 1 4 1 Rh LAG R 1 4 1 L1 A0 B R8 U P EO M G 3 8 F IG A N 4 3 S A IN T 1 3 4 MU A GU 2 0 6 Or b S EL I 4 0 DRAGUIG NAN M1 3 A S 0 R I B ar r age du S ala gou L E S A 1 2 3 DO UR G 1 1 2 RQ OU E 9 0 E YG UI 9 2 ARLES LC UR E 8 3 P 9 U G3 E T S A IN T 1 1 4 Bar r age de Ca ts lo i n V AL E N 5 2 LAB A 6 1 D ur ance S A I N T 1 9 8 u ld na ne C a hô R Var S A IT N 5 2 CAS TELLANE TAA RS 1 5 8 V IL L E 1 5 2 BL E MO 1 0 4 FONDDECARTEIGN© F IX -S 1 5 3 S A I N T 4 9 AR GE N 4 4 L AV E I 1 0 2 du 1er au 3 décembre 2003 M M IE T 1 7 1 20 F R J U E 2 4 L EA C 5 5 P E Z N E 1 1 3 ES L M 1 1 6 ROQ UE 9 6 S E TE 1 6 3 6 4 G BEZIERS C a na l du Midi MAR SEILLE MR A S E 2 3 0 BZ EE I 1 1 3 C AU NE 1 2 0 O NF A 1 8 0 UBAG A 8 7 S A N IT 5 2 0 CO GO L 6 8 G7 6 E MN P O RT I 1 1 5 C AS T E 9 4 M LE A C 9 2 A RS E 1 6 4 CL OLO 8 6 C6 E U8 RS C AS S I 2 4 6 CARCASS O NNE CAR CA 1 2 0 NARBO NNE Aude B OR ME 7 5 8 L8 E C A BA N DO 6 4 0 TO ULO N NA RO B 1 3 1 H YE RE 4 4 T 3 O U1 O L N AR B O 1 4 5 G R U IS 1 6 1 20 40 60 80 km E 2 S RA HY EE R 3 9 S A IN T 4 9 A8 L A7 I G AR QU E 1 9 3 LIMO UX AR V IG 7 2 HY E R E 3 3 DURB A 1 4 5 LA R E N 6 7 BAS TIA M1 3 O U7 T H Is ohyè te s pré liminaire s e n l'é ta t de nos informa tio ns le 04/11/2003 à 12h utc L U ECA 1 0 4 G R NE A 1 0 8 CUCU G 1 1 5 BE L CA 5 6 1 S 1 A IN 4 T Aude T1 R O0 R2 E P ERP IG NAN P ER P I 1 1 9 C2 R8 O A B CALVI L C UC I 1 5 P IE R T 1 2 Golo CA L IV 1 2 Têt P RADES T HU RI 1 0 9 A1 L E4 Y N5 1 E 0 S U9 F O MI R 4 2 Te ch VEN E R 1 5 3 CORTE T1 E R1 S 4 V IV E S 1 2 4 CERET P OR T 1 5 4 C OR E T 6 8 L E E P 1 2 9 Ta v S A I T N 5 9 ig na no RE NN O 1 8 G ra v on e P RAT S 9 3 Ha ute u r de s p ré cip ita tion s e n m illim è tre s ou litr e s /m² S AM P O 5 3 AJ ACCIO 25 50 75 10 0 125 15 0 200 25 0 300 Ta P A L I 2 2 10 ra v o A JA CC 2 1 CN OC A 2 4 © Mé té o-Fra nc e Dire ction In te rré giona le Sud-Es t Ex ploita tion Te c hnique Opé ra tionne lle / CLIMATOLOGIE 2 Bd Châ te a u double 13098 AIX EN PROVENC E c e de x 02 te l : 04 42 95 90 00 Fa x : 04 42 95 90 29 S ARTENE CAR BI 4 3 S AR T E 3 7 F IG A R 1 8 BN O IF 1 0 IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Extreme Forecast Index Chart Base 28/11 12UTC for rain accumulation from 29/11 06UTC up to 4/12 06UTC Precipitation accumulated over last 120h EPS Extreme Forecast Index 0 Base 28 November 2003 12UTC, VT: Thursday 4 December 2003 06UTC 40°W 60°W 15 01 20 0° 20°E 40°E 60°E LEGEND 01 60°W 30 10 01 40 20°W 1 100 40 40 501 30 70°N 60°E 30 501 30 1 90 30 60°N 1 1 1 50 1 80 1501 1 1 40°W 50°N 10 01 1 50 1 01 1 50 1 4030 70 1 10 50 50 400 3 30 40 50 60 50 1 50 501 40°E 1 1 40°N 60 3 °N 30 401 1 5 01 40 30 20°W IABM conference, Forum 2004, Barcelona, 3 June 2004 501 30 1 1 N 0° 0° Recent Progress in NWP 50 20°E F. Lalaurette, ECMWF ECMWF Tropical Cyclones: Isabel, 18/9/2003 1555UTC wMODIS on Terra, http://terra.ssec.wisc.edu IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF EPS forecast (Probability that Isabel will strike within 120km in the next 5 days) 80°W 60°W 40°W 100 90 Deterministic landfall forecast 40°N 40°N 80 70 Observed landfall 60 30°N 30°N 50 0 40 -12 -12 -24 -36 -48 -60 -72 -84 20°N -96 -108 20°N -120 30 -132 -144 -156 -168 20 -192 -180-192 10°N 10°N 10 FC base time: 14/9/2003 12UTC 5 80°W IABM conference, Forum 2004, Barcelona, 3 June 2004 60°W Recent Progress in NWP 40°W F. Lalaurette, ECMWF ECMWF 35 2m Tem perature Reduced to T511 Orography (deg C) 73M (T511) 79M (T255) 30 25 20 European Heat wave: a local perspective (Chartres, 30/7 and 3/8 EPSgrams) 15 10 5 40 THU FRI SAT SUN MON TUE