Chapitre 1
Transcription
Chapitre 1
1 Automatic Control 1.1 Robust multivariable control • Robust control for lateral driving assistance of a road vehicule 18 1.2 Predictive control • Explicit constrained predictive control laws 20 1.3 Hybrid systems • Hybrid approach for voltage control of power systems 22 1.4 Modelling and control of complex systems • Modelling, optimisation and control of complex district heating networks 24 1.5 Estimation and modelling • Time-variant parameters estimation 26 1.6 Nonlinear and hybrid systems analysis • Guaranteeing stability of nonlinear sampled-data systems 28 1.7 Electrical and mechanical systems • Power factor compensators for nonlinear loads 30 16 1 Automatique 1.1 Commande multivariable robuste • Commande robuste pour l’assistance au contrôle latéral d’un véhicule routier 18 1.2 Commande préditive • Formulation explicite des lois de commande prédictive sous contraintes 20 1.3 Automatique des systèmes hybrides • Approche hybride pour la commande en tension d’un réseau électrique 22 1.4 Modélisation et commande de systèmes complexes • Modélisation, optimisation et commande de réseaux multi énergies complexes 24 1.5 Estimation et modélisation • Estimation de paramètres variant dans le temps 26 1.6 Systèmes non linéaires et hybrides • Garantir la stabilité des systèmes non linéaires à données échantillonées. 28 1.7 Systèmes électriques et mécaniques • Compensateur du facteur de puissance pour les charges non linéaires 30 17 1.1 Commande multivariable robuste Robust multivariable control Pour tout renseignement s’adresser à : For further information, please contact: Gilles DUC Département Automatique Campus de Gif Tél. : +33 [0]1 69 85 13 88 E-mail : [email protected] Houria SIGUERDIDJANE Département Automatique Campus de Gif Tél. : +33 [0]1 69 85 13 77 E-mail : [email protected] Sihem TEBBANI Département Automatique Campus de Gif Tél. : +33 [0]1 69 85 13 85 E-mail : [email protected] 1 Automatique Automatic Control Objectifs Aims Pour résoudre les problèmes de plus en plus complexes qui relèvent de l'Automatique, on utilise des modèles qui sont à la fois suffisamment simples pour être utilisables et sujets à des incertitudes. On est donc conduit à exiger la robustesse de la commande, de sorte que les propriétés de l'asservissement puissent être garanties en dépit des différentes sources d’incertitudes de modèle. La puissance accrue des moyens de calcul, et l’utilisation du formalisme par inégalités matricielles, permettent d’envisager la synthèse de la commande sous l'angle d'un problème d'optimisation, en général multi-critères. Parallèlement se fait sentir le besoin de méthodes d'analyse puissantes et précises des performances et de la robustesse, et d’une évaluation du potentiel de ces approches dans le cadre non-linéaire. Dès lors, nous développons des approches globales et systématiques pour poser les divers problèmes de faisabilité, d'analyse, de synthèse et de retouche de correcteurs dans un cadre fédérateur, et de mettre en place dans les deux cas des procédures pratiques, simples et efficaces. To solve increasingly complex automatic control problems, it is necessary to use models that are both simple enough for use and subject to uncertainties. Robustness of the control law is therefore required in order to guarantee the properties of the controlled system despite different modeling uncertainties. Recent improvements in computer capabilities, together with matrix inequalities allow us to consider the problem of designing a control law as an optimization problem, which in general is more precisely a multi-objective one. Meanwhile, new requirements are emerging concerning powerful and efficient analysis methods, capable of providing useful insight on performance and robustness, and evaluating the possibilities of such approaches in a non-linear context. Therefore, global and systematic approaches for expressing different control problems, such as feasibility, analysis synthesis and retuning, are developed in a unified way, establishing for each approach practical, albeit simple and efficient procedures. Sujets Topics 1. Synthèse de lois de commande Méthodologie pour la mise en œuvre de synthèses à critères multiples par inégalités matricielles. Synthèses de correcteurs à gains paramétrés. Interpolation de correcteurs. Synthèse de commandes non linéaires (par retour d’état statique ou dynamique, par backstepping ou par modes glissants) sur des systèmes dynamiques non linéaires. Stabilisation de systèmes dynamiques non linéaires autour de trajectoires de référence. 1. Control law synthesis Methodology for the development of multi-objective design methods according to matrix inequalities. Synthesis of gain-scheduled controllers. Interpolation of controllers. Synthesis of non linear control laws (by static or dynamic state feedback, by backstepping or sliding modes) for dynamic non-linear systems. Stabilization of non-linear dynamic systems along reference trajectories. 2. Réduction de complexité Synthèse de régulateurs robustes avec contraintes de structure (PID, décentralisée, cascade, …). Synthèse de correcteurs linéaires ou paramétrés d’ordre fixé. 3. Analyse des propriétés d'une loi de commande Développement de procédures par inégalités matricielles pour l’étude des performances et de la robustesse d’une commande. Etude a priori de la faisabilité d'un cahier des charges par optimisation convexe. Retouche de correcteurs hors ligne ou en ligne. Recherche de propriétés caractérisant la robustesse d’un système dynamique non-linéaire. 18 2. Complexity reduction Design of robust controllers with structural constraints (such as PID, decentralized, cascade, etc.). Design of linear or gain-scheduled controllers with a fixed order. 3. Analysis of controlled system properties Development of matrix inequality based procedures for performance and robustness analysis. A priori analysis of the feasibility of control requirements by convex optimization. Controller retuning (off-line or, on-line). Properties investigations for characterizing the robustness of dynamic non-linear systems. Commande multivariable robuste / Robust multivariable control Commande robuste pour l’assistance au contrôle latéral d’un véhicule routier Robust control for lateral driving assistance of a road vehicle Abstract Par Gilles Duc This paper presents the design of a gain-scheduled controller for lateral driving assistance. The controller, whose parameters depend on the longitudinal speed, adds a steering torque to that of the driver in order to improve lane keeping and yaw dynamics despite external disturbances (lateral wind) and parameter uncertainties. Introduction dépend de façon affine du paramètre variant (ce qui est obtenu ici moyennant quelques approximations). Le projet ARCOS 2004 du programme PREDIT a été conçu dans le but de contribuer à l’amélioration de la sécurité routière à partir d’une approche globale du système « véhicule-conducteur-infrastructure ». Dans ce cadre, nous avons travaillé sur la prévention des sorties de route, en développant des lois de commandes pour l'assistance au contrôle latéral permettant le suivi de l'axe de la voie et le rattrapage d'écarts excessifs. Celles-ci doivent assurer une bonne robustesse du comportement en dépit de nombreuses incertitudes (les plus importantes portant sur les valeurs de la masse et de l'adhérence), et évoluer en fonction de la vitesse longitudinale du véhicule, qui modifie fortement son comportement dynamique. Ces travaux ont été menés dans le cadre de la thèse de T. Raharijaona, coencadrée par Supélec et le LIVIC (Laboratoire sur les Interactions VéhiculeInfrastructure-Conducteur). Validation en simulation La stratégie d’assistance a été testée dans de multiples situations, en présence de vent latéral, pour des pertes d’adhérence, à vitesse variable, … en utilisant un modèle non linéaire de véhicule implanté dans le simulateur d’environnement routier développé par le LIVIC. Nous avons ainsi évalué en simulation le comportement qui serait obtenu sur une piste pour laquelle nous disposions d’une cartographie DGPS avec une précision centimétrique. Les figures 2 et 3 montrent, avec et sans assistance, la trajectoire suivie dans un virage et l’écart latéral sur une partie de la piste pour des variations de vitesse de l’ordre de 10 m/s : pour