Compte rendu
Transcription
Compte rendu
Evolution du Raffinage et de la Pétrochimie Christian Dupraz 14 Janvier 2013 Maison des Arts & Métiers 1 Plan de la Présentation • • Axens en Bref Evolution des marchés • À moyen Terme (2017) • À long Terme (2030) • Conséquences sur les outils • de raffinage • de pétrochimie • Production de carburants et produits « pétrochimiques » à partir de biomasse Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 2 Built on Strong Foundations Axens’ Industrial History Catalysts & Adsorbents Technologies Procatalyse IFP Industrial Division 1821 Al2O3 ore is discovered and named “Bauxite” after the Southern French town of LesBaux-de-Provence. 1944 French Institute of Petroleum is created in RueilMalmaison, France 1855 1st industrial production of Alumina in Salindres, near Les-Baux-de-Provence. 1955 Start-up of the 1st IFP-licensed unit 1950s Focus on refining and petrochemistry. Production of alumina-based catalysts. 1960s 1st licenses for HDS, Reforming and Cyclohexane production. Paris RueilMalmaison 2001 Merger Procatalyse + IFP Industrial Division Salindres Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 100% subsidiary of 3 Markets Served & Ambitions Business Units Markets Served Ambitions • Benchmark company for Clean Fuels and Aromatics production, • Leader in purification for olefins/polyolefins, syngas, refining and petrochemical, and natural gas streams, • Innovator in the biodiesel market and syngas to liquids technology. Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 4 How Do We Operate? Products Technologies Services Outside Axens perimeter Equipment Supply Catalyst Management Training First Load Catalysts Unit Revamping Integrated Process Solutions (IPS) License Technical Consulting Detailed Engineering Basic Engineering Construction Start-up & Follow-up Assistance Advanced Process Control Simulators Feasibility Study Tender and technology choice Replacement Load Catalysts Project Achievement Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Unit on-stream 5 Sales Growth 300 Axens Group Sales, 100 basis in 2001 (creation) ~ 285 in 2011 250 200 150 2001-2011 Axens Group revenues almost trebled 100 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 6 Commercial Network Development Axens Canada Specialty Aluminas Inc. (Brockville) •Axens Axens Headquaters (Rueil-Malmaison, France) Vostok (Moscow) Axens (Beijing) Axens Far East KK (Tokyo) Trading Co Ltd (Beijing) Axens India Private Ltd Axens Middle East SPC (New Delhi) Axens North America (Houston & Princeton) (Bahrain) Axens South East Asia Sdn Bhd (Kuala Lumpur) • 2007: Axens (Beijing) Trading Co Ltd • 2008: Axens Middle East SPC • 2009: Axens India Private Ltd • 2010: Axens Vostok • 2010: Axens Canada Specialty Aluminas Inc. • 2012: Axens South East Asia Sdn Bhd Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 7 Production Facilities Expansion Brockville (2010) Willow Island (2011) Calvert City (2005) Salindres Savannah July 5, 2011 - "Axens and GENTAS to Build Hydroprocessing Catalyst Manufacturing Plant in Saudi Arabia" Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 8 Axens Today Selected Business Segments • Adsorbents and Claus • • Synergies from the acquisition of Criterion’s business make Axens a leader in catalytic reforming catalysts and process technology Selective Hydrogenation & Liquid Catalysis • • of worldwide