ASTROPHYSICS / ASTROPHYSIQUE
Transcription
ASTROPHYSICS / ASTROPHYSIQUE
Vol. 64 No. 4 OCTOBER-DECEMBER (FALL) 2008 OCTOBRE À DÉCEMBRE (AUTOMNE) 2008 Physics in Canada La Physique au Canada ASTROPHYSICS / ASTROPHYSIQUE Guest Editor / Rédacteur honoraire : Laurent Drissen, U. Laval Serving the Canadian physics community since 1945 / Au service de la communauté canadienne de physique depuis 1945 Canadian Association of Physicists / Association canadienne des physiciens et physiciennes www.cap.ca PHYSICS IN CANADA LA PHYSIQUE AU CANADA Canadian Association of Physicists Association canadienne des physiciens et physiciennes www.cap.ca Vol. 64 No. 4 (October-December (Fall) 2008 / octobre à décembre (automne) 2008) DE FOND ARTICLES DEPARTMENTS EDUCATION DÉPARTEMENTS ÉDUCATION FEATURES 199 Foreword - “Astrophysics”, by L. Drissen, Guest Editor 200 Préface - “Astrophysique”, par L. Drissen, rédacteur honoraire 201 L’Irradiance solaire et ses variations, by P. Charbonneau, A. Crouch et K. Tapping 207 Resonance Dynamics in the Kuiper Belt, by B. Gladman and J.J. Kavelaars 215 Visualizing the Invisible using Polarisation Observations, by J. Brown, J. Stil, and J. Landecker 227 Metal-Poor Stars: The Intersection of Chemistry, Cosmology, and Stars, by K. Venn 233 245 251 257 L’Evolution chimique des galaxies, by H. Martel Results from the Gemini Deep Deep Survey, by R.G. Abraham et al. Les galaxies à sursauts de formation stellaire dans l’ultraviolet, by C. Robert Bringing Chemists and Physicists Together: The Legacy of the Ontario Photonics Consortium at the University of Western Ontario, by R. Lipson 265 Women Physicists in Canada, by A. Predoi-Cross et al. 267 Poster presented by the Canadian Delegation to the 3rd IUPAP International Conference on Women in Physics 268 International, Physics Olympiad 2008 by A. Kotlicki and N. Krasnopolskaia 226 Competition for a new PiC-PaC logo / Concours pour un nouveau logo PiC-PaC 250 Departmental, Sustaining, Corporate, and Institutional Members / Membres départementaux, de soutien, corporatifs, et institutionnels Advertising Rates and Specifications (effective January 2008) can be found on the PiC website (www.cap.ca - Physics in Canada). Les tarifs publicitaires et dimensions (en vigueur depuis janvier 2008) se trouvent sur le site internet de La Physique au Canada (www.cap.ca - La Physique au Canada). Cover / Couverture : Density of gas for a simulated galaxy during the formation of the thick disk – front view. A galaxy is made of two disks, one thick, the other thin, enmeshed into one another. (Taken from Figure 3, page 236, of the article by H. Martel) Densité de gaz pour une galaxie simulée durant l’époque de la formation du disque épais – vue de face. Une galaxie comprend deux disques, l’un épais, l’autre mince imbriqués l’un dans l’autre. (Pris de la figure 3, page 236, de l’article par H. Martel) LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C i DEPARTMENTS DÉPARTEMENTS 263 In Memoriam : Martin Wesley Johns 264 CAP News : 3rd IUPAP International Conference on Women in Physics 270 2009 CAP Congress / Congrès 2009 de l’ACP PHYSICS IN CANADA LA PHYSIQUE AU CANADA The Journal of the Canadian Association of Physicists La revue de l'Association canadienne des physiciens et physiciennes ISSN 0031-9147 EDITORIAL BOARD / COMITÉ DE RÉDACTION Editor / Rédacteur en chef 272 Best Student Presentation Competition at the 2009 CAP Congress / Compétition pour la meilleure présentation étudiante au Congrès 2009 de l’ACP 273 Books Received / Livres reçus 274 Book Reviews / Critiques de livres 276 Employment Ads / Affichage de postes Béla Joós, PPhys Physics Department, University of Ottawa 150 Louis Pasteur Avenue Ottawa, Ontario K1N 6N5 (613) 562-5758; Fax:(613) 562-5190 e-mail: [email protected] Associate Editor / Rédactrice associée Managing / Administration Francine M. Ford c/o CAP/ACP; E-mail: [email protected] Book Review Editor / Rédacteur à la critique de livres Richard Hodgson, PPhys c/o CAP / ACP Suite.Bur. 112, Imm. McDonald Bldg., Univ. of / d' Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 Email: [email protected] Advertising Manager / Directeur de la publicité Greg Schinn EXFO Electro-Optical Engineering Inc. 400 av. Godin Quebec (QC) G1M 2K2 (418) 683-0913 ext. 3230 e-mail: [email protected] Board Members / Membres du comité : René Roy, phys Département de physique, de génie physique et d’optique Université Laval Cité Universitaire, Québec G1K 7P4 (418) 656-2655; Fax: (418) 656-2040 Email: [email protected] David J. Lockwood, PPhys Institute for Microstructural Sciences National Research Council (M-36) Montreal Rd., Ottawa, Ontario K1A 0R6 (613) 993-9614; Fax: (613) 993-6486 Email: [email protected] Tapash Chakraborty Canada Research Chair Professor, Dept. of Physics and Astronomy University of Manitoba, 223 Allen Building Winnipeg, Manitoba R3T 2N2 (204) 474-7041; Fax: (204) 474-7622 Email: [email protected] Canadian Association of Physicists (CAP) Association canadienne des physiciens et physiciennes (ACP) The Canadian Association of Physicists was founded in 1945 as a non-profit association representing the interests of Canadian physicists. The CAP is a broadly-based national network of physicists working in Canadian educational, industrial, and research settings. We are a strong and effective advocacy group for support of, and excellence in, physics research and education. We represent the voice of Canadian physicists to government, granting agencies, and many international scientific societies. We are an enthusiastic sponsor of events and activities promoting Canadian physics and physicists, including the CAP's annual congress and national physics journal. We are proud to offer and continually enhance our web site as a key resource for individuals pursuing careers in physics and physics education. Details of the many activities of the Association can be found at http://www.cap.ca . Membership application forms are also available in the membership section of that website. L'Association canadienne des physiciens et physiciennes a été fondée en 1946 comme une association à but non-lucratif représentant les intérêts des physicien(ne)s canadien(ne)s. L’ACP est un vaste regroupement de physiciens oeuvrant dans les milieux canadiens de l'éducation, de l'industrie et de la recherche. Nous constituons un groupe de pression solide et efficace, ayant pour objectif le soutien de la recherche et de l'éducation en physique, et leur excellence. Nous sommes le porte-parole des physiciens canadiens face au gouvernement, aux organismes subventionnaires et à plusieurs sociétés scientifiques internationales. Nous nous faisons le promoteur enthousiaste d'événements et d'activités mettant à l'avant-scène la physique et les physiciens canadiens, en particulier le congrès annuel et la revue de l'Association. Nous sommes fiers d'offrir et de développer continuellement notre site Web pour en faire une ressource-clé pour ceux qui poursuivent leur carrière en physique et dans l'enseignement de la physique. Vous pouvez trouver les renseignements concernant les nombreuses activités de l’ACP à http://www.cap.ca. Les formulaires d’adhésion sont aussi disponibles dans la rubrique “Adhésion” sur ce site. II C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) Normand Mousseau Chair du recherche du Canada, Département de physique Université de Montréal, C.P. 6128, Succ. centre-ville Montréal, Québec H3C 3J7 (514) 343-6614; Fax: (514) 343-2071 Email: [email protected] Michael Steinitz, PPhys Department of Physics St. Francis Xavier University, P.O. Box 5000 Antigonish, Nova Scotia B2G 2W5 (902) 867-3909; Fax: (902) 867-2414 Email: [email protected] Robert Thompson, PPhys Dept. of Physics and Astronomy University of Calgary, 2500 University Dr. NW Calgary, Alberta T2N 1N4 (403) 220-5407; Fax: (403) 289-3331 Email: [email protected] ANNUAL SUBSCRIPTION / ABONNEMENT ANNUEL : $40.00 Cdn + GST or HST (Cdn addresses), $40.00 US (US addresses); $45.00 US (other/foreign addresses) Advertising, Subscriptions, Change of Address/ Publicité, abonnement, changement d'adresse: Canadian Association of Physicists / Association canadienne des physiciens et physiciennes, Suite/Bureau 112, Imm. McDonald Bldg., Univ. of/d' Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 Phone/ Tél: (613) 562-5614; Fax/Téléc. : (613) 562-5615 e-mail/courriel : [email protected]; Website/Internet : www.cap.ca Canadian Publication Product Sales Agreement No. 0484202/ Numéro de convention pour les envois de publications canadiennes : 0484202 © 2008 CAP/ACP All rights reserved / Tous droits de reproduction réservés WWW.CAP.CA (select Physics in Canada / Option : La Physique au Canada) PRÉFACE ASTROPHYSICS U nlike most other scientists, an astronomer does are credited with discovering many moons of Jupiter, not have direct access to the objects he is Saturn, Uranus and Neptune, report on the often complex researching. As a matter of fact, except for a few interactions between Neptune and the thousands of objects cases (solar wind and neutrinos, lunar samples, that shape the Kuiper belt, of which Pluto is now only one meteorites, …), all information originating from the of the most massive components. Universe is transmitted to us Polarization is without conby light. Because it has the test one of the less exploited ability to interact with matter, “ The marvel of marvels was that there on the rounded properties of light in astronoit keeps a lasting impression back of the planet, between this magnetic sheet and my. With a relatively low of the environment where it those stars, a human consciousness was present in level, therefore difficult to was born or has had interacwhich as in a mirror that rain could be reflected. ” measure, polarization detects tion with. One of the greatest the presence of a magnetic challenges in astronomy is Antoine de Saint-Exupéry, Wind, Sand and Stars field in the interstellar medithus to extract, using methods um, as demonstrated by ever more clever, the maxiBrown and her colleagues in mum information from photons that crossed through space the article on one of the most important mappings of the over thousands, if not billions, of years. A giant step forMilky Way, produced at the radio telescope in Penticton. ward was taken nearly 400 years ago when Galileo Galilei pointed a small and modest telescope towards the sky. The next four articles touch on one of the hottest themes in Technological developments have since considerably contemporary astrophysics, the formation and evolution of increased the dimension and visual acuity of telescopes galaxies, but under completely different angles. First, Venn (segmented mirrors, adaptive optics), the quantum efficienstates the importance of the spectroscopic study on metalcy of detectors (often close to 100%), the detectable wavepoor stars, witnesses to the first phases of development of length range (from radio waves to gamma rays), as well as the Milky Way and its neighbours. As Martel explains, the all the specific measurement techniques such as photomeadvent of always more powerful computers and of innovatry, spectroscopy and polarimetry. Theoretical developtive algorithms allowing the simulation of the complex ments are not overlooked with the always increasing use of gravitational and hydrodynamic processes at play during numerical modeling. Canada has been actively participating collisions between galaxies help us better understand the for a long time in the development of international astronomorphological, dynamical and chemical evolution of galaxmy, with its super computers, local and national infrastrucies. These numerical simulations are brought forth in the tures (Mont Mégantic Observatory in the Eastern results of a long term observation program taken on severTownships, DRAO in the Okanagan Valley, DAO in al years ago by Abraham and his team through a new techVictoria, to name a few) or in collaboration with other nique implemented at the Gemini telescope; this research countries, on Earth (Canada-France-Hawaii, Gemini, has made it possible for the first time to measure the propALMA telescopes) and in space (James Webb, MOST, erties of galaxies when the Universe was only three to six FUSE or UVIT telescopes). billion years old. This article also demonstrates that the rate of star formation in the Universe has dramatically dropped To celebrate the upcoming International Year of Astronomy, since that era and that this tendency will increase until the this special issue offers an overview, very incomplete depletion of all gas in the galaxies. Finally, the use of space though, of Canadian astronomy and its research; some martelescopes to probe the heavy ultraviolet radiation emitted ginal (but so fascinating!), other more conventional, but all during star-forming bursts is well demonstrated by Robert, leading edge in their respective field. who reminds us of the role taken by the Canadian Space Life on our planet depends on the sun’s luminosity, which Agency in the development and commissioning of teleoriginates from nuclear reactions within its core. During the scopes in space. last 4 billion years, it has substantially increased, but also From the solar system to distant galaxies, these articles fluctuated to a lesser degree, depending on the intense magtouch on very diverse themes with theoretical and observanetic activity on the surface. The article by Charbonneau, tional approaches, which we hope will fill the reader with Crouch and Tapping demonstrates the modeling of these wonder and food for thought. solar irradiance variations. At the root of the media frenzy which took place in 2006 following the withdrawal of Pluto as a planet by the International Astronomical Union are the huge advances realized during the last decade in recognizing the external regions of the solar system. Gladman and Kavelaars, which Laurent Drissen, Université Laval, Québec Guest Editor, Physics in Canada Comments of readers on this foreword are more than welcome. The contents of this journal, including the views expressed above, do not necessarily represent the views or policies of the Canadian Association of Physicists. Le contenu de cette revue, ainsi que les opinions exprimées ci-dessus, ne représentent pas nécessairement les opinions et les politiques de l’Association canadienne des physiciens et des physiciennes. Laurent Drissen <[email protected]. ca> est professeur au département de physique, de génie physique et d'optique de l'Université Laval. Il est aussi titulaire de la chaire de recherche du Canada sur les étoiles massives et l'imagerie hyperspectrale depuis 2001. Professor of Physics at Laval University, Laurent Drissen <[email protected]. ca> has always been fascinated by the most massive stars. He also works on the development of imaging Fourier transform spectrometers to understand the properties of the ionized interstellar medium. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 199 FOREWORD ASTROPHYSIQUE C ontrairement à la plupart des autres scientifiques, Kuiper, dont Pluton n’est aujourd’hui qu’une des composantes l’astronome n’a pas directement accès aux objets de les plus massives. ses recherches. En effet, à quelques exceptions près (vent et neutrinos solaires, échantillons lunaires, La polarisation est sans contredit l’une des propriétés de la météorites, …), toute l’information en provenance de l’Univers lumière les moins bien exploitées en astronomie. D’un niveau nous est transmise par la lumière. relativement peu élevé, et donc Celle-ci, par sa capacité à interagir difficilement mesurable, la polariavec la matière, garde une sation permet cependant de « Mais le plus merveilleux était qu’il y eut là, debout empreinte indélébile du milieu qui détecter la présence du champ sur le dos rond de la planète, entre ce linge aimanté et l’a vu naître ou avec lequel elle a ces étoiles, une conscience d’homme dans laquelle cette magnétique dans le milieu intereu une interaction. Un des plus stellaire, comme le démontrent pluie pût se réfléchir comme dans un miroir. » grands défis de l’astronome conBrown et ses collègues dans leur siste donc à extraire, par des article de revue faisant état de Antoine de Saint-Exupéry, Terre des Hommes moyens plus ingénieux les uns que l’une des plus importantes carles autres, le maximum d’informatographies de la Voie lactée, réaltion des photons ayant traversé l’espace pendant des milliers, isée au radiotélescope de Penticton. voire des milliards d’années. Un grand pas a été franchi il y a près de 400 ans, alors que Galileo Galilei pointa une lunette, de Les quatre autres articles abordent un thème parmi les plus dimension modeste, vers le ciel. Depuis, le développement techchauds de l’astrophysique contemporaine, soit la formation et nologique a permis d’augmenter considérablement la dimension l’évolution des galaxies, mais sous des angles complètement et l’acuité visuelle des télescopes (miroirs segmentés, optique différents. Dans un premier temps, Venn relate l’importance de adaptative), l’efficacité quantique des détecteurs (qui frôle soul’étude spectroscopique des étoiles pauvres en métaux, témoins vent le 100%), le domaine observable de longueurs d’ondes (des des premières phases de formation de la Voie lactée et de ses ondes radio aux rayons gamma), sans oublier toutes les subtilités voisines. L’avènement d’ordinateurs de plus en plus puissants et des techniques de mesure que sont la photométrie, la spectrod’algorithmes innovateurs permettant de simuler les complexes scopie et la polarimétrie. Le développement théorique n’est processus gravitationnels et hydrodynamiques en jeu lors de colpas en reste, avec l’utilisation de plus en plus fréquente de la lisions de galaxies nous permet de mieux comprendre l’évolumodélisation numérique. La Canada participe activement, et tion morphologique, dynamique et chimique des galaxies, depuis longtemps, au développement de l’astronomie internacomme nous l’explique Martel. Ces simulations numériques tionale, que ce soit avec ses super-ordinateurs, ses infrastructrouvent écho dans les résultats d’un programme d’observation tures locales et nationales (Observatoire du Mont Mégantic en à long terme entrepris il y a plusieurs années par Abraham et son Estrie, DRAO dans la vallée de l’Okanagan, DAO à Victoria, équipe grâce à une nouvelle technique de spectroscopie mise en pour ne nommer que ceux-là) ou en collaboration avec d’autres place au télescope Gemini; cette recherche a permis pour la prepays, sur Terre (télescopes Canada-France-Hawaii, Gemini, mière fois de mesurer les propriétés des galaxies à une époque ALMA) et dans l’espace (télescopes James Webb, MOST, FUSE où l’Univers n’avait que trois à six milliards d’années. Cet artiou UVIT). cle nous démontre aussi que le taux de formation d’étoiles dans l’Univers a dramatiquement chuté depuis cette époque et que Afin de célébrer l’Année mondiale de l’astronomie qui est à nos cette tendance ne fera que s’accentuer jusqu’à l’épuisement du portes, nous vous proposons un numéro spécial consacré à un gaz dans les galaxies. Finalement, l’utilisation de télescopes tour d’horizon, très incomplet bien sûr, de l’astronomie canadispatiaux pour sonder le rayonnement ultraviolet copieusement enne et ses axes de recherche; certains marginaux (mais combiémis lors des sursauts de formation stellaire est bien illustré par en fascinants!), d’autres plus conventionnels, mais tous à la fine Robert, qui nous rappelle aussi le rôle joué par l’Agence spatiale pointe de leur domaine respectif. canadienne dans le développement et la mise en service de télescopes dans l’espace. La vie sur notre planète est tributaire de la luminosité du soleil, qui tire son origine des réactions nucléaires en son coeur et qui Du système solaire aux galaxies lointaines, ces articles abordent a considérablement augmenté au cours des 4 derniers milliards donc des thèmes très diversifiés avec des approches observad’années, mais qui fluctue aussi, à une moins grande échelle, au tionnelles et théoriques; le lecteur y trouvera, nous l’espérons, gré de l’intense activité magnétique qui règne en surface. matière à réflexion et émerveillement. L’article de Charbonneau, Crouch et Tapping fait état de la modélisation de ces variations de l’irradiance solaire. Laurent Drissen, Université Laval, Québec Rédacteur honoraire, La Physique au Canada La tempête médiatique qui a fait rage en 2006 lorsque l’Union astronomique internationale a retiré le statut de planète à Pluton Les commentaires de nos lecteurs au sujet de cette préface sont tire sa source des progrès immenses accomplis depuis une bienvenus. décennie dans notre connaissance des régions externes du système solaire. Gladman et Kavelaars, qui ont à leur crédit la NOTE: Le genre masculin n’a été utilisé que pour alléger le découverte de plusieurs lunes de Jupiter, Saturne, Uranus et texte. Neptune, nous font part des interactions souvent complexes entre Neptune et les milliers d’objets qui forment la ceinture de 200 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ARTICLE DE FOND L'IRRADIANCE SOLAIRE ET SES VARIATIONS PAR PAUL CHARBONNEAU, ASHLEY CROUCH, ET KEN TAPPING L ’irradiance solaire totale est définie comme la quantité d’énergie radiative originant du soleil, intégrée sur toute les longueurs d’onde, incidente sur un mètre carré de la haute atmosphère terrestre lorsque la terre est située à exactement une unité astronomique (1.496 H 108 km) du soleil. Bien que les premières mesures de cette quantité fondamentale remontent au dix-neuvième siècle, ce n’est que depuis une trentaine d’années que les radiomètres et bolomètres spatiaux ont atteint une stabilité suffisante pour en détecter les variations d’une manière fiable sur de longues échelles de temps. Fig. 1 La Figure 1 présente les variations observées de l’irradiance depuis 1978 (traits bleus). Cette séquence temporelle est en fait un composite de mesures provenant de plusieurs instruments différents [1]. On y voit l’irradiance varier sur des échelles de temps allant de quelques heures jusqu’à la décennie. Cette dernière variation est en phase avec le cycle de l’activité magnétique du soleil, mieux connu en termes de la variation quasi-cyclique du nombre de taches solaires observées sur le soleil (voir Figures 2 et 3). Ceci suggère que les fluctuations de l’irradiance sont associées à celles du champ magnétique solaire, dont les taches solaires sont un indicateur facilement observable. Deux classes d’explications ont été avancées pour expliquer les fluctuations de l’irradiance. La première y voit une simple conséquence de la variation, en fonction du RÉSUMÉ Nous décrivons ici une procédure de modélisation des variations de l'irradiance solaire associées au cycle d'activité magnétique. Notre approche, basée sur un modèle physique simple plutôt que sur des corrélations statistiques établies sur des bases purement observationnelles, permet en principe une reconstruction physiquement fiable des variations de l'irradiance durant les siècles passés. Nous présentons une reconstruction remontant jusqu'à 1874, incluant une modulation à long terme de l'irradiance de la partie non-magnétisée de la photosphère solaire, cette modulation étant calculée à l'aide d'un modèle semi-empirique de la variation du flux magnétique total à l'intérieur du soleil établi à l'aide des archives du flux solaire radio F10.7. Variations observées de l’irradiance solaire totale depuis 1978. Le trait bleu clair correspond aux valeurs journalières, et le trait bleu foncé une moyenne courante de largeur 81 jours. Ces données sont tirées du composite d41_61_0702 distribué par le PhysikalischMeteorologisches Observatorium Davos. Les traits orange et rouge sont leurs équivalents tels que produit par les simulations décrites plus bas, artificiellement décalés vers le bas de 4 W/m2 afin de faciliter la comparaison. cycle d’activité, de la fraction du disque solaire occuppée par des structures magnétiques ayant des émissivités radiatives différentes des régions non-magnétisées de la photosphère [2-4]. On sait, par exemple, que les structures magnétiques de plus grandes tailles, comme les taches solaires, nuisent au transport convectif de l’énergie, et se retrouvent donc plus froides que la photosphère, ce qui cause un déficit d’irradiance. Par contre, les soi-disantes facules et éléments du réseau supergranulaire, structures magnétisées de bien plus petites tailles mais beaucoup plus nombreuses, produisent un déficit local de densité au niveau de la photosphère, permettant ainsi de “voir” les régions plus profondes — et donc plus chaudes — du soleil. Collectivement, l’ensemble de ces petites structures magnétiques conduit donc à un excès d’irradiance qui dépasse légèrement le déficit associé aux taches, ce qui se traduit en un soleil légèrement plus brillant au maximum d’activité (cf. Figures 1 et 3). Il est maintenant bien démontré que les variations de l’irradiance sur les courtes échelles temporelles (de la minute à l’année) sont bel et bien associées à ces effets de surfaces [5]. Une seconde classe d’explication attribue une partie, voire la totalité, des variations sur les échelles décadales et plus à une modulation de l’efficacité du transport convectif de l’énergie depuis la base de la zone convective solaire, 200000 km sous la surface, causée par une interaction dynamique entre le fort champ magnétique agissant comme moteur du cycle d’activité, et les écoulements fluides associés à la Paul Charbonneau <paul.charbonneau@ umontreal.ca> et Ashley Crouch, Département de physique, Université de Montréal, C.P. 6128 Succ. CentreVille, Montréal, QC, H3C 3J7, CANADA; et Ken Tapping, Institut Herzberg d'Astrophysique, Conseil national de la recherche, P.O. Box 248, Penticton, C-B V2A 6J9, CANADA LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 201 L’IRRADIANCE SOLAIRE ... (CHARBONNEAU ET AL.) niveau des taches solaires (voir Figure 3). Comment se comporte l’irradiance durant des phases d’augmentation graduelle du niveau général d’activité, comme durant la première moitié du vingtième siècle, ou durant des périodes prolongées d’activité fortement réduite, comme le fameux Minimum de Maunder entre 1645 et 1715? convection [6,7]. Il va sans dire que ces deux classes d’explications ne sont pas mutuellement exclusives. Il n’en demeure pas moins que depuis 1978, les variations de l’irradiance observées entre les phases maximales et minimales du cycle d’activité sont très faibles, de l’ordre de 0.1%. Une si faible variation, sur une échelle décadale de surcroit, n’a essentiellement pas d’effet sur le climat terrestre, en raison principalement de l’inertie thermique que confèrent les océans au climat. On doit cependant remarquer que les derniers trois cycles d’activité, les seuls pour lesquels nous disposons de mesures directes et fiables de l’irradiance, ne sont pas particulièrement représentatifs des variations de l’activité solaire observées depuis le début du dix-septième siècle, du moins au Fig. 3 Fig. 2 Image du soleil en lumière continue, où l’on peut noter la présence de nombreuses taches solaires, plus sombres que la photosphère, et de facules, structures filamentaires plus brillantes que la photosphère et surtout visible près du limbe, où leur contraste est plus grand. Les éléments brillants du réseau supergranulaire sont trop petits pour être visibles à cette résolution spatiale. Image obtenue le 30 mars 2001 par l’imageur optique sur SOHO/MDI (NASA), en phase élevée du cycle d’activité magnétique. La coincidence temporelle entre le Minimum de Maunder et la phase la plus marquée du “petit âge glaciaire” bien connu en climatologie (voir Ref. [9], et références s’y trouvant) a motivé une vaste gamme de tentatives d’estimation du niveau auquel aurait pu chuter l’irradiance solaire durant une telle phase prolongée d’inactivité, et, plus généralement, de l’impact de l’activité solaire sur le climat terrestre. Ces questions sont d’autant plus importantes que les études du niveau général de l’activité solaire via la mesure des abondances de radioisotopes cosmogéniques [10] ont démontré hors de tout doute que le Minimum de Maunder n’est Variation du nombre de taches solaires observées à la surface du soleil en fonction du temps. Il s’agit ici du Nombre de Wolf mensuel (orange) et annuel (rouge), tel que distribué par le Solar Influences Data Analysis Center (http://sidc.oma.be). Les cycles sont numérotés d’après la convention introduite au 19ème siècle par Rudolf Wolf. Le trait vert correspond au “Group SunSpot Number” de Hoyt & Schatten [8], généralement considéré plus fiable que le nombre de Wolf avant 1750. Quelle que soit la mesure utilisée, on note un cycle bien défini, d’amplitude variable et d’une période allant de 9 à 14 ans, avec une valeur moyenne de 11 ans. Le cycle magnétique sous-jacent a une période du double du cycle des taches, ces dernières se formant quelle que soit la polarité du champ magnétique solaire interne. Le peu de taches solaires observées durant le Minimum de Maunder (1645-1715), ne reflète pas un manque de données mais représente un épisode d’activité fortement réduite. Les traits verticaux verts délimitent la période 1978-2007, pour laquelle des mesures de l’irradiance sont disponibles (Figure 1). 202 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) L’IRRADIANCE SOLAIRE ... (CHARBONNEAU ET AL.) AA pas un événement unique, mais que de tels épisodes se sont produits de manière irrégulière une trentaine de fois dans les derniers 10000 ans [11], et donc pourrait fort bien se produire de nouveau. La majorité des reconstructions de l’irradiance remontant jusqu’au dix-septième siècle publiées à date sont basées sur des corrélations statistiques établies à l’aide d’observations magnétographiques récentes, permettant d’établir un lien entre la couverture surfacique de diverses classes de structures photosphériques magnétisées, et des indicateurs indirects ayant une longue archive temporelle comme les taches solaires, le niveau d’émission dans certaines raies spectrales sensibles à la présence d’un champ magnétique, le flux radio F10.7, etc. [12-15]. Une approche alternative consiste à établir un lien évolutif entre les taches, facules, réseau, etc., via un modèle physique simple. La reconstruction de l’irradiance en résultant doit aussi être calibrée sur 1978-2007, mais l’universalité des lois de la physique suggère qu’un tel modèle peut être extrapolé avec plus de confiance qu’une combinaison de corrélations de nature purement statistique. L’incertitude provient maintenant principalement du niveau de réalisme du modèle physique utilisé. Dans ce qui suit, nous décrivons un modèle physique de ce genre, récemment développé par le groupe de recherche en physique solaire à l’Université de Montréal [16,17] (voir également Refs. [18] et [19] pour des reconstructions basées en partie sur la même “philosophie”). Nous discutons ensuite l’étalonnage de ses paramètres internes à partir des données de l’irradiance pour 1978-2007, et présentons finalement une reconstruction de l’irradiance remontant à 1874 produites par le modèle ainsi calibré, incluant une variation à long terme du niveau général d’activité. MODÉLISATION PHYSIQUE DE L’IRRADIANCE Notre procédure de modélisation de l’irradiance est décrite avec abondance de détails dans Ref. [16], ce qui suit n’étant qu’un bref résumé. Le simulation couvre la surface du soleil, et évolue dans le temps selon un pas journalier. Jour après jour, les taches solaires sont “injectées” dans la simulation aux latitudes, longitudes et avec la taille correspondant aux observations d’émergence de taches et régions actives compilées à partir des données photographiques du Royal Greenwich Observatory pour 1874-1976, et de l’USAF pour 1977-2007 (voir http://solarscience.msfc.nasa.gov/greenwch.shtml). Comme nous ne pouvons observer que la moitié de la surface du soleil, on s’attend à ce que cette banque de données ne contienne que la moitié des émergences s’étant produites à la surface du soleil; nous introduisons donc une procédure statistique stochastique afin de modéliser les émergences sur la face cachée. Les taches ainsi injectées se désagrègent par la suite en plus petites structures, sous l’effet de la fragmentation et de l’érosion en leur périphérie (processus pour lesquels il existe un bon support observationnel; voir, e.g., Refs. [20-22], et références s’y trouvant). Ces fragments deviennent par la suite sujets au même processus de fragmentation/érosion, jusqu’à une certaine taille minimale en deça de laquelle les fragments disparaissent (e.g. par submergence convective) avec une probabilité dont la valeur, difficile à contraindre observationnellement, est traitée comme un paramètre du modèle. La procédure décrite ci-dessus produit une distribution de “fragments” de tailles diverses, évoluant dans le temps. Ces fragments sont ensuite regroupés en deux grandes classes selon leurs tailles, soit les “taches”, observées comme étant plus sombres que la photosphère, et les “facules”, plus brillantes. Dénotant par SQ l’irradiance de la photosphère non-magnétisée (incluant l’effet du noircissement centre-bord), on modélise l’irradiance selon l’expression S (t ) = SQ + N s (t ) N f (t ) i =1 j =1 ∑ ΔSs,i + ∑ ΔS f,j , (1) où Ns (t) et Nf (t) correspondent au nombre de taches et facules présentes en surface au jour t, ΔSs,i correspond au déficit d’irradiance associé à la tache i, et ΔSf, j à l’excès correspondant à la facule j, Ces deux dernières quantités dépendent à la fois de la taille et de la position de la structure à la surface du soleil; nous utilisons les expressions suivantes, établies empiriquement (voir, e.g., [Refs. 4, 23, et 24]): ΔS s ,i SQ 1 = − μ As ,i (3μ + 2) 2 ΔS f , j SQ (2) ⎛1 ⎞ 1 = − μ Af , j (3μ + 2) ⎜ − 1⎟ α f , 2 ⎝μ ⎠ (3) où les couvertures surfaciques As,i et Af,j sont exprimées en fraction de l’hémisphère (2πR 2), μ = cos θ cos φ mesure l’angle centre-bord, et le contraste faculaire αf est considéré comme paramètre du modèle, ses déterminations observationnelles n’étant pas très précises. Notons que la couverture surfacique totale des taches est donnée par As (t ) = N s (t ) ∑A s ,i . (4) i =1 Il est crucial de noter que ce modèle, si simple soit-il, est de nature partiellement stochastique: la même séquence de données en entrée (émergences de taches) produira des courbes d’irradiance distinctes sous diverses réalisations aléatoires du processus de fragmentation et/ou des émergences sur la face cachée du soleil. Il s’avère que ce second aspect domine la stochasticité du modèle (pour plus de détails voir Ref. [16]). ÉTALONNAGE DU MODÈLE: 1978-2007 En bout de ligne, le modèle de base décrit ci-dessus se retrouve défini par 10 paramètres, dont seulement quatre peuvent être contraints de manière fiable sur la base des observations. Les six autres paramètres doivent donc être ajustés de manière à offrir la meilleure représentation possible de l’irradiance observée dans l’intervalle 1978-2007. À prime abord il s’agit LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 203 L’IRRADIANCE SOLAIRE ... (CHARBONNEAU ET AL.) ici d’un problème d’optimisation classique, mais la stochasticité inhérente au modèle complique sérieusement la situation, tout comme le fait que l’espace des paramètres est fortement multimodal, i.e., plusieurs combinaisons distinctes de paramètres peuvent produire des séquences temporelles d’irradiance comparables. Face à ces difficultés, nous avons choisi d’optimiser le modèle à l’aide d’un algorithme génétique (ci-après AG), plus spécifiquement la version 1.2 du logiciel PIKAIA [25,26]. Nous cherchons à minimiser simultanément les écarts quadratiques moyens entre les séquences temporelles S(t) et As(t) observées, et celles produites par le modèle décrit ci-dessus. Voir la §3 de Ref. [16] pour tous les détails concernant cette procédure de minimisation. Une solution typique S(t) est présentée sur la Figure 1, sous une forme équivalente aux observations (trait orange: valeurs journalières; trait rouge: moyenne courante sur 81 jours). En raison des aspects stochastiques du modèle, on ne peut s’attendre à ce que les observations soient reproduites dans tous leurs détails; cependant il est clair que la simulation reproduit bien l’allure générale des variations observées, autant au niveau des amplitudes que des échelles de temps. Considérant la simplicité (relative) du modèle dans sa forme actuelle, le résultat est remarquable! imisations par AG, débutant de populations initiales distinctes et utilisant des réalisations aléatoires distinctes des émergences sur la face cachée et de la fragmentation des taches. Travaillant encore une fois à partir des séquences temporelles lissées sur 81 jours, pour chaque pas de temps (journalier) on calcule la moyenne (⎯S) des 1000 simulations ainsi que la déviation standard (σ) par rapport à cette moyenne; on trace ensuite un trait vertical (rouge) couvrant l’intervalle⎯S ± σ. La répétition de cette procédure à chaque pas de temps journalier produit la bande rouge. La même procédure, appliquée cette fois à la couverture surfacique totale des taches, As(t), est illustrée en (b). La courbe verte en (a) montre la variation sinusoidale correspondant à une des meilleures solutions produites par l’AG. Ces simulations présentent des résidus quadratiques moyens de l’irradiance significativement plus petits (0.168 W m-2 plutôt que 0.202 W m-2) que pour un niveau basal SQ constant, comme dans l’éq. (1). Ceci suggère qu’il existe une source de structures “brillantes” qui n’est pas reliée à la désagrégation des taches solaires, mais qui varie néanmoins approximativement en phase avec le cycle d’activité. Les observations solaires offrent déjà plusieurs pistes quant à la nature de cette source; on observe ainsi souvent des facules émergeant simul- La flexibilité de l’AG nous permet de généraliser facilement le modèle de manière à inclure des sources additionelles d’irradiance, n’étant pas directement associées à la désagrégation des taches. Par exemple, certaines observations suggèrent qu’il existe une source de structures de type faculaire qui contribuent un excès d’irradiance en début de cycle. Les observations historiques de l’activité solaire (Fig. 3) indiquent aussi la présence de variations à long terme du niveau général de l’activité, qui pourraient s’accompagner de variations du niveau de base de l’irradiance. Considérons tout d’abord l’existence possible d’une variation cyclique de l’irradiance du disque (SQ dans l’éq. (1)), i.e., le modèle d’irradiance est maintenant défini par: S (t ) = SQ + S0 sin ( ωt + φ ) + N s (t ) ∑ ΔSs,i + i =1 N f (t ) ∑ ΔS f,j . (5) j =1 La fréquence angulaire ω, la phase φ et l’amplitude S0 de cette variation sont toutes traitées comme des paramètres libres, ajustés via l’AG simultanément aux autres paramètres du modèle de base décrit à la §2 (voir Ref. [17] pour plus de détails sur ces modèles “améliorés”). Fig. 4 La Figure 4 présente les résultats produits par un tel modèle une fois calibré à l’intervalle 1978-2007, dans un format permettant de quantifier l’impact des aspects stochastiques du modèle. La partie (a) présente la courbe d’irradiance journalière observée (trait bleu), lissée via une moyenne courante de 81 jours. La bande rouge représente les résultats de 1000 min- 204 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) Séquences temporelles des moyennes courantes (largeur 81 jours) de (a) l’irradiance, et (b) la couverture surfacique totale des taches. Les traits bleus correspondent aux observations (cf. Fig. 1), et les bandes rouges à la moyenne ± une déviation standard de 1000 reconstructions utilisant des réalisations distinctes des émergences sur la face cachée. Le trait vert en (a) correspond à la variation sinusoidale du niveau de base de l’irradiance (partie non-magnétisée de la photosphère), incluse dans ces simulations selon l’éq. (5). Pour cette solution, la variation sinusoidale contribue presque autant que les facules à l’excès d’irradiance compensant le déficit associé aux taches. L’IRRADIANCE SOLAIRE ... (CHARBONNEAU ET AL.) tanément (ou parfois même un peu avant) les taches produisant une nouvelle région d’activité. Une explication alternative assignerait la variation sinusoidale à une variation structurelle de la zone convective solaire. Il n’est présentement pas possible de démarquer ces différents scenarii uniquement sur la base de nos résultats de modélisation. Cependant, les mesures simultanées de l’irradiance, du diamètre solaire et de la forme du limbe solaire qui seront produites par la mission spatiale PICARD (http://earth-sciences.cnes.fr/PICARD/Fr/), dont le lancement est prévu pour juin 2009, pourraient fort bien changer la donne. RECONSTRUCTION DE L’IRRADIANCE DEPUIS 1874 Une fois les paramètres libres du modèle fixés par étalonnage sur l’intervalle 1978-2007, il devient possible d’utiliser le modèle pour produire des reconstructions de l’irradiance débutant là où commence notre banque de données des émergences de taches solaires, soit 1874. L’intervalle de temps ainsi simulé couvre la majorité de l’ère industrielle, et en particulier la période de réchauffement terrestre global ayant débuté au vingtième siècle. Le niveau général de l’activité a considérablement varié depuis 1874 (cf. Fig. 3), et ceci pourrait fort bien produire une variation à long terme de SQ se superposant aux variations associées à la couverture surfacique des taches, facules, etc. La Figure 5 présente une reconstruction remontant à 1874, incorporant une modulation à long terme de la contribution à l’irradiance provenant de la partie non-magnétisée de la photosphère, calculée selon la procédure semi-empirique décrite dans Tapping et al. [19]. Plus spécifiquement, l’éq. (1) est maintenant remplacé par viron 0.4 W m-2 entre 1900 et 1986; cette hausse est petite, mais sur de telles échelles de temps aurait déjà une influence détectable sur le climat. Il est clair que le détail du modèle d’irradiance et de la procédure d’étalonnage sur 1978-2007 peuvent avoir un impact important sur les reconstructions de l’irradiance. Notons, par exemple, que Tapping et al. [19], à partir du même profil de qu’adopté ici mais utilisant une procédure de modélisation différente, arrive à un écart 1874-2008 de 0.8 W/m2, soit le double de celui caractérisant la reconstruction de la Figure 5. De plus, d’autres reconstructions récentes (e.g. Ref. [28]) suggèrent une augmentation de l’irradiance depuis 1874 dépassant 2 W m-2. Il est donc impératif de développer des modèles des variations 1978-2007 qui soient les plus réalistes possibles au niveau de la physique sous-jacente, mais tout en demeurant assez simples pour pouvoir servir de base à des simulations couvrant plusieurs siècles, et pouvant être effectuées en un temps de calcul raisonnable. DU PAIN SUR LA PLANCHE... Nous travaillons présentement à plusieurs améliorations de la procédure de modélisation de l’irradiance solaire décrite cidessus, notamment au niveau de l’inclusion d’un modèle de type agrégation/diffusion pour la formation des facules et des éléments du réseau magnétique supergranulaire [29]. Nous avons déjà entâmé la généralisation de la procédure à la modélisation de l’irradiance spectrale, soit la synthèse du spectre solaire en entier, et plus particulièrement la portion du spectre ultraviolet contrôlant la chimie et la dynamique de la S (t ) = SQ ,c + SQ ,a S10.7 (t ) + N s (t ) ∑ ΔS i =1 s ,i + N f (t ) ∑ ΔS f,j . (6) j =1 où S10.7 est la variation lente du flux radio F10.7 en fonction du temps, telle que reconstruite par Tapping et al. [19]. Le flux radio F10.7 est généralement considéré comme étant un bon indicateur du niveau général de l’activité magnétique globale [27], et parmi tous les indicateurs de l’activité solaire est celui qui corrèlle le mieux avec l’irradiance. Le nouveau paramètre SQ,a et le niveau basal constant SQ,c sont tous deux ajustés via l’AG simultanément aux autres paramètres du modèle d’irradiance. Encore une fois, les meilleures solutions évoluées par l’AG utilisant l’éq. (6) présentent de plus faibles résidus quadratiques moyen (0.188 W m-2) que ceux caractérisant le modèle de base décrit par l’éq. (1). Une reconstruction semblable mais utilisant le modèle de base décrit à la section sur la modélisation physique de l’irradiance (éq. (1) est présentée dans Ref. [16]; voir Figure 13). Le niveau de l’irradiance aux minima d’activité d’une telle reconstruction demeure fixé, par construction, à la valeur produite par la procédure d’étalonnage du modèle sur 1978-2007, soit 1365.42 W/m2. La reconstruction de la Figure 5 ci-dessus, cependant, accuse une hausse de l’irradiance aux minima d’activité d’en- Fig. 5 Reconstruction des variations de l’irradiance solaire depuis 1874, calculée à l’aide de notre modèle. Cette reconstruction incorpore une modulation à long terme reliée au flux magnétique total, pour lequel le flux radio F10.7 sert d’indicateur, via l’éq. (6). Comme sur la Fig. 4, le trait rouge correspond encore une fois à la moyenne de 1000 réalisation du modèle optimal ± une déviation standard, et le trait orange fin à une solution représentative extraite de cet ensemble. Le trait bleu correspond au niveau basal d’irradiance (SQ = 1365.42 W m-2 dans l’éq. (1)) produit par la version du modèle n’incluant pas de modulation à long terme (cf. Fig. 1, traits orange/rouge) et produisant une solution optimale sur l’intervalle 1978-2007. La hausse rapide de l’irradiance entre 1874 et 1875 est un transient artificiel associé à la condition initiale utilisée, soit un soleil sans taches. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 205 L’IRRADIANCE SOLAIRE ... (CHARBONNEAU ET AL.) stratosphère terrestre. Nous continuons d’explorer l’utilisation des archives du flux radio F10.7, remontant à 1947, comme tremplin permettant une modélisation physique plus réaliste des variations à long terme de la contribution à l’irradiance provenant des régions non-magnétisées de la photosphère solaire, ce qui nous permettrait de pousser les reconstructions au moins jusqu’au Minimum de Maunder. À ce niveau il est également intéressant de noter qu’au moment d’écrire ces lignes (juin 2008), en phase minimale d’activité séparant le cycle 23 du cycle 24, le flux radio F10.7 ainsi que l’irradiance ont atteint des valeurs plus basses que jamais observées auparavant, et le début du cycle 24 accuse près d’un an de retard par rapport aux prévisions faites durant la phase descendante du cycle 23. Le soleil nous réserve-t-il une surprise? A suivre! REMERCIEMENTS Les travaux décrits ici bénéficient du support financier du Conseil de Recherche en Sciences Naturelles et en Génie (Programmes “Subventions à la Découverte” et “Chaires de Recherche du Canada”), de la Fondation Canadienne pour l’Innovation, et des Fonds Québécois de la Recherche sur la Nature et les Technologies (Programme “Projet de Recherche en Équipe”). BIBLIOGRAPHIE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. Fröhlich, C., & Lean, J., Astron. Astrophys. Rev., , 273-320, (2004). Foukal, P., & Lean, J., Astrophys. J., 302, 826-835, (1986). Chapman, G.A., Cookson, A.M., & Dobias, J.J., J. Geophys. Res., 101, 13541-13548, (1996). Lean, J.L., Cook, J., Marquette, W., & Johannesson, A., Astrophys. J., 492, 390-401, (1998). Foukal, P., & Bernasconi, P.N., Sol. Phys., 248, 1-15, (2008). Kuhn, J.R., & Stein, R.F., Astrophys. J., 463, L117-L120, (1996). Li, L.H., Basu, S., Sofia, S., Robinson, F.J., Demarque, P., & Guenther, D., Astrophys. J., 591, 1267-1284, (2003). Hoyt, D.V., & Schatten, K., Sol. Phys., 181, 491-512, (1998). Eddy, J.A., Science, 192, 1189-1202, (1976). Beer, J., Space Sci. Rev., 94, 53-66, (2000). Usoskin, I.G., Solanki, S., & Kovaltsov, G.A., Astron. Astrophys., 471, 301-309, (2007). Foukal, P., & Lean, J., Science, 247, 505-604, (1990). Hoyt, D.V., & Schatten, K., J. Geophys. Res., 98, 18895-18906, (1993). Lean, J.L., Beer, J., & Bradley, R., Geophys. Res. Lett., 22, 3195-3198, (1995). Krivova, N.A., Balmaceda, L., & Solanki, S.K., Astron. Astrophys., 467, 335-346, (2007). Crouch, A.D., Charbonneau, P., Beaubien, G., & Paquin-Ricard, D., Astrophys. J., 677, 723-741, (2008). Crouch, A.D., & Charbonneau, P., Astrophys. J., soumis, (2008). Wang, Y.