le véhicule assisté, l’écart reste inférieur à 40 cm, ce qui est très satisfaisant. Structure de contrôle La stratégie de commande (figure 1) consiste, à partir de mesures du déplacement latéral et de l'erreur sur l'angle de cap, à ajouter un couple à celui délivré par le conducteur : le système fonctionne en mode partagé, le conducteur restant maître du véhicule. Figure 2 : Trajectoire suivie dans un virage Figure 1 : Stratégie d’assistance retenue Synthèse du correcteur Nous avons tout d’abord effectué la synthèse d’un correcteur à vitesse longitudinale fixée. Moyennant quelques hypothèses simplificatrices, le processus à contrôler peut être modélisé par un système linéaire invariant, dont certains coefficients sont incertains (masse, adhérence). Dans ce contexte, la synthèse H-infini a prouvé son efficacité et sa souplesse. Dans cette méthode fréquentielle, les performances sont obtenues en imposant la bande passante de l’asservissement tandis que les propriétés de robustesse découlent principalement de la maîtrise des marges de stabilité et du comportement en hautes fréquences. Le recours à la mu-analyse permet de vérifier a posteriori la robustesse aux incertitudes sur les paramètres du modèle utilisé. Lorsque la vitesse longitudinale varie, le modèle du processus à contrôler reste linéaire, mais il est dit « à paramètre variant » (système LPV). La vitesse étant mesurable, elle peut être utilisée pour modifier les paramètres du correcteur en temps réel. La méthodologie se présente comme une extension naturelle de la synthèse H-infini, qui est particulièrement simple lorsque de plus le modèle Figure 3 : Comparaison des déplacements latéraux sur la piste ..................................................................................................................................... Références / References [1] T. Raharijaona, “Commande robuste pour l’assistance au contrôle latéral d’un véhicule routier”, Thèse de Doctorat, Paris XI et Supélec, nov. 2004. [2] S. Mammar, T. Raharijaona, S. Glaser, G. Duc, “Lateral driving assistance using robust control embedded driver-vehicle-road model”, Vehicle System Dynamics, vol. 41 supplement, pp. 311-320, 2004. 19 1.2 Commande prédictive Predictive control Pour tout renseignement s’adresser à : For further information, please contact: Sujets 1 à 4 / Topics 1 to 4: Didier DUMUR Département Automatique Campus de Gif Tél. : +33 [0]1 69 85 13 75 E-mail : [email protected] 1 Automatique Automatic Control Objectifs Aims La commande prédictive a prouvé aux travers de très nombreuses applications industrielles sa capacité à garantir des performances accrues tout en s’avérant simple d’implantation. Le succès de cette stratégie de commande avancée réside principalement dans son apport théorique, permettant d’inclure la connaissance d’une trajectoire à suivre dans le futur, sur un horizon fini. Sa description temporelle facilite de plus la prise en compte des contraintes physiques des systèmes. Elle est donc tout indiquée dans les problèmes de suivi de trajectoires, notamment pour la commande d’axes en machine-outil ou en robotique, mais aussi pour la commande de systèmes non linéaires dont la trajectoire a été planifiée, ou encore pour la conduite de systèmes plus lents, en thermique du bâtiment ou agroalimentaire par exemple. Dans un contexte adaptatif, elle permet également de piloter les systèmes variant dans le temps. Through many industrial applications, predictive control has proven its ability to provide better performance while keeping its implementation relatively easy. The success of this advanced control strategy mainly relies on its theoretical background that, during the design stage, permits future trajectories to be followed over a finite horizon. Its time-domain formulation also facilitates consideration of the physical constraints of such systems. Therefore, this technique is of growing interest to engineers wishing to solve trajectory tracking problems (e.g. machine-tool axis control or robotics), but also for the control of non-linear systems based on pre-specified trajectories; or for the control of slower systems (e.g. temperature control in buildings or agrifood applications). Coupled with an adaptive module, this technique may also effectively control time-variable systems. Within this framework, it is important to develop specific methodologies for ensuring the robustness of predictive laws against uncertainties, or for taking into account constraints on the system. It is also necessary to extend the application field of predictive control, for Dans ce cadre, il s’avère important de développer des méthodologies garantissant la robustesse des lois prédictives vis à vis d’incertitudes, ou encore tenant compte des contraintes sur le système, et par ailleurs d’en étendre le champ d’application notamment aux systèmes hybrides, ou aux systèmes embarqués en mécatronique. example to hybrid systems or embedded systems in mechatronics. Sujets Topics 1. Robustification de lois prédictives Prise en compte d’incertitudes de modèles. Robustification par la paramétrisation de Youla, afin de définir la classe de régulateurs garantissant stabilité et performances pour un niveau d’incerti- 1. Robustification of predictive control laws Robustification of predictive laws via Youla parameterization was analyzed in order to define a complete set of controllers ensuring stability and per- tudes donné. Application à la commande d’axes de machineoutil et en mécatronique. Extension aux systèmes multivariables. formance for a given level of uncertainties (e.g. model uncertainties). Application to axis control of machine tools and mechatronics. Extension to multi-variable systems 2. Commande prédictive sous contraintes Développement d’outils méthodologiques mixant les théories des systèmes incertains et de la commande robuste, permettant la prise en compte de contraintes en temps réel par détermination de la solution explicite. 2. Constrained predictive control Development of methodologies combining theories that stem from systems subject to uncertainty and robust control, taking into account real-time constraints, followed by determination of an explicit solution. 3. Commande prédictive robuste de systèmes hybrides incertains Approches systématiques pour la faisabilité, l’analyse et la synthèse dans un cadre hybride. Prise en compte des contraintes d’exécution temporelles pour une implantation pratique simple et efficace. 4. Commande prédictive non linéaire Planification de trajectoires, conception de lois de commande prédictive non-linéaires à horizon fini et implantation temps réel. Application à la commande de bioréacteurs. 20 3. Robust predictive control of hybrid systems subject to uncertainties Systematic approach for feasibility, analysis and design within a hybrid framework. Minimization of computational load for simple and efficient implementation. 4. Non-linear predictive control Trajectory planning, design of non-linear finite horizon predictive control laws and real-time implementation architecture. Application to bioreactors control. Commande prédictive / Predictive control Formulation explicite des lois de commande prédictive sous contraintes Explicit constrained predictive control laws Abstract Par Sorin Olaru et Didier Dumur Constrained predictive control usually leads to on-line multiparametric optimization, which implies important computational load. An alternative to this problem is the elaboration of an explicit solution, using a geometrical approach based on the concept of parameterized polyhedron. This results in an off-line design procedure that provides predictive laws with guarantee of feasibility. Their effective implementation may use techniques spread from on-line optimization to fully explicit piecewise laws evaluated by look-up table positioning mechanisms. This approach allows, beside the construction of explicit laws, the analysis of the redundancy phenomenon for the set of constraints. Problème d’optimisation multiparamétrique l’ensemble des contraintes [3]. Il en résulte une partition de l’espace des paramètres en régions correspondant à des sous-ensembles de contraintes localement non redondantes utilisables par l’approche explicite. Cette caractérisation du domaine permet de plus d’établir des conditions nécessaires et suffisantes de