ImageJ_bcm6013-E2011-J2- PL-MV-final
Transcription
ImageJ_bcm6013-E2011-J2- PL-MV-final
Image processing and analysis Monique Vasseur et Gabriel Lapointe BCM6013 Summer 2011 Image Segmentation & Analysis ● Image pre-processing Background correction Noise removal Image Segmentation to distinct: Objects from background Objects between them Image artefact corrections before analysis Image Analysis Morphologicial measurements Quantification (Intensity, object classification in tables) 1 Pre-processing Background & noise removal Image histogram Subtraction of a constante (modal value) Subtraction of background/noise images 3 Black Level removal Process > Math > Subtract ... (modal value) LUT Rainbow Subtract Modal value 187 Min: Mode: 142 187 ©2011 Gabriel Lapointe Certains droits réservés. 4 2 DIC Background correction Process > FFT > Bandpass Filter... 1st step: correct the inequality of the background Bandpass Filter... The background is homogeneous ©2011 Gabriel Lapointe Certains droits réservés. 5 Segmentation to isolate objects in an image By criteria: intensity, color, shape… Sometimes by knowledge (more suggestive) 6 3 Segmentation approaches Threshold: binarization of the image Mask to retain only objects of interest By regions: objects are defined by all its pixels By contours: objects defined by its frontier pixels * In fluorescence, thresholding is the most used (imagery is mostly monochannel with immuno marquarge) Thresholding Binarisation of the histogram 4 Thresholding Image > Adjust > Threshold... 1 threshold : 550 selected < 550 ©2011 Gabriel Lapointe Certains droits réservés. 9 Thresholding Image > Adjust > Threshold... 1 threshold : 550 selected < 550 ©2011 Gabriel Lapointe Certains droits réservés. 10 5 Thresholding Image > Adjust > Threshold... 1 threshold : 1638 Selected > 1638 ©2011 Gabriel Lapointe Certains droits réservés. 11 Thresholding (Multiple thresholds) Image > Adjust > Threshold... 2 threshold: 550 and 1561 550 > Selected < 1638 ©2011 Gabriel Lapointe Certains droits réservés. 12 6 Thresholding (2 thresholds) Image > Adjust > Threshold... 2 threshold: 550 and 1561 550 > Selected < 1638 ©2011 Gabriel Lapointe Certains droits réservés. 13 Automatic thresholding Image > Adjust > Threshold... Automatic thresholding algorythmn ©2011 Gabriel Lapointe Certains droits réservés. 14 7 Automatic thresholding Image > Adjust > Threshold... Li Default Huang Intermodes IsoData MaxEntropy Mean MinError(i) Minimum Percentile RenyiEntropy Shanbhag Moments Otsu Triangle Yen 2010-11-12 ©2011 Gabriel Lapointe Certains droits réservés. 15 Nonuniform Threshold ©2011 Gabriel Lapointe Certains droits réservés. 16 8 Sliding Threshold Plugins > Particle Analysis > Sliding Threshold ©2011 Gabriel Lapointe Certains droits réservés. 17 Segmentation by regions / contours Binary morphological operations Erosion Dilation Open Close Fill holes Watershed 9 Erosion Process > Binary > Erode To reduce the size of objects, 1 or more pixels at a time Used primarily to remove small objects in the image For big objects, to determine the internal contour ©2011 Gabriel Lapointe Certains droits réservés. 19 Dilation Process > Binary > Dilate To increase the size of objects by 1 or more pixels at a time Mainly used to eliminate small holes in the object For big objects, to determine the external contour ©2011 Gabriel Lapointe Certains droits réservés. 20 10 Open Process > Binary > Open Erosion Then dilation To eliminate small objects without affecting the size of the largest To separate 2 objects nearby Softens the outlines of large objects Equivalent to an erosion followed by dilation CloseProcess > Binary > Close- Dilation Then erosion To “close” small holes in objects without affecting the size of the objects To reconnect jonctions Softens the edges of large objects Equivalent to a dilation followed by an erosion 11 Fill holes Process > Binary > Fill Holes Fill Holes: Fill the holes of all sizes without affecting the periphery of objects ©2011 Gabriel Lapointe Certains droits réservés. 23 Separation of object Process > Binary > Watershed ©2011 Gabriel Lapointe Certains droits réservés. 