-M., Lean, J.L., & Sheeley, N.R.Jr., Astrophys. J., 625, 522-538, (2005). Tapping, K.F., Boteler, D., Charbonneau, P., Crouch, A.D., Manson, A., & Paquette, H., Sol. Phys., 246, 309-326, (2007). Schrijver, C.J., Astrophys. J., 547, 475-490, (2001). Petrovay, K., & Moreno-Insertis, F., Astrophys. J., 485, 398-408, (1997). Martinez Pillet, V., Astron. Nach., 323, 342-348, (2002). Chapman, G.A., & Meyer, A.S., Sol. Phys., 103, 21-31, (1986). Brandt, P.N., Stix, M., & Weinhardt, H., Sol. Phys., 152, 119-124, (1994). Charbonneau, P., Astrophys. J. Suppl., 101, 309-334, (1995). Charbonneau, P., Release Notes for PIKAIA 1.2, NCAR Technical Note TN-451-STR, Boulder: National Center for Atmospheric Research, (2002). 27. Tapping, K.F., J. Geophys. Res., 92, 829-838, (1987). 28. Solanki, S.K., & Fligge, M., Geophys. Res. Lett., 25, 341-344, (1998). 29. Crouch, A.D., Charbonneau, P., & Thibault, K., Astrophys. J., 662, 715-729, (2007). 206 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ARTICLE DE FOND RESONANCE DYNAMICS BY IN THE KUIPER BELT BRETT GLADMAN AND J.J. KAVELAARS C elestial mechanics is the queen of physics, being the longest-studied quantitative subject. The desire to predict the orbital motion of the planets drove both mathematics and physics to develop varied and precise techniques. For example, Newton’s crowning achievment was the derivation of Kepler’s laws of orbital motion from the three laws of motion and the law of universal gravitation. Bessel derived his famous functions to attempt to solve Kepler’s nonlinear equation for the angular position of a planet along its orbit. Kepler discovered (and stated in his First Law) that the planetary orbits are well described by ellipses in a fixed plane around the Sun, and that around the eccentric orbit the speed varies. Beginning students all learn Kepler’s Third law in its simple form 3 Pyr2 = a AU (1) for objects in orbit around the Sun, where the unit of distance is scaled to the Earth’s orbital semimajor axis of 1 AU 1.5 H 108 km. The semimajor axis a is one of 6 parameters (called ‘orbital elements’), which describe the shape of the orbit (through a and the eccentricity e), its orientation (the inclination i, the longitude of ascending node Ω, and the position of the perihelion ω relative to the ascending node), and finally the angular position f along the orbit from the perihelion point. In the perturbation equations of celestial mechanics, the orbits of each of the planets slowly change due to the weak tugs from the other planets. In the classical secular perturbation theory approach to compute the evolution of the orbital elements, orbital resonances have an important role. The location of a so-called mean-motion resonance is easy to compute; if a planet has period P1, then an external resonance with an second object whose orbital period P2 > P1 will occur when P2/P1 is a ratio of two integers m/n, whereupon Eq. (1) provides the resonant semimajor axis. For example, the external 5:2 mean-motion resonance of Neptune 30 AU) occurs where a2/a1 = (P2 / P1)2/3 = (with a1 2/3 (5/2) , corresponding to a2 55 AU. A transneptunian object (abbreviated TNO) with 55 AU will circle the Sun twice for every 5 orbits of Neptune. In analogy with the way amplitude can be built up by correctly timing the pushes of a child on a swing, the repetitive geometrical configuration caused by the resonant configuration results in the resonance affecting the orbital evolution of the TNO more than other (non-resonant) semimajor axes nearby. The importance of mean-motion resonances in the Kuiper Belt is easily seen in the semimajor axis/eccentricity distribution shown in Figure 1. The most prominent group inhabits the 3:2 mean-motion resonance with a 39.4 AU; these objects are known as ‘plutinos’ because Pluto was the first object known to occupy this resonance. One can see that most of the resonant objects have higher orbital eccentricities than the main part of the Kuiper Belt (the ‘classical’ objects which range mostly from a = 38 – 48 AU); there are complex observational selection effects at play here, and this figure must be interpreted with care. What is clear is that resonant objects exist, and one naturally proposes the question as to how these objects entered SUMMARY Over the last decade it has become clear that the Solar System’s Kuiper Belt has a rich dynamical structure. Mean-motion resonances (which are depleted in the asteroid belt and appear as the Kirkwood gaps in the asteroidal semimajor axis distribution) are preferentially populated in the Kuiper Belt, confering orbital stability to objects which would otherwise have short lifetimes against gravitational encounters with Neptune. The basics of the orbital mechanics of these resonances is presented. How planet migration may be at the origin of the observed resonant structure is outlined, along with some of the observational complications involved. Fig. 1 The inner portions of the trans-neptunian region in semimajor axis/eccentricity space, for TNOs with highquality orbits. Vertical lines show mean-motion resonance locations, along which many of the known TNOs sit; open squares denote TNOs whose resonant arguments are known to oscillate. This figure is an update of an orbital classification presented in Ref. [13]. B. Gladman <[email protected]. ca>, Department of Physics and Astronomy, Institute for Planetary Science, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada and J.J. Kavelaars <[email protected]. ca>, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 Canada LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 207 RESONANCE DYNAMICS ... (GLADMAN/KAVELAARS) this dynamical state. We must first understand a little bit better what the resonant state actually is. THE PENDULUM ANALOGY. The language of orbital resonances share some terminology with the more familiar problem of the rigid-rod pendulum, where a mass m pivots on a rod of length L in a vertical plane, with φ measuring the angular displacement from “straight down”. The dimensional Hamiltonian of the problem is written H dim = p2 + mgL(1 − cos φ) 2m (2) where g is the local acceleration with respect to gravity. The single coordinate φ and its corresponding (generalized) momentum p describe the motion. One can choose units of mass, length, and time so that m = g = L = 1, giving the nondimensional form: p2 + (1 − cos φ) 2 with corresponding Hamiltonian equations of motion ∂H nd φ= = p, ∂p H nd = p=− ∂H nd = − sin φ , ∂φ (3) (4) (5) where the over-dot indicates differentiation with respect to time. The reader will note that differentiating the first equation and substituting for ṗ from the second yields the second-order differential equation φ̈ + sinφ = 0 which, for small-amplitude oscillations which keep sin φ . φ, produces the familiar simple harmonic oscillator for small amplitude oscillations around the straight-down point. the evolution, a familiar fact that is verifiable by computing Ḣ. Therefore, a curve of constant H is a trajectory. The figure shows the small-amplitude trajectories surrounding the vertically-down (θ = π) point as circles, which become elongated as motions that approach θ = 0 or π (the ‘straight-up’ point). The thick curve connecting (θ, p) = (0,0) with (π,0) is called the separatrix because in separates the oscillatory regime, centered on (π,0), from the rotor regime at higher momenta (where the pendulum circulates ‘over the top’ each period). The terminology as it relates to celestial mechanics is closer if one now moves to a new ‘action’ I which is just a linear offset of p (a new inertial reference frame) and plots the trajectories in polar coordinates (Fig. 3). Here the ‘resonant’ regime (of oscillatory motion) is positioned at left within the thick separatrix and surrounding the low amplitude oscillations. The ‘resonant angle’ θ is the polar position of a vector starting from the origin that points to the trajectory in question (determined by value of H determined by the initial values of I and θ). This vector moves along a surface of constant H, controlling the value of the polar angle. For oscillatory motions inside the separatrix, θ does not explore all values, but has a restricted range centered on 180o. Recall that we have not determined the time behaviour along the trajectories (which is much For what follows it is simpler to use an angular coordinate θ = π - φ which is the angular position in the plane of oscilation, but measured from the ‘straight-up’ point, so that θ = π is the equilibrium point at the bottom of the swing. The Hamiltonian is H= p2 + cos θ 2 (6) The full solutions for θ(t) and p(t) of the simple-looking equations of motion analogous to (4) and (5) require knowledge of the Jacobian elliptic functions. However, if one only wishes to understand the qualitative nature of the trajectories one can simply plot level sets of the Hamiltonian H in the (θ,p) plane (Fig. 2). This is because the value of H (the system’s mechanical energy) is conserved during 208 C PHYSICS IN Fig. 3 Fig. 2 The phase space of a planar rigid-rod pendulum, viewed in cylindrical coordinates. The angle θ measures the angle down from the vertically straight-up position, while p is the (angular) momentum in the intertial frame where the pivot is at rest. Trajectories (lines of constant H) are shown. The oscillatory (also called librating) trajectories are dashed, while the ‘rotor’ solutions (which visit all values of θ) are solid. The thick trajectory is the separatrix. CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) The dynamics viewed in polar coordinates. The state of the system is expressed by the polar angle θ (measured counterclockwise from the dashed reference direction) and a generalized momentum I which determines the length of the state vector. Curves are still the level sets of the Hamiltonian and the thick curve is the separatrix of the previous figure. Rotor motions (solid trajectories) are both exterior to the separatrix and also near the origin (corresponding to ‘above’ and ‘below’ the separatrix in the previous figure). Librating trajectories are again dashed. As the system evolves along one of the trajectories the angle θ changes. In the case shown θ will not take on all values but rather will oscillate about θ = 180ο. RESONANCE DYNAMICS ... (GLADMAN/KAVELAARS)AA more complicated), only the tracks in (p,θ) space; in fact the separatrix motion requires a formally-infinite time. ORBITAL RESONANCE DYNAMICS In celestial mechanics the ‘resonant angle’ θ is formed from a combination of angles which describe the orbit and positions along the orbit of the two particles. For example, for describing Pluto’s motion in the 3:2 resonance, the resonant angle θ32 = 3λ − 2λ N − ϖ (7) λ = ϖ+ M (8) where is the mean longitude of the particle, made up of the longitude of pericenter ϖ = Ω + ω of the orbit and the mean anomaly M of the particle. The mean anomaly M of celestial mechanics is the angular position of the particle past the pericenter point, but in the ‘average’ sense rather the strict geometrical angle; the interested reader should refer to an orbital dynamics text for a deeper understanding, but here it is sufficient to think of λ as the angle that starts from the arbitrary reference direction from which the angular position of the ascending node Ω is measured (where the particle crosses the reference plane going north) around to the particle (this is precisely true for circular orbits in the reference plane). The resonant angle θ32 is not a simple angle to interpret; one cannot draw it in coordinate space as an angle terminating at the plutino particle. This angle appears in the expansion of the ‘disturbing function’ of celestial mechanics, where it causes a singularity in the theory if the particle is precisely at the resonant semimajor axis. However, analytical treatments (beyond the scope of this article) can be developed. Some geometrical insight is obtained if one asks the question of the value of θ32 at an instant when the plutino is at perihelion. In such a case M = 0 for the particle (since M is measured from pericenter) and Eq. 8 indicates λ = ϖ (that is, the angle around the particle from the reference direction is the same as the angle to perihelion, which must be true of course), so that θ32 = 3ϖ − 2λ N − ϖ = 2(ϖ − λ N ) . (9) 180o, then this equation If the resonant angle has the value of demands that the perihelion longitude of the TNO is ϖ = λN + 90o, meaning that the perihelion point is 90o ahead of Neptune’s position. Because of the 360o degeneracy of angles, another valid possibility is that ϖ = λN B 90o, corresponding to perihelion 90o behind Neptune. Thus, even a plutino with an orbit so eccentric that its closest solar approach is nearer the Sun than Neptune’s distance of 30 AU (Pluto and many other plutinos have such large eccentricities) is protected from close encounters with Neptune by the resonance condition. If the resonant angle is near, but not exactly, 180o, a significant offset is still induced between the perihelion longitude and Neptune’s location. Because of the gravitational tugs which Neptune exerts on the plutino, the heliocentric orbit of the small body precesses and the perihelion direction relative to Neptune would drift. One would expect that eventually the perihelion direction of the plutino could align with Neptune. The reader should confirm that although both the longitudes of the plutino and Neptune advance rapidly, because of the fact that Neptune’s period is 2/3 of the plutino’s, Eq. 7 then results in dθ32/dt being much smaller than either Fig. 4 The history of the resonant argument θ32 over 10 million d λ/dt or d λN/dt. years for a so-called ‘plutino’ Looking at Fig. 3, the in the 3:2 mean-motion resoresonant particle’s tranance with Neptune. On time jectory follows one of scales of 104 years the resothe dashed curves inside nant argument librates around the separatrix, and it is 180o with an amplitude of easy to see that as one about 40o. follows such a trajectory away from θ = 180o there will be an extremal value of θ at which point the angle begins to return toward θ = 180o; the angluar deviation of this extremal value is called the ‘libration amplitude’ of the trajectory. This libration of the resonant argument θ is the effect of the resonance, and it manifests itself in configuration space as a correlation between the plutino’s perihelion direction and that of Neptune. (It is also true that at conjunction, where λ = λN and thus Neptune and the plutino ‘line up’, the plutino is forced to be near its maximum distance from the Sun.) Fig. 4 shows a numerically-integrated time history of θ for a plutino with a libration amplitude of about 40o. The θ32 resonant argument completes one libration in only about 20 thousand years, but this libration is stable for time scales of billions of years. The small irregularities in Fig. 4 are caused by beating of the sampling interval and the small effects of the other planets. The libration’s effect in space is illustrated in Fig. 5, which requires some explanation. This is for the same orbit numerically integrated in the previous figure. Imagine looking down on the Solar System from the north ecliptic pole (that is, directly above the plane of the Solar System), with the Sun at the coordinate-system origin. Fig. 5 shows the location of Neptune (N) this year, at a distance of 30 AU from the Sun (and nearly circular orbit); Neptune would trace out a counter-clockwise circle of this radius in an intertial frame, with a circle of that radius shown for reference. However, this figure is drawn in a reference frame that co-rotates with Neptune so that the planet’s location remains fixed at its current position. In this corotating reference frame plutinos execute a complex motion like a child’s spirograph, going clockwise around the Sun except for a small ‘loop’ near each pericenter which, as predicted above, occur near the points 90o ahead and behind Neptune. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 209 RESONANCE DYNAMICS ... (GLADMAN/KAVELAARS) Two orbits of the plutino around the Sun correspond to one complete clockwise rotation around this figure (thus with two perihelion passages of course). The orbit’s pericenter location then wobbles slowly back and forth, with the wobble direction reversing at the extremal points of the resonant argument. Fig. 5 The motion of a plutino in the reference frame co-rotating with Neptune. The two circles mark heliocentric distances of 30 and 40 AU. Neptune’s position in indicated by the large “N”. See text for discussion. REAL PLUTINOS The phase-space structure of resonances presented in the previous section makes clear the special dynamics of objects in these resonances, and how the resonant configuration can influence the dynamics. However, except for Trojan asteroids, there were few real-world examples to provide case studies to compare to. The 1930 discovery of Pluto created a puzzle regarding the origin of the orbit of this unusual object. The orbit is highlyinclined to the plane of the Solar System (i ~ 17o), a semimajor axis of ~ 39.7 AU, and with a large-enough eccentricity (e ~ 0.25) that Pluto crosses the orbit of Neptune! These unusual orbital characteristics appeared to indicate that Pluto’s orbit might not be stable. Determining that Pluto and Neptune have orbital periods that are near the ratio of 3:2 merely requires a simple application of Kepler’s Third Law (Eqn. 1). Simply having commensurate orbital periods, however, is not a sufficient condition to ensuring that Pluto and Neptune are in resonant orbits because the combination of the angular variables must be in the right range and the resonant argument must librate. The answer regarding the stability of Pluto’s orbit needed to wait until 1965, at which time the computational power became available to conduct a numerical integration of Pluto’s orbital evolution under the influence of the Sun and the four giant planets. Cohen and Hubbard [1] demonstrated, via orbital integration, that the 3:2 resonant angle between of Pluto with respect to Neptune (θ32 as expressed in Eqn. 7) librates around a mean 80o and period of value of 180o with an amplitude of ~ 19670 years. This libration of the resonant angle proved that the orbits of Pluto and Neptune are in resonance, but better observational data was required to secure the exact value of the libration amplitude. This yin-yang between observational dis- 210 C PHYSICS IN covery and computational modelling is a key feature of Kuiper belt research which continues to this day. At the time of writing, analytical/numerical understanding of resonance dynamics and migrational capture into resonances (see below) is slightly ahead of the observational data available. A number of investigators have pursued ever-more detailed investigations of Pluto’s orbital evolution, revealing that Pluto is simultaneously trapped in a number of other types of resonances inside the 3:2 mean-motion resonance. Discussion of the full complexity of Pluto’s orbit is beyond the scope of this article and the interested reader is encourage to examine the review by Malhotra and Williams [2]. Soon after the discovery of other Kuiper Belt objects in the 1990s, other trans-neptunian objects were realized to be trapped in the 3:2 resonance. These objects were coined plutinos in analogy with Pluto. Other mean-motion resonances were then shown to be inhabited as well; Ref. [3] reviews the early development of the knowledge of the Kuiper Belt’s resonant structure. How do objects with an orbit like Pluto end up in this and other resonances? Formation of Pluto in a Neptune-crossing orbit seems unlikely. To understand the complexity of the problem requires a consideration of the process of planet formation and the general reversibility of Newtonian dynamics. RESONANCE CAPTURE Models of planetary accretion suggest that planets grow from a smooth disk of material initially via coagulation of dust particles which form into cm-sized dust balls and then coalesce to form larger like Pluto (see Ref. [4] for a review of the core accretion model of planet formation). Of critical importance for the current discussion is the finding that encounters between growing planetesimals must have very low relative velocities, or else the encounters are disruptive. For nearby orbits of small eccentricity and mutual inclination, encounter velocities between objects scale as vk e 2 + i 2 , where νk is the keplerian orbital speed of one of the objects at the encounter. Thus, although an object with a low-inclination, low-eccentricity orbit could perhaps form in resonance with Neptune it seems highly unlikely that an object on a highly inclined or eccentric orbit, like Pluto, could have done so. Based on expectations surrounding the planet formation process, Pluto most likely formed in a nearly circular orbit that was tightly confined to the ecliptic plane. After formation, some event(s) or action(s) must have provided the gravitational excitation required to leave Pluto in a high-inclination/higheccentricity orbit. How can such a process have occurred and left Pluto in resonance with Neptune? Explaining the coupling between Pluto’s orbital resonance in the context of the formation of the outer Solar System is where orbital dynamics provides its great constraint on models of planet formation. During the final stages of the giant planet formation, and Neptune in particular, there was likely a surviving disk of at least a few Earth-masses of planetesimals orbiting in the eclip- CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) RESONANCE DYNAMICS ... (GLADMAN/KAVELAARS)AA tic. When these particles are gravitationally scattered by the giant planets, an exchange of angular momentum occurs. If the planetesimal scatters inward of the giant planet then the giant planet’s orbit will grow slightly or if the planetesimal scatters outward then the giant planet’s orbit will shrink. The exact outcome, for the giant planet, depends on the net effect of all these scattering events. For each outward scattering the change of semi-major axis is approximately: δa m a MN where m is the mass of the scattered planetesimals and MN is that of Neptune [5]. In the case of the outer Solar System, outward scattering off Neptune rarely results in the planetesimal’s ejection out of the Solar System while inward scatter usually leads to encounters which hand the planetesimals, via Uranus and Neptune, down to Jupiter. Mighty Jupiter easily ejects the planetesimals out of the system, and thus moves in. In essence this makes Neptune’s total number of inward scattering events more numerous than the outward scattering ones and so Neptune’s orbit slowly drifts outward, growing in semi-major axis. The slow expansion of the outer Solar System via this planetesimal scattering appears to be an inescapable result during the late stages of giant planet formation. Imagine now that Pluto has formed and is far beyond premigration Neptune, say just outside the location of Neptune’s 3:2 resonance at the time. As Neptune migrates outward and its semi-major axis increases, the heliocentric distance corresponding to the 3:2 resonance also slowly moves outward, eventually reaching the point where it sweeps past Pluto’s location. The dynamics of resonant capture are rather complex, although there are well-known examples. Likely the most familiar is that of the Moon’s tidal locking to the same period as its revolution around the Earth. In that case a slowly-acting force (the tidal dissipation acting on the Moon’s surface) de-spun the Moon’s rotation until it was caputred into resonance and found an equilibrium. In the study of capture into Neptune’s 3:2 resonance, the transition depends on the initial conditions (namely the eccentricity of Pluto’s non-resonant orbit), the rate of evolution and eccentricity of Neptune’s orbit and the relative importance of other non-resonant gravitational perturbations (such as the graviational forces from the other planets). In essence, the timescale for migration of Neptune must be long compared to the timescale of the resonant perturbations (~ 104 yr). One can heuristically think about resonance capture by examining Fig. 3 and imagining that the pre-capture trajectory of the plutino is circulating on a trajectory near the origin. These curves are drawn in the case of a fixed orbit for Neptune. As Neptune migrates, the plutino orbit’s action (to use the hamiltionian terminology), which here is the radius I, increases and the particle will approach the separatrix. One can productively think of this as the migratory motion actually ‘breaking open’ the separatrix near the cusp point along the θ = 0 axis, and when the particle’s orbit reaches this point it might end up escaping into the outer circulatory region (in which case the particle has passed through the resonance without capture), or becoming trapped into the librational region and thus captured into the resonance. In the language of nonlinear dynamics, one says that some of the initial conditions are part of the ‘basin of attraction’ of the librational fixed point at θ = 180o (this analogy is only good if one imagines the planet migrating forever). When the planetary migration ceases, the structure of the resonance locks onto the phase space diagram like Fig. 3 and particles remain on the trajectory that they find themselves. A phenomenon not obvious from the above discussion is that after capture, continued outward migration causes the expansion of the orbital eccentricity. Via angular-momentum conservations one can determine the growth of the eccentricity as a function of the change in semimajor axis of the migrating Neptune. Malhotra [5] found that e 2final 1 aN , final 2 + ln ecapt 3 aN ,capt (10) where capt subscripts refers to the values at the instant of the resonant capture, and N subscripts refer to Neptune rather than Pluto. Thus, assuming that the pre-migration Pluto had einitial . 0 and given the current eccentricity of Pluto, (efinal ~ 0.25) Eq. 10 provides an estimate of the migration distance: Δa = (aN , final − aN ,capt ) = aN , final × ⎡⎣1 − exp( −3 ∗ e 2final ) ⎤⎦ 5 AU . This assumes that Pluto was ‘just exterior to’ the 3:2 resonance when Neptune started to migrate (minimizing the migration distance) and that Pluto’s pre-capture eccentricity was 0 (maximizing the migration). Since the publication of this theory [5], a large number of plutinos have been discovered and the median eccentricity of this population appears to be ~ 0.18 [6], so explaining the plutinos eccentricities with migration would require about half of the plutinos to be captured during the last 3 AU of Neptune’s migration. Neptune is acting somewhat like a ‘snowplow’ (a good canadian analogy), with the plutinos first captured finishing ‘highest up’ in eccentricity. If one posits that all plutinos had initial e . 0 then the largest-observed e = 0.33 requires Neptune’s total migration to have been 8 AU. However, some pre-migration stirring of the Kuiper Belt may have occured, in which case the total outward movement of Neptune would have been less. Capture Efficiency The dynamical process of resonance capture depends on a number of physical parameters, including the migration rate and eccentricity of Neptune and the particle at the time the resonance is crossed. Thus, we might hope to use the current number and orbital distribution of objects trapped in the 3:2 resonance, versus some estimate of the pre-migration distribution, as an archaeological indicator of Neptune’s migration rate. Since Neptune’s ancient migration rate is intimately tied to the primordial density of planetesimals in the outer Solar System LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 211 RESONANCE DYNAMICS ... (GLADMAN/KAVELAARS) we have, in effect, a measure of the density of material in the solar system at the epoch of planet formation. A number of authors have examined the various interplays between the initial conditions of a disk of material beyond Neptune and the rate of capture into resonance (see Refs. [711] for examples). The dependencies between capture efficiency and migration rate (Ref. [9], in particular) and the initial eccentricity of captured material (e.g., Ref. [10]) have been examined as well as the long-term stability of captured objects [8]. The underlying driver for these studies has been an attempt to reconcile the observed orbital distribution with the migration theory. If the planetesimal disk beyond Neptune (the Kuiper belt) was completely quiescent (< e > ~ < sin(i) > n 0.01), as is required for planetesimal accretion to be effective, then migration capture would have been nearly 100% effective and the majority of Kuiper belt objects should now be members of the 3:2 resonance. In addition, the currently-observed inclination distribution among the plutinos extends to higher inclination than the inclination produced via resonance migration. Levison et al. [11] have proposed that instead of migration into a pre-existing low-eccentricity Kuiper Belt, Neptune, Uranus and a large planetesimal population were all flung outwards from initial locations interior to 30 AU. Migration still occurs, but during an epoch of large eccentricity for Neptune which greatly enhances resonance capture. (Neptune’s eccentricity subsequently drops to the present value of nearly zero). This model better explains some of the observed features of the Kuiper Belt’s orbital distribution. TWOTINOS The resonant dynamics in the outer Solar System are very rich. Many of the resonances are significantly more complicated than the simple picture developed above. Fig. 6 212 C PHYSICS IN Fig. 6 shows the same polar diagram as before, but now for the 2:1 mean-motion resonance with Neptune; trans-neptunian objects at this distance can be seen in Fig. 1 with a 47.4 AU. The resonant argument is θ21 = 2λ B λN B ϖ, and if this argument librates the object is resonant and (whimsically) called a ‘twotino’. The separatrix between the outer and inner circulation regions and the resonant libration region looks similar to before, but now the resonant region is broken up into 3 regions by an additional separatrix, called the symmetric and asymmetric islands as defined in Fig. 6’s caption. Two types of resonant motion now exist: (1) symmetric libration where θ21 oscillates around 180o, as before, but as the figure shows this must occur with large amplitude, or (2) asymmetric libration where the libration center is not 180o, but rather one of two other possible values (the libration center depends on the eccentricity) and occuring with a smaller possible libration amplitude. Twotinos librating around all three libration centers are known (Fig. 7). In fact, due to the gravitational forces from the other planets, a given twotino can switch between symmetric and The θ21 resonant argument trajectories for the 2:1 mean-motion resonance. Here the particle eccentricity is the radial coordinate. Separatrices are shown as heavy curves. There are now 3 resonance regions. The larger symmetric region encloses θ = 180ο and allows large libration amplitudes. There are also the two small asymmetric libration islands, so named because a trajectory following one of them will never pass through 180o, but will instead oscillate with small amplitude around another average value (of roughly θ21 =120 or 240 degrees here). Note that there are no smallamplitude symmetric librators. For particles of different eccentricities the angle defining the libration center of the asymmetric islands changes. Figure provided by A. Morbidelli. CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) Fig. 7 The distribution of libration centers and resonance amplitudes for objects securely known to be in the 2:1 mean-motion resonance with Neptune. The error bars for each object represent the current range of allowable solutions. As expected, all the symmetric librators (which will have libration centers at 180o) have large libration amplitudes, and the smaller-amplitude symmetric librators have libration centers at depend on their eccentricity. The greater number of Kuiper Belt objects known with libration centers near 90o compared to near 270o is likely an observational bias due to objects in the 270o asymmetric island spending much of their time in the direction of the galactic center. RESONANCE DYNAMICS ... (GLADMAN/KAVELAARS)AA asymmetric libration over time. This more complex resonance structure opens new windows into the past, because assuming capture into the 2:1 resonance occured due to migration, the multiple libration islands may not be equally populated. Asymmetric Capture The unusual orbit of Pluto and the explanation of that orbit as the result of resonance capture during Neptune migration leads naturally to the question of what other signatures of migration might exist among the resonant Kuiper belt objects. When a low-eccentricity object is initially captured into the 2:1 resonance, the effect of continued migration will be to cause the newly-captured twotino’s eccentricity to grow, slowly leading it towards the separatrix entirely inside the resonant region (shown in Fig. 6), forcing a choice between one of the two asymmetric islands and the large libration-amplitude symmetric island. Which island will be selected? As in the previous discussion, Fig. 6 is only true for the instantaneous, i.e. non-migrating, case. Ref. [12] numerically investigated the effects of migration-induced resonance capture on the distribution of libration amplitudes and libration centers of the twotino population. Remarkably, they found that the likelihood of capture into the so-called leading (θ < 180) and trailing (θ > 180) asymmetric libration islands is dependent on the rate of Neptune’s ancient migration. Murray-Clay and Chiang [12] further investigated the dynamics and provide an explanation of the resultant asymmetry. In the simplest case, a migrating Neptune causes the center of symmetric libration to shift slightly such that the average value of θ is greater than 180o. Thus, as an object librates about the shifted ‘symmetric’ resonance center, the object will spend slightly more time on the side of the libration potential than on the other side (see Fig. 8). This shift in libration center causes the asymmetry in the capture. Murray-Clay and Chiang further recognized that the libration amplitude is a function of the object’s e prior to its capture into the 2:1 resonance. As the libration amplitude increases, the amount of time an object spends visiting phases space accessible to both asymmetric islands grows. In fact, for very small libration only the ‘trailing’ island is explored while for slightly larger eccentricities both islands can be explored. The strength of preference for the ‘trailing’ versus the ‘leading’ asymmetric islands is caused by the size of offset in the center of the symmetric libration. The size of this offset is, itself, a function of the migration rate and initial eccentricty of the captured twotino (see equation 26 of Ref. [12]). Thus, measuring the current ratio of ‘trailing’ to ‘leading’ twotinos could, when coupled to some estimate of the initial eccentricity of the twotino population, provide another measure of the migration rate of Neptune. The density of the primordial outer Solar System could then be inferred. Although both the 3:2 capture efficiency and the ‘trailing’ versus ‘leading’ 2:1 asymmetry provide only indirect, and somewhat complicated, information on the rate of migration of Neptune, they both provide independent inferences. Coupling of the observational census of the Kuiper Belt’s resonant populations with our evolving knowledge of the complex dynamical evolution of these bodies provides a path to unlocking the ancient history of our Solar System. OBSERVATIONS Since the discovery of the second trans-Neptunian object in 1992 there has been a veritable explosion of discovery. At the close of 2007, just 15 years after that transformative discovery, approximately 807 trans-Neptunian objects were known, of which some 120 might be plutinos and another dozen or so appear to be Twotinos (see Ref. [13] for a review of the nomenclature of the trans-Neptunian region and a census of its members). But wait, why ‘approximately’ 807 and ‘might be plutinos’ or ‘appear to be twotinos’? The endeavour of wide-field search surveys for transneptunian bodies has been an exciting race, with multiple groups attempting to establish strong records of discovering new objects. Orbital determination of the discoveries, however, tends to be less exciting and requires many times the observational Fig. 8 The evolution of the libration angle (θ = θ21) with a migrating Neptune for two resources as compared to the initial discovtransneptunian objects which become captured in the 2:1 resonance. At t = 0 the object ery. Determining a transneptunian’s precise is circulating (not in resonance) and is captured into resonance near t ~ 0.09 Myr. The orbit, particularly one in resonance, left panel shows the low-eccentricity case where the libration amplitude is small and the separatrix (dashed line) between the two asymmetric islands is offset to θ < π ; requires many dozen positional measureclearly the object spends no time with small θ and so can not be captured into the island ments spread over a number of years. with θ < π. For objects with larger initial eccentricities (right panel) the libration ampli- Without a well-sampled and lengthy obsertudes are larger and the offset of the separatrix is smaller. In this case the object spends vational history, it is impossible to consome time on the small- side of the separatrix point and so capture into that island strain quantities like the libration center becomes possible. (Figure provided by R. Murray-Clay and E. Chiang). and amplitudes (see Fig. 7), or even LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 213 RESONANCE DYNAMICS ... (GLADMAN/KAVELAARS) answering the question: “Is this object in resonance?” The difficulty in determining the precise orbits leads to the problem of object loss. Without secure estimates of the orbital elements, the future positional uncertainty on the sky grows rapidly and soon (within a few months to a year) observers can no longer locate the object and it is lost. The constant leaking away of these discoveries contributes to a biased view of the known populations. Determining the migration rate of Neptune from the relative strengths of the population of resonant objects (such as the relative size of the population of the 3:2 resonance as compared to say, the 2:1 resonant objects) requires that we either have unbiased estimates of those populations or, if the estimate is biased that we be able to account for that bias (see Ref. [14] for a discussion of observational biases that must be accounted for). Unfortunately, accounting for objects that have been lost due to insufficient observations is not a bias that we can corrected for. One observational bias that can be understood in a straightforward way is the flux bias: brighter objects are easier to detect. Fig. 5 shows the positions, relative to the Sun in a frame rotating with Neptune, that a plutino explores during one libration cycle; this object makes closer approaches to the Sun when roughly 90 degrees away from Neptune on the sky. Since one only detects trans-Neptunians via reflected sunlight, their brightness L is given by L % 1/r4, where r is their heliocentric distance. Thus, since plutinos are closest when 90 degrees from Neptune, a survey that looks in these directions is more likely to find plutinos than would a survey which looks towards Neptune. Because of this flux bias, we must know the pointing history of a survey before we determine the fraction of objects in the 3:2 resonance compared to other populations. Fig. 7 presents the libration centers and amplitudes for the current sample of twotinos. We see that most of the currently- observed asymmetric population is in the ‘leading’ asymmetric island (libration center, θ ~ 90o, see Fig. 6). Does this then indicate that Neptune’s migration was extremely slow or rather that the pre-capture orbits of the twotinos had large eccentricities; both effects would reduce the dynamical preference for ‘leading’ capture (see Ref. [12]) or is some other bias perhaps at work? For twotinos, as for plutinos, there is a bias towards discovery when the objects are near perihelion, for small-libration amplitude objects this occurs when they are near their libration centers relative to Neptune. Currently the trailing libration center, which is 60o ‘behind’ Neptune, is aligned on the sky with the direction of the galactic center. Thus, although the trailing twotinos are brightest when on this part of their obit, discovery is hampered by observational confusion with the vast number of galactic plane stars in the background. Determining the intrinsic population from the observed one requires a knowledge of the pointing history of the discovery survey and an accurate estimate of the fraction of the search fields that are actually discoverable. The authors of this manuscript are involved in a project (visit http://www.cfeps.net) that is striving to address the major problems with the observational constraints of Kuiper belt populations. This project carefully measures the internal biases for discovery and tracking, so that the sample of objects can be used to ‘back out’ the true populations. CONCLUSION Although this article has just scratched the surface of a very complex dynamical problem, we hope the reader will have garnered some appreciation for the dynamics of resonant orbital motion and how it can be used to diagnose the ancient history of the Solar System. ACKNOWLEDGEMENTS We thank A. Morbidelli and E. Chiang for helping provide modified figures. REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Cohen, C.J. and Hubbard, E.C., Astronomical Journal, 70, 10 (1965). Malhotra, R. and Williams, J.G., in Pluto and Charon, Edited by S. Alan Stern, and David J. Tholen, University of Arizona Press, p. 127, (1997). Davies, J.K., McFarland, J., Bailey, M.E., Marsden, B.G., and Ip, W.-H., in The Solar System Beyond Neptune, eds. M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, and A. Morbidelli, University of Arizona Press, Tucson, p. 11-23 (2008). Lissauer, Jack J., Annual Review of Astronomy and Astrophysics, 31, 129, (1993). Malhotra, R., Nature, 365, 819, (1993). Kavelaars, Jj, Jones, L., Gladman, B., Parker, J.W., and Petit, J.-M., Astronomical Journal, submitted (2008b). Malhotra, R., Astronomical Journal, 110, 420, (1995). Gomes, R., Nature, 426, 393, (2003). Chiang, E.I. and Jordan, A.B., Astronomical Journal, 124, 3430, (2002). Hahn, J.M. and Malhotra, R., Astronomical Journal, 130, 2392, (2005). Levison, H.F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., and Tsiganis, K., Icarus, 196, 258, (2008). Murray-Clay, R.A. and Chiang, E.I., Astrophysical Journal, 619, 623, (2005). Gladman, B., Marsden, B.G. and Vanlaerhoven, C., in The Solar System Beyond Neptune, eds. M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, and A. Morbidelli, University of Arizona Press, Tucson, p. 43 - 57 (2008). Kavelaars, Jj, Jones, L., Gladman, B., Parker, J.W., and Petit, J.-M., in The Solar System Beyond Neptune, eds. M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, and A. Morbidelli, University of Arizona Press, Tucson, p. 59- 69, (2008). 