faisabilité de la loi prédictive, les relations avec la stabilité du système bouclé étant mises en évidence grâce à la théorie des ensembles invariants. La commande prédictive permet, grâce à sa description temporelle, de prendre en compte les contraintes inhérentes aux systèmes physiques. De plus, inclure ces contraintes dès la phase de conception renforce les performances obtenues en termes de faisabilité, stabilité et robustesse [1]. Cette démarche aboutit alors à la résolution à chaque pas d’échantillonnage d’un problème d’optimisation multiparamétrique, dans lequel un vecteur de paramètres (par exemple l’état du système) intervient à la fois dans la fonction de coût et le système de contraintes. Cette résolution s’avère cependant coûteuse en temps de calcul, restreignant de Application et conclusions On s’intéresse à la commande en position d’une machine asynchrone dont on souhaite obtenir une réponse sans dépassement. La figure 2 illustre les résultats obtenus dans le cas d’une loi prédictive GPC robuste sous contraintes, formulée de façon explicite. On constate effectivement que l’erreur de suivi reste positive, fait les applications potentielles de la méthode. Dans ce contexte, l’élaboration d’une solution explicite au problème d’optimisation multiparamétrique constitue une alternative intéressante, permettant non seulement la réduction du temps de calcul en-ligne, mais encore l’analyse de la structure résultante. cette contrainte n’ayant pas pénalisé par ailleurs la réponse en transitoire. Utilisation des polyèdres paramétrés Se distinguant d’autres stratégies rencontrées, la démarche ci-dessous propose d’obtenir la solution explicite par une approche géométrique, basée sur le concept de polyèdre paramétré [2]. En effet, le domaine issu d’un ensemble de contraintes linéaires se représente dans de nombreux cas sous une forme polyédrale, paramétrée en fonction de l’évolution de la dynamique du système. Ce polyèdre paramétré se déduit du système d’inéquations initial grâce à la double représentation de Minkowski. Un partitionnement de l’espace des paramètres, déduit du positionnement de l’optimum sans contraintes par rapport au domaine polyédral, permet la construction d’une formulation explicite affine par morceaux de la loi prédictive, dans le cas nominal comme dans le contexte de robustesse. Pour une stratégie de commande prédictive généralisée, cette loi se caractérise par une structure multi-RST, incluant dans chaque zone un terme constant en plus des trois polynômes (fig. 1). Figure 2 : Loi GPC avec contraintes sur les sorties prédites La formulation explicite autorise donc l’application à des systèmes rapides (période d’échantillonnage de 1 ms dans l’exemple présenté). Par ailleurs, la structure par polyèdres paramétrés offre la liberté d’ajuster la répartition entre la partie hors ligne et la partie optimisation temps réel, selon la capacité mémoire et la puissance informatique disponibles. Figure 1 : Régulateur polynomial par morceaux équivalent. ..................................................................................................................................... Forme explicite de la loi GPC sous contraintes. Références / References A partir de cette conception hors ligne, l’implémentation effective est réalisée via une fonction affine par morceaux à chaque période d’échantillonnage, par positionnement dans une table préprogrammée. Cette démarche remplace la procédure itérative d’optimisation évoquée précédemment. Il en résulte un gain en temps de calcul important pour des applications à cadence rapide. En plus de la construction de lois explicites, l’originalité de l’approche, liée à cette vision géométrique, permet l’analyse du phénomène de redondance de [1] G.C. Goodwin, M.M. Seron, J.A. De Dona, “Constrained Control and Estimation”. Springer-Verlag, London, 2004. [2] S. Olaru, D. Dumur, “A parameterized polyhedra approach for explicit constrained predictive control”. 43rd IEEE Conference on Decision and Control, The Bahamas, 2004. [3] S. Olaru, D. Dumur, “Avoiding constraints redundancy in predictive control optimization routines”. IEEE Transactions on Automatic Control, 50(9), 1459–1466, 2005. 21 1.3 Automatique des systèmes hybrides Hybrid Systems 1 Automatique Automatic Control Objectifs Aims Les contraintes économiques et environnementales induisent des exigences de plus en plus importantes sur la maîtrise du comportement des systèmes. Alors même que ces systèmes sont de plus en plus complexes, la satisfaction de ces exigences demande de prendre en compte globalement leur comportement. Il est donc nécessaire d'intégrer d'une part les incertitudes de modélisation et d'autre part les évolutions de modèles en fonction des modes de fonctionnement et des changements d'objectif. Il n'est alors plus possible d'utiliser des modèles dynamiques purement continus ou purement événementiels ; des modèles hybrides doivent désormais être considérés. Nos objectifs sont d'étudier et de développer un ensemble de formalismes et de méthodes prenant en compte la spécificité des systèmes hybrides pour permettre leur modélisation, l'analyse et la vérification de leur comportement, ainsi que la synthèse de leur commande (dans ses composantes algorithmiques et méthodologiques). Economic and environmental constraints lead to increasing requirements for controlling the behavior of systems. While systems are more and more complex, it is necessary to fulfill these requirements to consider their global behavior. It is then mandatory to take into account the modeling uncertainties and the changes in models with modes switching. Therefore, it is no longer possible to use purely continuous or purely discrete event dynamic models, and hybrid models have to be considered as well. The aim of this research is to develop a set of formalisms and methods that could take into account the specificity of hybrid systems, enabling their modeling, analysis and behavior checking, as well as the synthesis of their control (taking into account algorithmic and methodological aspects). This work can be successfully applied to various application domains such as automotive, industrial control, energy management… It is partly integrated within the framework of the European network of excellence (NoE) HYCON. Ces travaux contribuent aux avancées dans différents domaines tels que l'automobile, le contrôle industriel, l'énergie… Ils s'intègrent en partie dans le cadre du réseau d'excellence européen HYCON. Sujets Topics 1. Systèmes physiques en commutation Modélisation et analyse en électronique de puissance. Bond-graphs à commutations. Commande stabilisante des systèmes physiques en commutation. Modélisation et simulation du système cardiovasculaire. 1. Switching physical systems Modeling and analysis in power electronics. Switching Bond graph. Stabilizing control of switching physical systems. Modeling and simulation of cardiovascular system. 2. Commande des systèmes hybrides Commande prédictive des systèmes hybrides incertains. Approche hybride pour la commande et la reconfiguration d'un réseau d'énergie (Projet €nergie). 3. Sûreté fonctionnelle Vérification de propriétés, calculs sûrs d'atteignabilité, abstractions, synthèse de contrôleurs, prise en compte des incertitudes. Pour tout renseignement s’adresser à : For further information, please contact: Hervé GUEGUEN Campus de Rennes Tél. : +33 [0]2 99 84 45 04 E-mail : Hervé[email protected] 4. Modularité et répartition Modélisation modulaire, spécification par contraintes. Commande modulaire et répartie, coordination, synchronisation. Jean BUISSON Campus de Rennes Tél. : +33 [0]2 99 84 45 42 E mail : [email protected] 22 2. Hybrid system control Predictive control of uncertain hybrid systems. Hybrid approach for control and reconfiguration of power systems (€nergie project). 3. Functional safety Safety verification, guaranteed reachability computation, abstraction, controller synthesis, uncertain systems and worst case verification. 