refineries operate at least one refining unit licensed by Axens Catalytic Reforming • • Synergies from the acquisition of Rio Tinto’s activated alumina business make Axens a leader in the segment today ~ 42% Axens is a leading pioneer (Nobel Prize) with a high performance product range Hydroprocessing • • Gasoline: 50% of the world’s FCC gasoline is desulfurized by Axens’ Prime-G+™ process Middle Distillates: Over 100 licenses for Prime-D™ & Prime-K™ Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 ~ 20% of gasoline and diesel used in the world is produced by refining units licensed by Axens 9 Plan de la Présentation • • Axens en Bref Evolution des marchés • À moyen Terme (2017) • À long Terme (2030) • Conséquences sur les outils • de raffinage • de pétrochimie • Production de carburants et produits « pétrochimiques » à partir de biomasse Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 10 GDP Growth (%) 2010 – 2011 – 2012 – 2013 5.1 3.8 3.3 3.6 4.5 10 11 12 13 World 2.0 1.4 -0.4 0.2 10 10 11 -0.8 10 11 12 13 12 13 Japan Russia 10 11 12 13 2.4 1.8 2.2 2.1 2.2 1.2 4.3 4.3 3.7 3.8 Euro area 11 12 13 United States 10.4 10.1 6.8 4.9 6.0 9.2 7.8 8.2 7.5 2.7 4.0 10 1.5 11 12 13 India 10 11 12 13 China 10 11 12 13 Brazil Source: International Monetary Fund (World Economic Outlook, October 2012) Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 11 11 Oil Demand Short Term Outlook 92 2011, 2012 & 2013 Oil Demand Latest estimates Mbpd 91 90.5 89.7 90 89 92 91 90 88.9 89 88 88 87 87 2011 2011, 2012 & 2013 Oil Demand Forecast (revised every month by IEA) Mbpd 2012 2013 2012 Oil demand estimates: -1.4 Mbpd (from 91.1 Mbpd in August 2011 to 89.7 Mbpd in October 2012) Source: International Energy Agency (Oil Market Reports) Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 12 12 Oil Demand Medium Term Outlook Mbpd Oil Demand 95.7 96 95 94.5 1.6 1.34 1.4 1.22 94 93.2 93 91.8 92 1.29 1.23 1.2 1.0 0.8 91 0.88 0.84 0.81 90.5 89.7 90 89 Mbpd Oil Demand Annual Change 88.9 0.6 0.4 88 0.2 87 0.0 2011 2012 2013 2014 2015 2016 2017 2011 2012 2013 2014 2015 2016 2017 Year-on-year oil demand differential may increase after 2013 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Source: International Energy Agency (Medium Term Oil Market Report, October 2012) 13 13 Oil Demand Medium Term Outlook Mbpd Oil Demand OCDE OCDE Non OCDE 52 Mbpd 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 50 48 46 44 42 40 2011 2012 2013 2014 2015 2016 2017 2011 2012 2013 2014 2015 2016 2017 2014: Non-OCDE demand > OCDE demand Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Oil Demand Annual Change Source: International Energy Agency (Medium Term Oil Market Report, October 2012) 14 14 Refinery Feedstock Current Feedstock Quality (°API, Sulfur) Note: Size of lozenge is proportional to total production Changes in Feedstock Quality °API change 2011-2017 (°API, Sulfur) °API 39 1.8 1.4 1.0 34 29 0.6 0.2 -0.2 24 2.0 1.5 1.0 0.5 0.0 Sulfur content (wt%) -0.6 +0.1 0.0 -0.1 Sulfur content change (wt%) In contrast with past analyses, by 2017 refinery feedstock is expected to globally become lighter and sweeter (Strong US tight oil effect during the 2012-2014 period; °API will decrease (heavier feedstock) after 2014) Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Source: International Energy Agency (Medium Term Oil Market Report, October 2012) 15 15 Plan de la