214 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ARTICLE DE FOND VISUALIZING THE INVISIBLE OBSERVATIONS USING POLARISATION JO-ANNE C. BROWN, JEROEN M. STIL, AND TOM L. LANDECKER BY I t has been known for centuries that the Earth has a magnetic field. The idea that the Galaxy has a magnetic field and that that field might play an important role in the physics of the Galaxy is more recent, dating back almost 60 years. Fermi [1] proposed that cosmic rays may be generated outside the solar system as a result of sufficiently energetic particles colliding with moving irregularities in an interstellar magnetic field. In his view, this magnetic field would not only be a generator of cosmic rays, but also a containment factor to prevent the rays from escaping the Galaxy. Indeed, it is now believed that magnetic fields and cosmic rays contribute to the vertical support of the gas in the Galaxy [2]. In addition to playing a significant role in pressure balance, magnetic fields play an essential role in star formation, by inhibiting gravitational collapse of interstellar clouds – primary star formation regions – and by remov- SUMMARY An electromagnetic wave can be uniquely characterized by the four Stokes parameters: I, Q, U, and V. Typical observations in astronomy rely solely on total intensity measurements of the incoming radiation (Stokes I). However, a significant amount of information both about the emitting region and the propagation path is carried in the remaining Stokes parameters. These data provide a means to observe parts of the interstellar medium which remain invisible in Stokes I, at any wavelength. For example, when an electromagnetic wave propagates through a region containing free electrons and a magnetic field, the plane of polarisation of the wave will rotate - an effect recorded only in Stokes Q and U. The interstellar medium of the Galaxy is such a region, containing free electrons (observed as HII) and a magnetic field of a few microgauss. By imaging in Stokes Q and U we are able to observe signatures of magnetic field perturbations from the small scale (tens of pc) to the large scale (kpc). In this paper, we review the status of Canadian polarisation studies of cosmic magnetic fields and discuss the leading role Canada is playing in polarisation studies around the world. ing prestellar angular momentum [3]. Consequently, magnetic fields directly affect the distribution of stars. It is also believed that magnetic fields influence galaxy formation and evolution by causing large density fluctuations which result in structures within a galaxy [4]. In situ measurements of interstellar magnetic fields are not yet possible. Even the NASA Voyager Space probes, launched in 1977, have only just reached the Heliosheath [5], and are not expected to reach the interstellar medium (ISM) until 2013 at earliest. Furthermore, signatures of interstellar fields are only indirectly observable through polarisation observations. The majority of astronomical observations are done in total intensity, much like that of a standard photograph, thus rendering magnetic fields ‘invisible’ in most astronomical data. Consequently, magnetic fields have been either largely ignored in astronomy or have been used as a scape-goat for otherwise unexplained phenomena. It has only been in the last 30 years that magnetic field observations outside our local arm have made advances, with some of the most significant steps being led by Canadians and Canadian instrumentation. For example, in almost stereotypical form, a little Canadian facility, built and run on a shoe-string budget (by any ‘large-scale’ facility standard) revolutionized polarisation observations with a method that would be emulated worldwide. That little facility is the Synthesis Telescope of the Dominion Radio Astrophysical Observatory (DRAO), operated by the Herzberg Institute for Astrophysics of the National Research Council. The array, built amid the mountains of the Okanagan Valley, in south-central British Columbia, consists of seven antennas in a linear east-west configuration. Three of the antennas rest on railway tracks, allowing for variable baselines (ie. pairs of correlating antennas), while the remaining four are fixed. The antennas were salvaged from various locations: two were surplus moonradar antennas, two were surplus troposcatter antennas, two came from Five Colleges Radio Astronomy Observatory in Massachusetts, and one came from Texas where it had been used for solar radio astronomy. In order to meet weight-limit requirements at the focus, the feed horns were fashioned at a lampshade factory and the waveguides were constructed of irrigation piping. To pressurise the feed horns with dry air, aquarium pumps and canning jars are used. Yet, with clever engineering, the telescope is able to obtain high sensitivities and resolution, producing some of the best radio images in the world [6]. J.C. Brown <jocat@ ras.ucalgary.ca>, J.M. Stil, Centre for Radio Astronomy, University of Calgary, Calgary, AB T2N 1N4 and T.L. Landecker, Dominion Radio Astrophysical Observatory, National Research Council Canada, Penticton, B.C. V2A 6J9 LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 215 VISUALIZING THE INVISIBLE ... (BROWN ET AL.) This observatory was the primary instrument of the Canadian Galactic Plane Survey (CGPS [7]), a multi-facility project designed to image a section of the Galactic plane at multiple wavelengths and full polarisation. After demonstrated success in both observation technique and discoveries, the CGPS was then expanded into the International Galactic Plane Survey, which included the Southern Galactic Plane Survey (SGPS [8,9]) with observations taken from the Australia Telecope Compact Array (ATCA). The survey areas for both projects are shown in Figure 1. While there have been many significant discoveries made through these surveys, the ones we will focus on in this paper relate to polarisation observations in general, and magnetic fields in particular. We will also discuss how our knowledge gained with these projects has prepared us, as Canadians, for the international stage with large upcoming projects like the Square Kilometer Array. Polarisation and Stokes Parameters The concepts of polarisation and Stokes parameters are often minimized or bypassed altogether in the undergraduate curriculum in physics, though they are of fundamental importance in electrical engineering, where radio astronomy has its roots. In fact, all man-made electromagnetic signals are polarised because antennas are made of wires which channel the electron flow, imposing a preferred direction on the emitted radiation. The only signals that can be unpolarised are natural signals. We briefly review the relevant aspects of polarisation and the Stokes parameters in this section, and discuss how they are exploited to remotely study magnetic fields in the subsequent sections. Additional details may be found in Refs [11] and [12]. Electromagnetic waves are transverse, meaning that their oscillations are perpendicular to their direction of propagation. If the wave vector and wave electric field define a plane that does not change as the wave propagates, then the wave is linearly polarised, since the wave is seen to define a line when viewed along the direction of propagation. If we consider two orthogonal, linearly polarised electromagnetic waves of the same frequency travelling in the z direction, with the first polarised in the x direction (x-z plane), and the second in the y direction (y-z plane), the electric fields of the two waves may be described by the following equations: Fig. 1 All sky view (in Galactic coordinates) of past, present, and future radio observation surveys with significant Canadian involvement. CGPS: Canadian Galactic Plane Survey (PI at UofC); SGPS: Southern Galactic Plane Survey (UofC participation); VLA: Very Large Array observations (Co-PI at UofC) ; GALFACTS: Galactic Arecibo L-band Feed Array Continuum Transit Survey (PI at UofC); ASKAP: Australian Square Kilometer Array Pathfinder (Canada is a formally recognized partner). The Global Magneto-Ionic Medium Survey (GMIMS: PI at NRC) will cover the entire sky. TECHNIQUES FOR OBSERVING MAGNETIC FIELDS The interstellar medium consists of several basic constituents: atomic, molecular and ionized gas, dust, cosmic rays and magnetic fields [10]. Most of the constituents have some form of observable radiation, and may be observed directly at the appropriate wavelength. Such observations are referred to as ‘total intensity’ or ‘Stokes I’ observations. Unlike these other constituents, magnetic fields themselves do not radiate, and consequently, cannot be observed directly. However, they can affect the sources of radiation or the radiation directly, given the right conditions. The signature of these effects shows up in the other Stokes parameters, primarily U and Q, as we discuss below. Ex = E1 cos (kz − ωt) (1) Ey = E2 cos (kz − ωt − δ) (2) where k is the wavenumber, ω is the frequency, t is time, and δ is the phase offset between the two waves (δ = δx − δy ). The detected wave will be the vector sum of these two individual waves such that E = Ex^i + Ey ^j. At z = 0, the components of E may be reduced to: Ex = E1 cos (ωt) (3) Ey = E2 cos (ωt + δ) (4) Combining equation 3 and equation 4 results in the equation of an ellipse: 1 = aEx2 − bExEy + cEy2 where a= 1 2 cos δ 1 , c= 2 2 . , b= E12 sin 2δ E1 E2 sin 2 δ E2 sin δ IN (6) This equation describes the locus of points traced out by the vector E as it propagates. The ellipse, known as the polarisation ellipse, may be characterized by two angles, τ and ε, as illustrated in Figure 2. Critical to our work is the angle τ, known as the polarisation angle. It gives a measure of inclination of the ellipse with respect to the x axis 1 and is defined within the limits of 1. In astronomy, the x axis is defined as ‘sky North’. 216 C PHYSICS (5) CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) VISUALIZING THE INVISIBLE ... (BROWN ET AL.)AA 0 o # τ < 1 8 0 o, since τ = 180o is indistinguishable from τ = 0o. The second angle, ε , is in essence a measure of the ellipticity of the wave. Its value is determined by the arc-cotangent of the ratio of the major axis (OA) Fig. 2 The polarisation ellipse (after fig- to the minor axis ure 4.5 in Ref. [11]). E1 and E2 are (OB) and is defined the magnitudes of two monochro- within the limits matic waves of identical frequency, − 45o # ε # + 45o. polarised in the x and y directions Negative values of ε respectively. The vector sum of correspond to ‘rightthese two waves traces out an handed’ (or rightellipse with a polarisation angle of elliptically τ (see text for more details). polarised) waves, where E moves counterclockwise when viewed travelling towards the observer, while positive values of ε correspond to ‘left-handed’ (or left-elliptically polarised) waves, where E moves clockwise as viewed from the same vantage point. This definition of handedness is the IEEE convention. It is the standard in radio astronomy and is consistent with the well known ‘right hand rule’. 2 Depending on the properties of E1, E2 and δ, the polarisation ellipse will take on different forms. In general, waves with 0o < δ < 180o will be left elliptically polarised whereas waves with 180o < δ < 360o (−180o < δ < 0o) will be right elliptically polarised. If δ = 0o or δ = 180o , the wave will be linearly polarised. In cases where E1, E2 and δ are such that elliptical polarisation results, the wave can be thought of as having some component of linear polarisation, and some component of circular polarisation. The state of polarisation represented by a polarisation ellipse may be described mathematically by the four Stokes parameters. Introduced in 1852, they are I = ( E 21 + E 22 )/Z Q= (E 21 − E 22 )/Z (7) = I cos 2ε cos 2τ U = (2E1E2 cos δ)/Z = I cos 2ε sin 2τ V = (2E1E2 sin δ)/Z = I sin 2ε (8) (9) (10) where Z is the impedance of the medium [11]. Stokes I is the total intensity of the wave, Stokes Q and U are measures of the linear polarisation of the wave, and Stokes V is a measure of the circular polarisation of the wave. With these two formulations of the Stokes parameters (the relationship between the two may be found in Ref. [11]), it is easy 2. Under the classical physics convention, the handedness definition is reversed. to see that the first definition allows for straight-forward measurements of the parameters by an antenna with a given impedance Z designed to measure linear polarisation on two orthogonal axes. Once the Stokes parameters have been determined, the second formulation allows for the calculation of τ and ε. In particular, we note that τ= U 1 tan −1 Q 2 (11) The above discussion dealt with a completely polarised or monochromatic wave, where E1, E2 and δ are constant. In general, emissions from celestial radio sources extend over a wide range of frequencies. Within any finite range of frequencies detected by a receiver, the wave will consist of a superposition of a large number of statistically independent waves with a variety of polarisations. Therefore, E1, E2 and δ will be detected as having time dependence, and the Stokes parameters will use the time-averages of these values. In the pure, monochromatic case, I 2 = Q 2 + U 2 + V 2. With multiple wave fronts averaged together, it is possible to have I 2 $ Q 2 + U 2 + V 2. For a completely unpolarised wave, Q = U = V = 0. The degree or fraction of polarisation is defined as dp = Q2 + U 2 + V 2 polarised power = total power I (12) where 0 # dp # 1. Thus, dp = 1 for a completely polarised wave, while dp = 0 for a completely unpolarised wave. In the interstellar medium, most of the polarised radiation we observe at radio wavelengths comes from synchrotron emission (see section below), and is consequently linearly polarised. Therefore, when we talk about polarised intensity, we are really talking about linearly polarised intensity, defined as PI = U 2 + Q 2 . (13) Figure 3 shows CGPS Stokes I, linear polarised intensity (PI) and polarisation angle (τ) images of a small part of the Galactic plane. The CGPS images are unique because of their image fidelity, and the inclusion of short spacing information over a large area of the Galactic plane. The most striking aspect of Figure 3 is the wealth of structure in polarisation angle and intensity, which is not seen in Stokes I. In fact, it is rare to find a counterpart of polarised structure in the total intensity images. An exception is the low polarised intensity in the upper right corner, associated with depolarisation by tangled magnetic fields in a low-density halo around the bright HII (ionized hydrogen) region W4 seen in the Stokes I image [13] . Faraday Rotation When a linearly polarised electromagnetic wave propagates through a region of free electrons permeated by a magnetic field (e.g. a magnetized plasma such as the interstellar medium), its plane of polarisation will rotate. This phenomenon is known as Faraday rotation. Faraday rotation can be understood as a consequence of birefringence, where the magnetised plas- LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 217 VISUALIZING THE INVISIBLE ... (BROWN ET AL.) and if Ω sec θ ω 1 (14) ω 2p (15) 1, ω2 where Ω is the cyclotron frequency, and ωp is the plasma frequency. If the total strength of the Galactic magnetic field is, on average, roughly Bo = 10 μG (10−9 T), the electron cyclotron frequency is Ω= eB me (16) = 175.63 rad/s where e and me are the electron charge and mass, 1 respectively. With (Ω/ω) sec θ = 1000 , and ω = 2π H 1420 MHz, the QL approximation holds for θ < 89.99887o. Similarly, for equation 15, using ne = 1 cm -3 (106 m-3), the plasma frequency is ⎛ n e2 ⎞ ωp = ⎜ e ⎟ ⎝ ε me ⎠ Fig. 3 Mosaic MX1 of the CGPS in total intensity (Stokes I ), total linear polarised intensity (with and without the zero-spacing data), and polarisation angle. “Zero spacings” or single-dish data have been added to the interferometric data for all images except the ‘interferometer only’ polarised intensity. For the purpose of this illustration, the polarisation angle has been shifted by 90o. As shown, the polarisation angles have a relatively narrow distribution, which is a consequence of the local large-scale magnetic field.This plot demonstrates how different a region can look in polarisation compared to Stokes I, as well how the addition of zero-spacing data can affect the polarisation images themselves. W4 and W5 are ionized hydrogen (HII) regions first identified by Westerhout [14]. The box highlights the Faraday rotation feature first identified by Gray et al. [15]. ma has two different indices of refraction corresponding to two different states of incident polarisation [16]. 1 2 (17) = 56 H 103 rad/s As a result, ω2p /ω2 = 4 x 10−11 n 1. The fact that the QL approximation holds for such a large range of angles at radio wavelengths often leads one to forget that it is an approximation that must be verified depending on the application and region of the ISM being explored. Invoking the QL approximation and using the resultant indices of refraction for circularly polarised waves in the ISM plasma (see Ref. [10]), the amount of rotation a radio wave will acquire, Ψ, is given by Ψ = λ2 (0.812IneBAdl ) [rad] = λ2 RM (18) For a linearly polarised wave, the birefringence is with respect to right and left circularly polarised waves (an alternative to the linearly polarised basis set used above). The birefringence will slow one of the circularly polarised waves with respect to the other, resulting in a rotation of their sum, the linearly polarised wave (e.g. Ref. [17]). where λ is the wavelength in units of m, ne is the electron density in units of cm−3, B is the magnetic field in units of μG, dl is the incremental pathlength in units of pc, and RM is the rotation measure: To calculate the indices of refraction for a cosmic magnetised plasma, the quasi-longitudinal (QL) approximation is invoked [18]. The validity of the QL approximation depends on ^ ) coinhow closely the direction of propagation of a wave (k ^@k ^) , cides with the field direction (^b ), defined as θ = cos−1(b and on the electron density and the collision frequency. As θ approaches 90o a linearly polarised wave will aquire some ellipticity (known as the Cotton-Mouton effect), instead of simply rotating as it would in the QL regime. It is important to recognize the significance of three key elements of equation 18. First, it is wavelength dependent. As a result, waves of different frequency will experience different amounts of rotation through the same plasma. Second, the effect of Faraday rotation is weighted by the electron density; higher electron densities will result in greater rotation. Finally, it is the direction of the line-of-sight component of the magnetic field (B||) that determines the sign of the rotation measure. Since the path length is defined to be from the source to the receiver, (ie. the telescope on Earth), a magnetic field with B|| directed towards us results in a positive RM, while a magnetic field with B|| directed away from us results in a negative RM. The QL approximation is valid if [19] 218 C PHYSICS IN RM = 0.812 IneB A dl [rad m−2] CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) (19) VISUALIZING THE INVISIBLE ... (BROWN ET AL.)AA With this in mind, if we assume that at all wavelengths, the polarised emission from a given source is emitted at the same polarisation angle, τo, and that the radiation is only affected by Faraday rotation, then the detected polarisation angle, τ at a given wavelength λ, will be given by τ = τo + λ2 RM. Radio emission at decimeter wavelengths from our Galaxy is dominated by synchrotron emission from relativistic electrons with Lorentz factor Γ >∼ 105 in a magnetic field. Relativistic particles from interstellar space, named cosmic rays for historic reasons, were first observed on Earth in balloon experiments by Hess in 1912. (20) Since this relationship is linear, measurements of τ at multiple wavelengths can determine the RM for a given source as the slope of the graph of τ versus λ2. The ease with which RMs can be determined, coupled with the significance of the sign of the RM, makes RM measurement a powerful tool for probing the ISM magnetic field. Pulsars and extragalactic sources (EGS) are sources of linearly polarised radiation and are often used as compact (or point source) probes of the Galactic magnetic field. Since it is possible to estimate the distance to these sources, and if we know something of the electron density along their lines-of-sight, then we can work backwards to estimate what the magnetic field must look like along their particular plumb-lines. Subsequently, the goal for observations is to measure RMs for the highest density of sources possible, allowing for the most accurate reconstruction of the intervening field. Prior to the CGPS, observations of multiple polarisation angles for EGS were done at widely separated wavelengths, often at different times, and sometimes even at different facilities. Consequently, there was uncertainty as how to ‘unwrap’ the polarisation angles in order to determine the correct RM (e.g. Refs. [20,21]). DRAO was the first facility to do polarisation measurements at 4 wavelengths sufficiently close together so that the ambiguity in RM calculations was removed [22]. This technique was emulated at the ATCA for the SGPS. Instead of 4 bands, the SGPS had 12 bands, improving on the technique initiated by the CGPS. Not only did the CGPS set the standard for observation techniques, it also set the standard for EGS RM source density. Prior to the CGPS, Broten et al. [23] had compiled a catalog of high quality EGS RM measurements. With 674 sources in the catalog, the majority of which were out of the Galactic plane, the RM density was roughly 1 source per 60 square degrees. The CGPS produced (and continues to produce) RMs at a density of 1 source per square degree, resulting in significantly more reliable conclusions about the magnetic field than previously possible. The SGPS source density is slightly lower than the CGPS, at 1 source per 2 square degrees, as a result of depolarisation through the inner Galaxy. However, it must be noted that prior to the survey, there was only 1 published EGS RM in the entire SGPS region. Synchrotron emission The classic source of radiation is accelerating charges. Therefore, charged particles moving in the presence of a magnetic field will undergo acceleration through the Lorentz force, and subsequently radiate. If the particles are moving at relativistic speeds, this radiation is called synchrotron radiation. Fig. 4 Diagram of a relativistic electron with Lorentz factor Γ spiraling in a uniform magnetic field. The electron emits synchrotron radiation with a high degree of linear polarisation in a narrow cone directed along the instantaneous velocity of the electron. Figure 4 shows a relativistic electron on a helical path in a uniform magnetic field due to the Lorentz force. In the observer’s rest frame, the radiation emitted by the accelerated electron is emitted in a narrow cone along the electron’s velocity vector as a result of the relativistic beaming effect (e.g. Ref. [24]). The opening angle of the emission cone is 1/Γ, much narrower than shown in Figure 4. Consequently, the observer sees only emission from those electrons that have an instantaneous velocity directed towards the observer (pitch angle α). Furthermore, electrons traveling parallel to the field will not be accelerated, and will therefore not radiate. Thus, the amount of synchrotron emission observed depends on the presence of a magnetic field component perpendicular to the line of sight, Bz. Optically thin synchrotron emission 0s at frequency ν of an ensemble of relativistic electrons with a power law energy spectrum N(E) ~ Eγ in a uniform magnetic field depends on the magnetic field component in the plane of the sky Bz according to 0s ~ Bz(γ+1)/2ν−(γ −1)/2 (21) Synchrotron emission provides information about the slope of the energy spectrum of the electrons, and an estimate of the strength of the magnetic field if assumptions are made about the volume of the source and the energy density of cosmic rays. The minimum combined energy density of cosmic ray particles and magnetic field for an observed source is similar to the equipartition energy density of the magnetic field. Magnetic field estimates from the brightness of synchrotron emission assume this minimum energy condition, without clear justification that the minimum energy density condition or equipartition apply. Synchrotron emission from a region with a uniform magnetic field has a theoretical limit of ~ 70% [25], with the plane of polarisation perpendicular to the direction of Bz in the plane of the sky. Polarisation of synchrotron emission therefore gives information on the magnetic field component perpendicular to the line of sight, while Faraday rotation gives information on the magnetic field component along the line of sight. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 219 VISUALIZING THE INVISIBLE ... (BROWN ET AL.) In practice, the observed emission is integrated over large regions in space with a complicated magnetic field structure and an ionized plasma present in addition to the relativistic electrons. At decimetre wavelengths the integrated emission is usually much less polarised than the theoretical 70%. In this wavelength range thermal emission is mostly fainter than synchrotron emission unless the line of sight crosses a denser HII region, ionized by massive stars. Nevertheless, it is very common for a plasma structure to cause significant Faraday rotation, yet to be undetectable by its thermal emission. Faraday rotation alone cannot alter the amplitude of the polarised signal, but a number of physical and instrumental effects often reduce the fractional polarisation of the recorded signal [26,27]. Differential Faraday rotation (or depth depolarisation) occurs when synchrotron emission generated at different depths along the line of sight suffers different rotation, and vector averaging reduces the observable polarised intensity. Beam depolarisation occurs when many turbulent cells and/or large RM gradients exist within the beam of the telescope, again leading to vector averaging. On most angular scales these effects create structures in polarised intensity, and particularly in polarsation angle, that have no counterpart in total intensity. Since these effects are most pronounced at decimetre wavelengths, that wavelength regime provides the best data for studying the magnetic field configuration within the interstellar medium. The detection of linear polarisation in the extended Galactic radio emission [28,29] provided crucial evidence in establishing the synchrotron mechanism that makes the Milky Way a strong radio source. The apparent potential of polarisation observations to reveal the Galactic magnetic field led to efforts to map polarised emission over wide areas of the sky. The best of these datasets is that of Brouw and Spoelstra [30] who presented data from the Dwingeloo 25-m Telescope for much of the Northern sky at four frequencies between 408 and 1411 MHz. Angular resolution ranged from 2o to 36N, but the sampling was far from complete. A major Canadian contribution to this field is the 1.4 GHz polarisation survey of Wolleben et al. [31] made with the DRAO 26-m Telescope. The northern sky was mapped down to declination -30o with 200 times more data points than the Dwingeloo data and five times better sensitivity, but based on the absolute calibration of Brouw and Spoelstra. These new data have played an important role in the cosmology industry, by providing a significant counterpoint to the Wilkinson Microwave Anisotropy Probe (WMAP) 23 GHz data [32] as well as providing a clearer understanding of the polarised features observed (e.g. Ref. [33]). MAGNETIC STRUCTURE IN THE LOCAL ISM Cosmic ray electrons in the Galaxy emit synchrotron emission that is observed as a featureless glow across the sky with a tendency to be brighter near the Galactic plane. In addition to this smooth synchrotron background we see synchrotron emission from specific objects, mainly supernova remnants. The diffuse synchrotron emission originates from a large volume in space. It takes a substantial line of sight distance to build up detectable synchrotron emission, because the highly relativistic 220 C PHYSICS IN electrons that emit this radiation are so rare. The same volume of space is littered with plasma structures that give rise to Faraday rotation and depolarisation effects described above. It comes as no surprise that the interpretation of polarisation of diffuse Galactic emission is very difficult. However, it is also the only way we can observe most of the magneto-ionized interstellar medium. Wieringa et al. [34] reported structures in polarised radio emission at 327 MHz that had no counterpart in total intensity. It was soon realized that these structures were small-scale modulations in the polarisation angle of Galactic synchrotron emission that were detectable by the radio interferometer. The structure in polarisation angle gave rise to structure in the Stokes Q and U images, even though the interferometer did not detect the smooth emission in total intensity because of the so-called missing short spacings; Faraday rotation effects tend to break large structures into structure on smaller angular scales. Nevertheless, inclusion of data from a large single-dish radio telescope provides information on the largest structures that an interferometer cannot detect and has a dramatic effect on the polarisation images. Some polarised features are observed to change significantly with the inclusion of the large-scale polarised emission not seen by the interferometer (see Figure 3). The study of structure in diffuse polarised emission really took off with the CGPS. The polarisation survey of the CGPS at 1.4 GHz [35] marks a major advance in polarization observations. Data from the DRAO Synthesis Telescope, the Effelsberg 100-m Telscope, and the DRAO 26-m Telescope have been combined to give accurate representation of all structures down to the resolution limit of ~1N. With 1.7 H 107 independent data points, this is the largest polarisation survey made to date, and the most extensive dataset to combine singleantenna and aperture-synthesis data. For this survey, new techniques were developed to correct for instrumental polarisation across the field of view [36,37] and independent calibrations of the three datasets were carefully compared. An origin in Faraday rotation means automatically that the polarised “objects” will usually not look like things seen in other wavelengths. Since the polarised sky is almost entirely new, the first task is to classify the various polarisation features, though it is often difficult to draw a boundary around such objects. Early results from the survey have identified two enigmatic Faraday rotation features [15,38], with a similar object reported by Haverkom et al. [39]. Polarisation features associated with known objects have also been identified, including that associated with a planetary nebula [40] and a stellar wind bubble [41]. Figure 3 shows the lenticular feature of Gray et al. [15] which resides in the direction of the HII region W5. The longest size of this feature is approximately two times the diameter of the full moon. While visible in polarisation angle, it was not visible in polsarised intensity prior to the addition of the zero-spacings, nor is there any obvious counterpart in Stokes I. While the origin of such “polarisation lenses” is still not clear, it is likely CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) VISUALIZING THE INVISIBLE ... (BROWN ET AL.)AA maintained? We cannot hope to answer these questions until we understand what it really looks like: where it is (and isn’t!) located, what its direction and magnitude are, and how it is correlated (or uncorrelated) with the medium in which it appears to be embedded. At one time, it was believed that the Galactic magnetic field was primordial in origin, meaning it was present as a weak ‘protofield’ at the time the Fig. 5 (a) Number density of polarised sources in the NVSS from Stil and Taylor [42]. Contours are drawn Galaxy was formed, and it subat 2.7 and 4.0 sources per square degree. The black area in the lower left corner is below the southsequently evolved and ampliern declination limit of the NVSS. (b) Hα intensity in the same region from the SHASSA survey [43]. fied as the protogalaxy contracted and rotated. The prieither a concentration of electron density or a magnetic field mary objection to the primordial theory is based on the time structure. scales required to generate the observed fields existing in galaxies [47]. Looking at the polarisation images of the CGPS in general, it is almost impossible to find the Galactic plane: the polarised However, a primordial field may have served as the seed field signals seem to continue undimmed to the southern and northfor a Galactic dynamo [48]. By definition, a dynamo converts ern limits of the data. This is in sharp distinction to the totalthe energy of motion of a conductor into the energy of an elecintensity distribution and the distributions of other ISM tracers tric current and a magnetic field [49]. In the Galaxy, the consuch as dust. The simplest interpretation is that the polarised ducting fluid requirement for a dynamo is satisfied by the ionemission that we are seeing at 1.4 GHz is generated in nearby ized interstellar gas. The differential rotation of the Galaxy volumes of the ISM. This is consistent with the concept of the could produce appropriate fluid motions that would amplify the polarisation horizon introduced by Uyaniker et al. [44]. The seed field. Dynamo theory is currently favored among magnetcombined effects of depth depolarisation and beam depolarisaic field theorists as it appears to be quite robust and seems to be tion do not allow us to detect polarised emission beyond a cerable to provide a universal explanation of the varied field contain distance. The distance to the polarisation horizon depends figurations observed [50]. on frequency, beamwidth, and direction. This is where much of the observational work is focussed Some local structures escape detection in observations of difidentifying the topology of the field to provide adequate confuse polarised emission. Figure 5 shows a large magnetized straints for modeling in order to determine the most likely shell in the Gum nebula, that was revealed because it depolarismode(s) of the dynamo(s) acting in the Galaxy. While some es extragalactic radio sources [42]. The shell is so large on the features of the Galactic magnetic field are universally accepted sky that the Big Dipper would fit inside it. Figure 5(a) shows as facts, others remain highly contentious. We discuss both the the sky density of polarised extragalactic sources found in the accepted and contentious features of the Galactic magnetic NRAO VLA Sky Survey (NVSS; Ref. [45]). The dark ring repfield in the following sections. resents a lack of polarised sources, depolarised because of Accepted Observational Constraints strong Faraday rotation in a shell with a compressed magnetic field. The upper part of this shell is visible in the Hα emission The Galactic magnetic field is usually considered to be comin Figure 5(b). The lower part of the shell is clearly defined by posed of two distinct components: a smooth or uniform comthe lack of polarised sources in Figure 5(a), but bright Hα ponent, Bu, with scale sizes on the order of a few kiloparsecs emission that does not depolarise background sources confus(kpc), and a turbulent or random component, Br, with scale es the image in Figure 5(b). Vallée and Bignell [46] first sugsizes on the order of tens of parsecs (pc; Ref. [51]). The unigested the presence of a magnetised shell because of anomform component is observed to be concentrated in the alously high rotation measures for some extragalactic sources. disk [48,52], with a dominant azimuthal component, some radial component (indicating a spiral field), and a weak vertical or z THE GLOBAL MAGNETIC FIELD IN OUR component. Conversely, Br is believed to be isotropically distributed as integrated along the line-of-sight [53], though there GALAXY is some evidence to suggest that Br is correlated with Bu [54], Despite its recognized importance, very little is truly known and that the scale-sizes of Br are significantly different about the Galactic magnetic field. What is its source? How is it between and within the spiral arms [55,56]. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 221 VISUALIZING THE INVISIBLE ... (BROWN ET AL.) necessary to explain the observations, thus coming full circle to the initial conclusion of no reversals beyond the solar circle. Fig. 6 The directions of the large-scale Galactic magnetic field as viewed from the North Galactic Pole. The grey scale is the CL02 model of the electron density [57]. Q1-4 indicate the four Galactic quadrants, and the asterisk indicates the location of the Sun. Solid arrows indicate universally accepted field directions; single-ended dashed arrows indicate field directions as supported by Canadian work, though not necessarily universally accepted; double-ended arrows indicate regions remaining highly debated with no recent Canadian input. As shown in Figure 6, the field within the local arm is observed to be directed clockwise, as viewed from the North Galactic pole, with a strength of roughly 6 μG [53,58] 3. In the first quadrant (Q1) of the Sagittarius-Carina arm, the magnetic field is unquestionably observed to be directed counter-clockwise [59,60], indicating a region of magnetic shear between the local and Sagittarius-Carina arms. Such a region is what we call a magnetic field reversal. The number and location of such magnetic field reversals are arguably the most significant factors in differentiating between likely dynamo modes. Controversial Observational Constraints The paucity of available data makes identifying magnetic field reversals exceedingly difficult. Consequently, different interpretations of similar data do occur. Based primarily on RMs of EGS, neither Simard-Normandin and Kronberg [52] nor Vallée [61] could find any evidence for reversals beyond the solar circle. However, using a limited number of pulsar RMs along with the EGS RMs available at the time, Rand and Kulkarni [62] and Clegg et al. [63] suggested the presence of a field reversal associated with the Perseus arm, and Han et al. [64] concluded that there may be an additional reversal beyond the Perseus arm. With the significant increase in EGS RM source density of the CGPS, coupled with newer pulsar RMs, Brown et al. [22] demonstrated that a reversal is not 3. For perspective, the strength of the Earth’s magnetic field is 0.6 G at the poles. 222 C PHYSICS IN In the inner Galaxy, studies using both pulsars and EGS RMs have produced evidence suggesting the field reverses back to a clockwise direction at R ~ 5.5 kpc for the Scutum-Crux arm [21], and perhaps switches again at R ~ 3 kpc for the Norma arm [64]. The apparent pattern of the field reversing with every arm is supported by the recent work of Weisberg et al. [65], who studied pulsar RMs primarily in Q1. Han et al. [66] has even suggested the field reverses at every arm-interam interface. Conversely, using the new SGPS EGS RMs along with the pulsar RMs, Brown et al. [67] could only find strong evidence for one reversal, and weaker evidence for a second inside the solar circle. Furthermore, the strong first reversal is seen to occur between the Sagittarius-Carina arm and ScutumCrux arm in quadrant 4 (Q4), instead of between the local arm and Sagittarius-Carina arm as observed in Q1. This suggests the field has much less inclination (ie. it is more azimuthal) than the optical spiral arms. This is in agreement with the interpretation of the pulsar RM data made by Vallée [68] who envisaged a ring model with a reversal that passes through the Sagittarius-Carina arm around Galactic longitude = 0 (ie. the Sun - Galactic centre line). Clearly more data are required to differentiate between these differing opinions. To that end, we recently acquired time on the VLA to fill in the gaps between the CGPS and the SGPS, as shown in Figure 1. We hope these data will be sufficient to determine the field structure in the inner Galaxy. Otherwise, we will have to wait for data from the upcoming projects described in the section on Current and Future Projects with Significant Canadian Content. THE MAGNETIC FIELD IN EXTERNAL SPIRAL GALAXIES While living inside of a galaxy provides unique opportunities to study galactic dynamics up close, it carries with it the inherent problem of the ‘forest-for-the-trees’ effect. Therefore, it is extremely beneficial if we balance observations within our own Galaxy with those of external spiral galaxies. Observing magnetic fields in external galaxies has the advantage that it is easier to see structure from the outside, and magnetic fields can be studied in a variety of galaxies with different properties. However, different techniques must be employed than for observations of the Galactic magnetic field. Even for galaxies as close as a few Mpc, present-day telescopes cannot detect a sufficient number of background EGS to do statistical RM studies as is done in our Galaxy. To date, only two external galaxies, M31 [69] and the Large Magellanic Cloud [70], have been probed with RMs of background sources. Both galaxies show a large-scale, regular magnetic field, but no field reversals were detected. Most observations of magnetic fields in external galaxies are limited to polarisation of synchrotron emission with a resolution up to ~10NN, corresponding with 240 pc at a distance of CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) VISUALIZING THE INVISIBLE ... (BROWN ET AL.)AA have a magnetic field oriented along the bar. Some galaxies with an intense star burst and an associated outflow of gas perpendicular to the disk display large-scale magnetic fields perpendicular to the disk, and far into the halo, e.g. NGC 4569 [73]. Gravitational interaction with another galaxy or ram pressure interaction with an intracluster medium can deform the disk of a galaxy and its associated magnetic field [74]. Fig. 7 Polarised intensity (contours) of the nearby (5.5 Mpc) spiral galaxy NGC 6946 on a gray scale image of Hα emission [72]. Our line of sight is almost perpendicular to the plane of the disk of NGC 6946. Vectors indicate the magnetic field direction derived by rotating the observed plane of polarisation by 90o. Radio emission from the inter-arm regions in this galaxy is ~ 30% - 40% polarised, indicating a very regular magnetic field. Figure kindly made available by R. Beck. 5 Mpc. All but the largest polarised structures identified in diffuse Galactic emission (section on Magnetic Structure in the Local ISM) would be unresolved in radio images of nearby spiral galaxies. As the resolution is also similar to the outer scale of energy injection into the interstellar medium by stars, most structures in the interstellar medium only contribute to an unresolved stochastic component of the rotation measure. This structure within the beam leads to depolarisation of the emission. Remarkably, radio emission of some galaxies is locally 30 - 40% polarised at a wavelength of 6 cm [71,72] . Images of polarised emission of spiral galaxies reveal the magnetic field on a galactic scale, projected on the plane of the sky. As in our own galaxy, the regular magnetic field is predominantly in the azimuthal direction in the plane of the disk. The direction of the regular magnetic field shows a spiral pattern similar to the optical spiral arms, but the most regular fields are found away from the spiral arms in inter-arm regions. Figure 7 shows polarised emission of the galaxy NGC 6946 [72] in relation to the spiral arms as traced by the Hα emission of massive star formation regions. The total magnetic field in the (optical) spiral arms is actually a factor ~2 stronger than in the highly polarised magnetic arms, but the field in the spiral arms is more tangled on scales smaller than the resolution of the image, resulting in a low degree of polarisation. Large-scale departures from a symmetric, azimuthally oriented magnetic fields are found in some galaxies. Barred galaxies can Observational evidence for the evolution of magnetic fields in galaxies with cosmic time has been elusive because radio observations of spiral galaxies at cosmologically interesting distances are not possible with current instruments. Indirect evidence for substantial magnetic fields in normal galaxies comes from the association of high rotation measures of distant quasars with absorption systems at lower redshift. Bernet et al. [75] and Kronberg et al. [76] found that quasars with optical Mg II absorption systems with a redshift smaller than that of the quasar, indicative of an unrelated normal galaxy in the line of sight to the quasar, have a substantially higher spread in rotation measure than quasars without Mg II absorption. The inferred magnetic field strengths are similar to those in nearby spiral galaxies, leading Kronberg et al. [76] to the conclusion that magnetic field strengths similar to those in present day galaxies already existed a few Gyr after the big bang. The first predictions of the contribution of spiral galaxies to deep polarised radio source counts were made by Stil et al. [77]. CURRENT AND FUTURE PROJECTS WITH SIGNIFICANT CANADIAN CONTENT Canada has gained a reputation for excellence in sensitive wide field polarisation imaging. Continuing work on the DRAO deep fields [78] provides the most sensitive polarisation image of the sky to date. Canada also participates in a number of international projects that are bound to revolutionize our understanding of the origin and evolution of cosmic magnetic fields. For much of the future work on Galactic magnetism, the significant quantity is not only polarisation angle, but specifically rotation measure. All projects listed below will utilize multiple channels allowing for studies in rotation measure synthesis, where images may be formed at individual values of RM [79]. The Global Magneto-Ionic Medium Survey (GMIMS; principal investigator M. Wolleben, NRC) is an international project utilizing several facilities from around the world to map polarised emission across the entire sky from 16 cm to 1 m (300 MHz to 1.8 GHz). Specialized receivers designed and built at DRAO are being used by the participating telescopes. With observations commencing in April of 2008, the project will survey the diffuse polarised emission from the Galactic disk to the halo, at a resolution of 0.5 degrees. Complementary to GMIMS is the Galactic Arecibo L-band Feed Array Continuum Transit Survey (GALFACTS; principal investigator A. R. Taylor, Calgary). GALFACTS is a polarisation survey with the Arecibo radio telescope that will have a sensitivity of μJy and hundreds of spectral channels. A new multi-beam cleaning technique was developed in Calgary to make high-fidelity images of compact polarised sources and LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 223 VISUALIZING THE INVISIBLE ... (BROWN ET AL.) diffuse emission with the seven-beam Arecibo L-Band Feed Array (ALFA). GALFACTS will extend to 32% of the sky the kind of analysis that has so far been restricted to small deep fields. The many frequency channels and large bandwidth will open the possibility to study the wavelength-dependent polarisation in much more detail than any previous survey. The Very large Array (VLA) in New Mexico is currently being upgraded to become more than an order of magnitude more sensitive than before. Key to the upgrade of the VLA is the new central correlator that has been designed and built at DRAO. The Expanded Very Large Array will be a much more versatile instrument with a larger instantaneous bandwidth, suitable to make deep polarisation images of the sky. Canada is a partner in the Australian Square Kilometre Array Pathfinder (ASKAP [80]). This technology demonstrator for the much larger Square Kilometre Array, scheduled to be completed by 2020, will explore wide-field imaging (30 square degree instantaneous field of view) at bandwidth of 300 MHz divided into 16000 frequency channels. Apart from the engineering challenges for this new-generation radio telescope, SKA pathfinders such as ASKAP provide new challenges in terms of image calibration and processing. Canada is expected to play a leadership role in developing techniques for wide-field polarisation imaging and calibration for both SKA pathfinders (including ASKAP) and the SKA itself. Finally, one of the five science drivers for the SKA is the origin and evolution of cosmic magnetism. Canada has demonstrated expertise on both the technical and scientific fronts defining the SKA, and we will undoubtedly continue to do so. ACKNOWLEDGEMENTS The authors acknowledge support from the Natural Sciences and Engineering Research Council through the Discovery Grants program. The Canadian Galactic Plane Survey is a Canadian project with international partners and is also supported by the Natural Sciences and Engineering Research Council. The Dominion Radio Astrophysical Observatory is operated as a national facility by the National Research Council. REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. E. Fermi, Physical Review, 75, 1169, (1949). A. Boulares, and D.P. Cox, ApJ, 365, 544, (1990). E.G. Zweibel & C. Heiles, Nature, 385, 131, (1997). E. Kim, A.V. Olinto, & R. Rosner, ApJ, 468, 28, (1996). E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, N., & W.R. Webber, Nature, 454, 71, (2008). T.L. Landecker, et al., A&AS, 145, 509, (2000). A.R. Taylor, S.J. Gibson, M. Peracaula, et al., AJ, 125, 3145, (2003). N.M. McClure-Griffiths, J.M. Dickey, B.M. Gaensler, A.J. Green, M. Haverkorn, & S. Strasser, ApJS, 158, 178, (2005). M. Haverkorn, B.M. Gaensler, N.M. McClure-Griffiths, J.M. Dickey, & A.J. Green, ApJS, 167, 230, (2006). L. Spitzer, Jr., Physical Processes in the Interstellar Medium, John Wiley & Sons, Inc., (1978). J.D. Kraus, Radio Astronomy, Cygnus-Quasar Books, Powell, Ohio, (1986). J.C. Brown, “The Magnetic Field in the Outer Galaxy”, PhD Thesis, University of Calgary, (2002) A.D. Gray, T.L. Landecker, P.E. Dewdney, A.R. Taylor, A.G. Willis, & M. Normandeau, ApJ, 514, 221, (1999). G. Westerhout, Bull. Astron. Inst. Netherlands, 14, 215, (1958). A.D. Gray, T.L. Landecker, P.E. Dewdney, & A.R. Taylor, Nature, 393, 660 (1998). E. Hecht, Optics, Addison Wesley Longman Inc., (2001) F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, (1984). J.A. Ratcliffe, 1962 The Magneto-Ionic Theory and Its Applications to the Ionosphere, Cambridge University Press, (1962) I.H. Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press, (1987) M. Simard-Normandin, P.P. Kronberg, & S. Button, ApJS, 45, 97, (1981). R.J. Rand, & A.G. Lyne. MNRAS, 268, 497 (1994). J.C. Brown, A.R. Taylor, R. Wielebinski, & P. Mueller, ApJL, 592, L29, (2003). N.W. Broten, J.M. MacLeod, & J.P. Vallée, ApSS, 141, 303, (1988). D.J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, Inc., (1999). A.G. Pacholczyk, Radio Astrophysics, Series of Books in Astronomy and Astrophysics, San Francisco: Freeman (1970). B.J. Burn, MNRAS, 133, 67, (1966). D.D. Sokoloff, A.A. Bykov, A. Shu kurov, E.M. Berkhuijsen, R. Beck, & A.D. Poezd, MNRAS, 299, 189, (1998). G. Westerhout, C.L. Seeger, W.N. Brouw, & J. Tinbergen, Bull. Astron. Inst. Netherlands, 16, 187, (1962). R. Wielebinski, J.R. Shakeshaft, & I.I.K. Pauliny-Toth, “The Observatory”, 82, 158, (1962). W.N. Brouw, & T.A.T. Spoelstra, A&AS, 26, 129, (1976). M. Wolleben, T.L. Landecker, W. Reich, & R. Wielebinski, A&A, 448, 411, (2006). L. Page et al., ApJS, 170, 335, (2007). M. Wolleben, ApJ, 664, 349, (2007). M. Wieringa, A.G. de Bruyn, D. Jansen, W.N. Brouw, & P. Katgert, A&A, 268, 215 , (1993) T.L. Landecker et al., in preparation (2008) 224 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) VISUALIZING THE INVISIBLE ... (BROWN ET AL.)AA 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. T. Ng, T.L. Landecker, F. Cazzolato et al., Radio Science, 40, 5014 , (2005). R.I. Reid, A.D. Gray, T.L. Landecker, & A.G. Willis, Radio Science, 43, 2008 (2008). B. Uyaniker, & T.L. Landecker, ApJ, 575, 225, (2002). M. Haverkorn, P. Katgert, & A.G. de Bruyn, A&A, 356, L13, (2000). R. Ransom, B. Uyaniker, R. Kothes, & T. Landecker, ApJ, 684, 1009, (2008). R. Kothes et al., in preparation (2008) J.M. Stil, & A.R. Taylor, ApJ, 663, L21, (2007) J.E. Gaustad, P.R. McCullough, W. Rosing, & D. Van Buren, PASP, 113, 1326, (2001). B. Uyaniker, T.L. Landecker, A.D. Gray, & R. Kothes, ApJ, 585, 785, (2003). J.J. Condon, W.D. Cotton, Greisen et al., AJ, 115, 1693, (1998). J.P. Vallée, & R.C. Bignell, ApJ, 272, 131, (1983). E.N. Parker, ApJ, 401, 137, (1992). J.L. Han, and G.J. Qiao, AAP, 288, 759, (1994). E.N. Parker, Scientific American, 249, 44, (1983). R. Beck, A. Brandenburg, D. Moss, A. Shukurov, D. Sokoloff, ARA&A, 34, 155, (1996). A. Ruzmaikin, D. Sokolov, and A. Shukurov, Nature, 336, 341, (1988). M. Simard-Normandin, & P.P. Kronberg, ApJ, 242, 74, (1980). C. Heiles, in Polarimetry of the Interstellar Medium, W. Roberge & D. Whittet (eds), 97 (ASPCS), 457, (1996). J.C. Brown, A.R. Taylor, ApJ, 563, L31, (2001). M. Haverkorn, B.M. Gaensler, J.C. Brown, N.S. Bizunok, N.M. McClure-Griffiths, J.M. Dickey, & A.J. Green, ApJ, L33, (2006). M. Haverkorn, J.C. Brown, B.M. Gaensler, & N.M. McClure-Griffiths, ApJ, 680, 362, (2008). J.M. Cordes and T.J.W. Lazio, astro-ph/0207156 (2002). R. Beck, SSRv, 99, 243, (2001). M. Simard-Normandin, and P.P. Kronberg, Nature, 279, 115, (1979). R.C. Thomson, & A.H. Nelson, MNRAS, 191, 863, (1980). J.P. Vallée, A&A, 124, 147, (1983). R.J. Rand, & S.R. Kulkarni, ApJ, 343, 760, (1989). A.W. Clegg, J.M. Cordes, J.M. Simonetti, & S.R. Kulkarni, ApJ, 386, 143, (1992). J.L. Han, R.N. Manchester, & G.J. Qiao, MNRAS, 306, 371, (1999). J.M. Weisberg, J.M. Cordes, B. Kuan, K.E. Devine, J.T. Green, & D.C. Backer, ApJS, 150, 317, (2004). J.L. Han, R.N. Manchester, A.G. Lyne, G.J. Qiao, & W. van Straten, ApJ, 642, 868, (2006). J.C. Brown, M. Haverkorn, B.M. Gaensler, A.R. Taylor, N.S. Bizunok, N.M. McClure-Griffiths, J.M. Dickey, & A.J. Green, ApJ, 663, 258, (2007). J.P. Vallée, ApJ, 619, 297, (2005). J.L. Han, R. Beck, & E.M. Berkhuijsen, A&A, 335, 1117, (1998). B. Gaensler, M. Haverkorn, L. Staveley-Smith, J.M. Dickey, N.M. McClure-Griffith, J.R. Dickel, & N.M. Wolleben, Science, 307, 1610, (2005). E.M. Berkhuijsen, R. Beck, & P. Hoernes, A&A, 398, 937, (2003). R. Beck, A&A, 470, 539, (2007). K.T. Chyży, M. Soida, D.J. Bomans, B. Vollmer, Ch. Balkowski, R. Beck, & M. Urbanik, A&A, 465, 472, (2006). M. Weżgowiec, M. Urbanik, B. Vollmer, R. Beck, K.T. Chy¿y, M. Soida, & Ch. Balkowski, A&A, 471, 93, (2007). M.L. Bernet, F. Miniati, S.J. Lilly, P.P. Kronberg, & M. Dessauges-Zavadsky, Nature, 454, 302, (2008). P.P. Kronberg, M.L. Bernet, F. Miniati, S.J. Lilly, M.B. Short, & D.M. Higdon, ApJ, 676, 70, (2008). J.M. Stil, A.R. Taylor, M. Krause, & R. Beck, PoS(MRU)069, arXiv:0802.1374 (2007) A.R. Taylor, J.M. Stil, J.K. Grant, T.L. Landecker, R. Kothes, R.I. Reid, A.D. Gray, D. Scott, P.G. Martin, A.I. Boothroyd, G. Joncas, F.J. Lockman, J. English, A. Sajina, & J.R. Bond, ApJ, 666, 201, (2007). M.A. Brentjens, & A.G. de Bruyn, A&A, 441, 1217, (2005). S. Johnston et al., “Publications of the Astronomical Society of Australia”, 24, 174, (2007). LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 225 DEADLINE EXTENDED = ? TOO BORING? TROP ENNUYEUX? WIN CASH - GAGNER DE L’ARGENT CONTEST FOR NEW LOGO IS UNDERWAY DEADLINE EXTENDED T O JANUAR Y 23, 2009 The Editorial Board is inviting all CAP members, friends, or colleagues to submit designs for a new PiC-PaC logo which should fit well in the upper left hand corner of the front cover of each issue, and integrate well on any of the PiC covers. The winning entry will be featured on the 2009 January-March issue and the photograph and bio of the submitter will be published in the issue. The winner will receive $150, an “Art of Physics” t-shirt and, if applicable, a one-year membership in the CAP. UN CONCOURS POUR UN NOUVEAU LOGO EST EN COURS DATE LIMITE PROLONGÉE JUSQU’AU 23 JANVIER 2009 Le Comité de rédaction invite tous les membres de l’ACP, amis, et collègues à soumettre des croquis de logos PiC-PaC pour remplacer celui qui se trouve au coin en haut à gauche de la couverture. Le logo devrait bien s’intégrer dans ce coin supérieur gauche quelque soit la conception de la page couverture. Le croquis choisi figurera dans le numéro de Jan/mars 2009 avec une photographie et une courte biographie de l’artiste. Le gagnant recevra 150 $, un T-shirt « Art de la physique » et si, pertinent, une adhésion d’un an à l’ACP. 226 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ARTICLE DE FOND METAL-POOR STARS: THE INTERSECTION OF CHEMISTRY, COSMOLOGY, AND STARS BY KIM VENN T he chemical and kinematic differences between the stellar subpopulations hold clues about how the Milky Way formed and evolved. Stellar motions can be scrambled by a variety of processes, such as close encounters with other objects, but this is a much smaller effect compared to the original orbit of the gas clouds when a particular star first formed and became part of the Galaxy. The fact that the stars in the halo of the MWG have random and eccentric orbits in all three directions has been interpreted as the halo component forming first from a collapsing gas cloud. The remaining gas would have then collapsed into a pancake, to conserve angular momentum, and went on to form the thick and thin disk components. The bulge is the center of the potential that defines the Galaxy, thus it is expected and found to contain a bit of everything. This model for the formation of the MWG is called monolithic collapse, where the Galaxy formed from an enormous cloud of gas and in relative isolation, and was first described by Eggen, Lynden-Bell, and Sandage [1]. While this simple model has successfully explained many attributes of our Galaxy, it is no longer championed. Today, we live in a Universe that is dominated by Cold Dark Matter (CDM), not to mention an unknown energy source (dark energy, L) as shown by the cosmological interpretations of the microwave background power spectrum (e.g., the recent 5-year WMAP results [2]). In a CDM Universe, large structures like the MWG form through the SUMMARY Like other spiral galaxies, the Milky Way Galaxy (MWG) has several distinct structural components that probably appeared at different stages in its formation process. The Sun is a part of the “thin disk”, but the MWG has at least three other distinct stellar components; the “thick disk”, the “halo”, and the “bulge”. The orbits and kinematics of the stars and other objects in each component are primarily what sets them apart from one another. But there are other characteristics that differ, such as the ages and the chemical compositions as well. hierarchical accretion of smaller structures, such as dwarf galaxies [3]. Evidence for the effects of merging are seen through tidal streams in ours and other spiral galaxies [4,5]. New galaxy formation computer simulations in a LCDM Universe are also starting to be able to make realistic galaxies, including the various distinct structural components [6,7]. But looks only get you so far. While the computer simulations are able to make realistic looking galaxies, the only way to constrain these models and also to compare them with the simpler monolithic collapse models are through observational tests. One of the most useful tests of galaxy formation is to examine the chemical contents of the stars [8,9]. The chemical composition of a star’s outer layers is, for the most part, preserved from birth. Thus, since some stars formed early during the formation of the MWG and others have formed recently, with apparently continuous star formation at various rates throughout time, then the amounts of various chemical elements and the build up of the elements can be used, like fossils, to probe the formation and evolution of the MWG. CHEMISTRY AND KINEMATICS OF STARS To test models of galaxy formation requires the chemistry and kinematics of a large number of stars in the MWG. Unfortunately, most of the stars analysed to date are from a small region very close to the Sun. Nevertheless, we are able to sample all of the Galactic components since we can determine the orbital kinematics of each star. In general, stars in the MWG halo are metal-poor, followed by the thick disk, the thin disk, and the most metal-rich stars are found in the Galactic bulge [8,10]. In Figure 1, the kinematical assignments for stars with detailed abundance determinations are shown; bulge objects are not shown on these plots since a slightly different assignment was used for those. Kim Venn <[email protected]>, Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2 The overall metallicity is interesting because most of the chemical elements are made in stars, thus stars that are more metal-poor are thought to have formed at the earliest epochs, before a galaxy has undergone very much star formation or chemical evolution. Of course, this is only an assumption since inhomogeneous chemical mixing could leave pockets of pristine gas in a galaxy (or more likely, on LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 227 METAL POOR STARS ... (VENN) stars in each of the Galactic components indicating an age progression. Fig. 1 Kinematic diagram showing the Galactic rotational velocity (V) as a function of a combination of the radial velocity into the disk (U) and the perpendicular velocity out of the disk (W) to make T = U 2 + W 2. The stars are allocated to Galactic components using velocity ellipsoid probabilities; thin disk (red), thick disk (green), halo (cyan). Two additional kinematic components stand out; an extreme retrograde component (black) and a highly elliptical orbital component (blue). the outskirts of a galaxy); also it is possible that pristine gas falls into a galaxy at a later time, locally diluting the interstellar gas. Thus, metal-poor does not necessarily mean earliest epoch of formation, but it’s not a bad starting approximation. Regardless, since the stars themselves are the nucleosynthetic furnaces that make most of the chemical elements, then over time the chemistry in a galaxy must evolve. In Figure 2, the iron (Fe) abundances are shown relative to Galactic rotational velocity, and while the scatter is quite large (and real) for halo stars, in general there is an increasing trend in metallicity with It is amazing that the detailed chemistry of an individual star can be determined. Stars emit a continuous spectrum from their hot interiors, but this travels through the cooler outer layers of the stellar atmosphere before reaching us. Thus, we see an absorption line spectrum from every star, which typically includes strong lines of hydrogen or molecular bands, depending on the temperature of the stellar atmosphere. The strength of any absorption lines depends on far more than just the abundance of the element in the stellar atmosphere though; it depends critically on the temperature (thus affecting the atomic ionization and excitation states), and less so on the luminosity and the surface velocity fields (due to collisions which can affect line strengths), and on the stratification of these parameters (i.e., changes with atmospheric depth). To model a stellar spectrum requires a numerical representation of a stellar atmosphere, which is typically represented as ~50 layers, each with a unique and homogeneous temperature, pressure, and chemical composition. A blackbody spectrum is applied to the bottom layer, and allowed to percolate upwards, with line and continuous absorption occurring in each layer, and feeding the new spectrum into the next highest layer, until a final spectrum emerges from the top. By iteratively comparing an observed spectrum with this kind of synthetic spectrum, it is possible to work backwards to determine which layers contributed to a specific absorption line, and therefore to determine the total number of atoms in each layer and thus in the stellar atmosphere. All stellar abundances are quoted as ratios with hydrogen, the dominant element in all stellar atmospheres. The modeling of a stellar atmosphere is not easy. However, to Fig. 3 Fig. 2 Variation in the iron abundance as a function of the Galactic rotational velocity (V), demonstrating the range in metallicity for each component. Note the large scatter in the thick disk and halo components, and especially the overlap in their metallicities. Symbols are the same as in Figure 1. 228 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) Sample spectra for stars in the Hyades cluster from the ELODIE database. These stars all have the same chemical abundances as each other and as the Sun, but due to differences in their atmospheric parameters (primarily temperature and temperature stratification), the specific absorption lines are clearly different. METAL POOR STARS ... (VENN)AA show that stellar atmosphere models yield reliable stellar chemistries, we can compare the elemental abundances determined from the spectrum of the Sun, to those determined on Earth from studies of meteorites. Meteorites are the left over debris from the formation of the Sun and solar system, and are expected to have the same birth composition as the Sun, and therefore the same composition as the solar atmosphere. For most elements, the agreement between the solar spectrum and the meteorites is excellent [11]. In addition, stars with very similar properties as the Sun occur in clusters of stars (e.g., the Hyades [12,13]; see sample spectra in Figure 3 of various stars in this young cluster). Since clusters of stars form from the same gas cloud at the same age, then they have the same chemistries and thus differences in their spectra are due to differences in their masses (thus surface properties). Analysis of the chemistry of a variety of stars in the Hyades cluster results in very similar abundances, encouraging us that our model atmospheres analyses are able to determine elemental abundances in stars with good accuracy. METAL-POOR STARS The most interesting stars to study in terms of the formation and evolution of our Galaxy are the metal-poor stars. These stars may have been the first stars to form in our galaxy, and therefore are the fossilized remains of earlier epochs; or these stars may have formed in lower mass galaxies that later merged to form the MWG. Lower mass galaxies would simply have less gas to convert into stars, and therefore fewer metals would be made. The lowest metallicity stars are thought to be related to the first stellar objects that formed in the Universe, and therefore also have cosmological implications [14]. Today, there are dedicated efforts to find metal-poor stars, and analyse them. Firstly, there have been several photometric and (low resolution) spectroscopic survey which focus on certain metal-dependent spectral features to simply find likely metalpoor stars. One example is the Hamburg-ESO survey, which focuses on calcium features to find metal-poor stars [15]. This survey is very sensitive to stars with metallicities less than 1/1000th that of the Sun; astronomers note this as [Fe/H] < -3, where [Fe/H] = log(Fe/H)star - log(Fe/H)sun. This survey has found a smooth decrease in stars with metallicity, down to [Fe/H] = -4. Below this metallicity, there appears to be a desert of missing objects as shown in Figure 4. Some semi-analytic models suggest that this is the level of pre-enrichment from the early Universe, before significant star formation began in galaxies [16,17]. Others suggest that we just haven’t surveyed enough stars yet and that there will be more metal-poor stars as the searches continue. The detailed abundances in these metal-poor stars are extremely valuable, telling us what the yields from previous star formation and supernovae explosions was like [14,19]. Metal-poor stars must have been enriched by very low metallicity supernovae, and thankfully supernovae yields (the number of atoms of various elements per explosion) are metallicity dependent, e.g., low metallicity supernovae tend to produce more oxygen. Fig. 4 The metallicity distribution of stars in the Galaxy from the Hamburg-ESO survey. This distribution is compared with that from four nearby dwarf spheroidal galaxies. Clearly there is a dearth of missing objects in the Galaxy below metallicities of [Fe/H] < -4, whereas the same occurs in the dwarf galaxies below [Fe/H] < -3, showing that this seems to be a common phenomenon. Figure adapted from Ref. [18]. It is also worth noting that it does not matter if the star formed at early epochs or not; if it is metal-poor, then it is still telling us about yields from low metallicity supernovae which can then be applied to the first generation of supernovae. The yields from Type II supernovae also depend on the mass of the progenitor, e.g., high mass supernovae tend to produce more oxygen and less iron. Thus, by looking at the specific ratios of the elements, it is possible to examine the mass and metallicity range of the supernovae that contributed to the chemistry of a particular star. Another important source of nucleosynthesis is during thermal pulsing in intermediate mass stars just before they explode as supernovae; this phase is called the Asymptotic Giant Branch phase, and nucleosynthesis of heavy elements proceeds via the s-process [20]. During the s-process, iron seeds capture neutrons, except the neutron capture rate is so slow that neutrons have time to beta-decay between captures. This process is the primary channel for forming elements like strontium and zirconium, but does not occur efficiently until stars reach metallicities near 1/100th solar (or [Fe/H] ~ -2). These yields are also metallicity dependent. In the Galactic halo, nearly all stars have high oxygen-to-iron ratios, indicating they formed primarily from gas enriched only from Type II supernovae. This is significant because there is another type of supernova, Type Ia, which contribute irongroup elements but no alpha-elements such as oxygen. The LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 229 METAL POOR STARS ... (VENN) progenitors for this kind of supernova are the low mass stars, which take longer to evolve and therefore there is a delay before the interstellar medium can be enriched in iron from Type Ia supernovae. That delay is important since significant amounts of chemical evolution can occur in that time, including the formation of the Galactic disks. FORMATION AND EVOLUTION OF THE GALAXY AND THE DWARF GALAXIES A comparison of the chemistry of stars in the distinct kinematically defined components of the Galaxy is shown in Figure 5. For simplicity, [magnesium/iron] and [barium/yttrium] alone are shown. These element ratios are chosen because [Mg/Fe] traces the relative contributions of Type II supernovae (form Mg and Fe) to Type Ia supernova (form only Fe) through the different Galactic components. The thick and thin disks show increasing contributions of iron without contributions to magnesium; this is expected if the stars in the disk formed later, after a time delay when the Type Ia supernova started to pollute the existing gas. The [barium/yttrium] ratio traces the yields from the r- and s-process contributions. The yields of these elements are metallicity dependent (lower metallicity stars favour barium over yttrium production), therefore this ratio is a sensitive indicator of variation in metallicity at the earliest epochs in the evolution of a galaxy. In the past decade, the advent of the large aperture telescopes (8 to 10-meters) and efficient high resolution spectrographs have made it possible to obtain high quality spectra of stars in the nearby galaxies, as well as our own. The current technology only allows us to reach individual bright stars within approximately 1 Mpc (3.3 million light-years) of the Galaxy; however this encompasses most of the galaxies in the Local Group, i.e., galaxies that are gravitationally bound to the MWG. I have analysed spectra of bright young stars in several of these galaxies (e.g., the Small Magellanic Cloud, M31, NGC 6822, and WLM; see references [21–24]), however it is really the analysis of the old, metal-poor, and evolved stars that can yield information on the early epochs of galaxy formation. This requires analyzing the red giant stars, which are at least 1-2 magnitudes fainter than the youngest and more massive stars in these galaxies. The brightest red giant stars can only be analysed in detail in galaxies within ~250 kpc of the MWG. Within this smaller range, there are dozens of extremely faint, dwarf galaxies, which do contain many old stars. In fact, the number of faint dwarf galaxies is steadily increasing as all-sky surveys are examined with increasingly sophisticated noise reducing methods [25,26]. In the hierarchical galaxy formation scenarios, these small mass dwarf galaxies are thought to be related to the protogalactic fragments that merged to form the MWG. If so, then this can be tested by examining the chemistry of the stars in the dwarf galaxies to those of similar metallicity stars in the MWG. In 2003, we completed a pilot project to examine the chemistry of a small number of individual red giant stars in four nearby dwarf galaxies [27,28]. These four dwarf galaxies are known to have had completely different star formation histories based on analysis of their stellar populations. The results for those stars are shown in Figure 6 and compared to stars in the MWG, as well as a few additional stars from independent analyses [29-31]. The chemistry of the stars in the dwarf galaxies is not similar to that in any distinct component of the Galaxy. The [Mg/Fe] ratios in the dwarf galaxies tend to be lower than stars of similar metallicity in the Galaxy. The simplest interpretation of this is that SN Ia contributed iron to the interstellar medium in the dwarf galaxies when it was still at a lower metallicity then that in the MWG. Note that this could have occurred at the same time (or age of the galaxy), but the lower mass of the dwarf galaxies means that fewer stars had formed and therefore the earlier generation of SN II did not enrich the dwarf galaxy interstellar medium to the same level before the SN Ia contributed. This conclusion is supported by the [Ba/Y] results where it appears that this ratio is higher in the stars in dwarf galaxies at a given metallicity. This occurs when the s-process contributions are dominated by stars of lower metallicity – thus the s-process abundances alone show us that the stellar populaFig. 5 Element abundance ratios for stars in the Milky Way Galaxy, including magne- tions of dwarf galaxies are not chemically similar sium (Mg), iron (Fe), barium (Ba), and yttrium (Y). Each of these elements is to those in the MWG. sensitive to a different nucleosynthetic process, and therefore can be used to test and constrain the chemical evolution of the Galaxy. [Mg/Fe] tests the yields from SN II to SN Ia, while [Ba/Y] tests the contributions from s-process and r-process neutron captures, and their metallicity dependences. Symbols are the same as in Figure 1. 230 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) If the Galaxy formed through hierarchical accretion of dwarf galaxies, then how is it possible that the stars in the dwarf galaxies do not resemble the METAL POOR STARS ... (VENN)AA Fig. 6 Element abundance ratios for stars in seven dwarf spheroidal galaxies (black squares), compared to stars in the Milky Way Galaxy from Figure 5. The stars in dwarf galaxies tend to have lower [Mg/Fe] ratios at a given metallicity. Similarly, they tend to have higher [Ba/Y] ratios at a given metallicity. These chemical signatures suggest that no distinct component of the MWG is similar to the stars in these dwarf galaxies. stars in the MWG? There are several potential solutions to this questions. The first is that we have compared the chemistries of stars in seven different dwarf galaxies; since each of these galaxies has had its own unique formation and evolution history, then we are mixing the signals.We really should compare ~100 stars in each dwarf galaxy to one another and to the stars in the MWG. This project was started in 2005 and is currently underway with exciting preliminary results already in hand. Secondly, it is possible that these dwarf galaxies are not representative of the protogalactic fragments that formed the Milky Way. Possibly those objects had higher/lower masses, higher/lower gas fractions, etc.; to answer this question requires examining stellar chemistries in a wider variety of dwarf galaxies. Dwarf irregular galaxies have evolved in isolation and their brightest stars can be reached with the current technologies, however their older red giant stars cannot, and therefore this test requires waiting for the next generation of large aperture telescopes (e.g., the Thirty Meter Telescope). Thirdly, the stars we are examining have formed and evolved in the dwarf galaxies themselves; if merging happened primarily at early epochs then perhaps only the most metal-poor stars will have similar chemistries. Preliminary results from our larger samples of stars in each dwarf galaxy suggest that this is possible; the chemistries of only the most metal-poor stars are very similar between dwarf galaxies and with both metal-poor stars and globular clusters within our Galaxy. However, looking back at Figure 4 in this paper shows that the metallicity distribution of stars in the dwarfs is not the same as that of stars in the Galaxy. If dwarf galaxies merged only at the earliest epochs to form the MWG, as suggested by their chemical signatures, then the question is where did the stars with lower metallicities in the MWG come from? Possibly dwarf “irregular” galaxies, which are more isolated galaxies on the outskirts of the Local Group, have lower metallicity stars than we have been finding in the nearby dwarf spheroidal galaxies; or maybe the most metal-poor stars are held in the lower mass, ultra faint dwarf galaxies that have only starting to be found from all sky surveys. The next decade of astrophysics in the Local Group promises many new revelations and answers to these questions. It is an exciting time to be doing research on stars and galaxies in our cosmic neighbourhood; in other words, think globally, act locally. SUMMARY The formation and evolution of the Galaxy is preserved as chemical imprints in its stars. By examining the detailed chemical abundances of stars in the various kinematic components of the Galaxy, it is possible to test numerical simulations and our understanding of how the Galaxy formed. Metal-poor stars are the real key, since their chemical imprints tend to be related to earlier times in the evolution of the Galaxy that are no longer available to us. Some astronomers study early evolution of galaxies by looking at galaxies at high redshifts as they are now forming, whereas another approach is to simply crack open the fossils that have been left behind within our own Galaxy and its nearby neighbours. With the current and nextgeneration observational astronomy technologies, it will be possible to examine the chemical signatures of stars throughout the Local Group, which will be an extremely powerful tool for deciphering the clues to cosmology that are sitting in our own backyard. REFERENCES: 1. 2. 3. 4. 5. 6. 7. Eggen, O.J., Lynden-Bell, D., & Sandage, A.R., ApJ, 136, 748, (1962). Komatsu, E., et al., submitted to ApJS (arXiv:0803.0547), (2008). Navarro, J.F., Frenk, C.S., & White, S.D.M., ApJ, 490, 493, (1997). Ibata, R., Gilmore G., & Irwin M., Nature, 370, 194, (1994). McConnachie, A.W., Irwin, M.J., Ibata, R.A., Ferguson, A.M.N., Lewis, G.F., & Tanvir, N., MNRAS, 343, 1335, (2003). Governato, F., Mayer, L., Wadsley, J., Gardner, J.P., Willman, B., Hayashi, E., Quinn, T., Stadel, J., & Lake, G., ApJ, 607, 688, (2004). Brooks, A.M., et al., in preparation (2008). LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 231 METAL POOR STARS ... (VENN) 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. Venn, K.A., Irwin, M., Shetrone, M.D., Tout, C.A., Hill, V., & Tolstoy, E., AJ, 128, 1177, (2004). Freeman, K., & Bland-Hawthorn, J. , ARAA, 40, 487, (2002). Pritzl, B.J., Venn, K.A., & Irwin, M., AJ, 130, 2140 (2005). Grevesse, N. & Sauval, A.J., in Solar Composition and Its Evolution, Proceedings of an ISSI Workshop, Edited by C. Fröhlich, M.C.E. Huber, S.K. Solanki, and R. von Steiger. Published by Kluwer Academic Publishers, Dordrecht/Boston/London, p.161, (1998). De Silva, G.M., Sneden, C., Paulson, D.B., Asplund, M., Bland-Hawthorn, J., Bessell, M.S., & Freeman, K.C., AJ, 131, 455, (2006). Varenne, O. & Monier, R., A&A, 351, 247, (1999). Heger, A., Woosley, S., submitted to ApJ (arXiv:0803.3161) (2008). Beers, T.C., Christlieb, N., ARAA, 43, 531, (2005). Scannapieco, E., Tissera, P.B., White, S.D.M., & Springel, V., MNRAS, 364, 552, (2005). Salvadori, S., Ferrara, A., & Schneider, R., MNRAS, 386, 348, (2008). Helmi, A., et al., ApJ, 651, 121, (2006). Cayrel, R., et al., A&A, 416, 1117, (2004). Herwig F., ARAA, 43, 435, (2005). Venn, K.A., ApJ, 518, 405, (1999). Venn, K.A., McCarthy, J.K., Lennon, D.J., Przybilla, N., Kudritzki, R.P., Lemke, M., ApJ 541, 610, (2000). Venn, K.A., Lennon, D.J., Kaufer, A., McCarthy, J.K., Przybilla, N., Kudritzki, R.P., Lemke, M., Skillman, E.D., & Smartt, S.J., ApJ, 547, 765, (2001). Venn K.A., Tolstoy, E., Kaufer, A., Skillman, E.D., Clarkson, S.M., Smartt, S.J., Lennon, D.J., & Kudritzki, R.P., AJ, 126, 1326, (2003). Belokurov V., et al., ApJ, 654, 897, (2007). Irwin, M.J., et al., ApJ, 656L, 13, (2007). Shetrone M.D., Venn, K.A., Tolstoy, E., Primas, F., Hill, V., & Kaufer, A., AJ, 125, 684, (2003). Tolstoy E., Venn, K.A., Shetrone, M., Primas, F., Hill, V., Kaufer, A., & Szeifert, T., AJ, 125, 707, (2003). Shetrone M.D., Côté, P., & Sargent, W.L.W., AJ, 548, 592, (2001). Bonifacio, P., Sbordone, L., Marconi, G., Pasquini, L., & Hill, V., A&A, 414, 503, (2004). Smecker-Hane, T.A., & McWilliam, A., astro-ph/0205411 (2005). 232 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ARTICLE DE FOND L’ÉVOLUTION PAR CHIMIQUE DES GALAXIES HUGO MARTEL L a composition chimique de l’univers évolue au cours du temps. Durant les quelques minutes qui ont suivies le big bang, les réactions nucléaires primordiales ont convertie les protons et neutrons en éléments légers, deutérium, hélium et lithium. Lorsque ces réactions cessent, l’univers se compose alors d’environ 77% d’hydrogène, 23% d’hélium, avec des traces de lithium. Les éléments plus lourds, comme le carbone, l’azote, l’oxygène ou le fer, que les astrophysiciens appellent métaux, sont produits par les réactions nucléaires dans le coeur des étoiles. Comme les étoiles se forment à l’intérieur des galaxies, ce sont ultimement les galaxies qui sont responsables de l’évolution chimique de l’univers. Durant l’évolution d’une galaxie, des étoiles se forment à partir du milieu interstellaire. Ces étoiles évoluent, et les plus massives d’entres elles éventuellement explosent en supernova. Ces explosions rejètent dans le milieu interstellaire les métaux qui ont été synthétisés dans l’étoile. Le milieu interstellaire est ainsi enrichi en métaux, et lorsque de nouvelles étoiles se forment, elles contiendront déjà une certaine quantité d’élements lourds. Par exemple, le soleil contient des éléments tels que C, N, O, Ca ou Fe, qui furent produits par des générations précédentes d’étoiles. Ainsi, à la fois la composition chimique du milieu interstellaire et celle des étoiles évoluent au cours du temps. Plus une étoile est vieille, plus on s’attend à ce qu’elle soit pauvre en métaux, puisqu’elle s’est formée à une époque où le milieu interstellaire n’avait pas encore été enrichi (on verra que ce n’est pas toujours le cas). Il existe deux principaux types de supernovae: les supernovae de type II (SNe II; on inclut dans cette catégorie les SNe Ib et SNe Ic) sont produites par l’explosion d’étoiles massives dont le temps de vie est très court (quelques millions d’années). Ces étoiles produisent principalement des éléments α dont le numéro atomique est entre Z = 6 (carbone) et Z = 20 (calcium). Les supernovae de type Ia (SNe Ia) sont produites par l’explosion d’étoiles de masses plus faibles appartenant à des systèmes binaires. Le temps de vie des progéniteurs se mesure alors en milliards d’années, et ces supernovae produisent principalement du fer (Z = 26). Pour quantifier les abondances des différentes espèces chimiques, on utilise la notation suivante, [A/B] = log10 RÉSUMÉ L’évolution du contenu en éléments chimiques de l’univers, et la formation et l’évolution des galaxies sont des problèmes intimement liés. Tous les éléments chimiques plus lourds que l’hélium se sont formés à l’intérieur des galaxies. Les éléments à partir du carbone sont formés par les étoiles contenues dans ces galaxies, alors que les éléments plus légers (lithium, beryllium et bore) sont formés dans le milieu diffus situé dans les galaxies, entre les étoiles. Les éléments chimiques à leur tour influencent la formation et l’évolution des galaxies. La présence d’éléments lourds joue un rôle important dans la formation d’étoiles, en augmentant fortement le taux de refroidissement radiatif du gaz primordial. De plus la présence d’éléments tels que le carbone, l’azote et l’oxygène dans les étoiles affecte le taux de réactions nucléaires dans ces étoiles. Dans cet article, j’explique comment, à l’aide de simulations numériques de haute performance, on peut étudier la production et la distribution des éléments chimiques dans les galaxies. ⎛n ⎞ nA − log10 ⎜ A ⎟ , nB ⎝ nB ⎠ (1) où nA et nB sont les abondances des espèces A et B, et le symbole indique les valeurs solaires. Comme le soleil est une étoile “typique”, un rapport [A/B] positif est considéré comme élevé, et un rapport négatif est considéré comme faible. Deux de ces rapports sont particulièrement utiles: le rapport [Fe/H] mesure l’abondance de fer par rapport à l’hydrogène, et peut être utilisé comme proxy pour quantifier la métallicité. Le rapport [α/Fe] mesure l’abondance totale de l’ensemble des éléments α par rapport au fer. Une mesure de [α/Fe] détermine l’importance relative des différents types de supernovae, ce qui impose des contraintes sur les modèles de formation et d’évolution de galaxies. Hugo Martel <[email protected]. ca>, Département de physique, de génie physique et d’optique, Université Laval, Québec, QC LES DISQUES GALACTIQUES Il est maintenant bien établi que le disque de notre galaxie spirale, la Voie lactée, se compose en réalité de deux disques, un disque épais et un disque mince, qui sont imbriqués l’un dans l’autre [1,2]. Par rapport au disque mince, les étoiles du disque épais sont cinématiquement plus chaudes (c’est-à-dire que leur dispersion de vitesse est plus élevée), et leur rotation traine de l’arrière par ~20 − 40 km/s [3]. Les étoiles du disque épais sont vieilles [4-6], presque exclusivement plus agées que LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 233 L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL) 10 Gans 1. Malgré tout, ces étoiles sont relativement riches en métaux, avec une distribution de metallicité qui atteint [Fe/H] ~ −0.6 [3]. Les étoiles des disques épais et minces ont des compositions chimiques différentes [5-13], les étoiles du disque épais étant beaucoup plus riches en éléments α, avec un rapport [α/Fe] systématiquement plus élevé pour une métallicité donnée. Le gradient vertical de metallicité dans le disque épais est très faible [14,15], et de récentes observations suggèrent que les abondances chimiques sont en fait indépendantes de la hauteur |Z| au-dessus du plan du disque [7]. Nous savons maintenant que la plupart des galaxies spirales possèdent un disque épais [16]. La photométrie de surface d’un échantillon de 47 galaxies montre que ces disques épais sont rouges [16] et donc constitués de vieilles étoiles. Plus récemment, l’étude des populations stellaires dans un échantillon de quatre galaxies voisines a permis d’étudier les propriétés de ces galaxies en fonction de la hauteur au-dessus du plan [17]. Toutes ces galaxies possèdent un disque épais composé d’étoiles rouges. Le gradient vertical de couleur est presque nul ou légèrement positif. Le diagramme couleur-magnitude révèle que ces disques épais consistent en une population d’étoiles vieilles et relativement riches en métaux. Une étude du contenu stellaire de la galaxie NGC 55 révèle que les étoiles associées au disque épais sont vieilles (âges ~ 10 milliard d’années), et la plupart ont une métallicité dans l’intervalle −1.2 < [Fe/H] < −0.7 [20]. Ces résultats sont en accord avec les conclusions de Dalcanton et Bernstein [16], et avec les observations du disque épais de la Voie lactée. ensuite des explosions de type Ia). Lors d’une telle explosion, l’algorithme identifie les particules de gaz voisines de la particule étoile. Ces particules de gaz sont enrichies en métaux, et reçoivent une composante radiale de vitesse due à l’énergie dégagée par la supernova. Lorsque ces particules de gaz formeront de nouvelles étoiles, celles-ci seront préalablement enrichies en métaux. L’algorithme GCD+ peut ainsi suivre la formation et l’évolution des structures dans les galaxies (telles que bulbe, disque, halo et bras spiraux), la formation, l’évolution et la mort des étoiles, et l’évolution de la métallicité du gaz ainsi que celle des étoiles. Les supernovae produisent tous les élements chimiques entre Z = 6 (carbone) et Z = 96 (curium). Cependant, il n’est pas nécessaire d’inclure tous ces éléments dans l’algorithme. Seuls les éléments les plus abondants sont inclus: hydrogène (H), hélium (He), carbone (C), azote (N), oxygène (O), néon (Ne), magnésium (Mg), silicium (Si) et fer (Fe). Dans cette article, je présente deux exemples de simulations numériques effectuées à l’aide de l’algorithme GCD+. Dans le premier cas, une galaxie spirale isolée se forme par la fragmentation d’une région de densité élevée. Dans le deuxième cas, deux galaxies spirales déjà formées entrent en collision et se fusionnent. Ces simulations furent réalisées à l’Université Laval, avec l’aide de mes collaborateurs Chris Brook (University of Washington), Simon Richard (Université Laval), Daisuke Kawata (The Observatories of the Carnegie Institution of Washington) et Brad Gibson (University of Central Lancashire). L’ALGORITHME NUMÉRIQUE GCD+ Les simulations numériques présentées dans cette article furent toutes réalisées avec l’algorithme numérique GCD+ [18]. Il s’agit d’un algorithme Lagrangien, dans lequel le système physique est représenté par des particules. L’algorithme utilise trois types de particules pour représenter la matière sombre, le gaz, et la composante stellaire 2. GCD+ combine un algorithme à N-corps pour le calcul de la force gravitationelle avec un algorithme Smoothed Particle Hydrodynamics pour l’hydrodynamique. La formation stellaire, l’effet rétroactif des explosions de supernovae et l’enrichissement chimique sont traités par des règles heuristiques, qu’on appelle parfois Physique de sous-grille. Lorsque, dans une certaine région, le gaz se retrouve dans des conditions de densité et de température favorables à la formation stellaire, une particule étoile est créée, et la masse des particules de gaz voisines est réduite de manière à conserver la masse et la quantité de mouvement. L’algorithme suit l’évolution des étoiles que chaque particule étoile représente, et cette particule subit au cours du temps une série d’explosions de supernovae (d’abord des explosions de type II, pour lesquelles les progéniteurs ont un court temps de vie, puis FORMATION ISOLÉE DE GALAXIES Une étude précédente [19] a démontré qu’une simulation chimio-dynamique de la formation d’une galaxie avec l’algorithme GCD+ pouvait produire une galaxie spirale ayant un disque épais et un disque mince. La présence de deux disques distincts était indiquée par la relation entre l’âge et la dispersion de vitesse pour les étoiles autour du rayon solaire. Cette relation montre une augmentation brusque de la dispersion de vitesse à un âge de ~ 8Gans, parfaitement en accord avec les observations. Dans cette simulation, le disque épais se forme durant une période chaotique de fusions de fragments riches en gaz à redshift 3 élevé. Ce scenario de formation du disque épais est en accord avec les observations des disques galactiques et extragalactiques. Nous présentons ici quatre simulations de galaxies avec disque, et comparons les populations stellaires de leurs disques épais avec les observations récentes de disques épais extragalactiques [16,17,20]. Nous calculons les gradients verticaux d’âge et de métallicité, ainsi que les couleurs. De plus, nous examinons 1. 1 Gan = 1 giga-année = 1 milliard d’années. 2. Notons que la résolution de l’algorithme est insuffisante pour résoudre les étoiles individuelles. Par conséquent, une “particule étoile” représente collectivement un grand nombre d’étoiles. 3. Les astrophysiciens utilisent le terme redshift, ou décalage vers le rouge, pour indiquer les différentes époques cosmologiques. Le big bang correspond à un redshift z = 4, alors que le présent correspond à un redshift z = 0. Un redshift élevé correspond à une époque ancienne, alors qu’un redshift faible correspond à une époque récente. 234 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL)AA les rapports d’abondance des éléments α par rapport au fer dans les populations stellaires du disque épais et du disque mince, ainsi que du halo. Ceci fournira davantage de tests importants de notre scénario de formation du disque épais, en plus de faire le lien avec les études récentes de la formation du halo stellaire dans les galaxies spirales. Conditions initiales Les conditions initiales à redshift zi consistent en une sphère isolée composée de matière sombre et de gaz primordial (hydrogène et hélium) dont la masse totale est Mtot, et qui tourne lentement sur elle-même. Ceci correspond à une fluctuation de densité avec un contraste de densité δi. Comme δi > 0, cette sphère est gravitationnellement liée, et va éventuellement s’effondrer sur elle-même. Cet effondrement se produit à un redshift zc donné par [21] zc = 0.36δi (1 + zi) − 1. Résultats GRADIENT VERTICAL DE LA POPULATION STELLAIRE POUR LES ÉTOILES DU DISQUE ÉPAIS La Figure 1 montre des images en bande I de chaque galaxie au temps présent (z = 0), vue de face et de profil. Les quatre galaxies ont une morphologie similaire, bien que sGAL4 à première vue possède un bulbe plus important que les autres galaxies. Chaque galaxie est dominée par un disque mince, jeune et riche en métaux, alors que le halo stellaire est vieux et pauvre en métaux. La densité de surface des disques suit une loi exponentielle pour les quatre galaxies. (2) Des perturbations aléatoires de densité à courte échelle sont superposées sur cette sphère. À cause de la présence de ces perturbations, l’effondrement de la sphère ne sera pas monolithique. La sphère va d’abord se fragmenter, et les fragments vont ensuite se fusionner lors de l’effondrement. Nous effectuons quatre simulations (sGAL1–4) avec des valeurs différentes de zc, Mtot et du paramètre de spin λ, qui mesure l’importance de la rotation 4. Les valeurs des paramètres sont données dans le Tableau 1. Les valeurs de zc sont bien à l’intérieur des valeurs auquelles on s’attend pour la formation de halos comparables à la Voie lactée dans un modèle cosmologique ΛCDM [22]. De plus, les perturbations aléatoires de densité incorporées aux conditions initiales sont différentes pour chaque galaxie, ce qui crée une diversité d’évolution dans nos simulations. Les perturbations sont choisies de manière à s’assurer qu’aucune fusion majeure ne se produise à une époque avancée (redshift z < 1). Combinées avec les valeurs élevées de λ choisies, ces conditions initiales mènent à la formation de galaxies avec disques dans les quatre simulations. Nous utilisons 38,911 particules de matière sombre et 38,911 particules de gaz pour chaque simulation, ce qui nous donne une résolution comparable aux autres études récentes de formation des galaxies spirales. TABLEAU 1 PARAMÈTRES DES MODÈLES ET INTERVALLE D’ÂGES POUR LA DÉFINITION DES ÉTOILES DU DISQUE ÉPAIS. Fig. 1 Image en bande I à redshift z = 0 des quatre galaxies simulées, vues de face (panneaux du haut) et de coté (panneaux du bas). Ces galaxies sont dominées par les étoiles jeunes et riches en métaux du disque mince. La présence d’un disque épais dans les quatre galaxies simulées est révélée par la relation âge-dispersion de vitesse. La Figure 2 montre la dispersion de vitesse dans la direction perpendiculaire au disque (direction Z) en fonction de l’âge, pour les étoiles situées dans le “voisinage solaire” de nos quatres galaxies. Le voisinage solaire est défini comme étant un anneau limité par 6 kpc < RXY < 10 kpc, et |Z| < 1 kpc, où RXY est le rayon dans le plan du disque. Le relation observée pour les étoiles du voisinage solaire de la Voie lactée [4,23] est également indiquée par les triangles avec barres d’erreurs. La dispersion de vitesse observée est relativement constante pour les dernières ~ 9 Gans 5, mais montre une augmentation brusque à une époque de ~ 10 Gans dans le passé. Les étoiles plus vieilles avec une dispersion de vitesse élevée sont identifiées comme appartenant au disque épais. Les dispersions de vitesse des quatres galaxies ont qualitativement le même comportement, avec des plateaux interrompus par des augmentations brusques à des périodes entre 8 et 10 Gans dans le passé. Ceci implique que chaque galaxie possède un disque épais. Cette augmentation brusque est plus récente pour sGAL1 et sGAL2 (~ 8 Gans dans le passé) que pour sGAL3 et sGAL4 (~ 10 Gans). Cette différence est principalement due aux différences entre les redshifts d’effondrement zc dans les conditions initiales. 