4. Modular and distributed control Modular modeling, constraints specification, reachability. Modular and distributed control, coordination, agent based control. Automatique des systèmes hybrides / Hybrid systems Approche hybride pour la commande en tension d’un réseau électrique Hybrid approach for voltage control of power systems Abstract Par Sylvain Leirens et Jean Buisson To keep the voltage of a power grid under control is a major issue, especially when the system is confronted with severe damage such as line outage or loss of generation. If the focus is on voltage control, it might be relevant to consider power systems as hybrid dynamical systems. Load dynamics are taken into account, along with the mixed nature of variables so as to propose a new kind of approach based on a formal linearization and hybrid predictive control. Réseaux électriques et systèmes hybrides Application : réseau électrique à 4 nœuds Un réseau électrique est constitué par l’interconnexion de producteurs et de consommateurs via des lignes de transport. Différents dispositifs sont présents dans le réseau pour en assurer le fonctionnement : transformateurs, compensateurs… L’approche hybride pour la modélisation et la commande est justifiée par la présence de grandeurs continues (FACTS, références de tension, ..) et discrètes (délestage de charge, bancs de capacités). Le système de la figure 2 est une représentation très simplifiée d’un réseau de transport d’électricité : on distingue les générateurs g1 et g2, la charge ch, les lignes de transports l1, l2 et l3, un transformateur équipé d’un régleur en charge tr et un banc de condensateurs c. Le réseau subit un défaut à t=30s (deux des trois conducteurs de la ligne l3 sont déconnectés) et c’est l’effondrement de tension (figure 3). Commande prédictive hybride Cette extension de la commande prédictive est en pratique la seule approche utilisable. Le principe consiste à prédire le comportement du système sur un futur proche pour calculer les commandes à appliquer au système à l’instant courant. Pour simplifier les calculs, le modèle de réseau est linéarisé formellement et disFigure 2 : Réseau d’étude à 4 nœuds crétisé pour obtenir un modèle affine par morceaux (PWA) à temps discret réactualisé en ligne : (1) Ce modèle dépend du mode i défini par la combinaison de l’appartenance à une région de l’espace d’état-commande continu (x, uc) (par exemple une saturation) et des entrées discrètes ud. Une optimisation (2) en ligne permet de calculer les séquences de commande Uc Figure 3 : Effondrement de tension La figure 4 montre les résultats obtenus avec une commande prédictive en utilisant un horizon N=3 instants d’échantillonnage (T=30s). A t=60s, la connexion des gradins disponibles du banc de condensateurs et le blocage du régleur en charge permettent de restaurer l’équilibre et un plan de tension proche de la situation avant incident [2]. (2) et Ud dont seule la première valeur est utilisée. La prise en compte d’aspects hybrides dans le modèle (1) implique une complexité combinatoire pour le calcul de la commande. Un nouvel algorithme de type branch & bound dédié au problème de commande prédictive a été mis au point. Il permet de ne pas avoir à énumérer toutes les possibilités et de trouver la solution en un temps raisonnable [1]. Figure 4 : Résultats obtenus avec une commande predictive (N=3) Cette étude, réalisée dans le cadre d’une collaboration avec AREVA T&D et relevant du projet fédérateur €nergie, a permis de montrer la pertinence d’une approche prédictive hybride pour la maitrise de l’écroulement de tension d’un réseau électrique. Les travaux futurs concernent la prise en compte de la complexité au travers d’un réseau de grande dimension. ...................................................................................................................................... Références / References [1] S. Leirens, J. Buisson, P. Bastard and J.-L. Coullon, “An Efficient Algorithm for Solving Figure 1 : Branch & bound pour la commande prédictive Model Predictive Control of Switched Affine Systems”, Proceedings of the 17th Scientific Computation, Applied Mathematics and Simulation World Congress (IMACS), Paris, 2005. Le principe de cet algorithme est illustré sur la figure 1. Les traits gras indiquent le chemin menant au premier sous-optimum. Un calcul de coût partiel en chaque nœud permet d’éliminer des sous-arbres (nœuds marqués d’une croix). L’optimum recherché est marqué par un triangle. [2] S. Leirens, J. Buisson, P. Bastard, J.-L. Coullon, “A Hybrid Approach for Voltage Stability of Power Systems”, Proceedings of the 15th Power Systems Computation Conference (PSCC), Liège, 2005. 23 1.4 Modélisation et commande de systèmes complexes Modelling and control of complex systems 1 Automatique Automatic Control Objectifs Aims Le but de cette thématique est d’apporter un soutien méthodologique aux ingénieurs ou architectes de systèmes industriels vis à vis de tout problème nécessitant modélisation et commande de systèmes complexes : systèmes dynamiques, multi-variables, non linéaires, relevant de plusieurs domaines physiques. L’approche permet dans une démarche complète de conception, de proposer sans a priori une solution propre à remplir les objectifs fixés par les cahiers des charges posés dans divers domaines : automobile, physique, environnement, science de la terre, finance… The aim of this article is to provide engineers or industrial systems architects with the methodologies needed to tackle the many difficulties of modelling and controlling complex systems: namely, dynamic, multivariable, non-linear and multi-physical systems. This type of approach entails making choices based on such design methodologies and validating a solution in order to meet the technical specifications and requirements of different industrial sectors: automotive, physics, environment, finance, etc. Sujets Topics 1. Commande et optimisation de systèmes complexes Formalisation de problèmes industriels et conception du cahier des charges des systèmes associés selon une approche fonctionnelle. Choix, sans a priori et synthèse de lois de commande propres à remplir les objectifs fixés dans le cahier des charges. Soutien méthodologique dans l’optimisation et la commande de systèmes multi-variables ou de systèmes hybrides complexes, fortement non linéaires : positionnement d’un robot médical 1. Control and optimization of complex systems Formalization of industrial problems and specification of associated systems according to a functional approach. Proper choice and design of control laws in order to meet the desired specifications. Methodological support for optimizing and controlling complex non-linear multivariable or hybrid systems: for example, the positioning system of a multi-axes medical robot, the friction processes of automotive transmissions or the power system for a fuel-cell stack Optimization of complex systems dealing with automotive applications, electrical energy production involving wind turbines, and multi-energy district networks. multiaxes, organes de friction de groupe motopropulseur, module de puissance d’une pile à combustible. Optimisation de systèmes complexes, dans le domaine de l'énergie électrique, parcs de production multi énergies et éoliens, le secteur du contrôle-commande et de l’automobile. Pour tout renseignement s’adresser à : For further information, please contact: 2. Modélisation-Estimation-Identification Développement et validation de modèles analytiques permettant la simulation de systèmes multi-physiques complexes. Détermination, identification et validation de modèles simplifiés pour des systèmes complexes et incertains en vue de maintenance prédictive ou de commande : application à des bioréacteurs de culture de micro-algues, de bactéries. Recherche d’une méthodologie permettant l’obtention d’un modèle associé à un domaine d’incertitude donné caractérisant des données expérimentales observées. Point sur des méthodes (Model Free LQG), à la croisée des techniques d’identification et de commande, qui sans en expliciter le modèle, permettent la commande optimale d’un procédé. Dominique BEAUVOIS Département Automatique Campus de Gif Tél. : +33 [0]1 69 85 13 87 E-mail : [email protected] 24 2. Modelling-Identification-Estimation Design, implementation and validation of analytical models permitting the simulation of complex multiphysical systems. Determination, identification and validation of simplified models for complex uncertain systems in order to implement predictive maintenance (motor-drive systems) or adequate control laws (bio-reactors for microalgae and bacteria culture). Development of a methodology for establishing