Présentation • • Axens en Bref Evolution des marchés • À moyen Terme (2017) • À long Terme (2030) • Conséquences sur les outils • de raffinage • de pétrochimie • Production de carburants et produits « pétrochimiques » à partir de biomasse Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 16 2030 Oil Demand Axens Scenario 110 Global Oil Product Demand, Mbdoe 105 105 99.8 99,8 100 95 90 88,2 85 80 • 2010 2020 2030 ~ 100 Mbdoe oil demand by 2020 • 2010-2020 AAGR = + 1.2% • ~ 105 Mbdoe oil demand by 2030 • 2020-2030 AAGR = + 0.5% Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Mbdoe = Million barrel oil equivalent / day Source: Axens, IEA & other sources (2010) 17 Global Oil Product Demand Outlook 2010-2030 AAGR by Product Other* LPG Naphtha Motor Gasoline Jet/Kerosene On-road diesel Off-road diesel Fuel Oil 0.7% 0.5% 2.2% 0.8% 1.9% 1.7% 0.4% -0.5% Global 2010-2030 AAGR: 0.9% Market Structure 2010 vs. 2030 100% 13% 13% 80% 9% 7% 8% 9% 60% 27% 26% 40% 5% 6% 16% 19% 20% 0% 13% 10% 11% 7% 2010 2030 88.2 Mbdoe 104.7 • Demand growth driven by transportation fuel • • • • Mbdoe mainly middle distillates Gasoline: lower growth than middle distillates, but main contributor by 2030 Naphtha growth driven by petrochemicals Heavy fuel oil demand = only 7% of the global demand by 2030 Source: Axens & Other sources (2011) Other* = Kerosene (≠ Jet Kerosene), Refinery Gas, Petroleum Coke, NGL, Lubricants, Bitumen, Paraffin Wax, Refinery Losses, … Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 18 2020 Demand Growth Will be Driven by Emerging Countries… 14,8 23,3 23,5 4,3 5,1 14,6 FSU 14,3 10,0 4,9 Europe North America 7,4 9,5 3,4 4,3 India Middle East 3,3 6,1 7,4 China 4,5 Japan 10,5 12,3 4,2 Africa Other Asia Pacific Latin America Global demand 2010 2020 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Mbdoe 88.2 99.8 Unit: Mbdoe Source: Axens Estimates 19 2010-2020 Incremental Demand by Products 0,2 0,0 0,8 2,0 0,4 FSU 0,6 1,6 0,2 0,4 0,0 1,2 0,2 -0,2 0,0 -0,2 -0,4 -0,4 -0,6 0,8 Europe -0,6 0,6 0,4 0,2 0,0 -0,2 North America Fuel oil Distillate = Diesel + Kerosene/Jet Gasoline Naphtha 1,0 0,8 0,6 0,4 0,2 0,0 -0,2 -0,4 0,6 0,3 0,0 Latin America 0,0 Middle East 0,6 0,4 0,2 0,0 -0,2 China 0,2 0,0 -0,2 -0,4 Japan India 0,8 0,6 0,4 0,2 0,0 Other Asia Pacific Africa Global demand 2010 2020 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 0,4 Mbdoe 88.2 99.8 Unit: Mbdoe Source: Axens Estimates 20 Gasoline Specifications Chart Source: IFQC, WWFC EN 228 1993 Euro II Dir 98/70 2000 Euro III Dir 98/70 2005 Euro IV Dir 98/70 2009 Euro V WWFC Fourth Category (Final Proposal) Aromatics, vol%, max - 42 35 35 35 Olefins , vol%, max - 18 18 18 10 Benzene, vol%, max 5.0 1.0 1.0 1.0 1.0 Oxygen, wt%, max - 2.7 2.7 2.7/3.7 (2) 2.7 Sulfur, ppm, max 500 150 50(10) (1) 10 5-10 RVP, kPa 35 - 100 60.0 / 70.0 60.0 / 70.0 60.0 / 70.0 (3) Lead, g/l max 0.013 None None None None (1) 2005 introduction of 10ppm sulphur – Fuel must be geographically available in an appropriately balanced manner (2) 3.7% by mass in “high biofuel petrol” (Methanol: 3% vol, Ethanol: 10% vol, Iso-propyl alcohol: 12% vol, Tert-butyl alcohol: 15% vol, Iso-butyl alcohol: 15% vol, ETBE: 22%vol, other oxygenates: 15%vol) (3) The legal vapor pressure limit remains at 60kPa for both gasoline grades and at 70kPa for Member States with arctic or severe weather conditions. However, blending ethanol in gasoline results in a non-linear change of the vapor pressure, and, as oil refiners do not currently produce low vapor pressure gasoline, the commission has introduced a permitted vapor pressure waiver that is directly linkedto the percentage of ethanol blended in gasoline (ranging from 0 vol% to 10 vol%). 