24 12 Watershed and irregular shapes Watershed segmentation does not work well on irregular shape objects ©2011 Gabriel Lapointe Certains droits réservés. 25 Example 13 Mask of whole cells (1) Image > Adjust > Threshold... Threshold Yen 27 ©2011 Gabriel Lapointe Certains droits réservés. Mask of whole cells (2) Process > Binary > CloseOriginal Threshold Close- Close the edge of the cell ©2011 Gabriel Lapointe Certains droits réservés. 28 14 Mask of whole cells (3) Process > Binary > Open Original Threshold Close- Open Some bright spots in the background are eliminated The holes within the cell are eliminated ©2011 Gabriel Lapointe Certains droits réservés. Mask of whole cells 29 (4) Analyze > Analyze Particles... Original Threshold Close- Open Analyze Particles... Some bright spots in the background are eliminated ©2011 Gabriel Lapointe Certains droits réservés. Small background debris are excluded by their small size and the holes are filled 30 15 Mask of nuclei Process > Binary > Watershed Watershed The nuclei with their regular shapes, are good candidates for Watershed Segmentation ©2011 Gabriel Lapointe Certains droits réservés. DIC Mask 31 (2) Process > Filter > Variance... Original Filtre BP Variance... Homogeneous background We are looking for areas with high intensity variations (edge and organelles) ©2011 Gabriel Lapointe Certains droits réservés. 32 16 DIC Mask (3) Image > Adjust > Threshold... Original Filtre BP Variance Threshold... Otsu « Edges » Selected Interest ©2011 Gabriel Lapointe Certains droits réservés. DIC Mask 33 (4) Process > Binary > Close-/Open Original Filtre BP Variance Threshold Close-/Open Selected Interest Improved selection by removing surrounding particles ©2011 Gabriel Lapointe Certains droits réservés. 34 17 Combining masks Cells (1) Transfected cells Nuclei 35 ©2011Gabriel Lapointe Certains droits réservés. Combining masks (2) Process > Image Calculator > … AND … Keep only what is common to two images Transfected cells Nuclei AND Nuclei of transfected cells ©2011 Gabriel Lapointe Certains droits réservés. 36 18 Combining masks (4) Process > Image Calculator > … SUBTRACT … Nuclei Exclude from the first image what is common with the second image Transfected cells Subtract Nuclei of non transfected cells ©2011 Gabriel Lapointe Certains droits réservés. Combining masks 37 (5) Process > Image Calculator > … ADD … ©2011 Gabriel Lapointe Certains droits réservés. 38 19 Exercises 4: Cellules-3_*.tif Make masks for each image (GFP and DAPI) Isolate the nuclei of cells transfected with GFP Save your final mask Count the number of transfected cells ©2011 Gabriel Lapointe Certains droits réservés. 39 Measurements and analysis ©2011 Gabriel Lapointe Certains droits réservés. 40 20 Analysis Analyze > Measure... Measure • Measure the entire image or • Measuring only a region if it is active 41 ©2011 Gabriel Lapointe Certains droits réservés. Available informations Analyze > Set Measurements... Center-weighted intensity Standard deviation of intensity The most frequent intensity value Center of selection Replaces the selection by an oval Feret: Longest diameter FeretAngle: angle (0-180 of ferret) MinFeret: Smallest diameter Sum of intensities Distribution of 4th =0 ; Normal (Gaussien) <0 ; Flat >0 ; acute < -1.2 ; multimodal Distribution of 3rd =0 ; symetric <0 ; asymetric left >0 ; asymetric right % of pixels above threshold Ne prendre en compte que les pixels au dessus du Threshold Take the measurments on a different image, not the one where we did the selection The length and angle are also available if selection is a line 42 21 Length measurement Image > Properties... Analyze > Set Scale... ©2011 Gabriel Lapointe Certains droits réservés. 43 Calibrate the pixel size using a micrometer slide 1 square = 10 microns ©2011 Gabriel Lapointe Certains droits réservés. 44 22 Calibrate the pixel size using a micrometer slide Analyze > Set Scale... Will be applied to all images 45 ©2011 Gabriel Lapointe Certains droits réservés. Calibrate the pixel size using a micrometer slide Image > Properties... Before After Calibration ©2011 Gabriel Lapointe Certains droits réservés. 