a model linked to a given uncertain domain which could explain observed experimental data. Definition of an approach (Model Free LQG) combining subspace identification and control methods allowing optimal control of a process without the need for explicit model representation. Modélisation et commande de systèmes complexes / Modelling and control of complex systems Modélisation, optimisation et commande de réseaux multi énergies complexes Modelling, optimisation and control of complex district heating networks Abstract Par Guillaume Sandou, Stéphane Font et Sihem Tebbani District heating networks are complex systems with non linear, non analytic phenomena and non negligible, time varying propagation delays. A reference model is first developed for simulation. Then, the definition of a hierarchical global/local optimisation strategy is necessary to compute a solution for the whole district network (optimal control trajectories for power supplies, network management and storage planning). For local optimisations, several approaches are used (exact solution and metaheuristics), depending on the complexity of production sites. Finally, predictive control principles allow the use of optimisation results in a closed loop framework. Robustness of the control law against prediction errors is taken into account. adéquate du problème. Pour chaque problème élémentaire, un modèle doit être défini, conjointement à une méthode d’optimisation. La stratégie est fondée sur une décomposition hiérarchisée globale/locale : des modèles agrégés des sites de production sont d’abord élaborés. L’optimisation globale du réseau permet alors de déterminer les énergies produites par chaque site, les vitesses de rotation des pompes, le degré d’ouverture des vannes et la gestion du stock. Cette optimisation s’effectue environ en 12000 secondes. Les énergies à produire étant connues, il est possible de réaliser des optimisations locales au niveau de chacun des sites de production. Il s’agit, au niveau de chaque site, de répartir la production d’énergie entre ses différentes installations pour obtenir des plannings locaux conformes au fonctionnement global attendu lors de la détermination des modèles agrégés. Différentes approches ont Cadre technico-économique L’optimisation court terme des réseaux d’énergie est un enjeu industriel primordial (ouverture des marchés d’énergie, nouvelles technologies, pression environnementale). Dans un tel contexte, et dans le cadre du projet fédérateur pluridisciplinaire €nergie initié par Supélec et portant sur l’optimisation technico-économique des réseaux d’énergie, EDF et Supélec investiguent de nouveaux champs d’application comme les parcs de production multi énergies. Ces systèmes présentent des problématiques de réseaux non linéaires avec des temps de propagation variables de plusieurs heures. Les problèmes d’optimisation court terme sont de grande dimension, non analytiques et mixtes. Dans cette étude, une approche globale est développée, visant à gérer la complexité du système. La totalité de la chaîne technologique « production – transport – consommation » est ainsi prise en donc été employées selon la complexité des sites de production : « Branch and Bound » pour les sites de petite dimension, algorithme hybride colonie de fourmis/algorithme génétique ([2]) pour les sites plus importants. compte. Dans le cadre de cette étude, un réseau de chauffage urbain benchmark a été défini, regroupant toutes les problématiques industrielles (voir figure 1). Commande en boucle fermée et robustesse Les résultats d’optimisation constituent une commande en boucle ouverte du réseau de chaleur. Cependant, le réseau de chaleur est soumis à de très fortes incertitudes (demande des consommateurs) et le réseau de chauffage est instable en boucle ouverte (effet naturel de stockage). Il est donc fondamental d’élaborer une structure de commande en boucle fermée. Ayant un système non linéaire complexe dont nous savons planifier le comportement, nous avons opté pour une structure de commande prédictive fondée sur le principe de l’horizon fuyant, présentée dans [3]. L’application de ce type de commande à un système complexe présentant des contraintes non linéaires présente des problématiques spécifiques. Un point émergeant est lié à la faisabilité des optimisations successives. Cet aspect s’est avéré relié aux problèmes de robustesse de la loi de commande, calculée par optimisation à partir de demandes prédites. Une des possibilités de robustification est l’utilisation conjointe de la surproduction et de l’effet de stockage du réseau de distribution. Figure 1 : Réseau de chauffage urbain benchmark Modèle de référence Des modèles locaux de producteurs (chaudières, cogénération, incinérateur…), de tronçons, de pompes, de vannes, de consommateurs et de stockage ont été développés. Ces modèles ont été agrégés pour former un modèle global du réseau de chaleur. Ce modèle est un modèle algébro-différentiel implicite de grande dimension, structuré en 3 couches ([1]). La première concerne le calcul des débits et des pressions (systèmes d’équations algébriques non linéaires de grande dimension). La deuxième couche modélise la propagation de l’énergie thermique (équations non linéaires implicites et équations aux dérivées partielles). La troisième couche comprend le modèle de production (nombreuses variables entières). La simulation du modèle sur 24 heures est effectuée en 2 minutes. ...................................................................................................................................... Références / References [1] G. Sandou, “Modélisation, optimisation et commande de parcs de production multi énergies complexes”. Thèse de doctorat de l’université Paris-Sud XI, Orsay, novembre 2005. [2] G. Sandou, S. Font, S. Tebbani, A. Hiret, C. Mondon, “Optimisation par colonies de fourmis d’un site de génération d’énergie”, Journal Européen des Systèmes Automatisés, Numéro spécial « Métaheuristiques pour l’optimisation difficile », Vol. 38, Gestion de complexité : stratégie d’optimisation n°9/10, pp. 1097-1119, 2004. Le problème d’optimisation issu du modèle de référence est non convexe, non analytique et comprend environ 800 variables réelles et 600 variables binaires pour la gestion horaire d’une journée. Face à cette complexité, il s’agit d’élaborer une stratégie, qui passe par la détermination d’une décomposition [3] G. Sandou, S. Font, S. Tebbani, A. Hiret, C. Mondon, “Predictive control of a complex district heating network”, 44th IEEE Conference on Decision and Control and European Control Conference 2005, Séville, Spain, décembre 2005. 25 1.5 Estimation et modélisation Estimation and Modelling 1 Automatique Automatic Control Objectifs Aims La construction de modèles mathématiques, et l’estimation de leurs paramètres et de leurs variables d’état sont des activités de base pour quiconque veut concevoir, améliorer, commander ou surveiller des systèmes. Les sujets étudiés dans la division Systèmes du L2S vont de la construction de modèles mathématiques simples et empiriques à partir de mesures sur des systèmes ou de simulations de modèles complexes (on parle de modèles boîte noire, ou de méta modèles) à l’estimation de variables d’état de modèles de toutes natures, le plus souvent non linéaires (on parle d’observation). Nous abordons également l’estimation de paramètres constants ou lentement variant. Building mathematical models and estimating their parameters or state variables are basic activities for anyone wanting to design, improve, control or monitor systems. The topics studied in the Systems division of the L2S range from the building of simple and empirical mathematical models from measurements on systems or from simulations of complex models (one speaks of black-box models or meta models) to the estimation of state variables of all sorts of models, which are most often nonlinear (one speaks of observation or filtering). Estimation of constant or slowly varying parameters is also considered. Sujets Topics 1. Approche algébrique et numérique des problèmes d’observation Les problèmes d’observation de systèmes non 1. Algebraic and numerical approach to observation problems Nonlinear observation problems often have deep linéaires ont un caractère algébrique profond en général. Il en est ainsi de