4. Le paramètre de spin est le rapport entre l’énergie cinétique de rotation et l’énergie de liaison. 5. Une étude plus récente [24] montre une augmentation de la dispersion de vitesse avec l’âge pour les étoiles du disque mince, mais cela est sans conséquence pour les résultats présentés ici. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 235 L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL) matiquement par la perturbation des fragments, et acquiert une dispersion de vitesse élevée. Par conséquent, les étoiles formées dans le disque durant cette période auront une dispersion de vitesse élevée, et seront ultimement identifiées comme étant des étoiles du disque épais. Fig. 2 Dispersion de vitesse des étoiles dans la direction perpendiculaire au plan (direction Z) en fonction de leur âge, pour les quatre galaxies simulées: sGAL1 (+), sGAL2 (∗), sGAL3 (o) et sGAL4 (H). Le calcul inclut les étoiles situées dans la région définie par 6 kpc < RXY < 10 kpc et |Z| < 1 kpc. Les triangles avec barres d’erreurs montrent les résultats obtenus à partir d’observations d’étoiles situées dans le voisinage du soleil. On remarque dans tous les cas une augmentation brusque de la dispersion de vitesse à un âge > 8 Gans. Cette augmentation brusque est la signature de la formation du disque épais. Nous utilisons ces accroissements de la dispersion de vitesse comme indicateurs de l’époque de formation du disque épais. La Figure 3 montre quatre stages différents de l’évolution de sGAL1 durant l’époque de formation du disque épais. Cette époque est caractérisée par de multiples fusions de fragments riches en gaz. Nous confirmons que le rapport entre la masse de gaz et la masse stellaire dans ces fragments est élevé à cette époque [19]. Le gaz, qui contient une quantité importante de moment cinétique, se retouve dans une structure de la forme d’un disque. Cependant, le disque gazeux est réchauffé ciné- Cette époque est également caractérisée par une formation stellaire rapide. Le taux global de formation stellaire (SFR) en fonction du temps est indiqué sur la Figure 4. L’époque de formation du disque épais montrée sur la Figure 3 correspond assez bien au maximum du SFR. Ce maximum est atteint plus tard pour sGAL1 et sGAL2 que pour sGAL3 et sGAL4, ce qui implique que les disques épais de sGAL3 et sGAL4 se sont formés plus tôt que ceux de sGAL1 et sGAL2, en accord avec la Figure 2. Ce n’est qu’après la formation du disque épais que le disque mince commence à se former [19]. Fig. 4 Taux de formation stellaire (SFR) en fonction de l’âge pour les quatre galaxies simulées. Le maximum de la formation stellaire correspond à une époque de fusions entre fragments riches en gaz, que nous associons à la formation du disque épais. L’intervalle d’âge pour la formation du disque épais est indiqué dans le Tableau 1. Nous avons choisi cet intervalle d’âge en nous basant sur la dispersion de vitesse (Figure 2), les images (Figure 3) et le taux de formation stellaire (Figure 4). Nous utilisons un critère supplémentaire pour distinguer les étoiles du disque épais de celles du halo, qui se forment durant la même période. Les étoiles doivent avoir une vitesse de rotation supérieure à 50 km/s pour appartenir au disque épais. Fig. 3 Densité d’étoiles (panneaux du haut) et de gaz (panneaux du bas) pour sGAL1 durant l’époque de la formation du disque épais, vue de face. On montre quatre temps différents, correspondants à des âges de 9.8 − 8.5 Gans. Cette époque correspond au temps où la relation dispersion de vitesse-âge montre une croissance subite, indiquant la présence du disque épais (Figure 2), et est caractérisée par des fusions de fragments riches en gaz. Au début de cette séquence, plusieurs fragments sont présents, alors qu’à la fin une galaxie s’est formée. 236 C PHYSICS IN Les étoiles du disque épais identifiées dans nos simulations ont des propriétés similaires à celles observées dans le disque épais de la Voie lactée. La rotation du disque épais traine de l’arrière par rapport aux étoiles du disque mince par 20 − 30 km/s. Nous obtenons des échelles de hauteur de 1.3, 1.4, 1.1, et 1.4 kpc pour les disques épais de sGAL1–4, comparé à des échelles de hauteur de 0.52, 0.55, 0.6 et 0.45 kpc pour les disques minces. Dans ce qui suit, nous allons démontrer que les étoiles du disque épais ont également des métallicités caractéristiques observées dans la Voie lactée et les autres galaxies spirales. CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL)AA La question clé dans les simulations de disques galactiques est la variation de la métallicité, de l’âge, et ainsi des couleurs des étoiles du disque épais en fonction de la hauteur |Z| au-dessus du plan du disque, ainsi que les différences entre les rapports d’abondance des étoiles du disque épais et ceux des étoiles du disque mince que se forment plus tard. Dans les Figures 5 à 8, nous analysons les étoiles du disque épais dans la région 6 kpc < RXY < 10 kpc. La Figure 5 montre la métallicité des étoiles en fonction de |Z|. Les étoiles de sGAL1, sGAL2, et sGAL4 ont des métallicités dans l’intervalle de +[Fe/H], entre −0.5 et −0.6, ressemblant de près au disque épais de la Voie lactée, alors que les étoiles de sGAL3 ont une métallicité nettement plus faible, +[Fe/H], ~ −0.8. Ceci pourrait être du au fait que le disque épais de sGAL3 et moins massif que celui des autre galaxies. Les étoiles du disque épais n’ont aucun gradient vertical de métallicité. Fig. 5 Fig. 6 Moyenne du logarithme de l’âge (Gans) en fonction de la hauteur |Z| au-dessus du disque, pour les étoiles du disque épais. On utilise les mêmes symboles que sur la Figure 2. Les étoiles du disque épais dans chaque galaxie sont vieilles, avec peu de variation avec la hauteur. Fig. 7 Moyenne de l’indice de couleur V − I en fonction de la hauteur |Z| au-dessus du disque, pour les étoiles de la branche des géantes (RGB/AGB) du disque épais. On utilise les mêmes symboles que sur la Figure 2. Métallicité moyenne +[Fe/H], en fonction de la hauteur |Z| au-dessus du disque, pour les étoiles du disque épais. On utilise les mêmes symboles que sur la Figure 2. Les étoiles du disque épais de sGAL1, sGAL2 et sGAL3 ont une métallicité entre −0.5 et −0.6, alors que celles de sGAL4 ont une métallicité plus faible, +[Fe/H], ~ −0.8. Il n’y a que très peu de gradient, pour les quatre galaxies. La Figure 6 montre l’âge des étoiles du disque épais en fonction de |Z|. Les variations de l’âge avec la hauteur sont très faibles. Il peut sembler bizarre que les étoiles du disque épais de sGAL4 soient en moyenne plus vieilles que celles de sGAL3, apparemment en contradiction avec les époques de formation données dans le Tableau 1. Ceci est causé par la baisse rapide du taux de formation stellaire dans sGAL4, tel que l’indique la Figure 4, qui implique qu’une plus grande fraction des étoiles du disque épais de sGAL4 étaient déjà formées à l’intérieur des fragments, avant que ceux-ci se fusionnent pour former le disque épais. Comme les étoiles du disque épais n’ont pas de gradient vertical d’âge et de métallicité, elles n’ont pas non plus de gradient vertical de couleur. La Figure 7 montre la valeur moyenne de l’indice de couleur V − I en fonction de |Z|. On ne distingue aucun gradient vertical de couleur. Ces résultats sont en accord avec les couleurs et l’absence de gradients de couleur observées dans les galaxies spirales [17]. La Figure 8 montre les indices de couleurs B − R et R − K des étoiles du disque épais. Ces couleurs sont obtenues en intégrant la luminosité de toutes les étoiles du disque épais qui sont encore présentes à la fin de la simulation. Ces couleurs sont relativement constantes avec la hauteur, avec B − R ~ 1.4 − 1.5 et R − K ~ 1.9 − 2.2. Ces couleurs nous permettent une comparaison directe avec les Figures 3 et 6 de Dalcanton et Bernstein [16]. Loin du plan, Dalcanton et Bernstein [16] trouve un intervalle de couleur relativement faible, avec B − R ~ 10 − 1.4 et R − K ~ 2.0 − 2.6. Les galaxies que nous simulons sont plus massives que les 47 galaxies étudiées par Dalcanton et Bernstein [16]. Malgré tout, les disques épais de nos galaxies ont des couleurs qui peu- LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 237 L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL) Fig. 9 Fig. 8 Moyenne des indices de couleur B − R et R − K en fonction de la hauteur |Z| au-dessus du disque, pour les étoiles du disque épais. On utilise les mêmes symboles que sur la Figure 2. vent expliquer les populations stellaires enveloppant les galaxies observées par Dalcanton et Bernstein [16], qui sont interprétées comme appartenant à un disque épais. [α/FE] VS. [FE/H] POUR LES ÉTOILES DU DISQUE MINCE, DU DISQUE ÉPAIS ET DU HALO. Nous comparons maintenant les rapports d’abondance des éléments α par rapport au fer pour les differentes composantes des galaxies, soit le disque mince, le disque épais et le halo. Afin de pouvoir comparer les résultats de nos modèles avec les observations, nous examinons les étoiles situées à l’intérieur du voisinage solaire. Les étoiles du disque mince sont définies comme étant celles qui sont plus jeunes que 7 milliards d’années et qui tournent plus vite que 50 km/s. Les étoiles du halo sont définies comme étant les étoiles rétrogrades formées avant la fin de l’époque de formation du disque épais, tel que définie dans le Tableau 1. Notons que les étoiles déjà formées dans les fragments qui plus tard se fusionnent durant la formation du disque épais ont une forte tendance à se retrouver dans le halo [25] 6. La Figure 9 montre l’abondance en éléments α des trois composantes pour la galaxie sGAL1 (les résultats pout les trois autres galaxies sont très similaires). L’échelle de l’axe [Fe/H] a été choisie pour inclure environ 90% des étoiles de chaque composante. Dans toutes nos simulations, les étoiles du disque épais ont une abondance en éléments α plus grande que celles du disque mince, même lorsqu’elles ont la même métallicité [Fe/H]. Ces abondances du disque épais sont caractéristiques de l’enrichissement dominant par les SNe II. Ces résultats cadrent bien avec les observations récentes [5-13]. Nous nous devons de mentionner certaines incertitudes dans nos modèles, concer- [α/Fe] versus [Fe/H] pour les étoiles du “voisinage solaire” de sGAL1. Les différent symboles représentent les étoiles du disque mince (∗), du disque épais (~) et du halo (‘). nant la formation stellaire, le taux de production des éléments par nucléosynthèse, et particulièrement les échelles de temps des SNe Ia, qui sont pas très bien expliquées par les modèles théoriques. Néanmoins, il est très encourageant de constater que les différences entre les schémas d’abondances du disque mince et du disque épais de la Voie lactée peuvent être reproduits avec notre scénario de formation du disque épais. Les étoiles du halo ont également des abondances élevées d’éléments α, comme celles du disque épais. Les étoiles formées dans les fragments riches en gaz vont préférentiellement s’accréter au halo et non au disque [25]. Celles formées dans les fragments accrétés à redshift élevé auront été enrichies principalement par les SNe II. Les étoiles du halo ont tendance à avoir des valeurs de [α/Fe] légèrement plus élevées que celles du disque épais. La raison semble être que les SNe II produisent des rapports [α/Fe] plus élevés [27]. Les étoiles du disque mince, qui se forment plus tard durant la période calme qui suit la formation du disque épais, sont formées à partir de matériel enrichi davantage par les SNe Ia, qui produisent du fer. Elles ont donc un rapport [α/Fe] plus faible. Discussion Plusieurs scénarios ont été proposés pour expliquer l’origine du disque épais de la Voie lactée [19,28,29], qui est maintenant établi comme étant une composante séparée du disque mince. Ces différents scénarios suscitent un intéret particulier depuis que de récentes observations suggèrent que les disques épais sont omniprésent dans les galaxies spirales, et que leurs âges avancés contient peut-être la clé qui expliquera la formation de telles galaxies. Un scenario a été proposé [19], dans lequel la majorité des étoiles du disque épais se forment à redshift élevé, durant une période de fusions multiples de fragments riches en gaz précédant la formation du disque mince. Le but des quatre simulations présentées dans cette article était de tester ce scénario. Des observations d’étoiles individuelles dans quatres galaxies vues de côté ont confirmé que (a) les disques épais apparaissent 6. La tendance des étoiles accrétées à être circularisées et ainsi faire partie des composantes du disque, tel que révélée par Meza et al. [26], se produit seulement après que le disque se soit déjà formé. On s’attent à ce que ces étoiles soient rares dans la Voie lactée, parce que de telles étoiles devraient avoir une faible métallicité, et la fonction de métallicité des étoiles du voisinage solaire suggère peu d’étoiles ayant une faible métallicité. 238 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL)AA fréquemment dans ces galaxies, (b) les étoiles du disque épais sont vieilles et relativement riches en métaux, et (c) il n’y a pas de gradient vertical de metallicité important [17]. Ces observations ne supportent pas la formation de disques épais par l’accrétion d’étoiles provenant de satellites (puisque ces étoiles seraient pauvres en métaux), ou par le réchauffement lent du disque mince (ce qui produirait un gradient vertical de couleur, et de plus certaines étoiles de disque épais seraient jeunes). L’absence de détection d’un gradient vertical de métallicité place également de sérieuses contraintes sur un scénario basé sur un effondrement dissipatif lent. Nous avons montré dans les Figures 5 et 6 que notre scénario de formation du disque épais est en accord avec les observations. En particulier, il n’y a pas de variation de la métallicité ou de l’âge, et donc de la couleur, avec la hauteur. C’est parce que, dans notre scénario, le disque épais se forme à partir de gaz déjà bien enrichi en métaux, durant une période de temps relativement courte. L’enrichissement durant et après les fusions, ainsi que l’accumulation continue de gaz [30] élimine les différences de métallicité dans les fragments qui forment le disque épais, ce qui produit une population stellaire vieille et riche en métaux relativement homogène, indépendante de la hauteur. Une étude de 6 galaxies spirales vues de côté avec une population stellaire résolue supporte également l’existence d’une population appartenant à un disque épais ou un halo [31], mais cette analyse préliminaire des couleurs des étoiles géantes de la branche rouge indique que cette enveloppe stellaire est plus pauvre en métaux que celles trouvées par Mould [17] et Davidge [20], avec des métallicités −1.2 < [Fe/H] < −1.7. Ceci suggère une diversité de la population stellaire des disques épais parmi les différentes galaxies spirales. Nos quatre galaxies simulées, qui sont massives, n’ont pas une aussi faible métallicité. Un plus grand échantillon de galaxies simulées avec des masses différentes pourraient expliquer de telles observations. masse relativement faible (souvenons-nous de la relation masse-métallicité bien établie pour les galaxies), et la courte période de temps disponible pour la formation stellaire avant les fusions, assure que ces étoiles sont pauvres en métaux. Ceci peut expliquer la présence des étoiles les plus vieilles et plus pauvres en métaux du halo. La Figure 9 montre que les étoiles du halo sont également riches en éléments α. Ce scénario de formation des étoiles du halo est supporté par une étude semianalytique récente [32] qui montre que les fragments qui se fusionnent à redshift élevé sont probablement similaires à des galaxies naines irrégulières relativement massives (~ 5 H 1010M ) riches en éléments α. Mentionnons que l’accrétion d’étoiles après que le disque soit formé [33] peut aussi jouer un rôle en contribuant à la population du disque épais [26,34-37]. Nous savons déjà qu’une telle accrétion joue un rôle dans la formation du halo stellaire [34,38,39]. Une étude récente a révélé la présence d’un disque en contrerotation dans NGC 227 [40]. L’existence de disques en contrerotation invaliderait les modèles dans lesquels les disques épais se forment purement par effondrement monolithique ou par le réchauffement d’un disque mince, et favoriserait fortement les modèles d’accrétion ou de fusion. Les conditions initiales de nos modèles, dans lesquelles une rotation de corps solide est impartie à notre sphère initiale, impliquent que nous ne pouvons pas tester directement l’existence de disques en contrerotation. Dans nos simulations, tous les fragments massifs qui se fusionnent durant l’époque de la formation du disque épais ont une rotation prograde. Cependant, il ne serait pas surprenant que durant une période de fusions multiples, certains fragments puissent être en contre-rotation. Donc, notre scénario de formation du disque épais demeure un bon candidat pour expliquer de telles observations. COLLISIONS ENTRE GALAXIES SPIRALES Dans notre scénario de formation du disque épais, les fragments qui se fusionnent à redshift élevé ont été enrichis principalement par les SNe II. Nous avons montré dans la Figure 9 que notre scénario explique naturellement l’abondance élevée d’éléments α observée dans le disque épais comparée au disque mince [7,8,11] . Ceci est du au fait que, dans notre scénario, les étoiles du disque épais se forment plus tôt que celles du disque mince, qui auront la chance d’être enrichies davantage par les SNe Ia. L’autre facteur important affectant l’abondance en éléments α est le taux élevé de formation stellaire durant l’époque de fusion durant laquelle le disque épais se forme. Nous savons que le disque épais a une histoire de formation stellaire plus intense que le disque mince [7,9]. Notre scénario de formation du disque épais cadre bien avec la formation d’un halo stellaire agé, pauvre en métaux et riche en éléments α. Dans Ref. [25], l’accrétion d’étoiles par le halo dans les fusions riches en gaz avait été démontrée comme étant nécessaire pour former des halos de faibles masses et faibles métallicités. Donc, beaucoup de ces étoiles du halo se forment dans les fragments, avant l’époque de fusions multiples. La Une collision majeure entre deux galaxies spirales, suivie de la fusion de ces galaxies, peut parfois résulter en la formation d’une nouvelle galaxie spirale [41]. Ceci se produit pour un large éventail de rapports de masses, d’orbites et de vitesses de rotation des galaxies progénitrices [42]. La découverte que les disques épais sont fréquents, et possiblement omniprésents dans les galaxies spirales [17,43], et leur âges avancés, implique que ces disques contiennent des indices importants sur la formation de telles galaxies. Elle implique également que les galaxies spirales formées par une fusion majeure devraient toutes posséder un disque épais. Les galaxies impliquées dans ces fusions étaient présumément plus riches en gaz à des époques plus anciennes, puisque le gaz est converti en étoiles au cours du temps. La possibilité que des fusions riches en gaz puissent jouer un rôle essentiel dans la formation des galaxies spirales a récemment gagné en popularité [19,44]. Que les fusions à redshift élevé soient riches en gaz est aussi en accord avec d’autres contraintes, incluant un halo de faible masse pauvre en métaux [25], les schémas d’abondances chimiques des étoiles du halo [45,46], et le moment cinétique des disques [47]. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 239 L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL) Le rapport entre les abondances des éléments α et celle du fer peut être utilisé comme une horloge pour identifier les différentes échelles de temps de formation pour les différents types de galaxies, ainsi que pour les différentes composantes de la Voie lactée. Les supernovae SNe II, qui suivent de près la formation stellaire à cause du cours temps de vie de leurs progéniteurs, produisent une grande quantité d’éléments α. Le fer, quant à lui, est produit principalement par les supernovae SNe Ia, pour lesquelles les explosions sont retardées. Donc, le rapport [α/Fe] élevé qui caractérise les galaxies elliptiques implique une formation rapide de ces galaxies, alors que le rapport [α/Fe] faible que l’on trouve dans les galaxies spirales et les galaxies naines implique une formation plus étendue dans le temps. Dans la Voie lactée, le halo stellaire de faible métallicité ([Fe/H] ~ −1.5) a un rapport [α/Fe] ~ 0.4, alors que le disque épais, qui a une métallicité relativement élevée ([Fe/H] ~ −0.6) a également une abondance élévée d’éléments α par rapport aux abondances solaires. Récemment, plusieurs études [7,48] ont révélé que les composantes chaude et froide du disque de la Voie lactée n’ont pas le même rapport [α/Fe], fournissant ainsi un indice sur la formation de ces composantes. Nous avons suggéré que le taux élevé de formation stellaire dans les fusions de galaxies riches en gaz produit une métallicité élevée avec une abondance élevée d’éléments α [44]. De tels événements pourrait jouer un rôle central dans la formation du disque épais de la Voie lactée. Ici, nous examinons en détail un cas particulier, et suivons l’évolution du rapport [α/Fe] durant l’époque de la fusion. Détails de la simulation et résultats Nous avons utilisé l’algorithme GCD+ pour réaliser une simulation chimio-dynamique de la fusion de deux galaxies spirales riches en gaz. Les conditions initiales sont illustrées sur la Figure 10. Elles consistent en deux galaxies ayant chacune un disque exponentiel de gaz situé à l’intérieur d’un halo de matière sombre. Ces galaxies sont créées avec le logiciel GalactICS [49], et sont essentiellement stables, dans le sens que leurs profils de densité, potentiels et ellipsoïdes de vitesses ne changent pas de manière significative lorsque ces galaxies évoluent en isolation. La plus grande galaxie a une masse de 5 H 1011M . Le rapport des masses est de 2:1, les longueurs d’échelles des disques sont de 4.5 kpc et 3.1 kpc et chaque galaxie a une fraction baryonique de 17%. Chaque galaxie est constituée de 40,000 particules de gaz et 100,000 particules de matière sombre. La petite galaxie s’approche avec son axe de rotation incliné de 17o par rapport à l’axe de rotation de la grande galaxie. La rotation des deux galaxies est prograde par rapport à l’orbite du système. L’énergie cinétique orbitale est de 1.7 H 1044 ergs. Le système est lié gravitationellement, et son paramètre de spin λ est égal à 0.04. Les disques galactiques évoluent et forment des étoiles avant la collision, et au moment de la collision 91% de la matière baryonique se trouve sous forme de gaz. Initiallement, le gaz a une métallicité de [Fe/H] = −4 et une abondance en éléments α de [α/Fe] = 0.35. Nous suivons l’évolution du système pour 1.5 milliard d’années. 240 C PHYSICS IN Fig. 10 Géométrie des conditions initiales. L’axe des Y pointe vers l’arrière. Gal1 est initialement au repos, alors que Gal2 est initialement en mouvement dans la direction +Y. Les lignes pointillées indiquent les axes de rotation des galaxies. Gal1 est située dans le plan X − Y, avec son axe de rotation dans la direction Z. L’axe de rotation de Gal2 est dans le plan X − Z, à un angle θ = 17o par rapport à l’axe des Z. Les deux galaxies tournent dans le sens horaire lorsque vues par le dessus, par conséquent les bords de gauche s’éloignent alors que ceux de droite se rapprochent. Les bords des disques sont situés à deux longueurs d’échelle. La fusion riche en gaz produit une galaxie finale qui possède un disque. La Figure 11 montre une carte de luminosité en bande B de la galaxie ainsi formée après 1.5 Gans, vue de face (panneaux du haut) et de profil (panneaux du bas). Les panneaux de droite montrent toutes les étoiles. Les panneaux du centre montrent les étoiles qui sont formées avant ou durant la fusion, que nous appellerons par la suite étoiles fusion. Les panneaux de gauche montrent les étoiles qui sont formées après la fusion, que nous appellerons par la suite étoiles disque. La vue de face montre clairement que cette simulation a produit une galaxie à anneau, ce qui indique que les fusions riches en gaz de disques progrades peuvent produire de telles galaxies. Ceci est particulièrement intéressant si on considère que la fréquence des galaxies à anneau augmente rapidement avec le redshift [50]. Fig. 11 Luminosité en bande B de la distribution finale, vue de face (panneaux du haut) et de côté (panneaux du bas), pour toutes les étoiles (panneaux de droite), les étoiles fusion (formées avant ou pendant la fusion; panneaux de milieu), et les étoiles disque (formées après la fusion, panneaux de gauche). CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL)AA La Figure 12 montre les profils de luminosité en bande B. À partir de ces courbes, on détermine des longueurs d’échelle de 5.1 kpc pour les étoiles fusion et 4.1 kpc pour les étoiles disque. Un bulbe central est visible à l’intérieur des ~ 3 kpc centraux, en accord avec les résultats de Robertson et al. [42]. Notons que nos conditions initiales n’incluent pas une composante sphéroïdale. Toute étoile située dans une telle composante se retrouverait dans la composante sphéroïdale de la galaxie finale, et donc nos conditions initiales idéalisées sont partiellement responsables de l’absence de composante sphéroïdale importante dans la galaxie finale. Nos résultats demeurent valides tant que toute composante sphéroïdale initiale a une masse trop petite pour affecter la dynamique de la fusion. Fig. 13 Taux de formation stellaire en fonction de l’ âge. Le sursaut de formation d’étoiles qui se produit durant la fusion atteint un maximum de 380M /an. La ligne pointillée indique le début de la fusion. La ligne en tirets indique la division entre la formation des étoiles fusion et celle des étoiles disque. Fig. 12 Profils de luminosité en bande B pour les étoiles fusion (H) et les étoiles disque (+). Les lignes pointillées sont des ajustements entre 2.5 et 15 kpc, et indiquent des longueurs d’échelle de 5.1 et 4.1 kpc (en ignorant une région dense associée à un anneau dans les étoiles disque). Le taux de formation stellaire (Figure 13) montre un sursaut avec un maximum de 380 M /an, durant la fusion. La fin de ce sursaut est utilisée pour diviser les étoiles en étoiles fusion et étoiles disque. Avant la fusion, le taux de formation stellaire est de l’ordre de 30 M /an. Après la fusion, le taux de formation stellaire tombe en dessous de 10 M /an après un milliard d’années. La masse totale des étoiles formées avant, durant et après la collision est de 6.3 H 109M , 33 H 109M et 19 H 109M . Dans la région du disque, 4 kpc < RXY < 10 kpc et |Z| < 1 kpc, les étoiles fusion et étoiles disque ont une masse totale de 3.5 H 109M et 4.4 H 109M . Les étoiles fusion forment une structure plus épaisse que les étoiles disque. Ces deux composantes se distinguent également lorsqu’on considère leurs fonctions de métallicité, comme le montre la Figure 14. Les étoiles fusion ont une métallicité maximale de l’ordre de [Fe/H] ~ −0.8, alors que les étoiles disque ont une métallicité maximale de [Fe/H] ~ −0.2 . La longue queue à faibles métallicités pour les étoiles fusions est due à la différence entre les étoiles formées avant et et celles formées durant le sursaut de formation d’étoiles. Le panneau du haut de la Figure 15 montre la vitesse de rotation des étoiles fusion et étoiles disque. Sans surprise, les étoiles fusion ont une vitesse de rotation nettement plus faible. Fig. 14 Distribution de la métallicité pour les étoiles situées dans la région 4 kpc < RXY < 10 kpc et |Z| < 1 kpc dans la galaxie finale. Ligne pointillée: étoiles disque; ligne à tirets: étoiles fusion; ligne solide: toutes les étoiles. Il est important de mentionner qu’une partie des étoiles fusion sont en contre-rotation. Nous avons mesuré de nouveau la rotation, en excluant les étoiles en contre-rotation, et avons trouvé que leur rotation demeure beaucoup plus faible que celle des étoiles disque. Notre définition de l’époque de transition entre les étoiles fusion et les étoiles disque est en accord avec le changement de la dispersion de vitesse, comme on le voit dans le panneau du bas de la Figure 15, qui montre la dispersion de la vitesse de rotation en fonction du temps de formation des étoiles. La Figure 16 montre les abondances chimiques, pour une tranche dans le plan de la galaxie, à |z| < 1 kpc. Le rapport [α/Fe] en fonction du rayon (en haut à gauche) montre que les étoiles fusion (H) ont une valeur de [α/Fe] ~ 0.35 indépendamment du rayon (bien que dans les régions intérieures associées au bulbe, la valeur soit un peu plus faible), alors que les étoiles disque (+) ont une valeur ~ 0.15 dex plus faible. Le graphique de [α/Fe] en fonction de [Fe/H] (en haut au centre) est intéressant. Les étoiles fusion maintiennent un rapport [α/Fe] plus élevé, même quand leur rapport [Fe/H] a atteint les valeurs LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 241 L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL) disque montrent une légère diminution de [Fe/H] avec la hauteur. Fig. 16 Dans tous les panneaux les symboles H désignent les étoiles fusion et les symboles + désignent les étoiles disque. Panneaux du haut, [α/Fe] en fonction du rayon (gauche), du rapport [Fe/H] (centre), et de la hauteur au-dessus du plan du disque (pour les étoiles avec 4 kpc < RXY < 10 kpc, droite). En bas à gauche, [α/Fe] en fonction du temps. En bas au centre, [Fe/H] en fonction du temps. En bas à droite, [Fe/H] en fonction de la hauteur au-dessus du plan du disque (pour les étoiles avec 4 kpc < RXY < 10 kpc ). Discussion Fig. 15 Panneau du haut: Courbes de rotation pour les étoiles fusion (H) et les étoiles disque (+). Les étoiles en contre-rotation ne sont pas incluses dans ces courbes, et leur courbe de rotation est calculée séparément (∗). Panneau du bas: Dispersion de vitesse dans la direction de rotation en fonction de l’ époque de formation des étoiles. La ligne en tirets correspond à la fin de la fusion, tel qu’indiquée sur la Figure 13. solaires, alors que les étoiles disque qui sont formées avec des valeurs de [Fe/H] ~ −0.5 ont des valeurs relativement faibles de [α/Fe]. L’examen du panneau en bas à gauche, où nous montrons l’évolution de [α/Fe] au cours du temps, aide à expliquer ce résultat. Les premières étoiles ont un rapport [α/Fe] ~ 0.35, proche des conditions initiales, qui diminue au cours du temps avant la fusion. La valeur de [α/Fe] augmente durant la période de sursaut de formation stellaire, ce qui est indiqué par le saut entre le deuxième et le troisième point, pour ensuite diminuer jusqu’à la valeur trouvée dans le disque. Durant le sursaut de formation stellaire, un grand nombre de SNe II produisent une réserve d’éléments α qui permet de maintenir un rapport [α/Fe] élevé, même si le contenu en fer du réservoir de gaz augmente (panneau en bas au centre). Après la fusion, la pollution par les SNe Ia devient importante, et le rapport [α/Fe] est maintenu à une valeur constante. Le panneau en haut à droite montre que ni les étoiles fusion ni les étoiles disque ont un gradient vertical de [α/Fe], alors que les étoiles 242 C PHYSICS IN Deux disques se forment naturellement lors d’une fusion riche en gaz, un disque épais et un disque mince. Le disque épais consiste en étoiles formées avant et durant la collision, bien que certaines étoiles formées avant la collision se retrouvent dans le halo stellaire comme dans les simulations de Springel et Hernquist [41]. Le disque mince se forme rapidement à la fin de la fusion. Le taux élevé de formation stellaire déclenchée par de telles fusions aide à expliquer les abondances chimiques des étoiles. Le sursaut de formation stellaire produit une augmentation rapide de la métallicité (Figure 16, panneau en bas au centre), et la courte échelle de temps de formation stellaire assure que les étoiles formées sont enrichies principalement par les SNe II. Par conséquent les “étoiles fusion” maintiennent un rapport [α/Fe] élevé, même après que leur rapport [Fe/H] ait atteint des valeurs solaires. Les étoiles formées après la fusion (les “étoiles disque”) se forment avec des valeurs faibles de [α/Fe], même celles formées avec un faible [Fe/H] ~ −0.5. Ces étoiles se forment dans un disque mince durant la période calme qui suit la fusion, et ont une faible dispersion de vitesse (Figure 15, panneau du bas). Une simulation précédente a montré que l’échelle de longueur du disque épais était plus courte que celle du disque mince [19]. Ici, nous obtenons le résultat inverse. La population chaude de la fusion a un profil exponentiel avec une longueur d’échelle plus grande que celle de la population du disque qui se forme plus tard. Ce résultat est en accord avec les observations, qui trouvent que l’échelle de longueur du disque épais est systématiquement plus grande que celle du disque mince [40]. Ceci peut favoriser une fusion riche en gaz comme étant une phase importante de la formation des galaxies spirales. Des simulations futures vont déterminer si les disques vieux et chauds, CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL)AA avec une longueur d’échelle plus grande que celle des disques jeunes et froid, sont produits pour un grand éventail de paramètres de fusion. Il faut interpréter les résultats prudemment, puisque la croissance subséquente du disque mince par déposition de gaz (absent de nos simulations) pourrait augmenter l’échelle de longueur de disque mince [51]. Yoachim et Dalcanton [40] trouvent que les galaxies spirales de faible masse ont des rapports de masse (disque épais: disque mince) plus grand. Ils y voient une évidence de la formation du disque épais par accrétion directe d’étoiles, puisque les progéniteurs de galaxies de faible masse vont plus facilement éjecter leur gaz hors de leur faible puit de potentiel avant la fusion. Malgré tout, les observations suggèrent que les galaxies de faible masse sont en fait plus riches en gaz, autant à redshift faible [52] qu’à redshift élevé [53], favorisant les fusions riches en gaz comme étant responsables des rapports de masse disque épais:mince élevés dans les galaxies de faible masse. De plus, la croissance du disque mince dans les petites galaxies est peutêtre contrôlée par leurs faibles densités [54] et l’effet rétroactif des supernovae. Le rapport de masse élevé du disque épais au disque mince dans les galaxies de faible masse résulterait alors d’une croissance plus faible du disque mince. Notre étude idéalisée n’inclut pas l’accrétion de gaz à partir du milieu intergalactique, qui joue un rôle important dans la formation des disques galactiques. De plus, dans le scénario hiérarchique de formation de structures, il est probable que plusieurs fusions riches en gaz se soient produites durant la for- mation d’une galaxie spirale [44]. Un mode d’accrétion froide à partir de structures filamentaires se produit également dans ce scénario. Cependant, notre étude supporte l’idée que l’accrétion violente de galaxies riches en gaz joue un rôle central dans la formation du disque épais. En ignorant l’accrétion froide, notre étude simplifiée met en évidence l’effet du sursaut de formation d’étoiles associé à de telles fusions sur les abondances chimiques des étoiles ainsi formées, en particulier les abondances élevées d’éléments α à métallicités élevées et les gradients verticaux d’abondances. Nous ignorons encore si l’accrétion froide seule, ou encore la dispersion de grands amas d’étoiles [55,56], peuvent reproduire de telles signatures chimiques. Les fusions riches en gaz constituent le processus dominant dans la formation des disques épais et fournissent une explication naturelle pour les abondances et gradients observés dans les composantes de la Voie lactée. Une époque de fusions riches en gaz à redshift élevé semble constituer une phase importante dans la formation des galaxies spirales. REMERCIEMENTS Toutes les simulations numériques présentées dans cette article ont été réalisées au Laboratoire d’Astrophysique Numérique de l’Université Laval. Ces recherches sont financées par le programme des Chaires de Recherche du Canada, le Conseil de Recherche en Science Naturelles et Génie du Canada et le Conseil Australien de la Recherche. BIBLIOGRAPHIE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. D. Burstein, “Structure and origin of S0 galaxies. III - The luminosity distribution perpendicular to the plane of the disks in S0’s”, ApJ, 234, 829 (1979). G. Gilmore et N. Reid, “New light on faint stars. III - Galactic structure towards the South Pole and the Galactic thick disc”, MNRAS, 202, 1025 (1983). M. Chiba et T.C. Beers, “Kinematics of metal-poor stars in the Galaxy. III. Formation of the stellar halo and thick disk as revealed from a large sample of nonkinematically selected stars”, AJ, 119, 2843 (2000). B. Edvardsson, J. Anderson, B. Gustafsson, D.L. Lambert, P.E. Nissen et J. Tomkin, “The chemical evolution of the galactic disk – Part one – Analysis and results”, A&A, 275, 101 (1993). P. Girard et C. Soubiran, “[α/Fe] in the thin and the thick disc: towards an automatic parametrization of stellar spectra”, dans Threedimensional universe with Gaia, eds. C. Turon, K.S. O’Flaherty et M.A.C. Perryman (ESA SP-576), p. 169 (2005). K. Fuhrmann, “Nearby stars of the Galactic disk and halo”, A&A, 338, 161 (1998). T. Bensby, S. Feltzing, I. Lundström et I. Ilyin, “ α-, r-, and s-process element trends in the Galactic thin and thick disks”, A&A, 433, 185 (2005). S. Feltzing, T. Bensby et I. Lundström, “Signatures of SN Ia in the galactic thick disk. Observational evidence from α-elements in 67 dwarf stars in the solar neighbourhood”, A&A, 397, L1 (2003). L. Mashonkina, T. Gehren, C. Travaglio et T. Borkova, “Mg, Ba and Eu abundances in thick disk and halo stars”, A&A, 397, 275 (2003). J.X. Prochaska, S.O. Naumov, B.W. Carney, A. McWilliam et A.M. Wolfe, “The Galactic thick disk stellar abundances”, AJ, 120, 2513 (2000). B.E. Reddy, J. Tomkin, D.L. Lambert et C. Allende Prieto, “The chemical compositions of Galactic disc F and G dwarfs”, MNRAS, 340, 304 (2003). K.P. Schröder et B.E.J. Pagel, “Galactic archaeology: initial mass function and depletion in the thin disc”, MNRAS, 343, 1231 (2003). G. Tautvaisiene, B. Edvardsson, I. Tuominen et I. Ilyin, “Chemical composition of red horizontal branch stars in the thick disk of the Galaxy”, A&A, 380, 578 (2001). G. Gilmore, R.F.G. Wyse et J.B. Jones, “A determination of the thick disk chemical abundance distribution: Implications for galaxy evolution”, AJ, 109, 1095 (1995). J. Rong, R. Buser et S. Karali, “The new Basel high-latitude field star survey of the Galaxy. V. The metallicity distributions in the inner-Galaxy fields SA 107 and NGC 6171”, A&A, 365, 431 (2001). J.J. Dalcanton et R.A. Bernstein, ”A structural and dynamical study of late-type, edge-on galaxies. II. Vertical color gradients and the detection of ubiquitous thick disks”, AJ, 124, 1328 (2002). LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 243 L’ÉVOLUTION CHIMIQUE DES GALAXIES (MARTEL) 17. J. Mould, “Red thick disks of nearby galaxies”, AJ, 129, 698 (2005). 18. D. Kawata et B.K. Gibson, “GCD+: a new chemodynamical approach to modelling supernovae and chemical enrichment in elliptical galaxies”, MNRAS, 340, 908 (2003). 19. C.B. Brook, D. Kawata, B.K. Gibson et K. Freeman, “The emergence of the thick disk in a cold dark matter universe”, ApJ, 612, 894 (2004) 20. T.J. Davidge, “The disk and extraplanar regions of NGC 55”, ApJ, 622, 279 (2005). 21. T. Padmanabhan, Structure Formation in the Universe (Cambridge: Cambridge University Press) (1993). 22. C. Power, Thèse de doctorat, University of Durham (2003). 23. A.C. Quillen et D. Garnett, “The saturation of disk heating in the solar neighborhood and evidence for a merger 9 Gyr ago”, dans Galaxy Disks and Disk Galaxies, ASP Conference Series 230, eds. G. Jose, S.J. Funes et E.M. Corsini, p. 87 (2001). 24. B. Nordström, et al., “The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14000 F and G dwarfs”, A&A, 418, 989 (2004). 25. C.B. Brook, D. Kawata, B.K. Gibson et C. Flynn, “Stellar halo constraints on simulated late-type galaxies”, MNRAS, 349, 52 (2004). 26. A. Meza, J.F. Navarro, G. Abadi et M. Steinmetz, “Accretion relics in the solar neighbourhood: debris from ω Cen’s parent galaxy”, MNRAS, 359, 93 (2005). 27. S.E. Woosley et T.A. Weaver, “The evolution and explosion of massive stars. II. explosive hydrodynamics and nucleosynthesis”, ApJS, 101, 181 (1995). 28. G. Gilmore, R.F.G. Wyse et K. Kuijken, “Kinematics, chemistry, and structure of the Galaxy”, ARA&A, 27, 555 (1989). 29. R.F.G. Wyse, “Galactic Structure”, dans The Local Group as an Astrophysical Laboratory, ed. M. Livio (Cambridge: Cambridge University Press) (2004). 30. C. Murali, N. Katz, L. Hernquist, D.H. Weinberg et R. Davé, “The growth of galaxies in cosmological simulations of structure formation”, ApJ, 571, 1 (2002). 31. A.C. Seth, J.J. Dalcanton et R.S. de Jong, “A study of edge-on galaxies with the Hubble Space Telescope Advanced Camera for Surveys. I. Initial results”, AJ, 129, 1331 (2005). 32. B. Robertson, J.S. Bullock, A.S. Font, K.S. Johnston et L. Hernquist, “ Cold Dark Matter, stellar feedback, and the galactic halo abundance pattern”, ApJ, 632, 872 (2005). 33. P.J. Quinn, L. Hernquist et D.P. Fullagar, “Heating of galactic disks by mergers”, ApJ, 403, 74 (1993). 34. C.B. Brook, D. Kawata, B.K. Gibson et C. Flynn, “Galactic halo stars in phase space: A hint of satellite accretion?”, ApJ, 585, L125 (2003). 35. N.F. Martin, R.A. Ibata, M. Ballazzini, M.J. Irwin, G.F. Lewis et W. Dehnen, “A dwarf galaxy remnant in Canis Major: the fossil of an in-plane accretion on to the Milky Way”, MNRAS, 348, 12 (2004). 36. J.F. Navarro, A. Helmi et K.C. Freeman, “The extragalactic origin of the Arcturus group”, ApJ, 601, L43 (2004). 37. B. Yanny et al., “A low-latitude halo stream around the Milky Way”, ApJ, 588, 824 (2003). 38. A. Helmi, S.D.M. White, P.T. de Zeeuw et H. Zhoa, “Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way”, Nature, 402, 53 (1999). 39. R.A. Ibata, G. Gilmore et M.J. Irwin, “A dwarf satellite galaxy in Sagittarius,” Nature, 370, 194 (1994). 40. P. Yoachim et J.J. Dalcanton, “Structural parameters of thin and thick disks in edge-on disk galaxies”, AJ, 131, 226 (2006). 41. V. Springel et L. Hernquist, “Formation of a spiral galaxy in a major merger”, ApJ, 622, L9 (2005). 42. B.E. Robertson, J.S. Bullock, T.J. Cox, T. Di Matteo, L. Hernquist, V. Springel et N. Yoshida, “A merger-driven scenario for cosmological disk galaxy formation”, ApJ, 645, 986 (2006). 43. J.J. Dalcanton et R.A. Bernstein, “A structural and dynamical study of late-type, edge-on galaxies. I. Sample selection and imaging data”, AJ, 120, 203 (2000). 44. C.B. Brook, B.K. Gibson, H. Martel et D. Kawata, “The emergence of the thick disk in a CDM universe. II. Colors and abundance patterns”, ApJ, 630, 298 (2005). 45. A.S. Font, K.V. Johnston, J.S. Bullock et B.E. Robertson, “Chemical abundance distributions of galactic halos and their satellite systems in a CDM universe”, ApJ, 638, 585 (2006). 46. A. Renda, B.K. Gibson, M. Mouhcine, R.A. Ibata, D. Kawata, C. Flynn et C.B. Brook, “The stellar halo metallicity-luminosity relationship for spiral galaxies”, MNRAS, 363, L16 (2005). 47. F. Governato, B. Willman, L. Mayer, A. Brooks, G. Stinson, O. Valenzuela, J. Wadsley et T. Quinn, “Forming disc galaxies in Λ CDM simulations”, MNRAS, 374, 1479 (2006). 48. B.E. Reddy, D.L. Lambert et P.C. Allende, “Elemental abundance survey of the Galactic thick disc”, MNRAS, 367, 1329 (2006). 49. K. Kuijken et J. Dubinski, “Nearly self-consistent disc/bulge/halo models for galaxies”, MNRAS, 277, 1341 (1995). 50. R.J. Lavery, A. Remijan, V. Charmandaris, R.D. Hayes et A.A. Ring, “Probing the evolution of the galaxy interaction/merger rate using collisional ring galaxies”, ApJ, 612, 679 (2004). 51. C.B. Brook, D. Kawata, H. Martel, B.K. Gibson et J. Bailin, “Disk evolution since z ~ 1 in a CDM Universe”, ApJ, 639, 126 (2006). 52. J.M. Schombert, S.S. McGaugh et J.-A. Eder, “Gas mass fractions and the evolution of low surface brightness dwarf galaxies”, AJ, 121, 2420 (2001). 53. D.K. Erb, A.E. Shapley, M. Pettini, C.C. Steidel, N.A. Reddy et K. L. Adelberger, “The mass-metallicity relation at z ~ 2”, ApJ, 644, 813 (2006). 54. J.J. Dalcanton, “The metallicity of Galaxy disks: infall versus outflow”, ApJ, 658, 941 (2007). 55. B.G. Elmegreen et D.M. Elmegreen, “Observations of thick disks in the Hubble Space Telescope Ultra Deep Field”, ApJ, 650, 644 (2006). 56. P. Kroupa, “Thickening of galactic discs through clustered star formation”, MNRAS, 330, 707 (2002). 