46 23 Scale bar Analyze > Tools > Scale Bar... ©2011 Gabriel Lapointe Certains droits réservés. 47 Intensity profile Analyze > Plot Profile ©2011Gabriel Lapointe Certains droits réservés. 48 24 3D Intensity profile Analyze > Surface Plot... ©2011 Gabriel Lapointe Certains droits réservés. 49 3D Intensity profile Plugins > Interactive 3D Surface Plot Representation of a 2D image into 3D Intensity values according to the coordinates (x, y) Intensity curves (z) according to the coordinates (x, y) ©2011 Gabriel Lapointe Certains droits réservés. 50 25 Counting and analysis of object Analyze > Analyze Particles... Nothing Outlines ●Masks ●Elipses ●Count masks ● ● ©2011 Gabriel Lapointe Certains droits réservés. 51 Example: Measure the intensity of individual cells Image > Adjust > Threshold Threshold Huang ©2011 Gabriel Lapointe Certains droits réservés. 52 26 Example: Measure the intensity of individual cells Process > Binary > Close- / Open Threshold / Huang Close- / Open ©2011 Gabriel Lapointe Certains droits réservés. 53 Example: Measure the intensity of individual cells Process > Binary > Watershed Threshold Close- / Open Watershed ©2011 Gabriel Lapointe Certains droits réservés. 54 27 Example: Measure the intensity of individual cells Analyze > Analyze particles... Threshold Close- / Open Watershed 1 2 Analyze particles... 3 Show : Outlines 4 5 55 ©2011 Gabriel Lapointe Certains droits réservés. Example: Measure the intensity of individual cells Analyze > Analyze particles... (redirect to: Original) Threshold Close- / Open Watershed Analyze particles... 250 200 1 2 1 Redirect to: Original 3 150 2 3 4 100 5 Intensity (%) 4 Black Level 50 5 0 Mean ©2011 Gabriel Lapointe Certains droits réservés. 56 28 Example: Measure the intensity of individual cells L’influence du niveau de noir Black level Threshold Close- / Open Watershed Analyze particles... 400 350 1 2 300 1 250 Redirect to: Original 2 200 3 4 150 5 Intensity (%) 3 100 4 Black Level 50 0 5 Mean Corrected mean ©2011 Gabriel Lapointe Certains droits réservés. 57 Example: Count the number of stress granules and measure the average area Analyze > Measure (Mode) + Process > Substract Remember to calibrate the size of the pixels before you start! Subtract 185 ©2011 Gabriel Lapointe Certains droits réservés. 58 29 Example: Count the number of stress granules and measure the average area Select the smallest granules (low intensity + size); Analyze > Measure Subtract 185 59 ©2011 Gabriel Lapointe Certains droits réservés. Example: Count the number of stress granules and measure the average area Plugins > Particle Analysis > Sliding Threshold Subtract 185 Sliding Threshold Minimal intensity of the granules Maximum intensity of the image Intensity variation between the granule and the background Minimal diameter of the granules Maximal diameter of the granules Circularity Min and Max ©2011 Gabriel Lapointe Certains droits réservés. 60 30 Example: Count the number of stress granules and measure the average area Plugins > Particle Analysis > Sliding Threshold Substract 185 Sliding Threshold 61 ©2011Gabriel Lapointe Certains droits réservés. Example: Count the number of stress granules and measure the average area Binary operations binaires and Analyze particules Substract 185 Sliding Threshold Open Close Watershed Analyze Particles 85 granules Mean of 2,3 µm2 ©2011 Gabriel Lapointe Certains droits réservés. 62 31 Other interesting applications! ©2011 Gabriel Lapointe Certains droits réservés. 63 Quantification of bands 1) The box method ©2011Gabriel Lapointe Certains droits réservés. 64 32 Quantification of bands 2) Indirect selection ©2011 Gabriel Lapointe Certains droits réservés. By using the option in Redirect To : setMeasurments can select a band in the mask and give measures of the original image 65 Afternoon workshop (2) Work on your images Count the number of stress granules and get their average size (area, Feret diameter) Count the average number of granules per cell Questions, problems ... Ask us, we're here for you!! 33
Documents pareils
Manipulation et analyse d`images numériques
©2011 Gabriel Lapointe Certains droits réservés.