21 European Diesel Specifications Sulfur, ppm max Polyaromatics, vol% max Cetane Number, min Density, @15°C, kg/m3, min-max Distillation, °C, T95, max EN 590 Euro II 1993 Dir 98/70 Euro III 2000 Dir 98/70 Euro IV 2005 Dir 98/70 Euro V 2009 2000/500 350 50(10)* 10 11 11 11 8 46-49 51 51 51 820-860 845 845 845 360 360 360 360 * 2005 introduction of 10ppm sulphur – Fuel must be geographically available in an appropriately balanced manner Source: IFQC 22 Regional Gasoline & Diesel Quality Forecasts Sulfur, ppm Sulfur, ppm Gasoline Pool 1000 800 600 400 200 0 2010 2015 2020 2025 2030 4500 4000 3500 3000 2500 2000 1500 1000 500 0 2010 On-Road Diesel Pool 2015 2020 Sulfur, ppm Europe North America Asia-Pacific CIS Latin America Africa Middle East 2025 2030 Off-Road Diesel Pool 5000 4000 3000 2000 Source: Hart WRFS 10 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 1000 0 2010 2015 2020 2025 2030 23 Sulfur Limits Marine Bunker Fuel Emission Control Areas (ECA) 1.5 wt% 1 wt% Current 2010 4.5 wt% 0.1 wt% 2012 2015 2018 3.5 wt% 2020 2025 0.5 wt% Review to assess sufficient availability of 0.5% sulfur FO If not Final adoption of 0.5 wt% deferred Global Source: IFQC 2009 Abatement technologies (e.g. exhaust-gas scrubbing) is allowed as an alternative to using compliant fuel Important Scale Change and Uncertainty 25 Refining & Petrochemicals Synergies Market Analysis Crude Oil Demand by Sector World Demand Index Polymer Demand 900 Average Growth Rate 1990-05 800 700 600 5.6% 500 Mb/d 80 Power generation 60 Residential/other ind. GDP* 400 Transportation fuels 40 300 3.2% 2.1% 1.5% 200 100 Petrochemicals Gas Production Oil Production 1980 1990 2000 20 13% 0 0 • • • 100 2010 2020 2030 1980 2005 2030 Polymer demand growth >> Crude oil production growth Crude oil demand share dedicated to petrochemicals increases Let’s see the impact on polymer demand Source : TOTAL Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 GDP*: Gross Domestic Product 26 Polymer Demand 2010-2020 Average Annual Growth Rate North America +2.0% Europe +2.0% China +6.0% Middle East +5.8% Rest of Asia +4.4% Rest of the World +5.4% Global Polymer Demand 2010-2020 AAGR: +4.3% Source: Total Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 27 Plan de la Présentation • • Axens en Bref Evolution des marchés • À moyen Terme (2017) • À long Terme (2030) • Conséquences sur les outils • de raffinage • de pétrochimie • Production de carburants et produits « pétrochimiques » à partir de biomasse Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 28 Raffinerie simple ‐ début des années 70 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Source: IFP Training 29 Raffinerie avec conversion classique ‐ années 80‐‐90 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Source: IFP Training 30 Raffinerie d’aujourd’hui et de demain (2010 ‐ 2020) MTBE TAME HDS Conversion Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Source: IFP Training 31 Resid Upgrading Option 1: H-OilRC + Mild HCK + FCC C D U FG Prime-D LPG C3= Naphtha V VGO Mild D HCK U AR 100 Gasoline FCC MD VR Fuel Oil H-OilRC