244 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ARTICLE DE FOND RESULTS BY FROM THE GEMINI DEEP DEEP SURVEY R.G. ABRAHAM, I. DAMJANOV, E. MENTUCH, P. NAIR, R. CARLBERG, D. CRAMPTON, R. MUROWINSKI, K. GLAZEBROOK, P. MCCARTHY, H. YAN, S. SAVAGLIO, D. LE BORGNE, H-W. CHEN, I. JØRGENSEN, K. ROTH, S. JUNEAU, AND R. MARZKE T his article presents some highlights from the first ten papers produced by the Gemini Deep Deep Survey (GDDS) [1]. The goal of the GDDS is to use a stellar-mass-selected sample to probe galaxy evolution at redshifts, z, in the interval 1 < z < 2. This range of redshifts corresponds to times when the Universe is between three and six billion years old. This is a special time in the history of the Cosmos, because it spans the epoch at which the rate at which stars form in the Universe is at its peak, and over which around half of all the existing stars in the Universe formed. Sadly, it also corresponds to a time where relatively little is known about galaxies. In fact, at the time the GDDS was proposed, galaxies with redshifts in the range 1 < z < 2 were so rare that this interval in cosmic history was known as the ‘redshift desert’. from which one can obtain a redshift using spectrographs which operate at visible wavelengths. It is possible to obtain redshifts using near-infrared spectrographs, but at present these are inefficient compared to visible wavelength spectrographs, and near-infrared spectroscopy has only yielded redshifts for a handful of objects. It is possible to forego the need for emission lines completely and to obtain redshifts using the overall shape of a galaxy’s spectrum (the so-called continuum spectrum), but this requires very high signal-to-noise spectroscopy, which is difficult to obtain for faint galaxies, because the night sky changes in brightness (at a low level) on a timescale of minutes. This changing sky brightness results in imperfect sky removal and limits the effective exposure time to a few hours with most spectrographs. Fortunately, these prob- Why is it so difficult to obtain redshifts for galaxies in this particular redshift range? The main reason is that most galaxy redshifts are obtained using bright emission lines. The majority of these lines are produced at wavelengths which cluster at either visible wave-lengths, or else at farultraviolet wavelengths, with few lines in between (in the near-ultraviolet). As galaxies are redshifted, visible wavelength emission is shifted into the near-infrared, and the gap in the near-ultraviolet is redshifted into visible wavelengths. Thus, by the time we reach z=1, few lines remain SUMMARY The Gemini Deep Deep Survey is a survey of galaxies in the redshift range 1 < z < 2 whose main purpose is to determine the abundance of galaxies as a function of mass at the time when the Universe was forming stars most quickly. In a series of papers published over the last four years, the survey has shown that massive and old galaxies are surprisingly common in the distant Universe, lending strong support to a new paradigm for galaxy formation known as 'Cosmic Downsizing'. In many ways the oldest and most massive objects in the survey resemble nearby elliptical galaxies, but they also show some rather interesting differences, such as being much more compact and dense than nearby galaxies of similar mass. Fig. 1 Spectra of evolved/quiescent GDDS galaxies with z > 1.3. The SDSS Lumi-nous Red Galaxy composite has been overlaid on each spectrum and an offset has been applied to each spectrum in order to stack them vertically. The locations of the stellar MgII2800 and MgI2852 lines are indicated by the dashed lines. Taken from GDDS paper IV [2]. R.G. Abraham <abraham@astro. utoronto.ca>, I. Damjanov, E. Mentuch, P. Nair, R. Carlberg (University of Toronto); D. Crampton, R. Murowinski (Herzberg Institute of Astrophysics, National Research Council of Canada); K. Glazebrook (Swinburne University of Technology); P. McCarthy, H. Yan (Observatories of the Carnegie Institution of Washington); S. Savaglio (MaxPlanck-Institut fur extraterrestrische Physik); D. Le Borgne (Institut d’Astro-physique de Paris); H-W. Chen (University of Chicago); I. Jørgensen, K. Roth (Gemini Observatory); S. Juneau (University of Arizona); R. Marzke (San Francisco State University) LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 245 RESULTS FROM THE GDDS (ABRAHAM) lems go away when studying the most distant galaxies, because these are at z > 3 and for these objects prominent far-UV spectral lines are once again redshifted into visibility, so paradoxically it is easier to obtain redshifts for these very distant galaxies than it is to obtain redshifts in the ‘redshift desert’. By the time the GDDS had begun some progress had been made in overcoming these limitations, and decent-sized samples of galaxies at 1 < z < 2 were at last being obtained. However, these samples were restricted to young galaxies, which are very luminous in the near-ultraviolet, and older galaxies (assuming they exist) would be missed by this technique. Older galaxies in the distant Universe are arguably the most interesting to understand, since they form soon after the big bang, and could well contain most of the stars. Our ambition with the GDDS was to look for these older galaxies in the redshift desert. To do this, we needed a new technique that would allow us to expose on small patches of sky for times much longer than is possible using conventional spectroscopy, so that we could obtain redshifts for these galaxies using their continuum spectra. As has been noted, conventional spectrographs do not allow these sorts of observations to be done effectively because of sky subtraction limitations, so we needed a better approach. Fig. 2 The universal star-formation rate per unit volume for galaxies in different stellar mass ranges presented in GDDS Paper VI [3]. Note how the star-formation rate evolution is a very strong function of stellar mass. These star-formation rates were derived from L([OII]) (circles) and from rest-UV flux (triangles). The symbols are color-coded by the logarithmic mass ranges labeled in the figure. The error bars in redshift show the width of the redshift bins used. The squares are the values found locally by Brinchmann et al. [4] converted according to our assumed IMF and dust correction. The compilation made by Hopkins [5], where all the values are converted to a (ΩM = 0.3, ΩΛ = 0.7, h = 0.7) cosmology, are overplotted with diamonds. The line is the fit derived by Cole et al. [6] assuming AV = 0.6 (solid line). 246 C PHYSICS IN Our strategy was to implement an innovative new approach to sky subtraction and multiplexing on the Gemini telescopes. This technique, known as “nod and shuffle”, was proposed independently by Glazebrook & Bland-Hawthorn in 2001 [7], and (in a less-developed form) by Cuillandre et al. in 1994 [8]. The idea is to use part of the CCD detector as a “storage register” for a beam-switched image. Beam-switching is achieved by rapid alternation between object and sky positions (“nodding”), which is undertaken with no detector readout penalty (because modern detectors allow one to move charge around without reading out the device). Instead, the sky image is shuffled to a storage region on the CCD. Typically, nodding takes place every 30 to 60 seconds, which is a timescale faster than the variations of the airglow emission lines that dominate the sky background. Because both the sky and objects are observed quasi-simultaneously through the same optical path, slits and pixels, nod and shuffle results in an order of magnitude improvement in sky subtraction, opening up significant new observational capabilities for large telescopes. For example, very deep integrations (10 times longer than is practical with conventional spectroscopy) are possible with nod and shuffle. Using nod & shuffle on the Gemini telescope, integration times as long as 30 hours per field allowed us to determine continuum redshifts from rest-frame UV metallic absorption features, rather than relying on emission lines from star-forming galaxies (see figure 1). The main result from the GDDS is that massive old galaxies are far more common than originally expected at z ~ 1.5 (GDDS Paper III), and that many of these systems are surprisingly old (GDDS Paper IV). It is important to note though that similar goal to ours motivated the K20 Survey [9] on the VLT (an ESO Key Project), and the two surveys reported similar results at similar times. Amusingly, key papers even appeared in the same issue of Nature [10,11]. For example, GDDS and K20 obtained similar evolving stellar mass functions and ages for massive ‘red and dead’ systems. In retrospect, the convergence on such fundamental results from two independent surveys strengthened the credibility of the results from both teams. Taken together, these early results lent considerable impetus to Cowie et al.’s notion of galactic ‘downsizing’, evidence for which was summarized in GDDS Paper V [12]. In this ‘downsizing’ picture, the most massive galaxies form first (soon after the big bang), and as the Universe evolves less massive galaxies form (see figure 2). This picture was in direct contradiction with popular hierarchical models where galaxy assembly traced the build up of dark matter haloes, although recent versions of these models now are able to account for downsizing by decoupling the behaviour of galaxies from that of the underlying dark matter. At least partly a result of observations by the GDDS, K20 (and other surveys), it is probably fair to say that ‘downsizing’ is now entrenched as the defacto observational paradigm for high-redshift galaxy formation. More recent papers in the GDDS series have tended to use the survey data as a starting point for analyses of data obtained from other facilities (e.g. the Hubble Space Telescope and the Spitzer Space Telescope). Data from the Hubble Space CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) RESULTS FROM THE GDDS (ABRAHAM)AA Fig. 4 Near-infrared images obtained with the Hubble Space Telescope’s NICMOS camera of GDDS galaxies, as presented in GDDS Paper X [14]. The three columns show the galaxies (left column), the best fitting model (middle column), and residuals obtained by subtracting the models from the galaxies (right column). The residual images have been scaled by a factor of 10 compared to the data and models to bring out faint features. The bars at the bottom are one arcsecond in length. Note the very compact nature of several of the systems shown. Postage-stamp images taken from GDDS Paper VIII [13] showing the mor-phologies of the 54 galaxies in our GDDS sample with log(stellar mass) > 10.5. These galaxies have been sorted in order of decreasing redshift. Early-type galaxies are circled. Each image is 5 arcsec by 5 arcsec in size, and labeled with the galaxy's ID number, spectroscopic classification, redshift confidence class, rest-frame (U-B) color, redshift, and stellar mass. Objects without high-confidence spectroscopic redshifts have their redshifts labeled in parentheses. The border of each galaxy image is colored according to the galaxy's spectroscopic classification. Objects with red borders have evolved spectra. The gray regions surrounding groups of postage stamps indicate which of three broad redshift bins the objects fall within. change their appearance by simply rearranging populations of existing stars, and the peak era for structural change in galaxies does not necessarily correspond to the peak era for star formation. This is also seen at higher redshifts than those probed by the GDDS, where the paucity of evolving red galaxies at z > 2 in deep infrared samples [15-17], shows that the assembly epoch for elliptical galaxies is probably decoupled from the epoch at which most of the stars in the galaxy formed. Telescope has proved particularly valuable, forming a key component of the analysis in five of the later GDDS papers. For example, in GDDS Paper VIII we used the Hubble Space Telescope's Advanced Camera for Surveys to measure the mass density function of morphologically selected early-type galaxies in the GDDS fields. We find that at z = 1 approximately 70% of the stars in massive galaxies live in elliptical galaxies (figure 3). This fraction is remarkably similar to that seen in the local Universe. However, we also detect very rapid evolution in the abundance of massive red elliptical galaxies over the range 1.0 < z < 1.6, suggesting that in this epoch the strong colormorphology relationship seen in the nearby Universe is beginning to fall into place. This works begins to place downsizing in a broader context which encompasses the formation of the standard Hubble sequence. More importantly, it also shows that the space density of an established galaxy class (elliptical galaxies) can evolve strongly, even as the stars within the galaxy evolve weakly. One must therefore be careful to decouple structural evolution of galaxies from the evolution of the stars within the galaxies. It seems that even old galaxies can An extreme example of this phenomenon may well have emerged from the most recent GDDS paper [14], which analyzed the results of near-infrared imaging of 16 high mass passively evolving galaxies, most of which were old (ages > 1 Gyr). Most of these galaxies show compact regular morphologies consistent with classical elliptical galaxies. However, around one-third of these galaxies are extraordinarily compact, even though they are massive (figure 4). These elliptical galaxies are a factor of 2–3 smaller than elliptical galaxies of similar mass today. While similar systems have been seen at z>2 [18], detection of old counterparts to these objects in the GDDS shows that these galaxies must somehow change their size quite radically after their stars are already mature. Similarly compact massive galaxies are completely absent in the nearby Universe, and the objects seen in the GDDS study have mass densities that are an order of magnitude larger then elliptical galaxies today. Damjanov et al. [14] also show that size evolution occurs primarily in the 1.1 < z < 1.5 redshift interval, or over a time of only 1.6 billion years. The galaxies seen by Damjanov et al. [14] are already as mas- Fig. 3 LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 247 RESULTS FROM THE GDDS (ABRAHAM) most interesting science to emerge from the GDDS has nothing to do with the original science goals of the survey. A prime example of this is the work that has emerged on the metallicities of 0.4 < z < 1 galaxies. GDDS Paper VII by Savagio et al. [22] reports the discovery of a mass-metallicity (MZ) relation in high redshift galaxies. This result emerges from an investigation of the bluer galaxies on our spectroscopic masks. The standard way to determine metallicities in high-z galaxies is to use emission lines originating in HII regions. By definition, this technique is selecting young star forming galaxies which, as noted earlier, are not the targets of priority for the GDDS. However, we did have significant numbers of these systems in our survey as second priority targets. By combining spectra for 29 blue GDDS galaxies with a similar data set from the CFHT at lower redshift (obtained as part of the Canada France Redshift Survey; CFRS [23] we Fig. 5 Effective radius Re as a function of stellar mass for five samples of early-type galaxies obtained a total sample of 65 galaxies. in the redshift range 1.1 < z < 2. Points are color-coded by two redshift ranges (red = The resulting mass-metallicity relation, z>1.46, blue = z < 1.46). Different symbols correspond to different surveys. The size- clearly detected in the GDDS and CFRS mass relation for local early-type galaxies in the Sloan Digital Sky Survey is presented sample, is different from the same relawith sizes taken from Bernardi et al. [19], and matched with masses calculated following tion defined by Tremonti et al. in the local Baldry et al. [20] (black points). Contours represent linearly spaced regions of constant universe [24]. It appears that by z ~ 0.7 density of galaxies in size-mass parameter space. The solid line is the best-fit relation to massive galaxies have achieved a mature the data points at redshifts 1.2 < z < 2. Note that at high redshift elliptical galaxies of a chemical state, similar to massive galaxgiven mass are a factor of 2-3 smaller than their counterparts at low redshift. Three arrows denote the effects of various models for size growth. The correspond to equal ies at z ~ 0.1. On the other hand, small mass dry mergers [21], adiabatic ex-pansion with 50% mass loss, and pure size evolution galaxies are still in the process of forming at constant stellar mass. The arrows denote the effects of these on the positions of both their metals. By combining our massmetallicity relation with the local relathe least and the most massive galaxy. tion, we were able to build up a simple empirical model for the evolution in the relation which reproduces the more recent mass-metallicity sive as the most massive field galaxies seen nearby (figure 5), relation in z ~ 3 Lyman break galaxies reported by Erb et suggesting that they must somehow grow bigger without growal. [25]. This model is also consistent with the downsizing ing more massive. At present no physical mechanism for growdescribed earlier, since in our model to the e-folding time for ing a dense, massive, old galaxy by a large factor without formstar formation is inversely proportional to the initial mass of ing large numbers of new stars is known, so it seems that there galaxies, and it provides an extra dimension to the exploration must be a missing ingredient in our understanding of galaxy of galaxy formation that was completely unanticipated when formation. we proposed the survey: investigation of the time evolution of the heavy element enrichment in galaxies with different initial Although the highest-impact papers to have emerged (so far) conditions. from the GDDS focus on the abundance of massive red galaxies at high redshift, it comes as no surprise that much of the REFERENCES 1. 2. 3. Abraham, R.G., et al., “The Gemini Deep Deep Survey. I. Introduction to the Survey, Catalogs, and Composite Spectra” (Paper I), AJ, 127, 2455, (2004). McCarthy, P.J., et al., “Evolved Galaxies at z > 1.5 from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems” (Paper IV), ApJ, 614L, 9 (2004). Juneau, S. et al., “Cosmic Star Formation History and Its Dependence on Galaxy Stellar Mass” (Paper V), ApJ, 619L,135 (2005). 248 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) RESULTS FROM THE GDDS (ABRAHAM)AA 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. Brinchmann, J., Charlot, S., White, S.D.M., Tremonti, C., Kauffmann, G., Heckman, T., & Brinkmann, J., MNRAS, 351, 1151 (2004). Hopkins, A.M., ApJ, 615, 209 (2004). Cole, S., et al., MNRAS, 326, 255 (2001). Glazebrook, K. and Bland-Hawthorn, J., PASP, 113, 197 (2001). Cuillandre, J.C., Fort, B., Picat, J.P., Soucail, J.P., Altieri, B., Beigbeder, F., Duplin, J.P., Pourthie, T., & Ratier, G., A&A, 281, 603 (1994). Cimatti, A., et al., A&A, 482, 21 (2008). Glazebrook, K., et al., “A high abundance of massive galaxies 3-6 billion years after the Big Bang” (Paper III), Nature, 430, 181 (2004). Fontana, A., et al., A&A, 424, 23 (2004). Cowie, L.L., Songaila, A., Hu, E.M. & Cohen, J.G., AJ, 112, 839 (1996). Abraham, R.G. et al., “The Gemini Deep Deep Survey: VIII. When Did Early-type Galaxies Form?” (Paper VIII), ApJ, 669, 184 (2007). Damjanov et al., “Red Nuggets at z ~ 1.5: Compact passive galaxies and the formation of the Kormendy Relation” (Paper X), ApJ, submitted, (2008). Kriek, M., et al., ApJ, 649, L71 (2006). Labbé, I., et al., ApJ, 624, L81 (2005). Cimatti, A., et al., Nature, 430, 184 (2004). van Dokkum, P.G., et al., ApJ, 677, L5 (2008). Bernardi, M., et al., AJ, 125, 1817 (2003). Baldry, I.K., Glazebrook, K., & Driver, S.P. , MNRAS, 388, 945 (2008). Boylan-Kolchin, M., Ma, C., & Quataert, E., MNRAS, 369, 1081 (2006). Savaglio, S., et al., “The Gemini Deep Deep Survey. VII. The Redshift Evolution of the Mass-Metallicity Relation” (Paper VII), ApJ, 635, 260 (2005). Lilly, S.J., Le Fevre, O., Hammer, F., & Crampton, D. ApJ, 460L, 1 (1996). Tremonti, C.A., Heckman, T.M., Kauffmann, G., Brinchmann, J., Charlot, S., White, S.D.M., Seibert, M., Peng, E.W., Schlegel, D.J., Uomoto, A., Fukugita, M., & Brinkmann, J., ApJ, 613, 898 (2004). Erb, D.K., Shapley, A.E., Pettini, M., Steidel, C.C., Reddy, N.A., & Adelberger, K.L., ApJ, 644, 813 (2006). ADDITIONAL REFERENCES Kriek, M., et al., ApJ, 669, 776 (2007). Le Borgne, D., et al., “Gemini Deep Deep Survey. VI. Massive Hästrong Galaxies at z ~ 1” (Paper VI), ApJ, 642, 48 (2006). Longhetti, M., et al., MNRAS, 374, 614 (2007). McCarthy, P.J., et al., “A Compact Cluster of Massive Red Galaxies at a Redshift of 1.5” (Paper IX), ApJ, 664, 17 (2007). McGrath, E.J., Stockton, A. & Canalizo, G., ApJ, 669, 241 (2007). Savaglio, S., et al., “The Gemini Deep Deep Survey. II. Metals in Star-forming Galaxies at Redshift 1.3 < z < 2” (Paper II), ApJ, 602, 51 (2004). LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 249 DEPARTMENTAL MEMBERS / MEMBRES DÉPARTEMENTAUX - Physics Departments / Départements de physique (as at 2008 November 1 / au 1er novembre 2008) Acadia University Bishop's University Brandon University Brock University Carleton University Collège Ahuntsic Collège François-Xavier-Garneau Collège Montmorency Concordia University Dalhousie University École Polytechnique de Montréal Lakehead University Laurentian University McGill University McMaster University Memorial Univ. of Newfoundland Mount Allison University Okanagan University College Queen's University Royal Military College of Canada Saint Mary’s University Simon Fraser University St. Francis Xavier University Trent University Université de Moncton Université de Montréal Université de Sherbrooke Université du Québec à Trois-Rivières Université Laval University of Alberta University of British Columbia University of Calgary University of Guelph University of Lethbridge University of Manitoba University of New Brunswick University of Northern British Columbia University of Ontario Inst. of Technology University of Ottawa University of Prince Edward Island University of Regina University of Saskatchewan (and Eng. Phys.) University of Toronto University of Toronto (Medical Biophysics) University of Victoria University of Waterloo University of Western Ontario University of Windsor University of Winnipeg Wilfrid Laurier University York University SUSTAINING MEMBERS / MEMBRES DE SOUTIEN (as at 2008 November 1 / au 1er novembre 2008) Richard Hemingway Akira Hirose Thomas Jackman Thayyil Jayachandran Béla Joós James D. King Ron M. Lees Louis Marchildon David B. McLay Jean-Louis Meunier J.C. Douglas Milton Michael Morrow A. John Alcock Thomas K. Alexander C. Bruce Bigham Harvey Buckmaster Allan I. Carswell Walter Davidson M. Christian Demers Fergus Devereaux Marie D'Iorio Gerald Dolling Gordon W.F. Drake Elmer H. Hara Michael Kevin O'Neill Allan Offenberger A. Okazaki Shelley Page Roger Phillips Beverly Robertson Robert G.H. Robertson Pekka Sinervo Boris P. Stoicheff Eric C. Svensson Louis Taillefer John G.V. Taylor Andrej Tenne-Sens Michael Thewalt Greg J. Trayling William Trischuk Sreeram Valluri Henry M. Van Driel Paul S. Vincett Erich Vogt Andreas T. Warburton CORPORATE-INSTITUTIONAL MEMBERS / MEMBRES CORPORATIFS-INSTITUTIONNELS (as at 2008 November 1 / au 1er novembre 2008) The Corporate and Institutional Members of the Canadian Association of Physicists are groups of corporations, laboratories, and institutions who, through their membership, support the activities of the Association. The entire proceeds of corporate membership contributions are paid into the CAP Educational Trust Fund and are tax deductible. CORPORATE / CORPORATIFS BUBBLE TECHNOLOGY INDUSTRIES CANADA ANALYTICAL & PROCESS TECH. CANBERRA CO. E-INSTRUCTION Les membres corporatifs et institutionnels de l'Association canadienne des physiciens et physiciennes sont des groupes de corporations, de laboratoires ou d'institutions qui supportent financièrement les activités de l'Association. Les revenus des contributions déductibles aux fins d'impôt des membres corporatifs sont entièrement versés au Fonds Educatif de l'ACP. GLASSMAN HIGH VOLTAGE INC. JOHNSEN ULTRAVAC INC. KURT J. LESKER CANADA INC. PLASMIONIQUE INC. VARIAN CANADA INC. The Canadian Association of Physicists cordially invites interested corporations and institutions to make application for Corporate or Institutional membership. Address all inquiries to the Executive Director. INSTITUTIONAL / INSTITUTIONNELS ATOMIC ENERGY OF CANADA LIMITED CANADIAN LIGHT SOURCE INSTITUTE FOR QUANTUM COMPUTING PERIMETER INSTITUTE FOR THEORETICAL PHYSICS TRIUMF L'Association canadienne des physiciens et physiciennes invite cordialement corporations et institutions à faire partie des membres corporatifs ou institutionnels. Renseignements auprès de la directrice exécutive. CANADIAN ASSOCATION OF PHYSICISTS / ASSOCIATION CANADIENNE DES PHYSICIENS ET PHYSICIENNES Bur. Pièce 112, Imm. McDonald Bldg., Univ. of/d’Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 Phone / Tél : (613) 562-5614; Fax / Téléc : (613) 562-5615 ; Email / courriel : [email protected] INTERNET - HTTP://WWW.CAP.CA 250 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ARTICLE DE FOND LES GALAXIES À SURSAUTS DE FORMATION STELLAIRE DANS L’ULTRAVIOLET PAR CARMELLE ROBERT L es galaxies à sursauts de formation stellaire, communément appelées « starbursts », produisent des étoiles avec une intensité de formation stellaire qui peut atteindre 1 à 100 M an-1 kpc-2 [1]. Cette activité exceptionnelle excède par un facteur 10 à 1000 le taux de formation stellaire d’une galaxie spirale normale comme la Voie lactée et ne saurait durer qu’un temps limité comme le dicte le réservoir de gaz disponible. Les étoiles massives (M$10 M ), qui ont une vie relativement courte, sont observées en grand nombre dans les starbursts. Elles sont en fait responsables des grandes luminosités des sursauts dans la plupart des domaines de longueur d’onde. Les étoiles massives, étant des objets chauds, ont leur maximum d’émission dans l’ultraviolet (UV). Une grande portion de cette radiation UV n’est pas observée (selon Buat et al. [2], seulement 33 % de l’émission UV s’échappe pour être observée), mais ionise le milieu interstellaire qui, par recombinaison, produit des raies spectrales et un continuum dans le visible et l’infrarouge (IR) proche. La poussière, grandement présente dans les sites de formation stellaire jeune, absorbe aussi une partie de l’émission ultraviolette des étoiles massives pour produire une émission thermique observable dans l’IR lointain. Les étoiles massives ont aussi un impact important sur leur environnement. Par le biais de leurs vents et de leur explosion en supernova, elles injectent de grandes quantités d’énergie mécanique dans le milieu RÉSUMÉ Les « starbursts », sursauts de formation stellaire intense et violente, sont très fréquents partout dans l’Univers et représentent une phase importante de l’évolution des galaxies. Dans le domaine des longueurs d’onde de l’ultraviolet, on retrouve des signatures directes des étoiles massives qui offrent un avantage unique pour la caractérisation du contenu stellaire, de la fonction de masse initiale et du mode de formation stellaire des sursauts. Cet article présente la technique de synthèse spectrale de l’ultraviolet utilisée pour décrire les sursauts et résume les grandes conclusions obtenues de son application. interstellaire. Elles représentent aussi la source principale d’enrichissement en éléments lourds, définissant la métallicité des étoiles à venir. Les starbursts constituent une composante importante de notre Univers. On compte quatre grandes galaxies à sursauts (M82, NGC253, NGC4945 et M83) dans un rayon de 10 Mpc (30 millions d’années-lumière) autour de nous. À elles seules, ces galaxies sont responsables de 25 % du taux de formation stellaire local [3]. L’ampleur des sursauts est très variable, allant des régions HII géantes, comme 30 Dor dans le Grand Nuage de Magellan [4] au « Lyman Break Galaxies » à un grand décalage spectral (z $ 2) [5], en passant par les petites galaxies irrégulières bleues, comme IZw18 [6], les starbursts nucléaires, comme le prototype NGC7714 [7] et les galaxies ultra-lumineuses IR découvertes par IRAS [8]. Certains chercheurs préfèrent distinguer galaxies starbursts et régions starbursts en se basant sur l’importance de la luminosité des sursauts par rapport à la galaxie hôte. Néanmoins, une région starburst se limite généralement à un amas compact, dont le diamètre atteint 10 à 100 pc, et renferme entre 104 et 107 M sous forme d’étoiles [9]. Plusieurs de ces régions sont présentes pour former une galaxie starburst comme on a pu l’observer sur les premières images ultraviolettes détaillées obtenues avec le télescope spatial Hubble. Ces mêmes images montrent aussi une émission diffuse importante (75 % du flux UV total du starburst) sous-jacente aux amas de formation stellaire. La dissipation spatiale d’amas plus âgés [10] est l’une des hypothèses proposées pour expliquer cette émission diffuse. L’origine des starbursts est intimement reliée à des perturbations de la composante gazeuse des galaxies. Une corrélation existe entre la présence des sursauts et les signatures de collisions et des effets de marée observés dans plusieurs galaxies [11]. Dans les galaxies starbursts plus isolées, des processus internes sont évoqués pour expliquer la compression du gaz. Parmi ces processus, on propose des instabilités associées à une barre [12] ou à l’activité d’un noyau central [13]. Des sursauts séquentiels, causés par l’énergie mécanique des vents stellaires et des supernovae d’un premier événement, pourraient aussi jouer un rôle sur l’ampleur du phénomène. Carmelle Robert <[email protected]. ca>, Département de physique, de génie physique et d’optique, et Centre de recherche en astrophysique du Québec, Université Laval, Québec, QC G1K 7P4 Importance des observations ultraviolettes L’observation ultraviolette est très sensible à la présence d’étoiles massives, i.e. de type OB, et à leurs descendantes LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 251 LES GALAXIES À SURSAUTS ... (ROBERT) évolutives, les étoiles de type Wolf-Rayet. La distribution de l’énergie dans l’ultraviolet change énormément entre une population stellaire jeune et une population d’âge intermédiaire (~1 Ga) [14]. Ce domaine de longueurs d’onde permet d’établir l’âge d’une population, mais aussi d’étudier la fonction de masse initiale (FMI), la composition chimique, ainsi que le mode et le taux de formation des étoiles. Ces paramètres représentent des indices importants pour la compréhension de la formation stellaire et de l’évolution des galaxies. L’atmosphère terrestre bloquant les photons ultraviolets, l’étude des starbursts a connu un essor important avec les missions spatiales. Kinney et al. [15] ont produit le premier atlas de spectres de galaxies starbursts entre 1200 et 3300 Å avec des données de l’IUE (International Ultraviolet Explorer). Le télescope spatial Hubble a été le premier à offrir des images et spectres ultraviolets d’une résolution spatiale exceptionnelle (e.g. Meurer et al. [9], Whitmore et al. [16] et Leitherer et al. [17]). Les missions HUT (Hopkins Ultraviolet Telescope) et FUSE (Far-Ultraviolet Spectroscopic Explorer, supporté par l’Agence spatiale canadienne) ont grandement ajouté à la collection de spectres en atteignant l’ultraviolet lointain sous les 1200 Å (e.g. Gonzalez-Delgado et al. [18] et Pellerin & Robert [19]). Les images du satellite GALEX, avec un champ de vision encore plus important, permettent une étude systématique incomparable des galaxies starbursts proches (e.g. Bianchi et al. [20]). Cet article discute de l’importance de la spectroscopie ultraviolette pour l’étude du contenu stellaire dans les starbursts. Ces travaux sont grandement motivés par le fait que les starbursts représentent des objets clefs pour la compréhension de notre Univers. Ils sculptent l’allure des galaxies et marquent leur évolution. Ils constituent de plus des laboratoires idéaux pour l’étude des étoiles massives et de leur environnement. SPECTROSCOPIE ULTRAVIOLETTE ET CONTENU STELLAIRE Dans l’ultraviolet, le spectre d’un starburst montre des raies d’absorption qui prennent forme dans le vent et la photosphère des étoiles OB ainsi que dans le milieu interstellaire. Contrairement aux raies stellaires présentes dans le domaine du visible, celles de l’ultraviolet ne sont pas cachées par des raies d’émission du gaz qui accompagne la formation stellaire. Les raies UV qui marquent particulièrement bien la présence d’étoiles OB dans une population stellaire jeune sont celles de PV λλ1118,1128, SiIV λλ1122,1128, CIIIλ1175, NV λ1240, SiIV λ1400, et CIV λ1550 [21,22,23,24]. Les étoiles chaudes développent des vents stellaires denses et rapides dus à la pression de radiation des photons UV sur les métaux de la photosphère stellaire. Il en résulte des profils de raies de type P Cygni dans l’UV. Ces profils montrent une absorption fortement décalée vers le bleu (jusqu’à 3000 km/s) assortie d’une émission du côté rouge. L’intensité et la largeur des profils sont très sensibles à la température et gravité de surface et à l’abondance des métaux de l’étoile. Dans le spectre intégré d’une population stellaire jeune, la forme des raies devient un excel- 252 C PHYSICS IN lent diagnostic des caractéristiques – âge, métallicité, fonction de masse initiale et mode de formation – de la population stellaire présente. Codes de synthèse évolutive Sekiguchi & Anderson [25] sont les pionniers de la synthèse ultraviolette pour l’étude du contenu stellaire de sursauts éloignés, i.e. pour lesquels on ne peut résoudre les étoiles individuellement. Ils ont construit des spectres synthétiques UV de diverses populations stellaires en additionnant des spectres d’étoiles OB individuelles. Ils comparaient ainsi les largeurs équivalentes des raies SiIV λ1400 et CIV λ1550 avec les observations des galaxies. Mas-Hesse & Kunth [26] ont perfectionné cette technique en considérant l’évolution des étoiles en fonction de l’âge de la population synthétique. Avec l’avènement du télescope spatial Hubble en 1990, une meilleure résolution spectrale et un meilleur signal pour des objets éloignés permettent maintenant de bénéficier du plein potentiel du profil particulier des raies stellaires. Des bibliothèques spectrales ultraviolettes (spectographe FOS) ont été assemblées pour les étoiles de la Voie lactée et des Nuages de Magellan (Robert et al. [27], Leitherer et al. [28,29], de Mello et al. [30]) et ont été ajoutées au code de synthèse évolutive Starburst99 (Leitherer et al. [31-33], Varquez et al. [34]) et LavalSB (Dionne [35], Dionne & Robert [36]). La synthèse dans l’UV lointain a été entreprise en parallèle avec les missions Copernicus et HUT (Gonzalez-Delgado et al. [18], Robert et al. [37]). LavalSB est une version parallèle du code Starburst99, qui a été optimisée pour la synthèse UV à quatre métallicités différentes et pour tenir compte de la présence de systèmes binaires massifs dans les populations stellaires. En résumé, ces codes utilisent des tracés évolutifs (issus de modèles d’évolution stellaire) pour suivre les étoiles en fonction de l’âge et de la métallicité de la population stellaire. Cette population est d’abord définie par une FMI, un mode et un taux de formation stellaire. La FMI, qui spécifie la distribution de masses des étoiles dans un échantillon donné, est bien représentée par une loi de puissance, ξ(M) % M−α; elle est caractérisée par une pente α et des masses limites inférieure et supérieure (Mlo et Mup). Le mode de formation stellaire peut être instantané (toutes les étoiles apparaissent en même temps) ou continu (de nouvelles étoiles s’ajoutent en même temps que les anciennes évoluent). À chaque intervalle de temps (petit par rapport au rythme d’évolution des étoiles), un spectre synthétique est alors créé en additionnant les contributions des étoiles individuelles. Les caractéristiques stellaires (masse, température effective, gravité de surface, abondance…) données par les tracés évolutifs permettent, pour chaque étoile, d’assigner un type spectral, de sélectionner un modèle d’atmosphère stellaire et de calibrer en flux un spectre normalisé de la bibliothèque. Finalement, la comparaison des raies synthétiques avec celles observées donne des informations sur l’âge, la métallicité et la FMI du starburst. La comparaison de la distribution d’énergie UV globale avec le meilleur modèle permet d’estimer l’extinction intrinsèque causée par la poussière interstellaire et CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) LES GALAXIES À SURSAUTS ... (ROBERT)AA d’obtenir une limite sur la masse stellaire impliquée. Plusieurs observables peuvent aussi être prédits à partir du meilleur modèle obtenu. Par exemple, on peut calculer la force des raies nébulaires (d’après le nombre d’étoiles massives présentes et les photons ionisants qu’elles produisent) et la quantité d’énergie, la masse et la composition chimique de la matière retournée dans le milieu interstellaire. La technique de synthèse spectrale de l’UV a été appliquée depuis à un grand échantillon de galaxies (Pellerin & Robert [19], Gonzalez-Delgado et al. [39], Chandar et al. [38], Johnson et al. [40], etc.) et certains de ces résultats sont présentés dans la section suivante. λ1400 se transforme en une absorption photosphérique large. L’amplitude des profils diminue généralement si l’abondance en métaux des étoiles est plus faible. Dans le domaine de l’UV lointain, les raies CIII λ1175, PV λλ1118,1128 et SiIV λλ1122,1128 développent similairement des profils P Cygni avec la présence des étoiles chaudes. La raie OIV λλ1032,1038 montre aussi un profil de type P Cygni dans les vents stellaires [37], mais elle n’est pas aussi sensible aux paramètres des étoiles et de la population stellaire. De plus, lorsqu’on se déplace vers les plus petites longueurs d’onde, l’absorption interstellaire (particulièrement due aux raies de l’hydrogène moléculaire) devient très importante. Les Figures 1 à 3 montrent un ensemble de spectres UV synthétiques normalisés, issus de modèles de sursauts instantanés ayant diverses caractéristiques. Entre autres, on remarque que la raie CIV λ1550 montre déjà un profil P Cygni pour une population jeune de 1 Ma, ce profil devient cependant très intense pour une population âgée de 3 Ma et si des étoiles massives sont présentes, i.e. si Mup $ 40 M et α $ 2.35. En comparaison, la raie SiIV λ1400 montre un profil P Cygni seulement si le sursaut a un âge près de 2-5 Ma, i.e. lorsque des supergéantes O sont présentes. Lorsque les étoiles de type B dominent la population stellaire, après 10 à 15 Ma, la raie SiIV Pour un mode de formation stellaire continu, les raies stellaires ne changent plus après qu’un équilibre ait été atteint entre l’ajout de nouvelles étoiles et la mort des étoiles massives (vers 15-20 Ma). Des profils P Cygni avec une amplitude plus faible que celle possible pour un sursaut instantané (due à la dilution des raies par le continuum des vieilles étoiles qui s’additionnent avec le temps) sont alors prédits. Fig. 1 Spectres synthétiques de l’ultraviolet proche pour des sursauts de métallicité et d’âge différents. Les modèles ont été calculés avec LavalSB en utilisant la bibliothèque spectrale construite avec des données du télescope Hubble. Les modèles considèrent un sursaut instantané avec une FMI ayant une pente α = 2.35 et des masses entre 1 et 100 M . Deux métallicités sont représentées : solaire (ligne pleine) et 1/10 solaire (traits pointillés). L’âge du sursaut est indiqué à côté de chaque spectre. Les raies stellaires et interstellaires importantes sont identifiées au-dessus et au-dessous (respectivement) des spectres. Caractérisation des populations stellaires Dans leur ensemble, les diverses études de synthèses de galaxies permettent de tirer deux grandes conclusions : 1) la fonction de masse initiale semble universelle, avec une pente à la Salpeter [41], i.e. α = 2.35, et une masse limite supérieure à 50 M , et 2) la durée de la formation stellaire ne dépasse pas quelques millions d’années. On ne peut mettre de côté certains Fig. 2 Spectres synthétiques de l’ultraviolet lointain pour des sursauts de métallicité et d’âge différents. Les modèles ont été calculés comme pour la Figure 1 en utilisant ici la bibliothèque spectrale obtenue avec FUSE. Les raies interstellaires de l’hydrogène moléculaire ne sont pas identifiées sur la figure, car elles sont trop nombreuses. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 253 LES GALAXIES À SURSAUTS ... (ROBERT) Fig. 3 Effet de la fonction de masse initiale sur les spectres synthétiques de l’ultraviolet proche. Les modèles ont été calculés avec LavalSB en utilisant la bibliothèque spectrale construite avec des données du télescope Hubble. Les modèles considèrent un sursaut instantané de 3 Ma, avec une métallicité solaire et différentes pentes et masses limites supérieures de la FMI. Les paramètres de la FMI sont indiqués au-dessus des spectres. une population stellaire de plus en plus dominée par des étoiles de type B. Cependant, il faut aussi dire qu’une reproduction acceptable des raies observées est possible dans le cas d’un sursaut continu, mais plus vieux, soit ~30 Ma avec Mup = 50 M . Pour le meilleur modèle, instantané ou continu, l’extinction interne E(B-V) doit être environ 0.45 (en adoptant la loi générale d’extinction de Calzeti et al. [45] pour les starbursts) afin de reproduire la pente théorique de la distribution spectrale d’énergie de l’ultraviolet. Les modèles de synthèse de populations prédisent une pente du continuum qui varie peu avec les caractéristiques (âge, métallicité et fonction de masse initiale) d’un jeune sursaut [32]. Ainsi, la masse stellaire minimum qui permet de reproduire le niveau de flux ultraviolet observé est de l’ordre de 106 M . Si l’on suppose qu’un nombre de photons ultraviolets équivalent à ceux observés ionisent le milieu environnant, le flux prédit dans la raie d’émission d’hydrogène Hα est de l’ordre de 0.4x10-12 erg cm-2 s-1, ce qui est en bon accord avec le flux observé [46]. biais et contraintes observationnelles lors de la sélection des sursauts étudiés. Entre autres, un domaine de métallicité limité et la qualité du signal voulue font en sorte que l’on choisit d’abord les régions brillantes, donc de l’Univers local, mais aussi déjà évoluées (i.e. sorties du cocon de matière où elles naissent). DE 30 DOR À NGC3690, EN PASSANT PAR NGC2363 La synthèse spectrale ultraviolette qui se basait sur les premières bibliothèques spectrales UV à haute résolution obtenue avec le télescope Hubble, a d’abord été testée avec 30 Dor [42], la région de formation d’étoile la plus intense du Grand Nuage de Magellan. Ce sursaut étant proche, on y avait déjà identifié individuellement les principales étoiles massives. Le satellite IUE a été utilisé pour effectuer un balayage de R136, l’amas central de 30 Dor, afin d’obtenir des spectres intégrés. La synthèse de ces données a redonné l’âge de 3 Ma déjà connu pour ce sursaut et a bien reproduit les nombres d’étoiles O et B, validant la technique pour des sursauts éloignés. L’étude du spectre la région B2 [43] de la galaxie en interaction NGC3690 observée avec le télescope Hubble, met bien en évidence la puissance et les limites de la technique de synthèse [44]. En adoptant une métallicité solaire pour cette région et une pente standard pour la fonction de masse initiale, on peut reproduire les profils des raies avec un sursaut instantané ayant Mup = 50 M et un âge de 6.5 Ma (voir la Fig. 4). Dans ce cas, on a peu de contraintes sur la fonction de masse initiale; pour cet âge avancé, les étoiles massives ont déjà disparu si elles étaient présentes initialement. Pour cette plage d’âges, la dégénérescence de la solution en âge et en métallicité est importante et on ne peut contraindre simultanément les deux paramètres. Mais l’incertitude sur l’âge demeure faible (soit 1Ma) et la métallicité ne peut être beaucoup plus faible. Comme le montre la Figure 5, si le sursaut est plus jeune que 6.5 Ma, les profils P Cygni vus dans les modèles sont trop forts et s’il est plus vieux que 7 Ma, ils deviennent trop faibles pour 254 C PHYSICS IN Fig. 4 Synthèse spectrale ultraviolette de NGC3690. La figure présente Arp299, un système en interaction dont fait partie NGC3690. L’image du visible de Arp299 a été obtenue à l’Observatoire du mont Mégantic par Daniel Devost. Le carré sur cette image identifie approximativement la région de NGC3690 qui a été observée dans l’UV avec l’instrument FOS du télescope Hubble. La région B2 est identifiée, dans l’ouverture de 1NN de l’instrument FOS, sur l’image UV. Le spectre UV de B2 ainsi obtenu est représenté par une ligne pleine foncée. Il tient compte du décalage cosmologique, ainsi que du rougissement dû à la Voie lactée et à la galaxie elle-même. Des spectres synthétiques sont présentés en traits pointillés pour différents âges. Ils ont été calculés pour un sursaut instantané à métallicité solaire, avec une FMI ayant une pente α = 2.35 et des masses stellaires entre 1 et 80 M . Lorsque le sursaut étudié est plus jeune que 5 Ma, il est plus facile de distinguer les effets des paramètres de la FMI (pente et masse limite supérieure) et de la métallicité. Par exemple, un sursaut de 2-3 Ma ayant une faible métallicité de 0.1 Z reproduit bien le spectre observé de la région B de NGC2363 [47]. La masse limite supérieure se doit de dépasser 60 M et la pente de la FMI doit être égale ou inférieure à 2.35, i.e. des étoiles CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) LES GALAXIES À SURSAUTS ... (ROBERT)AA massives sont nettement présentes. À ce jeune âge, le mode de formation stellaire (instantané ou continu) ne peut être contraint, car l’effet de dilution par le continuum des vieilles étoiles sur les raies des étoiles massives ne se remarque pas encore. UN MODE DE FORMATION STELLAIRE INSTANTANÉ Le flux étudié dans le domaine de l’UV proche est souvent issu de la combinaison de plusieurs générations d’étoiles, en amas ou dans un fond diffus, dû à la dimension des ouvertures disponibles. La synthèse spectrale qui ne considère qu’une population unique est alors un peu simpliste ou a souvent pour effet de rendre ambigu le mode de formation stellaire (instantané ou continu). Dans l’UV proche, il n’est pas rare en effet d’identifier des raies spectrales associées à une population dominée par des étoiles de type B et A (âgée d’environ 50 Ma) en même temps que les signatures P Cygni des étoiles OB (e.g. de Mello et al. [30]). Les spectres obtenus avec le télescope FUSE, qui couvrent l’UV lointain, malgré une ouverture très grande, semblent permettre d’isoler plus facilement un sursaut jeune et brillant et d’éviter les générations sous-jacentes plus vieilles (car les étoiles OB sont vraiment les principales contributrices du flux de l’UV lointain). Dans leur étude, Pellerin et al. [19] ont considéré un échantillon de 24 galaxies observées avec FUSE, couvrant un large domaine de métallicités. Pour la majorité de ces objets, seul le mode instantané de formation stellaire arrive à bien reproduire le spectre observé. Les galaxies qui font exception sont mieux représentées en additionnant la contribution d’un deuxième sursaut instantané âgé d’environ 10 Ma, plutôt qu’en utilisant un modèle continu. La Figure 5 est un exemple de synthèse dans l’UV lointain de la galaxie NGC7714 observée avec FUSE. Ce domaine de longueurs d’onde favorise alors le mode instantané et suggère que la formation stellaire est de courte durée (moins de ~3 Ma). Les systèmes binaires massifs Certaines observations indiquent que la moitié des étoiles font partie de systèmes multiples [48]. Dans le cas de systèmes binaires massifs proches, un transfert de masse a lieu entre les composantes, ce qui affecte par la suite leur évolution. Entre autres, le gain de masse permet à une étoile initialement peu massive de développer des vents stellaires, de devenir une étoile de type Wolf-Rayet et de terminer sa vie en supernova. Dionne & Robert [36] ont vérifié l’effet de ces systèmes sur la synthèse des populations stellaires. Ils ont ajouté au code LavalSB, des tracés évolutifs spécifiques pour les composantes binaires. Ces tracés ont été adaptés des modèles d’évolution pour les systèmes binaires massifs de de Loore et Vanbeveren [49,50] pour les rendre compatibles avec les tracés du groupe de Genève [51,52] déjà utilisés pour les étoiles sim- Fig. 5 Synthèse spectrale ultraviolette de la galaxie NGC7714 observée avec FUSE. L’ouverture de 30NNx30NN a été centrée sur le coeur de la galaxie. Le spectre tient compte du décalage cosmologique, ainsi que du rougissement dû à la Voie lactée et à la galaxie elle-même (E(B-V)int = 0.10). Le spectre synthétique (en rouge) a été calculé pour un sursaut instantané de 4.5 Ma, à métallicité solaire, avec une FMI ayant une pente α = 2.35 et des masses stellaires entre 1 et 100 M . ples. Dionne & Robert confirment ainsi, comme proposé par d’autres études (e.g. Schaerer & Vacca [53]), un rapport WR/O plus élevé à basse métallicité qui est alors en accord avec les observations. Pour une fraction de systèmes binaires massifs de l’ordre de 30%, les raies stellaires de l’UV ne sont pas modifiées de façon perceptible. CONCLUSIONS Notre capacité à décrire le contenu des galaxies est une étape importante pour toutes les études visant à comprendre l’histoire des galaxies et de l’Univers. La contribution de l’ultraviolet dans ces travaux est unique en ce qui concerne les populations jeunes, la fonction de masse initiale et le mode de formation stellaire. En plus d’apporter des contraintes nous aidant à établir des scénarios de l’évolution actuelle dans une galaxie, les régions jeunes ont un impact considérable sur leur environnement et l’évolution qui va suivre. Le Canada en collaboration avec les Indes lancera, vers la fin de l’année 2009, un nouvel imageur à haute résolution spatiale pour l’ultraviolet, le Ultraviolet Imaging Telescope (UVIT). L’avenir de la spectroscopie ultraviolette demeure cependant encore incertain. Le développement récent d’instruments de type spectro-imageur à grand champ dans le visible et l’infrarouge est aussi un apport considérable pour étudier et localiser toutes les générations d’étoiles, le gaz et la poussière, en relation avec les régions jeunes de l’ultraviolet. Les années à venir seront des plus prometteuses. REMERCIEMENTS C. Robert remercie le Conseil de recherches en sciences naturelles et génie du Canada ainsi que le Fonds québécois de la recherche sur la nature et les technologies pour le support financier de ses étudiants et de ses travaux. BIBLIOGRAPHIE 1. 