l’observabilité, de quelques aspects de ce qui est appelé le placement de capteurs, etc. L’analyse algébrique de ces problèmes révèle une partie centrale qui, souvent, algebraic roots. This is the case of observability, and some aspects of the so-called sensor selection problems. The algebraic analysis of such problems reveals central parts which often are linked to numerical analysis: bad conditioning, ill-posed inverse problems. This is the case of observer design for nonlinear systems. The results of this approach have recently found usage in anaerobic digestion, for instance. fait appel à l’analyse numérique : possible mauvais conditionnement, ou problème inverse mal posé. Il en est ainsi de la synthèse des observateurs pour des systèmes non linéaires. Les résultats de cette approche ont récemment été utilisés, par exemple, dans la digestion anaérobique. Pour tout renseignement s’adresser à : For further information, please contact: Sujet 1 / Topic 1: Sette DIOP L2S Campus de Gif Tél. : +33 [0]1 69 85 17 30 E-mail : [email protected] Sujet 2 / Topic 2: Françoise LAMNABHI-LAGARRIGUE L2S Campus de Gif Tél. : +33 [0]1 69 85 17 27 E-mail : [email protected] Sujet 3 / Topic 3: 2. Identification de systèmes non linéaires Il s'agit de développer des algorithmes d'identification paramétrique comme partie d'observateur d'états, sans ajout de la condition classique de persistence d'excitation. L'utilisation d'observateur à structure variable permet d'obtenir la convergence en temps fini et de bonnes propriétés de robustesse. 3. Modélisation boîte noire (ou grise) Quand un modèle à base physique s’avère trop compliqué à construire ou à utiliser, on peut adopter une modélisation boîte noire. Ceci nous conduit à nous intéresser depuis une dizaine d’années au krigeage, une alternative prometteuse à l’utilisation de réseaux de neurones formels. La prise en compte d’information a priori permet d’arriver à des modèles de type boîte grise plus efficaces ; sujet étudié en liaison avec le dépt. Signaux et Systèmes Électroniques. Éric WALTER L2S Campus de Gif Tél. : +33 [0]1 69 85 17 11 E-mail : [email protected] 26 2. Identification of nonlinear systems We develop algorithms of parametric identification as parts of state observers, without the need to assume the classical condition of persistence of excitation. The use of variable structure observers allows to obtain finite time convergence as well as good properties of robustness. 3. Black-box (or grey-box) modelling When building or using a model based on physics turns out to be too complex, black-box modelling might be attempted. For the last ten years we have been studying Kriging, a promising alternative to formal neural networks. Prior information may be taken into account to get more efficient grey-box models; topic studied in cooperation with the Signal Processing and Electronic Systems Dept. Estimation et modélisation / Estimation and modelling Estimation de paramètres variant dans le temps Time-variant parameters estimation Abstract Par Godpromesse Kenné, Tarek Ahmed-Ali, Françoise Lamnabhi-Lagarrigue, Amir Arzandé In this contribution, real-time implementation results illustrating the experimental validation of a new algorithm for time-varying parameter estimation of a large class of nonlinear systems are presented. This method is based on the variable structure theories and is potentially useful for adjusting the controller parameters of variable speed drive. The real-time estimation of the rotor resistance of an induction motor in various operating conditions based on this approach, show rapidly converging of estimates in spite of the measurement noise, discretization effects, parameter uncertainties (e.g. inaccuracies on motor inductances and stator resistance values) and modelling inaccuracies. Introduction La plupart des processus industriels comportent des paramètres variant dans le temps. La résistance rotorique Rr d’un moteur asynchrone est un exemple type de paramètre variant dans le temps car sa valeur peut varier et atteindre 100% de sa valeur nominale pendant le fonctionnement à cause de l’échauffement du rotor. La valeur de ce paramètre est d’ailleurs très importante dans l’élaboration des algorithmes très performants de commande. En effet, ces derniers utilisent en général les flux rotoriques qui ne sont pas mesurables mais plutôt estimés à partir de la connaissance des sorties mesurées et des paramètres électriques (y compris Rr). Le couple de charge est également un paramètre incertain car sa valeur est fonction du type de charge ou de l’application. L’équipe de F. Lamnabhi-Lagarrigue http://public.lss.supelec.fr/perso/lamnabhi/ a proposé une nouvelle méthode (basée sur la théorie de la structure variable) d’estimation des paramètres variant dans le temps d’une large classe de systèmes non Figure 2 : Résultats d’expérimentation [1] en temps réel illustrant la comparaison entre la résistance rotorique estimée à froid et à chaud linéaires avec une application à l’estimation en temps réel de la résistance rotorique d’un moteur asynchrone [1] lorsque les courants et tensions statoriques ainsi que la vitesse rotorique sont supposés mesurables. Les études théoriques et simulations [2] ainsi que les résultats expérimentaux [1] ont montré la convergence assez rapide de cette méthode ainsi que sa robustesse par rapport aux paramètres variant dans le temps, les incertitudes paramétriques, les bruits de mesure et les incertitudes de modèle. Robustesse par rapport aux variations de Rs Les résultats représentés par la figure 3 attestent la robustesse de l’algorithme d’estimation proposé par rapport aux variations de la résistance statorique (valeur nominale 0.22V). Par conséquent, il n’est pas nécessaire de monter un capteur de température au stator du moteur pour faire la mise à jour de la résistance statorique. Estimation de Rr variant dans le temps Figure 3 : Résultats en temps réel [1] illustrant la robustesse de l’algorithme par rapport aux variations de la résistance statorique ..................................................................................................................................... Références / References Figure 1 : Résultats en temps réel [1] illustrant la robustesse de l’algorithme par rapport aux variations de la résistance rotorique [1] G. Kenné, T. Ahmed-Ali, F. Lamnabhi-Lagarrigue, A. Arzandé, “Time-varying parame- Les figues 1 et 2 illustrent les mérites de l’algorithme d’estimation proposé dans le cas des paramètres variant dans le temps. La figure1 présente les résultats expérimentaux de l’estimation de la résistance rotorique avec une variation de sa valeur en régime permanent (en pleine charge) de près de 75% de sa valeur moyenne estimée à chaud (0.54V). Cette variation a été obtenue en utilisant le rhéostat de démarrage rotorique. La figure 2 montre les résultats en temps réel obtenus à froid et à chaud en pleine charge. ter identification of a class of nonlinear systems with application to online rotor resistance estimation on induction motors”, Submitted to Control Engineering Practice. [2] G. Kenné, T. Ahmed-Ali, H. Nkwawo, F. Lamnabhi-Lagarrigue, “Robust rotor flux and speed control of induction motors using online time-varying rotor resistance adaptation ”, Proceedings of the 44th IEEE Conference on Decision and Control, and European Control Conference, CDC-ECC’O5, pp. 7768-7774, Seville, Spain, 12 – 15 Dec. 2005. 27 1.6 Systèmes non linéaires et hybrides Nonlinear and hybrid systems analysis Pour tout renseignement s’adresser à : For further information, please contact: L2S Campus de Gif 1 Automatique Automatic Control Objectifs Aims L’exigence croissante des secteurs applicatifs en termes d’objectifs et de performances liée aux possibilités accrues des moyens de calcul, stimulent la recherche fondamentale vers les cas difficiles. Prendre en compte les aspects non linéaires et hybrides du comportement dynamique est incontournable pour le succès du contrôle. The increasing request of the applicative sector regarding goals and performances linked to new computing facilities stimulate fundamental research oriented to challenging cases. As a consequence, nonlinear and hybrid phenomena have to be taken into account for a successful control. Sujets Topics 1. Commande et supervision des systèmes complexes Les récentes innovations technologiques ont conduit à un intérêt considérable pour l’étude des processus embarqués qu’on trouve par exemple dans les domaines de l’automobile, l’aérospatiale, la robotique, le la téléphonie mobile, les processus chimiques. Ces systèmes sont à la fois hétérogènes et complexes. Ils nécessitent de nouvelles approches globales (supervision) garantissant robustesse et performances. 