WED THU FRI SAT 31 1 2 3 4 5 6 7 8 9 2m Tem perature Reduced to T511 Orography (deg C) 73M (T511) 79M (T255) 35 30 25 20 15 10 MON TUE WED THU FRI SAT SUN MON TUE WED 4 5 6 7 8 9 10 11 12 13 max AUGUST 75% 2003 median 25% TL255 CTRL min IABM conference, Forum 2004, Barcelona, 3 June 2004 TL511 OPS Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Economic Value of Probabilistic Forecasts z Using a simple cost/loss ratio (C/L) decision model, one can compute the expense associated with different decision-making strategies: 1. taking preventive action (with cost C) on a systematic basis; 2. never taking action (and therefore facing loss L when the event occurs); 3. taking action based on the meteorological forecast; 4. taking action based on a perfect forecast (wishful thinking) (Richardson, QJRMS 2000; Murphy, MWR 1977) IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Economic Value Jun03-Aug03 t + 144 Europe an T850 anomaly greater than 8K 1 VALUE (0=climate 1=perfect forecast 0.9 0.8 Better always take action (the forecast misses too many events) Better never take action (the forecast has too many false alarms) 0.7 0.6 0.5 0.4 0.3 CONTROL 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 COST/LOSS RATIO No value added by the meteorological forecast IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Economic Value: Adding Probabilities Applications that are sensitive to missed events may benefit from acting even when the probability is low Jun03-Aug03 t + 144 Europe an If probabilities are available, T850 anomaly greater than 8K applications that are 1 sensitive to false alarms may benefit from waiting for a high probability VALUE (0=climate 1=perfect forecast 0.9 0.8 0.7 0.6 0.5 0.4 0.3 CONTROL 0.2 EPS 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 COST/LOSS RATIO Extra value added by the probabilistic forecast IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Probabilities: a way to adjust the products z Decreasing the forecast probability threshold from which an action is taken goes with increasing rates of detection AND of false alarms); Ex: Probability of rain amount at Day4 >10mm Action Threshold Percentage of Detection False Alarm Rate 60% 8% 0% 30% 37% 3% 20% 52% 6% 10% 71% 13% 2% 97% 51% (Verification data are Europe SYNOP reports in Winter 2002-2003 (DJF); average frequency of occurrence=6%) IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF Summary / discussion z Numerical methods for modelling the weather have improved a lot over the last 5-10 years – increased computer power, new satellites, new, advanced methods for data assimilation z Large scale weather systems are now forecast with the same accuracy 8 days in advance than 5-6 days 25 years ago z The chaotic behaviour of some aspects of atmospheric dynamics makes it however still almost impossible to accurately forecast severe weather a few days in advance z New methods (ensembles) are providing critical information on the occurrence of severe weather in a probabilistic way Î The new challenge is to bring this information to the public Î Maybe one way is to stress not only how likely an extreme event is, but how these (dynamical) probabilities compare with those derived from past records (frequency of occurrence) z Meteorologists (and broadcasters) only reduce the value of their forecasts by ignoring their margin of error IABM conference, Forum 2004, Barcelona, 3 June 2004 Recent Progress in NWP F. Lalaurette, ECMWF ECMWF
Documents pareils
TEL-AVIV
UBAG TEL-AVIV
Sac shopping bi-couleur à soufflet /
Bi-color shopping bag with gusset