2. 3. T.M. Heckman, ASP Conf., 348, 467 (2006). V. Buat, J. Iglesias-Paramo, & M. Seibert, et al., ApJ, 619, L51 (2005). T.M. Heckman, ASP Conf., 148, 127 (1998). LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 255 LES GALAXIES À SURSAUTS ... (ROBERT) 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. N.R. Walborn, IAU Symp., 148, 145 (1991). C. Steidel, M. Giavalisco, M. Pettini, M. Dickinson, & K.L. Adelberger, ApJ, 462, L17 (1996). A. Aloisi, M. Toisi, & L. Greggio, AJ, 118, 302 (1996). D.W. Weedman, F.R. Feldman, V.A. Balzano, L.W. Ramsey, R.A. Sramek, & C.C. Wuu, ApJ, 248, 105 (1981). N. Scoville, Ap&SS, 269, 367 (1999). G.R. Meurer, T.M. Heckman, C. Leitherer, A. Kinney, C. Robert, & D.R. Garnett, AJ, 110, 2665 (1995). A. Pellerin, M. Meyer, J. Harris, & D. Calzetti, ApJ, 658, L87 (2007). R.C. Kennicutt Jr, K.A. Roettiger, W.C. Kell, J.R. van der Hulst, & E. Hummel, AJ, 93, 1011 (1987). F. Combes, ASP Conf., 230, 213 (2001). T.M. Heckman, RMxAC, 17, 47 (2003). R.M. Gonzalez Delgado, Ap&SS, 303, 85 (2006). A.L. Kinney, R.C. Bohlin, D. Calzetti, N. Panagia, & R.F. Wyse, ApJS, 86, 5 (1993). B.C. Whitmore, F. Schweizer, C. Leitherer, K. Borne, & C. Robert, AJ, 106, 1354 (1993). C. Leitherer, W.D. Vacca, P.S. Conti, A.V. Filippenko, C. Robert, W.L.W. Sargent, ApJ, 465, 717 (1996). R.M. Gonzalez-Delgado, C. Leitherer, & T. Heckman, ApJ, 489, 601 (1997). A. Pellerin, & C. Robert, MNRAS, 381, 228 (2007). L. Bianchi, D.A. Thilker, D. Burgarella et al., ApJ, 619, L71 (2005). N.R. Walborn, J.W. Parker, & J.S. Nichols, NASA Ref. Pub., 1363 (1995). N.R. Walborn, J. Nichols-Bohlin, & R.J. Panek, NASA Ref. Pub., 1155 (1995). N.R. Walborn, A.W. Fullerton, P.A. Crowther, L. Bianchi, J.B. Hutchings, A. Pellerin, G. Sonneborn, & A.J. Willis, ApJS, 141, 443 (2002). A. Pellerin, A.W. Fullerton, C. Robert, J.C. Howk, J.B. Hitchings, N.R. Walborn, L. Bianchi, P.A. Crowther, & G. Sonneborn, ApJS, 143, 159 (2002). K. Sekiguchi, & K.S. Anderson, A&A, 94, 644 (1987). J.M. Mas-Hesse, & D. Kunth, A&AS, 88, 399 (1991). C. Robert, C. Leitherer, & T.M. Heckman, ApJ, 418, 749 (1993). C. Leitherer, C. Robert, & T.M. Heckman, ApJS, 99, 173 (1993). C. Leitherer, J.R.S. Leao, T.M. Heckman, D.J. Lennon, M. Pettini, & C. Robert, ApJ, 550, 724 (2001). D.F. de Mello, C. Leitherer, & T.M. Heckman, ApJ, 530, 251 (2000). C. Leitherer, C. Robert, & L. Drissen, ApJ, 401, 596 (1992). C. Leitherer, & T.M. Heckman, ApJS, 96, 9 (1995). C. Leitherer, D. Schaerer, J.D. Goldader et al., ApJS, 123, 3 (1999). G.A. Vazquez, C. Leitherer, D. Schaerer, G. Meynet, & A. Maeder, ApJ, 664, 995 (2007). D. Dionne, IAU Symp., 193, 596 (1999). D. Dionne, & C. Robert, ApJ, 641, 252 (2006). C. Robert, A. Pellerin, A. Aloisi, C. Leitherer, C. Hoopes, & T.M. Heckman, ApJS, 144, 21 (2003). R. Chandar, C. Leitherer, C.A. Tremonti, D. Calzetti, A. Aloisi, G. Meurer, & D. de Mello, ApJ, 628, 210 (2005). R.M. Gonzalez-Delgado, C. Leitherer, G. Stasinska, & T.M. Heckman, ApJ, 580, 824 (2002). K.E. Johnson, C. Leitherer, W. Vacca, & P.S. Conti, ApJ, 120, 1273 (2000). E.E. Salpeter, ApJ, 121, 161 (1955). W.D. Vacca, C. Robert, C. Leitherer, & P.S. Conti, ApJ, 444, 647 (1995). C.G. Wynn-Williams, K.W. Hodapp, R.D. Joseph et al., ApJ, 377, 426 (1991). C. Robert, IAU Symp., 193, 616 (1999). D. Calzetti, A.L. Kinney, & T. Storchi-Bergmann, ApJ, 458, 132 (1995). R.D. Gehrz, R.A. Sramek, & D.W. Weedman, ApJ, 267, 551 (1983). L. Drissen, J.R. Roy, C. Robert, D. Devost, & R. Doyon, AJ, 119, 688 (2000). B.D. Mason, D.R. Gies, W.I. Hartkopf et al., Ap, 115, 821 (1998). C. de Loore, & D. Vanbeveren, A&AS, 103, 67 (1994). C. de Loore, & D. Vanbeveren, A&AS, 105, 21 (1994). G. Schaller, D. Schaerer, G. Meynet, & A. Maeder, A&AS, 96, 269 (1992). G. Meynet, A. Maeder, G. Schaller, D. Schaerer, & C. Charbonnel, A&AS, 103, 97 (1994). D. Schaerer, & W.D. Vacca, ApJ, 497, 618 (1998). 256 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ARTICLE DE FOND BRINGING CHEMISTS AND PHYSICISTS TOGETHER: THE LEGACY OF THE ONTARIO PHOTONICS CONSORTIUM AT THE UNIVERSITY OF WESTERN ONTARIO BY ROBERT H. LIPSON L oosely speaking, photonics is the science of generating, manipulating and detecting photons and, as such, may be considered the purview of the physics community. However, inherent in photonics research is the need for new and novel materials. Consequently, many of the most exciting advances in photonics are coupled strongly to advances in nanomaterial syntheses and applications. Enter the chemists! Of course this is a simplistic division of labour which also ignores the important contributions coming out of many engineering and biomedical departments. The photonics community in Canada has become highly organized in the area of photonics. The Canadian Photonics Consortium is the representative voice of the entire Canadian Photonics community. Membership includes large and small companies, large and small academic institutions and consortia, and government laboratories and agencies at both the federal and provincial levels. Their stated vision (http://www.photonics.ca/community.html) is “to establish Canada as the place for business success in Optics and Photonics”. At the federal level, a National Centre of Excellence: the Canadian Institute for Photonics Innovation (CIPI, http://www.cipi.ulaval.ca/) was established in 1999, and currently funds more than 100 researchers (many in chemistry and physics) and 250 students at 21 universities in projects involving photonics, biophotonics, and information and telecommunications. The Ontario government has been a particularly strong supporter of photonics through their Ontario Centres of Excellence program (OCE, http://www.oce-ontario. org/Pages/ COEPhotonics.aspx?COE=PH). The program mandate is to facilitate economic growth through support for industrially relevant research and development, and to open new market opportunities and the commercialization of leading edge discoveries. The Ontario Photonics Consortium (OPC) was funded by the older provincial Ontario Research and Development Fund in 2000. This initiative brought together chemists, physicists and engineers from the University of Western Ontario, McMaster University, the University of Waterloo, the University of Toronto, and the University of Ottawa. Historically, the consortium was established as a result of a $45M investment by the Ontario Government for a proposal synthesized from three earlier separate requests; the first dealing with fundamental science in the area of photonic band gap materials (UWO, lead PI Ian Mitchell); the second with photonic devices (McMaster, lead PI Peter Mascher) and the third also from McMaster (lead PI, Wei-Ping Huang) dealing with large systems. While the objectives of the three proposals were quite distinct, it was also recognized that innovations and breakthroughs in any one of the three areas would positively impact the others, and hence, the merger. The last five years have clearly demonstrated that the combined group of researchers benefitted not only by having a wider network to interact with, but from also having access to relatively unique facilities at the different institutions. The majority of the photonics and nano activities taking place at Western began because of the opportunities that arose when the CFI-funded Nanofabrication Laboratory (http://www.uwo.ca/fab/) opened in September 2004. This class 100 cleanroom facility houses a suite of instrumentation including SEM imaging, FIB lithography, silicon DRIE, ion beam implantation and analyses, and TEM specimen preparation. Many of the applications initiated through OPC funding involved lithographic patterning of novel materials for plasmonic, photonic band gap (PBG) materials, and biophotonics applications. R.H. Lipson <[email protected]>, Dept. of Chemistry, University of Western Ontario, London, ON N6A 5B7 PLASMONICS SUMMARY Interest and activities in photonics worldwide have exploded over the last decade because of its commercial potential, and because of the synergy it inspires between the chemistry and physics communities. Plasmons are electron density waves created when optical light hits the surface of a metal. Plasmonics can be considered the study and application of the transfer of energy between the light and electrons. Ian Mitchell (Physics) and Kim Baines (Chemistry) with an undergraduate student Michelle Watroba initiated a collaboration to test optical scattering theory by examining the light scattering LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 257 BRINGING CHEMISTS AND PHYSICISTS TOGETHER ... (LIPSON) Fig. 1 a) Scanning electron micrograph of a single gold-coated silica nanoparticle; b) Controlled deformation of a nano-sphere by ion-beam exposure. properties of 2-D lattices formed by metallodielectric nanoparticles arranged into an array on a lithographically-defined PMMA substrate. This work takes advantage of Baines’ expertise in organometallic chemistry to make the nanoparticles (Fig. 1a) and Mitchell’s extensive background in ion-beam physics. The light scattering particles consisted of spherical silica cores of submicron diameter (nanospheres) coated with a gold shell to a selected thickness ranging from tens through hundreds of nanometers. Experiments were also carried out with Senior Research Scientists Todd Simpson in the Nanofab to test the sensitivity of scattering to alteration of the shape of the array by driving the nanosphere into an ellipsoidal shape by ion-beam exposure (Fig. 1b). An array of spheres is shown in Fig. 2. In related work, p h y s i c i s t Silvia Mittler working with chemist Zhifeng Ding have characterized the electrochemistry of self-assembled monolayers (SAMs) of m o n o m e r i c calix[4]arenes and Fig. 2 Scanning electron micrograph of h e t e r o d i m e r i c a 2-D array of gold-coated silica calyx[4]arenes capnanoparticles. sules filled with ferrocenium (shown schematically in Figure 3) on Au surfaces for data storage purposes [1]. This molecular guest host systems can be filled with a variety of guest molecules. OMCVD (organo- metallic chemical vapour deposition) grown gold nanoparticles coated with these calix[4]arene heterodimer capsules leads to distinct surface plamon resonances whose spectral position depends on the dielectric constant of the guest molecule. Mittler and her group in cooperation with Patrick Ronney and Chitra Rangan from the Department of Physics at the University of Windsor could show experimentally and theoretically how the surface plasmon resonance shifts by systematically varying the dielectric function of a monolayer on a gold nanoparticle with fixed thickness. 258 C PHYSICS IN Fig. 3 Structure of calix[4]arene heterodimers on gold. The Mittler-Rangan team have also examined how the surface plasmon spectrum depends on the proximity of the nanoparticles with respect to each other, in both air and water environments. The wavelengths of the spectral features are strong functions of the distance dependences of the electromagnetic dipolar and quadrupolar interactions between the particles. As shown in Figure 4 the experimental spectra are in excellent agreement with the simulations. These results are expected to valuable for optimizing sensor applications. Fig. 4 Calculated extinction spectra for nanoparticle pairs with varying separations. Particles are (top left) uncoated in air, (top right) coated in air, (bottom left) uncoated in water and (bottom right) coated in water. Coatings have a refractive index of 1.45 and a thickness of 1.75 nm. The particle radius is 7 nm. The separation is measured as the distance between surfaces, which for coated particles corresponds to the coating surface,not the nanoparticle surface. More recently, François Lagugné-Labarthet (Chemistry) was recruited to Western to develop novel surface spectroscopies. One technique that has already begun to show great promise is Tip-Enhanced and Surface–Enhanced Raman spectroscopy (TERS and SERS, respectively) for the detection of biomolecules on surfaces [2]. Part of his overall strategy involves using the Nanofab to fabricate SERS substrates with reproducible behaviours. Lagugné-Labarthet and graduate student Betty Galarreta have made well-controlled lithographic patterns of noble metals (Au) on glass as shown in Fig. 5a-b. The CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) BRINGING CHEMISTS AND PHYSICISTS TOGETHER ... (LIPSON)AA inter-structure gap between the features (between 30 and 50 nm) is a key parameter for optimizing the SERS enhancement via the surface plasmon resonance of the metal. Depending on the sizes and gaps of the structure, the plasmon frequency can be finely tuned as shown in figure 5c. Figure 5d shows an example of a SERS spectrum of a monolayer of guanosine triphosphate (GTP) measured under a confocal microscope. The spectra are significantly enhanced when deposited on their platform while it appears very weak on a flat gold surface. The vibrational information contained in the SERS spectrum can provide invaluable information about their insertion into the biological membranes, their structural conformations, or their interactions with surrounding molecules, and are important for understanding many fundamental bioprocesses. enhance its ability to serve as a platform for cell adhesion in microfluidic devices [3]. The process involves depositing a thin layer of aluminum onto the polymer in the presence of an Ar plasma. The PDMS surface can then be patterned by depositing metal through a stencil mask thereby allowing cells to adhere to specific locations on the surface (Figure 6). Such arrays allow the study of cell-cell interactions, cell motility, and cellular responses to various spatial and geometric perturbations. Zhifeng Ding is developing improved and integrated tools to investigate single live cells and semiconductor nanostructures to provide insight into the relationships between structure and property and or function [4-7]. One important approach is the use of Scanning Electrochemical Microscopy (SCEM) which involves measuring the current of species contained in the solution gap between a tip and the Fig. 7 SECM images of two COS 7 live cells substrate. SECM is useful in a wide range of applications, including imaging of biological molecules. For example, Figure 7 shows an SECM image of two COS 7 live cells from which information about their metabolism can be derived. NOVEL MATERIALS Fig. 5 Examples of plasmonic devices made using the e-beam lithography technique. a) the sharp structures of the nanosnowflakes have gaps in the 50-100 nm range. b) The triangles have a side of 400 nm and a 20 nm gold thickness. c) The Plasmon frequency can be tuned very accurately depending on the size of the triangles and associated gaps. d) Raman spectra of a monolayer of GTP deposited on flat gold and on SERS platforms. The laser power is similar in both experiments. BIOPHOTONICS Peter Norton (Chemistry), Nils Petersen (NINT) and graduate students Jessica McLachlan, Natasha Patrito, and post-doc Claire McCague have developed a method for the modification of the surface of poly(dimethylsiloxane), PDMS, to Fig. 6 Optical micrograph of patterned C2C12 cells on modified PDMS. Novel materials, fabrication techniques, and applications of photonic crystals (PCs) are core areas of research at Western. Rob Lipson and Kim Baines joined forces with co-supervised student Yun Yang to examine the possibility of fabricating PCs by optical lithography in photoresists made from Si- or Ge-containing polymers [8]. PCs have periodic structures which localize light and prohibit a certain range of wavelengths from propagating within the material. The PBG structures are made Fig. 8 SEM image of a germanium thin from two substances film (poly(p-methoxyphenylwith significantly difmethylgermane) patterned by 2beam interference lithography. ferent refraction indices, n. In a similar manner to semiconductors which exhibit electronic band structure due to their periodic atomic spatial arrangement, the periodic variation of the index of refraction in a PC produces a band structure for photons, with well-defined energy-momen- LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 259 BRINGING CHEMISTS AND PHYSICISTS TOGETHER ... (LIPSON) tum levels. One condition that is required to open a band gap is that the periodic index contrast of the crystal must be large (Δn~ 2). This can not usually be achieved using commercially available carbon-based photoresists. Instead patterned carbonbased resists are usually used as masks for subsequent etching into high index substrates such as Si. The Baines group was able to synthesize a series of photosensitive polymers having Si and Ge backbones. As shown in Fig. 8, these polymers could be patterned by optical lithography. The indices of refraction of Si- and Ge-based films are sufficiently large that their use photoresists can in principle lead to photonic band gap structures in a single fabrication step. Martin Zinke-Allmang working with student Kenneth Kar Ho Wong, and Engineering Professor W.K. Wan are examining the elastic properties of non-woven fibres with nanometer diameters using high resolution scanning electron microscope (SEM) and Xray photoelectron spectroscopy (XPS) [9]. These polymers are becoming the biomedical materials of choice in many restorative and Fig. 9 A SEM image of a PVA fibres regenerative medical procedures because mat their physical properties, such as porosity and mechanical strength, can be tailored to suit specific applications. In recent experiments, an electrospinning process was used to produce non-woven polymer mats composed of fibres with diameters between 50 nm and 500 nm. Figure 9 shows a mat of poly(vinyl alcohol) (PVA) formed in this way. Elastic moduli were found using the clamped beam model to fit the deflection values along the suspended fibre after some accurate measurements of the geometry and diameter of the fibre were established. Lipson and Cheng Lu have studied the synthesis and optical properties of thin films of β-barium borate (β-BaB2O4; β-BBO). They have made high quality thin films of β-BBO which are amenable to contact lithography (Figure 10) [10]. The films are produced by spin coating metalloorganic solutions with a poly(vinyl pyrrolidone) (PVP) additive, followed by O2 plas- 260 C PHYSICS IN Fig. 10 SEM images of a) the Si mask used for contact lithography and b) the patterned β-BBO film. ma treatment and thermal baking. In addition, the BBO thin films could be reoriented by seeding the precursor gels with an organic molecule prior to thermal treatment. Using either approach, the films exhibit more efficient second harmonic generation than those made by literature methods. In different experiments, new routes to thin films of solid state VO2 have also been developed using sol-gel methods. By precisely controlling the processing conditions, (baking temperature, ambient gas in the oven, baking time, solvent etc.), VO2 films can be synthesized that are highly resistant to oxidation for long periods of time. Furthermore, by varying the processing conditions, the morphology of the resultant VO2 films Fig. 11 Raman image of nanowires of can be controlled to vanadium oxide obtained by produce of nano-belts, detecting specific Raman modes of the material nano-ribbons or nanowires made of V2O5. These materials have in part been characterized using Raman imaging in collaboration with the Ding group (Figure 11). VO2 undergoes a phase change from semiconductor to metal near 70oC on the picosecond time scale. The films produced at Western are being examined by OPC member Dwayne Miller at the University of Toronto using femtosecond electron diffraction [11] to better understand this remarkable transition. Zhifeng Ding’s group, in collaboration with T . - K . S h a m (Chemistry) and Xueliang Sun ( M a t e r i a l s Engineering) has found an electrochemical avenue to prepare strong blue l u m i n e s c e n t nanocrystals (NCs) from multiwalled carFig. 12 UV-visible absorption and photobon nanotubes luminescence spectra of carbon ( M W C N T s ) NCs in aqueous solution. Inset is The (Fig. 12) [12]. the solution illuminated by an search for a good carUV lamp. bon emitter is a challenging enterprise because neither of the two bulk carbon allotropes, graphite and diamond, give strong luminescence. The new carbon NCs prepared at Western are very attractive due to their promised applications in optoelectronic devices, biology labelling, and biomedicine. CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) BRINGING CHEMISTS AND PHYSICISTS TOGETHER ... (LIPSON)AA PHOTONIC CRYSTALS Lipson, Mitchell and graduate student Cheng Lu have developed novel optical lithography techniques that are expected to ultimately be used for fabricating PCs. In one approach nearfield Diffraction Element Assisted Lithography or DEAL was devised to fabricate two-dimensional lattice patterns in a photoresist [13]. Specifically, a diffraction element was used to prepattern the coherent output of a laser prior to its capture in a photoresist. The pattern symmetry and spacing can be readily modified with the same experimental arrangement since the near-field diffraction pattern strongly depends on the nature of the diffractive element and the distance between the element and the photoresist. The patterns that are formed can serve as masks for patterning high index materials to create photonic band gap materials. Alternatively, they have the potential to behave as two-dimensional photonic band gap arrays provided the polymer used exhibits a large enough index contrast. In a second approach, a Babinet-Soleil compensator was inserted into the path of one of the three beams used for noncoplanar beam interference lithography [14]. This birefringent element could change the phase of the beam so that either a positive two-dimensional pattern or an inverse-like structure is generated in a photoresist without disturbing the mechanical geometry of the setup. As shown in Figure 13 large defect free sample areas (>1cm2) with sub-micron periodic patterns with different morphologies could obtained by simply “dialing” up a specific phase difference for one of interfering beams. Among the diverse photonic crystal (PC) applications, PC sensors have drawn much attention because of their high sensitivity and compact structure [15]. Jayshri Sabarinathan (Engineering) has developed a PC waveguide based pressure sensor which has many applications in MEMS and microfluidic applications. Sensing is performed by measuring the transmission variation through the PC waveguide due to the changes in the refractive index of the region surrounding the PC. When pressure is exerted on the waveguide it mechanically deforms the waveguide and alters the transmission characteristics of the waveguide. The changes in light intensity due to the relative displacement of the PC waveguide with respect to substrate can be correlated to the fluid pressure. The device shown in Fig. 14 consists of an air bridge PC waveguide with a triangular air hole lattice coupled with conventional dielectric waveguides on input and output side, designed on a silicon-on-insulator (SOI) wafer. Simulations show Fig. 4 SEM micrograph of a Photonic Crystal air-bridge waveguide for nearly 72% and 0% pressure sensor applications transmission when the distance between the PC waveguide and the substrate was 600nm and 0nm respectively. Large intensity variations with small displacements were achieved when the PC waveguide was between 300 nm to 200 nm. CONCLUSIONS Fig. 13 a) SEM image of a pattern formed in a SU-8 photoresist when all three beams used for IL had the same phase, (φ1, φ2, φ3) = (0, 0, 0). The marker indicates a 3 μm scale; b) SEM image of a pattern formed in a SU-8 photoresist when the phase of the third beam was π/2 different from the other two, (φ1, φ2, φ3) = (0, 0, π/2). The bar marker indicates a 3 μm scale. The examples above constitute only a very small subset of those that continue to develop even though the formal activities of the OPC have concluded. They show that photonics studies are a platform for strong collaborations between chemists, physicists and beyond. The work has strong fundamental and applied relevance, and therefore, it is expected that the resultant partnerships are more long term than short. In this regards, the future of photonics and the synergy it generates between different communities is bright indeed. REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. S. Xu, G. Podoprygorina, V. Boehmer, Z. Ding, P. Rooney, C. Rangan, S. Mittler, Organic & Biomolecular Chemistry 5 558-568, 2007. V. Guieu, F. LagugnépLabrathet, L. Servant, D. Tulaga, and N. Sojic, Small, 4, 96-99 2008. Natasha Patrito, Claire McCague, Peter R. Norton, Nils O. Petersen, Langmuir 23, 715-719, 2007. R. Zhu, Z. Ding, Can. J. Chem. 83 1779-1791, 2005. X. Zhao, N.O. Petersen, Z. Ding, Can. J. Chem. 85 175-183, 2007. P.M. Diakowski, Z. Ding, Phys. Chem. Chem. Phys. 9 5966 – 5974. 2007 R. Zhu, Z. Qin, J.J. Noel, D.W. Shoesmith, Z. Ding, Anal. Chem. 80 1437-1447, 2008. Y. Yang, M.Sc. Thesis, The University of Western Ontario, 2008 K.H. Wong, M. Zinke-Allmang, W.K. Wan, J.Z. Zhang, P. Hu, Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 243, 63-74, 2006. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 261 BRINGING CHEMISTS AND PHYSICISTS TOGETHER ... (LIPSON) 10. 11. 12. 13. 14. 15. C. Lu, S.S. Dimov, and R.H. Lipson, Chem. Mater. 19, 5018-5022, 2007 B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Science, 302, 1382-1385. J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun, Z. Ding, J. Am. Chem. Soc. 129 744-745, 2007. C. Lu, X.K. Hu, I.V. Mitchell and R.H. Lipson, Appl. Phys. Lett. 86, 193110-1 – 193110-3, 2005. C. Lu, X.K. Hu, S.S. Dimov and R.H. Lipson, App. Opt. 46, 7202-7207, 2007. S. Mittal and J. Sabarinathan, Proceedings of the SPIE, 5971, 59711J, 2005. 262 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) IN MEMORIAM MARTIN WESLEY JOHNS - (1913-2008) At McMaster he was Chair of the Department of Physics for a total of twelve years, including the period when universities expanded rapidly in the 1960’s, and his foresight was important in selecting about twenty new faculty members to form a strong and harmonious department which proved to be productive for the decades since. As his time for normal mandatory retirement approached he was asked to continue at McMaster and serve as Coordinator of Part Time Degree Studies. During his four years in this position (19771981) he expanded the size and popularity of that department considerably. His research in the field of Nuclear Structure Physics, using experimental techniques of beta and gamma spectroscopy, is well respected internationally. He supervised the construction of several spectrometers and was a prime mover in establishing the Tandem Van de Graaff Accelerator Laboratory at McMaster. He co-authored about one hundred papers in scientific journals, received honourary D.Sc. degrees from Brandon University and McMaster, and in 1958 was admitted to the Royal Society of Canada. In 1960, during a Sabbatical leave at Oxford, he was sent to Pakistan for nearly three months as a technical advisor for the Canadian Department of External Affairs, to assess whether Pakistani nuclear scientists and researchers possessed the expertise necessary to handle the nuclear reactor that Pakistan was requesting from Canada as part of the Colombo plan. Martin also had a very active role in Community Services outside the University. He was named “Distinguished Citizen of the Year for 1978” for Hamilton, Ontario, in part due to his service to the United Way and the Family Service Agency. He was an active supporter of the Hamilton United Way, serving as both the Chair of its Allocations Committee and as President of its Board for the Hamilton-Burlington area. For many years he was heavily involved with the Family Service movement, having served as President of Family Services of Hamilton Wentworth, as well as President of the Family Service organization at the provincial (Ontario) and federal levels. He actively supported Westdale United Church in Hamilton for over sixty years, and served the United Church of Canada in several positions up to the national level. In 1999 Westdale United Church named its church hall “The Martin Johns Hall” in view of his years of selfless work and generosity. One project of which he was most proud in recent years was the Campus Ministries Council he established and supported generously at McMaster University. It is an interfaith chaplaincy which serves all Christian denominations and non-Christian communities as well. The interfaith and interracial work of this group is an example of Martin’s influence and efforts, which continued more than 25 years after his official retirement. Martin was always very generous with his time, talents, and resources, and had a well-deserved reputation for treating people fairly. One notable skill was his ability to understand and deal with people. While chairing a committee or department he would usually manage to achieve consensus on difficult issues, avoiding political maneuvering or narrow votes that would leave some people dissatisfied. This skill was also used widely in his everyday life. Students would often consult him for advice on personal issues as well as academic matters. He was held in great respect by his grandchildren, who confided in him and communicated regularly by e-mail, discussing personal problems and asking for advice. His well-rounded outlook and range of interests is shown by some of his other activities. For many years he sang in the Bach-Elgar choir, and held season’s tickets for the Hamilton Philharmonic Orchestra, Opera Hamilton, and the Hamilton Tiger Cats Football games. At his Lake Boshkung summer cottage in the Haliburton region he enjoyed carpentry and sailing, and in his sixties took up windsurfing. Also, at that age he could more than hold his own on the squash court against students who were forty years younger! In later years he learned to use a computer and wrote three autobiographical books. The first of these, “Bamboo Sprouts and Maple Buds”, provides many interesting insights from his early years in China. (It has recently been reprinted in hardcover by his granddaughters Sarah Turner and Alison Crump, and is available for purchase online at www.lulu.com/content/4059218/.) Martin was part of a family that was very active in the academic and professional communities of Canada. After their return from China his father, Alfred Johns, held Faculty positions in the Departments of Mathematics at Brandon College (1927-1931) and McMaster University (1931-1952). Martin had three younger brothers and one sister. His brother Harold was well known to the scientific community for developing the first Cobalt-60 radiation therapy unit (at Saskatoon), and for his many years of work in Medical Physics at Toronto. Paul had a career in meteorology, and Edward was an orthodontist. Ruth was trained as a social worker and spent many years working in that field. Martin is survived by his sister Ruth, brother Paul, daughter Beth, son Ken, nine grandchildren and two great-grandchildren. Dennis Burke Professor, McMaster University, Retired IN MEMORIAM Martin Wesley Johns, Professor Emeritus of Physics at McMaster University, passed away on September 18, 2008, in his 96th year. He was well known for his long lifetime of unselfish service to the scientific, university, church, and social services communities of Canada. Martin was born in China in 1913 of Canadian missionary parents, and was 12 years old when his family returned permanently to Canada. He completed his B.A. (1932) and M.A. (1934) at McMaster University, and his Ph.D. (1938) at the University of Toronto. His academic and scientific career then included nine years as Professor of Physics at Brandon College (1937-1946), a year at the Chalk River laboratories (19461947), and 34 years at McMaster University (1947-1981). Dennis Burke <dgp@physics. mcmaster.ca> is a Professor Emeritus at the Department of Physics and Astronomy, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8S 4M1 LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 263 CAP OFFICE CAP NEWS / INFORMATIONS DE L’ACP 3RD IUPAP INTERNATIONAL CONFERENCE ON WOMEN IN PHYSICS (ICWIP-2008) The 3rd IUPAP International Conference on Women in Physics (ICWIP 2008) was held during October 7-10, 2008 in Seoul, Korea. This meeting takes place every three years and is organized under the auspices of the International Union of Pure and Applied Physics (IUPAP) and the Korean Physical Society (KPS). The conference was dedicated to the presentation and discussion of the latest developments and ideas regarding the status of woman physicists in societies around the globe. Besides attending plenary talks from many different research fields, the attendants had the opportunity to participate in workshops on i) Individual professional development, ii) Attracting girls to physics and blocking the leaky pipeline, iii) Assessing and improving the climate for women, iv) Successful proposals and project leadership, and v) Actions for Women in Physics (WIP) working groups. A press release issued by the ICWIP following the conference appears below. A copy of the paper and poster presented by the Canadian delegation follow. CANADIAN DELEGATION BACK FROM INTERNATIONAL CONFERENCE ON WOMEN IN PHYSICS (ICWIP2008) IN KOREA Roby Austin (St. Mary’s University), Sampa Bhadra Women, men, institutions, (York University), Janis and governments need to McKenna (University of work together to encourage, British Columbia), Adriana educate, recruit, retain, Predoi-Cross (University of advance, and promote more Lethbridge), Michael Steinitz girls and women in physics (St. Francis Xavier Univerand other science and techsity), and Li-Hong Xu (Uninology professions. To that versity of New Brunswick) end, the conference particirecently returned from Seoul, Canadian delegation to ICWIP2008 (from left to right): Janis pants unanimously approved Korea, where they were part McKenna (UBC), Roby Austin (St. Mary’s U.), Adriana a resolution presented at the of over 330 scientists, from Predoi-Cross (U. Lethbridge), Li-Hong Xu (UNB), Sampa 26th General Assembly nearly 70 countries from all Bhadra (York U.), and Michael Steinitz (St. F-X) International Union of Pure corners of the world, who and Applied Physics in took part in the Third IUPAP (International Union for Pure Tsukuba, Japan on 15 October 2008. and Applied Physics) International Conference on Women Dr. Youngah Park, a physicist who chairs the conference in Physics (ICWIP2008). Delegates came from African, organizing committee, was recently elected to the Korean Asian, European, Latin American, North American, and National Assembly from her district. She told the assemisland nations. bled participants, “I believe the positive effect of ICWIP2008 will go beyond the physics community and The meeting, held on October 7th to 10th, was dedicated to will have a strong effect on women leaders in all fields of celebrating the physics achievements of women throughout science and technology”. the world, networking toward new international collaborations, gaining skills for career success, and aiding the forThe First International Conference on Women in Physics mation of active regional working groups to advance was held in Paris in 2002. The Second conference was hostwomen in physics. Each country presented information ed by Rio de Janeiro in 2005. Since the first conference about its statistics and its activities to increase women's parmost countries have made some progress in attracting girls ticipation. to physics, increasing the proportion of physics degrees awarded to women, and promoting the career development Worldwide, fewer than 15% of physicists are women. More of women physicists. However, the proportion of physicists than 80% of the conference attendees were women. It was who are women is well below 20% in nearly all countries clear that the scarcity of women in physics, especially in too few to have maximum benefit for society. leadership positions, is a problem for many countries. CAP OFFICE 264 C PHYSICS Nations cannot benefit fully from women's ideas and approaches to improve their economic competitiveness, or solve difficult problems, such as energy, health, and global sustainability. IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ENSEIGNEMENT WOMEN PHYSICISTS IN CANADA (PAPER PRESENTED BY THE CANADIAN DELEGATION TO CONFERENCE ON WOMEN IN PHYSICS - ICWIP2008) BY THE 3RD IUPAP INTERNATIONAL ADRIANA PREDOI-CROSS , ROBY AUSTIN, SAMPA BHADRA, JANIS MCKENNA, LI-HONG XU AND MICHAEL STEINITZ T here is strong evidence that at the national level, over the past decade the overall climate for women physicists both in academia and industry has improved. Organizations such as the Canadian Association of University Teachers (CAUT) are actively making efforts to minimize the current socioeconomic and professional gaps between women and men. CAUT is also trying to ensure that women in academia at all professional levels, are offered equal opportunities with their male colleagues. At the institutional level, in recent years several Canadian Physics Departments have conducted an external critical assessment of the climate and environment for women in their physics departments. As a consequence, a friendly, open, invigorating, welcoming climate towards women colleagues was established and maintained. Some universities have made great strides and have 3 or 4 female faculty members. Unfortunately, across the country we still have numerous departments that have no women faculty members or have hired the first woman faculty member after over 25 years of academic activity! ATTRACTING GIRLS TO PHYSICS Numerous Canadian academic institutions and non-profit organizations are making efforts to generate interest in science and physics at an early age, preferably before secondary school. Such programs run year round or are struc- SUMMARY In recent years the overall climate for women in academia in Canada has improved. Efforts are being made to attract girls to science at a young age. The enrollment of women across undergraduate and graduate programs in physical sciences has increased gradually in the past decade, with a sharp increase at the graduate level. In light of a large number of upcoming retirements in academic positions, the presence of women in academia will continue to grow, supported by efforts to ensure equity in academia made by government agencies, academic institutions and faculty associations. tured as girls-only summer camps hosted by universities. Activities are carefully selected to ensure that the participants have a large variety of opportunities to help them see the connections between science and every day life, to help the participants to gain confidence in their science achievement, and ultimately to encourage their enrollment in future science courses. The Canadian Association for Girls in Science is an example of organization with chapters across the country that fosters early scientific literacy through a variety of diverse, fun activities such as “the physics of music, or the chemistry of cooking”. The Techsploration program running in Nova Scotia is one such example where role models well matched for the age group of the students interact with the female students and try to stimulate their interest in and enjoyment of science. Academic units across Canada also support the local schools in their efforts to attract girls to physics through a variety of outreach programs such as science fairs. For example, in Alberta girls represent slightly over 60% of the number of participants in local science fairs. In the Science Olympics part of the Regional Science Fair in Alberta girls were up to 75 % of the numbers of participants! Clearly girls are interested in science and it is up to us to design activities to generate and maintain their interest in physics and in science in general. CLIMBING UP THE LADDER AND NARROWING THE GENDER GAP IN CANADIAN ACADEMIA The Equity Review released in 2008 by the CAUT has shown a firm upward trend in the enrollment of women in higher education at the college, undergraduate and graduate levels. At the graduate level in physical sciences we have experienced increases of 90% in the enrollment of women compared with 1992. Regardless of the “feminization of universities”, the number of female students in physical sciences still lags behind the number of male students. Aside from small regional differences, women continue to be under-represented in applied sciences. Over the past 40 years the number of Canadian universities has increased from 30 to over 75. In parallel with this steady growth, there has been an improvement in the status of women faculty across the country. Unfortunately, A. Predoi-Crossa <adriana.predoicross@ uleth.ca>, R. Austinb, S. Bhadrac, J. McKennad, L-H. Xue and M. Steinitzf aDept. of Physics and Astronomy, University of Lethbridge, Lethbridge, AB bPhysics Dept., Saint Mary's University, Halifax, NS cDept. of Physics and Astronomy, York University, Toronto, ON dDept. of Physics and Astronomy, University of British Columbia, Vancouver, BC eDept. of Physics, University of New Brunswick, Saint John, NB fDept. of Physics, St. Francis Xavier University, Antigonish, NS LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 265 ICWIP 2008, KOREA only 10 % of all women faculty members teach in applied sciences, compared with a third of all men. While a sizable difference in the proportions by gender at the same academic level remains [1], the difference has fallen dramatically and the trend appears to be continuing. However, at the rank of full professor, and at the highest levels of university administration, women continue to be under-represented. THE “MATERNAL WALL” IN CANADIAN ACADEMIA In spite of numerous efforts to reduce the gender differences in institutions across Canada, in recent years several feminist studies have pointed out that Canadian women that have higher education may not encounter gender discrimination until they encounter the so called “maternal wall” that hinders advancement in their professional careers [2]. This is mostly because traditionally in our country women are the ones who do most of the domestic work, are in charge of household management, childcare and elder care. The cumulative effect of all these factors is that professional mothers simply are unable to find the overtime hours that are often both expected and required for advancement and success in their profession. Professional mothers find themselves “mommytracked” [3] both financially and on the professional advancement scale, with respect to their male counterparts. Sadly, it has been shown [4] that the pay gap between young or middle-aged mothers and women of the same age who have no children is now larger than the wage gap between men and women from the same age group. In Canada, organizations such as the Association for Research on Mothering founded in Toronto at York University, are making efforts to find strategies to help mothers cope with the “maternal wall” in academia. CONCLUSION In recent years Canada has seen an increase in the number of women at all academic levels in applied physical sciences. Empathy and a good understanding of all emotional and intellectual challenges faced by women in these disciplines will make the equity initiatives a success. The trends observed in recent years will continue if the academic institutions and their faculty associations work together with our government agencies with the goal of obtaining equity at all levels in academia. ACKNOWLEDGMENTS Partial financial support for the Canadian team members was provided by the Canadian Association of Physicists. A. Predoi-Cross is grateful for financial support from the Dean of Arts and Sciences and the Faculty Association of University of Lethbridge. R. Austin acknowledges support from Saint Mary's University. L.H. Xu acknowledges partial financial support from the University of New Brunswick in Saint John. M. Steinitz acknowledges support from St. Francis Xavier University and the National Research Council of Canada Research Press. REFERENCES 1. 2. 3. 4. 