1. Control and supervision of complex systems The recent technology innovations lead to a considerable interest for the study of embedded systems that one can find for instance in automotive control, aerospace, robotics, wireless telephony, process control. There is a need of new global methods (supervision) which guaranty both robustness and performances. 2. Automatique pour la synchronisation des systèmes dynamiques La synchronisation consiste à faire en sorte que deux ou plusieurs systèmes dynamiques se comportent de façon coordonnée, et en particulier, que les trajectoires d’un système suivent asymptotiquement celles d’un autre système. L'équipe s'intéresse par exemple à la synchronisation des systèmes mécaniques ou à la formation des systèmes physiques (vaisseaux marins, automobiles). Sujet 1 et 2 / Topics 1 and 2: Françoise LAMNABHI-LAGARRIGUE Tél. : +33 [0]1 69 85 17 27 E-mail : [email protected] 3. Formes normales et classification des non linéarités Il s’agit de simplifier par changement de coordonnées et bouclage des dynamiques non linéaires et de décrire les formes normales à Sujet 2/ Topic 2: Antonio LORIA Tél. : +33 [0]1 69 85 17 24 E-mail : [email protected] partir des termes résiduels. Sujets 3 et 4 / Topics 3 and 4: Dorothée NORMAND-CYROT Tél. : +33 [0]1 69 85 17 48 E-mail : [email protected] Sujet 5 / Topic 5: Roméo ORTEGA Tél. : +33 [0]1 69 85 17 66 E-mail : [email protected] Sujet 2 / Topic 2: Elena PANTELEY Tél. : +33 [0]1 69 85 17 66 E-mail : [email protected] 4. Systèmes discrets et échantillonnés Comprendre la transposition sous échantillonnage des propriétés structurelles et de commande d’un système dynamique continu est fondamental au développement de stratégies de commande échantillonnée maintenant objectifs, stabilité interne et robustesse. Une approche géométrique du temps discret permet une extension au cas hybride. 5. Commande robuste via la passivité et l’immersion Le terme de « commande via la passivité », introduit au L2S il y a 20 ans, est maintenant une technique standard de contrôle exploitant effectivement la propriété physique fondamentale de passivité. Cette approche, combinée aux techniques classiques d’invariance a donné lieu récemment à de nombreux résultats intéressants. 28 2. Control theory for synchronisation of dynamical systems Synchronisation of dynamical systems consists in making two or more dynamical systems to behave in a coordinated way and, in particular, in making the trajectories of one system follow asymptotically, the trajectories of another system. The team is interested for instance in the synchronisation of mechanical systems and in the formation of physical systems (marine, automotive). 3. Normal forms and classification of the nonlinearities It concerns the simplification under coordinates change and feedback of the nonlinearities so defining the normal forms characterized by the residual terms. 4. Discrete-time and sampled dynamics To understand the preservation of structural and control properties of a given continuous-time control system is basic to provide digital control strategies maintaining the objectives, internal stability and robustness. A geometric approach for the discrete-time case is suitable to its extension to the hybrid case. 5. Robust control via passivity and immersion The term “Passivity-based control”, introduced at LSS, 20 years ago, is now a standard technique for controller design, that effectively exploits the fundamental physical property of passivity. Combining this with the classical techniques of system invariance has given rise to a series of interesting results in the last few years. Systèmes non linéaires et hybrides / Nonlinear and hybrid systems analysis Garantir la stabilité des systèmes non linéaires à données échantillonnées Guaranteeing stability of nonlinear sampled-data systems Abstract Par Laurent Burlion, Tarek Ahmed-Ali et Françoise Lamnabhi-Lagarrigue Hybrid systems are complex nonlinear systems with hard nonlinearities which are governed by discrete events. The studies of hybrid systems have been applied to many problems and areas in the last few years. Using extensions of Lyapunov theory to hybrid systems, we proposed here new conditions to guarantee the stability of nonlinear sampled data systems. Les systèmes à données échantillonnées Dans ce travail, nous nous sommes intéressés aux conditions de stabilité de la classe des systèmes dynamiques de la forme : où où k décrit l’ensemble des entiers naturels, T désigne la période d’échantillonnage, x prend ses valeurs dans Rn et ukdans Rm. Cette classe de systèmes découle de la discrétisation de la commande dynamique ou de la loi d’estimation des paramètres inconnus du système. Pour plusieurs classes de systèmes continus, il est parfois nécessaire de recourir à un contrôleur dynamique pour les stabiliser avec une commande facilement implantable. Citons par exemple le cas des systèmes non affines par rapport à la commande. Dans ce cas, un retour d'état dynamique non linéaire qui garantit une stabilité asymptotique du système est alors calculé puis discrétisé. Cependant, pour des valeurs trop grandes de la période d'échantillonnage des phénomènes d'instabilité peuvent apparaître. Notre équipe a proposé une approche [1] basée sur des fonctions de Lyapunov et de bonnes approximations numériques. Notre résultat s’appuie et où sont des réels strictement positifs. Exemple : Considérons la fonction V : sur une propriété des systèmes impulsifs obtenue par Ye, Michel et Hou [2] Théorème Considérons le système suivant obtenu en discrétisant au premier ordre le bouclage dynamique d’un système continu : Continuous feedback Discretized feedback,Ù = 0. s Ainsi, en utilisant une approche de Lyapunov nous pouvons, sous certaines hypothèses, obtenir des conditions suffisantes pour calculer une période d'échantillonnage maximale au-dessous de laquelle les propriétés de stabilité avant la discrétisation restent garanties. Ce résultat généralise les travaux de Hermann, Spurgeon and Edwards [3] sur la discrétisation de contrôleurs statiques. Une généralisation à des méthodes de discrétisation d’ordres supérieurs devrait nous permettre d’agrandir la période maximale avec laquelle nous pouvons échantillonner. si ce système et la période d’échantillonnage T satisfont les conditions ci–dessous, alors le système converge asymptotiquement vers l’équilibre 0. ..................................................................................................................................... Références / References [1] L. Burlion, T. Ahmed-Ali, F. Lamnabhi-Lagarrigue, “On the stability of a class of nonlinear hybrid systems”, 6th IFAC-Symposium on Nonlinear Control Systems, NOLCOS 2004, Stuttgart, 1-3 September 2004 [2] H. Ye, A.N. Michel and L. Hou, “Stability Theory for Hybrid Dynamical Systems”, IEEE TAC, vol.43, no.4, pp~461-474, April 1998. [3] G. Hermann, S.K. Spurgeon and C. Edwards, “Discretization of Sliding Mode based Control Schemes”, in Proc. IEEE CDC, pp. 4257-4262, 1999. 29 1.7 Systèmes électriques et mécaniques Electrical and mechanical systems 1 Automatique Automatic Control Objectifs Aims Développer des stratégies d’analyse et de commande adaptées aux systèmes électriques et mécaniques est un point fort du L2S. L’exploitation des structures particulières de ces systèmes physiques permet la conception d’outils d’analyse et de schémas de contrôle performants. Developing analysis and control strategies, particularly tailored to electrical and mechanical, systems is one of the main areas of research at L2S. Exploiting the structural features of these physical systems makes possible to develop highly performant analysis tools and control schemes. Sujets Topics 1. Contrôle actif des vibrations Destiné à améliorer le confort acoustique ou encore, la tenue dans le temps des structures mécaniques, le contrôle actif des vibrations est un domaine d’application remarquable de l’automatique. Nos applications privilégiées sont les structures mécaniques minces sur lesquelles sont fixées plusieurs pastilles piézo-électriques. Certaines d’entres-elles servent de capteurs et les autres d’actionneurs. La recherche d’un correcteur calculé à partir d’un modèle numérique du comportement 1. Active vibration damping Intended to improve acoustic comfort or structures health, active vibration damping is one of famous application area of automatic control theory. Our main applications are thin mechanical structures on which are bonded several piezoelectric patches. Some are used as sensors and the others as actuators. The search of a controller computed thanks to a numerical model of the dynamical input-outputs behavior and able to damp vibrations robustly is our actual approach. dynamique entrées-sorties et capable d’amortir les vibrations de façon robuste correspond à notre approche actuelle. 