CAMPAGNE 2016 d`attribution de Contrats Doctoraux Intitulé du

Transcription

CAMPAGNE 2016 d`attribution de Contrats Doctoraux Intitulé du
PROGRAMME DOCTORAL « GENIE DES PROCEDES »
CAMPAGNE 2016 d’attribution de Contrats Doctoraux
Intitulé du Projet de Recherche Doctoral :
Procédé sono-catalytique d’oxydation aérobie pour la dépolymérisation
de la lignine
Unité de Recherche Principale (TUTELLE UPMC OBLIGATOIRE) :
Directeur de Thèse porteur du projet :
NOM : LAUNAY
Prénom : Franck
Titre :
Professeur des Universités ou
HDR
Section CNU : 32
e-mail :
[email protected]
Adresse professionnelle :
Aile 43-53 / 3ème étage / BC 178 / bureau 314
(site, adresse, bât., bureau)
Co-encadrants :
Unité de Recherche :
Intitulé :
Laboratoire de Réactivité de Surface (LRS)
Code (ex. UMR xxxx) :
UMR 7197
Directeur :
NOM : PERNOT
Prénom : Hélène
Equipe de Recherche (au sein de l’unité) :
Intitulé :
Catalyse
Thématique de recherche :
Nanoarchitecture de systèmes complexes / Chimie de l’oxygène
Responsable d’équipe :
NOM :
Prénom :
Ecole Doctorale UPMC de rattachement de l’équipe
ED397-Physique Chimie des Matériaux
& d’inscription du doctorant : ED397
Unité de Recherche Secondaire :
Co-Directeur de Thèse :
NOM :
GALVEZ-PARRUCA
Prénom Maria Elena
:
Titre :
Maître de Conférences des Universités HDR
(soutenance 13/06/2016)
ou
Section CNU : 62
e-mail :
[email protected]
Co-encadrants :
Unité de Recherche :
Intitulé :
Institut Jean le Rond d’Alembert (DLA)
Code (ex. UMR xxxx) :
UMR 7190
Equipe de Recherche (au sein de l’unité) :
Intitulé :
Fluides Réactifs et Turbulence
Thématique de recherche :
Génie des procédés
Responsable d’équipe :
NOM :
DA COSTA
Prénom : Patrick
Ecole Doctorale de rattachement :
ED391-SMAER
Cotutelle internationale : Choisissez un élément :
NON
Résumé (1 page maximum, avec références, dont celles du laboratoire sur le sujet) :
Sono-catalytic aerobic oxidation process for lignin depolymerization
The valorization of lignocellulosic biomass, either from agricultural-forestall waste or from dedicated
crops, such as Miscanthus giganteus, is an important issue to deal with oil shortage and in our transition
towards a renewable-based energy generation scenario. Lignocellulosic biomass contains lignin,
which is the second bio-based polymer on Earth after cellulose. Worldwide, about 50 million tons of
lignin are produced annually, as a side-product of papermaking industries. Nevertheless, most of the
lignin recovered is burned to generate energy for these plants1. Lignin is a natural source of aromatic
compounds that could be recovered, provided that the C-O-C or C-C bonds it contains are efficiently
broken. Catalytic hydrogenolysis or oxidative cleavage reactions can be utilized. Oxidative cleavage,
however, leads to highly functionalized aromatic molecules, which are more appropriate as
“platform” molecules for chemical or even fuel synthesis. Compounds of interest include guaiacol,
vanillin and syringaldehyde. Hydrogen peroxide is one of the oxidants used. However, its action
combined with metal complexes remains rather limited, even when this oxidant is employed in
conjunction with ultrasound (US)2, i.e. a well-known tool for the intensification of oxidation processes.
In this PhD project, we will develop a catalytic process operating with molecular oxygen with the
assistance of sonochemistry. Dioxygen is an interesting oxidant, primarily for economic reasons and
also because its use avoids the prior synthesis of hydrogen peroxide3. Dioxygen will be combined with
molybdovanadophosphates (“PMoV” or [PMo12-nVnO40](3 + n)- heteropoly anions). Previously, the project
leader showed the great ability of these anions to promote oxidative cleavage of carbon-carbon
bonds without going up to degrade the aromatic rings themselves4. This catalytic system will be
implemented in conjunction with the application of ultrasound waves generated using a transducer
or, more interestingly, by shock waves generated in a device developed in the laboratory of the St Cyr
site of the Institut Jean le Rond d'Alembert. The impact strength, pressure, temperature, the solvent
used, the type of saturating gas and its concentration, determine the type and intensity of the
sonochemistry phenomena, and have been lately used to activate radical generation, boosting
oxidation reactions in liquid phase5. In connection with the presence of vanadium (V), “PMoV”
compounds behave as strong oxidants whose oxidizing power can be modulated via the V / Mo ratio.
The catalytic efficiency of such materials is strongly dependent on the ability of their reduced forms to
re-oxidize, i.e. to be regenerated. The sonochemical phenomena will contribute to the in-situ formation
of active oxygenated radicals that will enhance the oxidative cleavage reactions. Moreover,
sonochemistry is expected to contribute to the regeneration of the oxidized forms of “PMoV” species.
The PhD student will work first on simple molecules in order to investigate the nature of the
experimental parameters influencing the cleavage of C-C and C-O-C bonds in lignin, i.e. intensity of
the sonochemical phenomena, solvent, oxygen partial pressure, temperature, etc. The study will then
be extended to extracted lignin (e.g. by the Organosolv process). Both the original molecules and the
products of their oxidative decomposition will be analyzed using chromatographic techniques, mainly
HPLC. The total organic carbon (COT) content will be also measured in order to control the extent of
oxidation. In the longer term, the same sono-catalytic system will be implemented directly in the pretreatment phase of the lignocellulosic biomass. For these reactions carried out in heterogeneous liquid
/ solid system, polyoxometallates will be deposited on magnetic iron oxides nano-beads so as to
implement easy recovery of catalysts by simple application of a magnetic field. The resulting materials
will be carefully characterized from a physico-chemical point of view, in order to evaluate their
chemical, textural and structural evolution during the sono-catalytic process.
Molécules issues de la valorisation de la lignine, J.-L. Wertz, Valbiom (mars 2015).
F. Napoly, N. Kardos, L. Jean-Gérard, C. Goux-Henry, B. Andrioletti et M. Dray, I&EC Res., 2015, 54, 6046-6051.
3 C. Salameh, J.-P. Nogier, F. Launay, M. Boutros, Catal. Today, 2015, 257, 35-40 ; C. Carvalho Rocha, T. Onfroy, F.
Launay, C. R. Chim., 2015, 18, 270-276 ; N. Balistreri, D. Gaboriau, C. Jolivalt, F. Launay, J. Mol. Catal. B: Enz., 2016,
127, 26-33.
4 J. M. Brégeault, F. Launay, A. Atlamsani, C.R. Acad. Sci. Paris, Série IIc, 2001, 4, 11-26 ; L. El Aakel, F. Launay, A.
Atlamsani, J.-M.Brégeault, Chem. Commun., 2001, 2218-2219.
5 A. Partaloglu, Rapport de stage de première année de Master spécialité Energétique et Environnement, Cursus
de Master en Ingénierie, Université Pierre et Marie Curie, 2015.
1
2
Aptitudes requises pour le candidat :
We search in priority a candidate having received a M2 specialization in chemical engineering or
chemistry of materials. The successful candidate will share her/his research time between catalyst
preparation, characterization, performing tests in LRS (ultrasound waves) and DLA (shock waves).
Previous experience in chromatographic techniques and/or material characterization would be
appreciated.