266 C PHYSICS A.R.R. Margulis, The Road to Success: A Career Manual - How to Advance to the Top, Academic Press, 2006. Andrea O’Reilly, Rocking the Cradle, Toronto: Demeter Press, 2006. H.A. Cummins, Women’s Studies International Forum, 28 222– 231 (2005). Ann Crittenden, The Price of Motherhood: Why the Most Important Job in the World is Still the Least Valued, Holt Paperbacks, 2002. IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) ICWIP 2008, KOREAAA POSTER PRESENTED BY THE CANADIAN DELEGATION TO THE 3RD IUPAP INTERNATIONAL CONFERENCE ON WOMEN IN PHYSICS - ICWIP2008 LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 267 ENSEIGNEMENT INTERNATIONAL PHYSICS OLYMPIAD, 2008 BY ANDRZEJ KOTLICKI AND NATALIA KRASNOPOLSKAIA S imilarly to the competitions in Korea, Indonesia and Singapore, this year’s Olympiad in Vietnam was quite clearly an event of primary importance to the Vietnamese government and educational authorities. The president of Vietnam, his Excelleancy Mr. Nguyen Phu Trong, and the Deputy Prime Minister Prof Nguyen Thien Nhan, participated in the opening ceremony and stressed in their opening addresses the paramount importance of science, technology and education for the development of Vietnam. A Nobel Prize Laureate Prof. Jerome Friedman participated in the Olympiad activities, gave a lecture to the participants, and socialized with them. In the experimental problem students had to measure the efficiency of a solar cell. So 3 out of 4 problems (the third theoretical problem was about Cherenkov radiation) had something to do with “a green life style”. Marking by the academic committee was very thorough and fair and, in most cases, agreed closely with the marking of the leaders. The marking moderations (the process of establishing the final mark acceptable by both leaders and the local marking team) were performed in a good collegial atmosphere with very few real controversies. Canada was represented by the following students: Bo Cheng Cui (Bob) from BC Jingyuan Zhang (Lynda) from Alberta Jixuan Wang from Ontario Keith Kaichung Ng from Ontario Junjiajia Long (Bill) from Ontario The social program was very entertaining and interesting, with visits to monuments, temples and historical sites, an excursion to the spectacular Halong Bay, and the continuous “flow” of excellent Vietnamese food. The academic part of the competition was organized by the faculty members from the Hanoi National University of Education and Institute of Physics and Electronics, Vietnamese Academy of Science and Technology. Dr Andrzej Kotlicki <[email protected]. ca>, Department of Physics and Astronomy, University of British Columbia, The team leaders were: Dr Andrzej Kotlicki from the Department of Physics and Astronomy, University of British Columbia, and Dr Natalia Krasnopolskaia from the Department of Physics, University of Toronto. The following 82 countries were present at the 39th International Olympiad: The problems were very interesting and well prepared. One of the theoretical problems involved a modeling of the ancient waterpowered rice-pounding mortar. The other one involved modeling the air flow in the atmosphere and air pollution. and Dr Natalia Krasnopolskaia, Department of Physics, University of Toronto Albania, Argentina, Armenia, Australia, Austria, Azerbaijan, Belarus, Belgium, Bosnia & The opening ceremonies, with the Canadian team in the fore- Herzegovina, Brazil, Brunei, Bulgaria, Cambodia, Canada, ground. Chile*, China, Colombia, Croatia, Cuba, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Georgia, SUMMARY Germany, Great Britain, Greece, Hong Kong, Hungary, Iceland, India, Indonesia, Iran, Ireland, Israel, Italy, Japan, The 38th International Physics Olympiad Kazakhstan, Kuwait, Kyrgyzstan, Latvia, Liechtenstein, (IPhO) was held in Hanoi, Vietnam from 20th Lithuania, Macau, Macedonia, Malaysia, Mexico, Moldova, to 19th of July, 2008. A total of 82 countries Mongolia, Nepal, The Netherlands, Nigeria, Norway, participated in the competition this year. Pakistan, The Philippines, Poland, Portugal, Puerto Rico**, Chile participated for the first time and Syria Romania, Russia, Saudi Arabia, Serbia, Singapore, Slovakia, sent an observer, planning to participate next year. The team from Puerto Rico participated unofficially as it does not represent an inde* new countries invited by the Organizing Committee to the Olympiad this year pendent country. ** invited by the Organizing Committee as a guest team. 268 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) PHYICS OLYMPIAD 2008AA The Canadian team receives their medals at the 2008 International Physics Olympiad held in Vietnam. Slovenia, South Korea, Spain, Sri Lanka, Suriname, Sweden, Switzerland, Syria*, Taiwan (Chinese Taipei), Tajikistan, Thailand, Turkey, Turkmenistan, Ukraine, USA, Vietnam. The best score (44.6 points) was achieved by Longzhi Tan from China (Absolute winner of the 39th IPhO). The following limits for awarding the medals and the honorable mentions were established according to the Statutes: Gold Medal - 33 points (out of 50), Silver Medal - 26 points, Bronze Medal - 21 points, and Honourable Mention 14 points. According to the limits, 46 Gold Medals, 47 Silver Medals, 78 Bronze Medals and 87 Honorable Mentions were awarded. The list of the scores of the winners and the students awarded with honorable mentions were distributed among all the delegations. In addition to the regular prizes, the following special prizes were awarded: - for the best score (Absolute winner): Longzhi Tan (China); - for the best score in the theoretical part of the competition: Longzhi Tan (China); - for the best score in the experimental part of the competition; Yi-Shu Wei (Taiwan); - for the best score among female participants: Andrada Ianus (Romania): - Gorzkowski Prize (for the best participant among the countries that joined IPhO first in 2008): Efraín Alfonso Pérez Argandoña (Chile); - for the best Vietnamese competitor: Huynh Minh Toan The Canadian team performed very well, winning one gold medal (Junjiajia Long) who was 6th in the world, two silver medals (Jingyuan Zhang and Bo Cheng Cui) and two bronze medals (Keith Kaichung Ng and Jixuan Wang). It was the first time in the history of Canadian participation in the IPhO that all the Canadian team members were awarded medals. At the meeting of the International Board, the presidential election was carried out according to a secret ballot. Dr. Hans Jordens (The Netherlands) was elected the new president. At the end of the Olympiad, acting on behalf of the organizers of the next International Physics Olympiad, Dr. José Luis Morán López, announced that the 40th International Physics Olympiad will be held in Mérida, Mexico from July 11th – 19th, 2009, and cordially invited all the participating countries to attend the competition. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 269 CAP OFFICE Mark your calendars: June 7 – 10, 2009 CAP Congress, Moncton CAP OFFICE - 2009 CONGRESS The 2009 CAP annual Congress will be hosted by the University of Moncton, located near some of the most scenic countryside in Atlantic Canada. This will be an opportunity to celebrate the accomplishments of Canadian Physicists from coast to coast and to enjoy the sights of beautiful New Brunswick. 270 C PHYSICS The Congress will begin on Sunday with plenary talks, division meetings, a welcoming barbecue and a poster session. The Herzberg Memorial Public Lecture will be held Monday night at the historic Capitol Theatre in Moncton, and in addition to the CAP’s medal winners, plenary speakers include Dava Sobel, author of “Galileo's Daughter”, a new biography of Galileo based on recently recovered information from one of his daughters, and Greg Flato of Environment Canada who will talk about the physics involved in modeling climate change. The Congress will continue through Wednesday afternoon with a variety of invited and contributed sessions and special events, including a visit from Isabelle Blain of NSERC, an exciting program is planned for the High School Teacher’s Workshop, and the CAP Best Student Paper competition. A lobster dinner will be served at the Congress banquet on Tuesday evening. We look forward to seeing you there! For updates and program information, bookmark the Congress web site at: www.cap.ca/congress/congress.html Abstract submission deadline: IN March 2, 2009 CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) BUREAU DE L’ACP Le Congrès annuel de l’ACP 2009 aura lieu à l’Université de Moncton, située à proximité de certains des paysages les plus pittoresques du Canada atlantique. À cette occasion, nous célébrerons les réalisations des physiciens canadiens d’un océan à l’autre et profiterons des lieux majestueux du NouveauBrunswick. Le congrès débutera le dimanche par des conférences plénières, des réunions de division, un barbecue d’accueil et une session d’affiches. Lundi soir, la conférence publique commémorative Herzberg sera présentée à l’historique Théâtre Capitol de Moncton. En plus des récipiendaires des médailles de l’ACP, nous accueillerons, entre autres conférenciers, Dava Sobel, auteure de La Fille de Galilée (traduction de Galileo’s Daughter), une nouvelle biographie sur Galilée d’après la découverte récente de la correspondance avec l’une de ses filles, et Greg Flato d’Environnement Canada qui s’entretiendra de la physique impliquée dans la modélisation du changement climatique. Le congrès se poursuivra jusqu’à mercredi après-midi avec une variété de sessions invitées et contribuées, ainsi que des événements spéciaux, dont la visite d’Isabelle Blain du CRSNG, un programme captivant pour l’Atelier des enseignants du secondaire et la compétition de l’ACP pour les meilleures communications étudiantes. Un repas au homard sera servi au banquet de l’ACP mardi soir. Au plaisir de vous voir! Pour des mises à jour et des renseignements sur le programme, marquez d’un signet le site Web du Congrès : www.cap.ca/congress/congress-f.html Date limite de soumission des résumés : 2 mars 2009 BUREAU DE L’ACP - CONGRÈS 2009 À vos calendriers: 7 au 10 juin 2009 Congrès de l’ACP, Moncton LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 271 CAP OFFICE CAP OFFICE - 2009 CONGRESS BEST STUDENT PRESENTATIONS / MEILLEURES COMMUNICATIONS ÉTUDIANT(E)S 272 C PHYSICS The CAP is hosting The Best Student Oral Presentation at Congress and The Best Student Poster at Congress competitions at the 2009 CAP Congress. There will be cash prizes awarded by the CAP for the top three overall oral presentations by a student and for the top three overall poster presentations by a student. In addition, various divisions and sponsors will hold more focused competitions. The intent of all these competitions is to encourage graduate students to present their research work to, and interact with, the Canadian physics community at an early stage in their careers. Students should present the work and take primary responsibility for the content of the presentation as well as the written abstract and, if selected as a winner, the extended abstract for Physics in Canada. Dans le cadre de son congrès de 2009, l'ACP tient les concours Meilleure communication orale étudiante au congrès et Meilleure affiche étudiante au congrès. Elle décernera des prix en argent pour les trois meilleures communications orales globales et pour les trois meilleures affiches globales par un étudiant. De plus, une variété de divisions et commanditaires tiendront des concours plus ciblés. L'idée de tous ces concours est d'encourager les étudiants diplômés à présenter leurs travaux de recherche à la collectivité canadienne de la physique et à interagir avec elle en début de carrière. Les étudiants doivent présenter leur communication et assumer la responsabilité première de son contenu, ainsi que le résumé soumis et, si choisi comme gagnant(e), le résumé élargi pour La Physique au Canada. Undergraduate students who fulfill these criteria are also welcome to present. Les étudiants de 1er cycle qui répondent à ces critères sont aussi les bienvenus. In order to be considered for this competition, a student must be a member of the CAP. Membership is free for undergraduates as well as for the first year as graduate member. Students can become a member or renew their membership online at http://www.cap.ca/mem/ mem.html Pour être candidat à ce concours, l'étudiant doit être membre de l'ACP. L'adhésion est gratuite pour les étudiants de 1er cycle et durant une année pour les étudiants diplômés. Vous pouvez adhérer ou renouveler votre adhésion en ligne à http://www.cap.ca/mem/mem-f.html At the time of submission of their abstract, students must specifically indicate their desire to participate in the competition by selecting the appropriate option. The abstract preference will determine whether you are registering for the oral paper or poster competition. A fuller description of both competitions on the CAP Congress website. A student entering either the overall best paper, best poster, or a non-division sponsored competition will automatically be entered into the appropriate divisional competition if one exists and if he/she is a member of that division. The following divisions are offering prizes: Atomic and Molecular Physics and Photon Interactions Condensed Matter and Materials physics Instrumentation and Measurement Physics Medical and Biological Physics Optics and Photonics Particle Physics Plasma Physics Theoretical Physics SPONSORED COMPETITIONS In addition to the competitions noted above, Atomic Energy of Canada Limited is sponsoring prizes for the best student presentation relating to nuclear engineering, or reactor and radiation physics (both oral and poster). Details can be found on the CAP’s Congress website. IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) Au moment de soumettre son résumé, l'étudiant doit indiquer spécifiquement son choix de participer au concours de communications orales ou d’affiches de l'ACP en choisissant l’option appropriée. La préférence indiquée dans le résumé déterminera s’il veut s’inscrire au concours oral ou par affiches. Une description plus complète des deux concours se trouve sur le site internet du congrès de l’ACP. Un étudiant qui se présente au concours meilleure communication orale, meilleure affiche, ou à une compétition commanditée par un autre organisme que les divisions de l’ACP sera automatiquement inscrit au concours de la division appropriée, si celle-ci en a un et si l’étudiant est membre de la division. Les divisions qui suivent remettront des prix: Physique atomique et moléculaire et d'interaction avec les photons Physique de la matière condensée et des matériaux Physique des instruments et mesures Physique médicale et biologique Optique et photonique Physique des particules Physique des plasmas Physique théorique COMPÉTITIONS COMMANDITÉES En plus des concours indiqués cidessus, Énergie atomique du Canada Limitée remettra des prix pour les meilleures communications étudiantes en génie nucléaire ou en physique des rayonnements et des réacteurs (orale et affiche). Les détails se trouvent sur le site internet du congrès de l’ACP. LIVRES BOOK REVIEW POLICY Books may be requested from the Book Review Editor, Richard Hodgson, by using the online book request form at http://www.cap.ca. CAP members are given the first opportunity to request books. Requests from non-members will only be considered one month after the distribution date of the issue of Physics in Canada in which the book was published as being available (e.g. a book listed in the January/February issue of Physics in Canada will be made available to non-members at the end of March). The Book Review Editor reserves the right to limit the number of books provided to reviewers each year. He also reserves the right to modify any submitted review for style and clarity. When rewording is required, the Book Review Editor will endeavour to preserve the intended meaning and, in so doing, may find it necessary to consult the reviewer. Beginning with this issue of PiC, the text of the book reviews will no longer be printed in each issue, but will be available on the CAP website. LA POLITIQUE POUR LA CRITIQUE DE LIVRES Si vous voulez faire l’évaluation critique d’un ouvrage, veuillez entrer en contact avec le responsable de la critique de livres, Richard Hodgson, en utilisant le formulaire de demande électronique à http://www.cap.ca. Les membres de l'ACP auront priorité pour les demandes de livres. Les demandes des non-membres ne seront examinées qu'un mois après la date de distribution du numéro de la Physique au Canada dans lequel le livre aura été déclaré disponible (p. ex., un livre figurant dans le numéro de janvier-février de la Physique au Canada sera mis à la disposition des non-membres à la fin de mars). Le Directeur de la critique de livres se réserve le droit de limiter le nombre de livres confiés chaque année aux examinateurs. Il se réserve, en outre, le droit de modifier toute critique présentée afin d'en améliorer le style et la clarté. S'il lui faut reformuler une critique, il s'efforcera de conserver le sens voulu par l'auteur de la critique et, à cette fin, il pourra juger nécessaire de le consulter. Commençant par cette revue de PaC, le texte des critiques de livre ne sera plus imprimé dans chaque revue, mais sera disponible sur le page Web de l’ACP. BOOKS RECEIVED / LIVRES REÇUS The following books have been received for review. Readers are invited to write reviews, in English or French, of books of interest to them. Books may be requested from the book review editor, Richard Hodgson by using the online request form at http://www.cap.ca. Les livres suivants nous sont parvenus aux fins de critique. Celle-ci peut être faite en anglais ou en français. Si vous êtes intéressé(e)s à nous communiquer une revue critique sur un ouvrage en particulier, veuillez vous mettre en rapport avec le responsable de la critique des livres, Richard Hodgson par internet à http://www.cap.ca. A list of ALL books available for review, books out for review, and copies of book reviews published since 2000 are available on-line -see the PiC Online section of the CAP's website : http://www.cap.ca. Il est possible de trouver électroniquement une liste de livres disponibles pour la revue critique, une liste de livres en voie de révision, ainsi que des exemplaires de critiques de livres publiés depuis l'an 2000, en consultant la rubrique "PiC Électronique" de la page Web de l'ACP : www.cap.ca. GENERAL INTEREST ELECTRICAL TRANSPORT IN NANOSCALE SYSTEMS, Massimiliano Di Ventra, Cambridge University Press, 2008; pp. 476; ISBN: 978-0-52189634-4 (hc); Price: $80.00. MODERN QUANTUM FIELD THEORY: A CONCISE INTRODUCTION, Thomas Banks, Cambridge University Press, 2008; pp. 267; ISBN: 978-0-521-85082-7 (hc); Price: $65.00. ON SPACE AND TIME, A. Connes, M. Heller, S. Majid, R. Penrose, J. Polkinghorne, A. Taylor, Cambridge University Press, 2008; pp. 287; ISBN: 978-0-521-88926-1 (hc); Price: $26.00. UNDERGRADUATE TEXTS BOSE-EINSTEIN CONDENSATION IN DILUTE GASES, CJ. Pethick and H. Smith, Cambridge University Press, 2008; pp. 569; ISBN: 978-0521-84651-6; Price: $80.00. FUNDAMENTALS OF PLASMA PHYSICS, Paul M. Bellan, Cambridge University Press, 2008; pp. 609; ISBN: 978-0-521-52800-9 (pbk); Price: $75.00. INTRODUCTION TO QUANTUM THEORY, Harry Paul, Cambridge University Press, 2008; pp. 176; ISBN: 978-0-521-87693-3 (hc); Price: $50.00. GRADUATE TEXTS AND PROCEEDINGS NONEQUILIBRIUM QUANTUM FIELD THEORY, Estaban A. Calzetta and Bei-Lok Hu, Cambridge University Press, 2008; pp. 533; ISBN: 9780-521-64168-5 (hc); Price: $90.00. PLASMA PHYSICS AND FUSION ENERGY, Jeffrey P. Freidberg, Cambridge University Press, 2008; pp. 667; ISBN: 978-0-521-73317-5 (pbk); Price: $80.00. LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 273 BOOK REVIEWS BOOK REVIEWS / CRITIQUES DE LIVRES Book reviews for the following books have been received and posted to the Physics in Canada section of the CAP’s website : http://www.cap.ca. Review summaries submitted by the reviewer are included; otherwise, the full review can be seen at the url listed with the book details. Des revues critiques ont été reçues pour les livres suivants et ont été affichées dans la section “La Physique au Canada” de la page web de l’ACP : http://www.cap.ca. Les résumés des critiques de livre sont inclus tels que soumis; toutefois, la critique complète peut être lue au lien url indiqué avec les détails du livre. CANADA’S FIFTY YEARS IN SPACE, Gordon Shepherd and Agnes Kruchio, Apogee Books, 2008, pp. 280, ISBN 978-1-894-959-728; Price: CAN$26.95 [To read detailed review, please see http://www.cap.ca/brms/reviews/ Rev933_638.pdf] This book is a fascinating story of Canada’s first half century in space, the interesting people involved, and what made them click. It covers the personal stories of space pioneers Balfour Currie, Frank Davies and Don Rose and their research work on the upper atmosphere; the support from the US Air Force (USAF) in ionospheric physics, geomagnetism, cosmic radiation and auroral physics research, and how this support allowed space research to take root in Canada; the phenomenal growth of space science in the 60’s due in part to the visions and foresights of individuals; the interval of transition in the 70’s and the 80’s, and the effects of the “Chapman report” and the Space Shuttle program in this period; and developments in the two decades since the creation of the Canadian Space Agency, including the Canadian Astronauts Program and Canadian scientific instruments on several international satellite missions. The book is full of interesting stories, anecdotes, first-person accounts and reminiscences. Its perceptive analyses on what made people of scientific visions and entrepreneurial spirits click – and what works and what doesn’t in science research – serve as a good source of inspiration for science researchers, policy makers, and students alike. Andrew Yau University of Calgary Calgary, Alberta, Canada CLASSICAL MECHANICS, R. Douglas Gregory, Cambridge University Press, 2006, pp. 596, ISBN 0-521-82678-0 (hc); 0-521-53409-7 (pbk); Price $120.00/60.00. This textbook would serve as an excellent companion to a student learning any level of undergraduate classical mechanics and a thorough knowledge of 1st year calculus. Topics are introduced at a fundamental level, avoiding all the glossy pictures and handwaving arguments presented in most 1st year textbooks. Each topic is presented in a thorough, clear, and self contained manner which never leaves the reader feeling lost. I also feel that the author has spent just the right amount of time on each topic, providing sufficient examples and problems without getting bogged down in lengthy discussions. This textbook will be specifically useful for students 274 C PHYSICS IN learning the subject for the first time because solutions are given to every problem in the book. Parts 1 and 2 as well as Chapters 16 and 17 of Classical Mechanics constitute a second year classical mechanics course. Chapter 1 is an introduction to vector algebra and contains many interesting problems in geometry that can be solved using vector techniques. Chapters 2-4 and 16-17 give a standard introduction to kinematics and dynamics, including rotating reference frames. An excellent coverage of linear oscillations and normal modes, including damped motion, forced motion, coupled oscillations are given in chapter 5. This is followed up by the general theory of small oscillations in chapter 15. Chapter 6 and part 2 form good coverage of energy/momentum principles of particles and rigid bodies. There are also two well written chapters on orbits in a central field (chapter 7) and nonlinear oscillations (chapter 8). Part 3 of this book combined with chapter 19 and certain sections of the chapters described above are suitable for a 3rd year advanced mechanics course. Topics covered include conservation principles, the calculation of variations, Lagrange’s equation, Hamilton’s principle as well as their applications to rigid body dynamics. Steven Conboy University of British Columbia CLIMATE CHANGE - BIOLOGICAL AND HUMAN ASPECTS, Jonathan Cowie. Cambridge University Press, New York, 2007, pp. xvi + 487; ISBN: 978- 0-521-69619-7 (ppbk), 978- 0-521-87399-4 (hdbk); US$52.00/ 120.00. [To read the detailed review, please see http://www.cap.ca/brms/reviews/Rev879_607. pdf] The author of this remarkable book is an extremely articulate and erudite writer as readers sense as soon as they have read a few pages. The perspective is unusual as the author is a biologist by training rather than a physical scientist and this has been broadened by his experience in representing the Institute of Biology to both the UK government, the public and school children in particular. This innovative book starts with a brief introduction to climate change and this is followed by a careful discussion of the various indicators of past climates. Two chapters cover the periods before and after the EoceneOligocene extinction some 35 mya. This is followed by an examination of the present climate and biological change and an informed discus- CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) sion of the warming now occurring and its likely future impact. The role of population growth, energy supply, human health, food security in causing the present warming are then discussed followed by the role that biology can play in reducing this warming. The role various UN organized conferences have played in getting to the Kyoto Accord is explained. A careful analysis of energy sustainability and future energy policy options leads to a discussion of future human and biological change and the various alternative solutions. This outstanding book should be on the must read list of every scientist. Harvey A. Buckmaster, Adjunct Professor of Physics University of Victoria, Victoria, BC EINSTEIN: HIS LIFE AND UNIVERSE, Isaacson, W. , New York: Simon& Schuster., 2007, pp. 675, ISBN 978-0-743-3264730 (hc), $39 [To read the detailed review, please see http://www.cap.ca/brms/reviews/Rev906_626. pdf] W. Isaacson’s Biography of Albert Einstein, the most famous scientist of the 20th century, should be a book assigned to every curious student of science, either in high school, college or university. The style of the book, the accuracy and lucidity of the science descriptions, as well as the thorough attention to historical detail and to the roots of Einstein’s ideas, make the book capture the reader’s imagination and makes it hard to put down. Using a wealth of historical material, scientific papers, including some of the newly available documents from the recently opened archives, Isaacson creates a portrait of Einstein that captures his scientific genius, as well as his human personality, with all its triumphs, contradictory political views, flaws, and personal struggles. Scientifically presented, but understandable to a first year science (or even a high school) student, the development of Einstein’s theories of special and general relativity, and the theory of the photoelectric effect, is placed in historical context, thus allowing the reader to trace Einstein’s thought process, as well as to see the roots of Einstein’s difficulties with Quantum Mechanics and its probabilistic nature. Independent of the science background of the reader, the book will be able at the same time to satisfy and ignite readers’ curiosity and make them feel a part of one of the most amazing scientific revolutions of the 20th century, and the person who started it all. Isaacson’s biography of Einstein will also be of great interest to curious CRITIQUES DE LIVRES lay people outside of academia and to anybody who ever wondered about the universe we live in. Dr. Marina Milner-Bolotin Department of Physics, Kerr Hall East 329E Ryerson University ELECTRON CORRELATION IN METALS, Kosaku Yamada, Cambridge University Press, 2004; pp. 245; ISBN: 0-521-57232-0 (hc); Price: $100.00. This book is an attempt to describe the physics of strongly correlated electron systems, which has played an important role in several phenomena in condensed matter physics, most notably in magnetic and superconductive properties of metals. The aim of the author was to describe the theory of electron correlations based on the Fermi liquid theory. There are nine chapters in the book covering a brief introduction of the Fermi gas (Chapt.1) with standard treatment of the freeelectron system, and exchange, screening, etc., Fermi liquid theory (Chapt. 2), screening effect of an impurity charge in metals, (Chapt. 3), Anderson’s orthogonality theorem, and the Kondo effect (Chapt. 4). The other chapters deal with magnetic impurities in metals (Chapt. 5), and a lot of technical details about the Hubbard Hamiltonian (Chapt. 6). The chapter on heavy fermions (Chapt. 7) deals with the formal details that might be helpful for practitioners. Chapter 8 deals with the transport theory. Here Hall conductivity, optical conductivity, etc. are treated by the Fermi liquid theory. The final chapter provides a description of high-temperature superconductivity in terms of the Fermi liquid theory. My overall assessment is that the book is highly technical with brief and dry texts interspersed among the equations. The treatment of the topic is largely theoretical, with a few instances where connections to experiments were made. The book might interest the experts as useful reference material, but because of the complete absence of detailed introductory texts in each chapter, nonexperts will find it rather difficult to follow. Tapash Chakraborty University of Manitoba INTRODUCTION TO THE ELECTRON THEORY OF METALS, U. Mizutani, Cambridge University Press, 2000; pp. 576; ISBN: 0-521-65248-0; Price: US$80. [Review by Tapash Chakraborty, Univ of Manitoba; To read the detailed review, please see http:// www.cap.ca/brms/reviews/Rev733_560.pdf] LINEAR ELASTIC WAVES, John G. Harris, Cambridge University Press, 2001, pp. 158, ISBN: 0-521-64383 (ppk), U.S. $25. [To read the detailed review, please see http://www.cap. ca/brms/reviews/Rev293_623.pdf] The book Linear Elastic Waves by J.G. Harris is intended as an introductory text for graduate students in the physical sciences. A vast knowledge of elasticity is not required, but the reader should be familiar with a related field theory such as electromagnetic theory. Moreover, the student must have an extensive background in calculus, differential equations, and complex analysis. The material covered includes an outline of the general model equations needed to understand linear elastic waves. The physics and mathematics behind wave reflection and refraction, surface and guided waves, as well as edge diffraction and dispersion are also included. Additionally, it was shown that the kinematical form of any wave can be constructed from a collection of plane waves. As well, a discussion of the integral representations of solutions to rather general problems in elastic-wave propagation is presented. Throughout the book, care was taken to develop the required mathematics, with proofs provided in many places. A full appreciation of this material, however, requires that the reader to have an understanding of mathematics at the level of a senior undergraduate physics student. In particular, complex analysis is used extensively in the last two chapters on elasticwave radiation and guided waves, respectively. To help the reader gain a further understanding of the covered material, the author has provided references to other relevant texts throughout the book. In addition, approximately 40 practice problems have been included which require the reader to extend the concepts beyond the specific cases and conditions that are presented within this text. In general, these problems are relatively difficult and helpful hints have been provided for just a few of them. Overall, Linear Elastic Waves is a great book and is suitable as a reference text for postgraduate physics students as well as practicing researchers. Lance Parsons Memorial University, St. John’s Newfoundland, Canada I would have a difficult time recommending this book in its present edition for the reason that it has not been thoroughly proofread. This shows in both grammatical errors (at least one per page) and factual errors that are likely typos. Grammatical errors are annoying (particularly in these numbers), but would not in themselves prevent a textbook from being useful. Examples of factual errors include reference to incorrect isotopes (eg, C-40 rather than C-14), text that is inconsistent with the equations or figures it describes, and digits out of place (eg, stating the regulatory annual nuclear worker dose limit 1000x higher than actual). Before using this book as a textbook, or reference text, I would like to see another edition that has been scrubbed for oversights – it wouldn’t be difficult and would greatly improve the usefulness of what is otherwise a thorough overview of radiation detection fundamentals. Eva Marczak Toronto, Ontario THE IDEAS OF PARTICLE PHYSICS: AN INTRODUCTION FOR SCIENTISTS, Guy D. Coughlan, James E. Dodd, Ben M. Gripalos, Cambridge University Press, 2006, pp. 254, ISBN 0-521-67775-0 (pbk); 978-0-743-3264730 (hc), $50/$100. [To read the detailed review, please see http://www.cap.ca/brms/reviews/ Rev844_618.pdf] The book The Ideas of Particle Physics by Coughlan, Dodd and Gripaios promises to be an introduction aimed to scientists who do not necessarily have a physics background. The book is primarily focused on the general ideas of particle physics, the recent findings and the basic physics behind the phenomenon. The author intended for this book to provide a good basis for understanding the fundamental principles of radiation detection and their effective use in detection technologies. This book could be a text for a university level course on techniques of radiation detection and a reference for incorporating radiation detection effectively in experimental apparatus. The book starts from very basic ideas in physics such as the concept of matter and light, special relativity, fundamental forces, quantum mechanics etc. In later chapters, the basics of particle physics are addressed: strong and weak interactions, gauge theory, deep inelastic scattering, quantum chromodynamics, theory of quarks and electron positron collisions. At the end it all comes together with a discussion of the standard model. The format of the book is different from standard text books. There are not any derivations and proofs. The number of equations is minimal and there is hardly any assumed specialized knowledge required. There are many illustrative graphs throughout the book and there are no end-of-chapter problems. The first two chapters review the types and sources of radiation and its interaction with matter. Gas, liquid, solid state, scintillation and photo detectors are then reviewed. Use of detection systems is extensively addressed in chapters on signal processing, statistics for data analysis, data analysis software and data acquisition systems. A chapter on dosimetry, biological effects of radiation, and radiation protection basics is included. Mathematical concepts are illustrated through sample problems with worked solutions throughout the book, highlighted in shaded boxes to distinguish them from the text. There are an additional 5-20 practice problems (without solutions) at the end of each chapter. An extensive bibliography is also provided at the end of each chapter. I liked that the chapters were short and not too detailed. It was an easy read and ideas were well explained without referring to many equations and calculations. An interested reader should consult the text books for further details. The book is divided into ten “parts”, each containing several chapters. Each chapter covers a topic in less than ten pages and starts with one or two introductory paragraphs. I found it useful that although the ten parts and chapters are connected to each other, each is still self-contained. What I would have liked to see is a chapter or two dedicated to the experiments, how they are designed, performed and what are the challenges. There are many parts in the text where the authors refer to various experiments and recent results; however PHYSICS AND ENGINEERING OF RADIATION DETECTION, S. Ahmed, Academic Press (Elsevier), 2007, pp: 800, ISBN-13:978-0-12045581-2, ISBN-10:0-12-045581-1; Price: $95.00 US. [To read the detailed review, please see http://www.cap.ca/brms/reviews/Rev892_ 617.pdf] LA PHYSIQUE AU CANADA / Vol. 64, No. 4 ( oct. à déc. (automne) 2008 ) C 275 BOOK REVIEWS I think it would have been more complete to mention the way experiments work with the same introductory touch as the rest of the book. The authors claim is well delivered and the book suits a scientist reader. Obviously more knowledge in physics would be useful and would make the book a much easier book to read. However as long as the reader is familiar with how science works the book would be useful. In my opinion this book is well suited for physics graduate students in fields other than particle physics who want to learn the general ideas and not the details. I am a graduate student with a research field out side of particle physics. I recommend this book to undergraduate students in physics, graduate students with no particle physics background and other scientists who are seeking a general knowledge of this exciting field of physics. This book is definitely not a popular science book and the reader is required to have a scientific understanding of physics. After reading this book it will be much easier to follow more thorough text books. Sanaz Vafaei University of British Columbia THE SPECTRA AND DYNAMICS OF DIATOMIC MOLECULES: REVISED AND ENLARGED EDITION, H. Lefebvre-Brion and R. W. Field, Elsevier, 2004. pp: xxx+766, ISBN 0124414567(sc); Price $111. [To read the detailed review, please see http://www.cap.ca/ brms/reviews/Rev832_546.pdf] The spectra and dynamics of diatomic molecules is a considerable expansion of Perturbations in the spectra of diatomic molecules [i]. As the authors note, the use of the word “perturbations” in the title of the earlier work resulted in a rather limited use and appreciation of its content. Many interesting dynamical processes in molecules are related to perturbations in their spectra. The expansion that formed the present work has clarified this. Where I find this work disappointing is in the book that deserves to be widely read. organization and incorporation of the new mateIain R. McNab, rial into the re-worked chapters – particularly in Lash Miller Chemical Laboratories, Chapters Three and Six. In the earlier work University of Toronto spherical tensors were avoided in considering problems of angular momentum; in the presUNIVERSITY OF TORONTO ent work spherical tensor algebra is someDEPARTMENT OF PHYSICS times used. Faculty Position in Biological Physics Unfortunately, the new material, which uses The Department of Physics at the University of Toronto is pleased to announce spherical tensors, has the search for a tenure stream appointment in theoretical, experimental or computational Biological Physics at the rank of Assistant Professor, with a starting date been added into the of July 1, 2009 or shortly thereafter. older text haphazardly and the result is a mess. We seek candidates with a Ph.D. in Physics or a related field, and with proven or For readers not already potential excellence in both research and teaching. We are particularly interested familiar with spherical in the general area of complex systems, including genomics, proteomics, neurotensor algebra, Chapters science, systems biology and applications of statistical mechanics and nonlinear dynamics to biological systems, although outstanding candidates in any field of Three and Six will be biological physics are encouraged to apply. The new appointment will have the largely opaque. The opportunity to interact with existing groups in biological physics and related areas Spectra and Dynamics of nonlinear physics, quantum optics and condensed matter physics. In addition, of Diatomic Molecules the University of Toronto is home to one of the largest and most active biomedis a considerably ical research communities in North America. We invite prospective candidates to expanded version of its visit our home page at www.physics.utoronto.ca. The salary will be commensupredecessor. The two rate with qualifications and experience. additional chapters are Applications, including a curriculum vitae and a summary of proposed research well written and informshould be sent to: ative, and there is much Professor Michael Luke, Chair here that can only be Department of Physics, University of Toronto found elsewhere in 60 St. George Street research papers (if at Toronto, ON, Canada M5S 1A7 all). I wish that the email: [email protected] authors had chosen to take a consistent Three letters of reference should also be sent directly to the above address under separate cover. Applications will be reviewed beginning December 1, 2008 until approach to angular the position is filled. Those received by December 1, 2008 will be given first conmomentum theory in sideration. the re-worked chapters, rather than the mixed The University of Toronto offers the opportunity to teach, conduct research, and live, in one of the most diverse cities in the world. The University of Toronto is strongly committed to diversiavoidance and use of ty within its community, and especially welcomes applications from visible minority group spherical tensor algebra members, women, Aboriginal persons, persons with disabilities, members of sexual minority that is now present. groups and others who may contribute to further diversification of ideas. All qualified candiNevertheless, this is an dates are encouraged to apply; however, Canadians and permanent residents will be given priority. excellent and useful This “revised and enlarged” work contains two completely new chapters (One and Nine) while Chapters Two through Eight are revised and expanded versions of Chapters One through Seven of Perturbations in the spectra of diatomic molecules. The earlier book was reviewed by R.N. Dixon [ii]; his comments are still pertinent and will not be repeated here. The two new chapters (Chapter One – Simple spectra and standard experimental techniques, Chapter Nine Dynamics) are excellent additions. Chapter One is simple introductory material. Chapter Nine expounds the link between dynamical concepts and spectral perturbations. In chapter nine we move into the time domain with descriptions of the evolution of diatomic molecule states, and of time-domain experiments with which such motions can be probed. Many of the new and most exciting techniques in spectroscopy are mentioned in this chapter, such as photoassociation spectroscopy and the use of crafted laser pulses for control of molecular dynamics. Here too we are introduced to some of the theoretical techniques with which dynamics can be treated in quantum mechanics. The chapter concludes with a discussion of the dynamics of polyatomic molecules. 276 C PHYSICS IN CANADA / VOL. 64, NO. 4 ( Oct.-Dec. (Fall) 2008 ) AFFICHAGES DE POSTES Tenure-Track Faculty Position Theoretical Condensed Matter Physics Department of Physics McGill University The Department of Physics at McGill University invites applications for a tenuretrack position at the rank of Assistant Professor, beginning as early as September 2009. The appointment will be in the area of Theoretical Condensed Matter Physics. The applicant will be expected to become a member of the Centre for the Physics of Materials, which includes faculty members from the departments of Physics and Chemistry as well as research scientists in industrial laboratories. The focus of the Centre is on research at the boundary between Condensed Matter Physics and Materials Science. Faculty members are currently active in nanoscience, nonequilibrium materials, biophysics, quantum information theory, surface science, magnetism, and strongly-correlated electronic systems. The Centre has extensive computer facilities that include a state-of-the-art Beowulf cluster, and benefits from access to McGills CLUMEQ Supercomputer Centre. One of its major strengths is the extensive interaction and collaboration that exists between theory and experiment. The department has active groups in Astrophysics, Biophysics, Condensed Matter, Nuclear, Particle, and Theoretical Atmospheric Physics. For more information about McGill and the Department of Physics, consult our home page. We welcome applications from candidates in all major areas of condensed matter physics, with a proven record of excellence in research and also the capacity for excellence in teaching. Applicants should submit a detailed curriculum vitae and a statement of teaching interests as well as a research plan. They should also arrange for three letters of reference to be sent directly to: Professor Charles Gale, Chair Department of Physics, McGill University 3600 rue University Montréal, QC Canada, H3A 2T8 Review of applications will begin December 29th, 2008. The successful candidate will be supported by a generous start-up package and could be nominated for a Canada Research Chair. All qualified candidates are encouraged to apply; however Canadian citizens and permanent residents of Canada will be given priority. McGill University is committed to equity in employment. c i Ryerson University is known for innovative programs built on the integration of theoretical and practically oriented learning. More than 95 undergraduate and graduate programs are distinguished by a professionally focused curriculum and strong emphasis on excellence in teaching, research and creative activities. Ryerson is also a leader in adult learning, with the largest university-based continuing education school in Canada. TENURE-TRACK FACULTY POSITION – Department of Physics The Department of Physics offers undergraduate and graduate programs, and is currently composed of fifteen full-time faculty and six staff members. The Department has a core group of scientists who have secured substantial external peer-reviewed funding for cutting-edge research in Medical Physics and Biomedical Engineering. Our faculty members collaborate extensively with the surrounding biomedical community in what the City of Toronto has designated as the Discovery District, home to seven worldrenowned hospitals and more than 30 specialized medical and related sciences centres. The Department is also engaged in research in the field of Physics Education. More information on the Department of Physics can be found at www.ryerson.ca/physics. Faculty of Engineering, Architecture and Science The Department invites applications from outstanding candidates for a tenure-track faculty position at either the Associate or Assistant Professor level. The focus of this search is on Biomedical Applications of Radiation. Applicants must have a strong background in physics, possess an earned doctorate in Physics or a related field, and demonstrate excellence in research and teaching. The position is subject to budgetary approval, and can begin as early as July 2009. Interested candidates should submit a current CV and statements of proposed research directions and teaching interests, and should arrange for at least three letters of reference to be sent directly, to: Dr. Pedro Goldman, Chair, Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada, M5B 2K3. This posting will remain open until the position is filled, but the Department Appointments Committee will start reviewing applications on January 5, 2009. Ryerson University has an employment equity program and encourages applications from all qualified individuals, including Aboriginal peoples, persons with disabilities, members of visible minorities and women. Members of designated groups are encouraged to self identify. All qualified candidates are encouraged to apply; however, Canadians and permanent residents will be given priority. E N G I N E E R I N G I A R C H I T E C T U R E I S C I E N C E ALL UNDELIVERABLE COPIES IN CANADA / TOUTE CORRESPONDANCE NE POUVANT ETRE LIVREE AU CANADA should be returned to / devra être retournée à : Canadian Association of Physicists/ l’Association canadienne des physiciens et physiciennes Suite/bur. 112 Imm. McDonald Bldg. Canadian Publications Product Sales Agreement No. 40036324 / Numéro de convention pour les envois de publications canadiennes : 40036324 Univ. of/ d’Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5