2. Commande échantillonnée non linéaire Des méthodologies de commande à plusieurs échelles de temps sont appliquées à la conduite et la planification de trajectoires de structures mécaniques articulées ou sous actionnées qui présentent des liens non holonomes. De nombreux exemples, véhicules spatiaux et sous-marins, robots mobiles illustrent les performances. Pour tout renseignement s’adresser à : For further information, please contact: Sujet 1 / Topic 1: Yacine CHITOUR et Sami TLIBA L2S Campus de Gif Tél. : +33 [0]1 69 85 17 45 / 17 56 E-mail : [email protected], [email protected] Sujet 2 / Topic 2: Dorothée NORMAND-CYROT L2S Campus de Gif Tél. : +33 [0]1 69 85 17 48 E-mail : [email protected] Sujets 3, 4 / Topics 3, 4: Romeo ORTEGA L2S Campus de Gif Tél. : +33 [0]1 69 17 66 E-mail : [email protected] 3. Systèmes mécaniques sous actionnés Les méthodes de commande reposant sur la passivité ont une très intéressante interprétation en termes d’équilibre énergétique. A partir d’une caractérisation complète des fonctions d’énergie, le concepteur peut fixer des objectifs de robustesse et sur le transitoire. Les solutions sont simples et intuitives, par rapport à des procédures moins naturelles de découplage ou de linéarisation, et confèrent au système en boucle fermée une structure hamiltonienne avec des fonctions d’énergie potentielle et cinétique désirées. 4. Electronique de puissance Notre activité se concentre sur la régulation par bouclage d’une classe de systèmes de puissance à commutations généralement abordée par précompensation du facteur de puissance. Dans ces applications, en dehors de la régulation de la charge à une valeur constante, un objectif supplémentaire crucial est de maintenir le facteur de puissance à proche de un. Pour cela, il a été nécessaire de développer un cadre théorique adéquat pour des charges non linéaires et commutant. 30 2. Nonlinear digital control Multirate digital control strategies are developed for motion planning of mechanical articulated structures or underactuated ones which satisfy nonholonomic constraints. Several examples like space or submarine vessels and mobile robots illustrate the performances. 3. Underactuated mechanical systems Applying passivity-based control to mechanical systems has a very appealing energy-balancing interpretation. This allows for a complete characterization of the assignable energy functions, providing the designer with a handle to address transient performance and robustness issues. The resulting controllers are very simple and intuitive and do not rely on, rather unnatural an technique-driven, linearization or decoupling procedures but instead endows the closedloop system with a Hamiltonian structure with desired potential and kinetic energy functions. 4. Power electronics Our activity centers mainly around the problems of feedback regulation of a class of switched power converters commonly addressed as power factor precompensators. In such applications, aside from load voltage regulation to a prespecified constant level, a vital additional control objective consists in keeping the input power factor close to unity. To achieve this objective it was necessary to develop a theoretical framework which would be applicable in the presence of nonlinear and switching loads. Systèmes électriques et mécaniques / Electrical and mechanical systems Compensateurs du facteur de puissance pour des charges non linéaires Par Eloísa García-Canseco et Romeo Ortega Power factor compensators for nonlinear loads Abstract Power factor (PF) improvement in electrical systems is a practically important and mathematically challenging problem. In the linear scalar sinusoidal case, it is defined as the cosine of the phase shift between voltage and current waveforms. The objectives of this research are first, to extend the definition of PF to the nonlinear non sinusoidal case and, second, to provide a framework for nonlinear compensator synthesis. Introduction où et représentent le produit scalaire et la norme dans l’espace . L’objectif est de concevoir une admittance YC tel que FP soit amélioré. Dans notre travail de recherche nous avons établi le résultat suivant : L'optimisation de la transmission d'énergie entre un générateur de courant alternatif et une charge est un problème actuel du génie électrique. Dans un scénario classique, on suppose que le générateur est idéal, c'est-à-dire sans impédance et avec une tension fixe. Le problème consiste alors à concevoir un compensateur qui sera placé entre le générateur et la charge et dont le but est Etant donnés Y, et i. ii. de maximiser l'efficacité de la transmission de puissance. Si tous les éléments sont linéaires et invariants dans le temps et si le générateur est une source sinusoïdale, il est bien connu que le compensateur optimal est celui qui réduit le déphasage entre la tension et le courant, tout en améliorant le « facteur de puissance ». Cependant, pour les systèmes électriques avec des charges non linéaires et/ou commutées, il n'existe pas aujourd’hui de solution systématique, et la conception des compensateurs se fait de façon heuristique. Nous travaillons depuis plusieurs années sur le développement des outils théoriques permettant l’analyse et la synthèse de ces compensateurs dans un contexte non linéaire sous régime non sinusoïdal. Pour résoudre ce problème, , les affirmations suivantes sont équivalentes : Un compensateur sans pertes améliore le FP Travail futur Le but de cette recherche est de mettre en œuvre, éventuellement en l’adaptant, ce résultat dans des applications pratiques spécifiques, c’est-à-dire en considérant les topologies des filtres actifs et les charges rencontrées lors d’applica- un formalisme mathématique rigoureux, qui s’appuie sur des principes de façonnement de la puissance, a été publié récemment [1, 2]. tions à des cas réels. Bien que la ligne principale de recherche s'articule autour de développements théoriques, la mise en œuvre expérimentale est indispensable. Afin de valider les lois de commande, on envisage l'implantation des contrôleurs sur DSP (processeur de signal numérique) ou FPGA (circuit logique programmable). Ces travaux seront menés en collaboration, d'une part, avec l'équipe de l'IPICyT au Mexique dans le cadre du Laboratoire Franco-Mexicain d'Automatique Appliquée (LAFMAA) et d'autre part, avec le Laboratoire de Génie Électrique de Paris (LGEP). Caractérisation de l’amélioration du facteur de puissance Figure 1 : Compensateur typique ..................................................................................................................................... Le schéma d’un compensateur typique est illustré par la Fig. 1 où représente l’admittance de la charge et correspond à l’admittance du compensateur (les deux éventuellement non linéaires). Pour éviter la perte de puissance dans le système, on considère que le compensateur est sans pertes. Le facteur de puissance est défini par l’équation Références / References [1] E. García-Canseco, R. Griñó, R. Ortega, M. Salich and A.Stankovic, “Power Factor Compensation of Electrical Circuits: A Control Theory Viewpoint”. Accepted for publication in the IEEE Control Systems Magazine (Submitted: August 2005). [2] R. Ortega, E. García-Canseco, R. Griñó and A. Stankovic, “A Cyclo-Dissipativity Condition for Power Factor Improvement in Electrical Circuits”, American Control Conference, Minneapolis, Minessota, USA. June 14-16, 2006. 31