HCO 126 20 21 3 15 2 33 5 wt LPG and C5+ production 28 183 Total: 95 238 37 32 Resid Upgrading Option 2: H-OilRC + HyK FG C D U AR 100 Prime-D LPG Naphtha V D U VGO HyK MD HCK Residue VR H-OilRC Fuel Oil 17 109 LPG and C5+ throughput 4 27 108 17 7 46 wt Total: 97 337 52 33 Resid Upgrading Option 3: Delayed Coker + HyK FG C D U AR Prime-D LPG V D U 100 Naphtha VGO HyK MD HCK Residue VR DC Coke 109 17 LPG and C5+ production 330 20 115 18 7 46 wt Total: 95 325 50 34 Resid Upgrading Option 4: HyK + Hyvahl + R2R C D U FG LPG C3= V D U AR 100 VR Naphtha VGO Gasoline HyK MD HCK Residue Hyvahl R2R Fuel Oil 5 34 8 49 319 13 2 10 69 LPG and C5+ production wt Total: 94 22 142 44 286 35 Global Capacity Requirements for 2020 Geographical Breakdown 40% Source: Hart & Axens Estimates 30% 26% 40% 20% 40% 30% 11% 10% 30% 8% 20% 0% 10% 20% 10% 13% 8% 10% 0% 8% 40% 0% 0% North America 30% 30% 20% 10% 14%15% 14% 51% 20% 50% 10% 40% 0% 30% 40% 40% 20% 60% 23% 20% Europe 0% FSU 30% 0% 0% 0% 37% 35% 34% 23% Middle East 9% 10% 2% 4% 25% 20% 6% 10% 0% 5% 0% Africa 0% Asia-Pacific Latin America Crude Distillation Light Oil Processing ∆= + ~ 10.0 Mbpd (Reforming, Isomerization, Alkylation) ∆= + ~ 1.5 Mbpd Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Hydroprocessing Conversion (Naphtha, gasoline, Middle Distillates HDT AR / VRDS) (HCK, Resid HCK, Coking, RFCC/FCC, MHC) ∆= + ~ 9.5 Mbpd ∆= + ~ 5.0 Mbpd 40 Plan de la Présentation • • Axens en Bref Evolution des marchés • À moyen Terme (2017) • À long Terme (2030) • Conséquences sur les outils • de raffinage • de pétrochimie • Production de carburants et produits « pétrochimiques » à partir de biomasse Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 41 Refining & Petrochemical Flow Exchanges Refining Technology Petrochemicals •Unsaturated ROG •FCC C3 cut •PRU •FCC C4-C5 cuts •Conversion to C3= Final Products (C3=) PP •Coker C3-C4 cuts •Saturated ROG •Purification •Excess of C3, C4 •Dehydrogenation H2, C4, Pygas •SR Naphtha •Cracked Naphtha •CCR Reformate •Gas Oil •HC bleed Steam Cracker •HDT & Splitter •to Aromatics •to SC •VGO •to SC or PetChem FCC •AR/VR •PetChem RFCC Gasoline Pool Bases Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 (C2=) PE, PVC (C3=) PP … Raffin. Pygas Aromatics Complex ParamaX (Styrene) PS Polyethylene terephthalate PET … 42 Case Study 1 Refinery with HCK, HP FCC + ParamaX SR Naphtha CDU Naphtha Aromatic Complex ParamaX Naphtha H2 Benzene Paraxylene Gasoline Toluene rich cut, A8+ Pool A9+, raffinate, light naphtha Kero HCK VDU Gasoline Bleed VGO HP FCC Delayed HCGO Coker Propylene LPG Coke Refinery production 400,000 bbl/d Diesel Aromatics production Paraxylene: 700 kt/y (2.5% of 2010 PX world production) Benzene: 140 kt/y Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 43 Case Study 2 Existing Refinery with Steam Cracker + ParamaX Heavy Naphtha Aromatic Complex ParamaX Benzene Paraxylene Existing refinery Gasoline H2 export Pygas Kero Diesel Residue Propylene C2, LPG, raffinate Light Naphtha SC Aromatics production Existing Refinery production 400,000 bbl/d Ethylene Paraxylene: 1,400 kt/y (5% of 2010 PX world production) Benzene: 650 kt/y Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 44 Case Study 3 Refinery + ParamaX + HP FCC + Steam Cracker Naphtha SR LPG CDU 150 000 bpsd Kero Diesel LPG Naphtha HDT & Splitter VDU LN Kero LCGO HCK HHN Ethylene export Pygas & Naphtha HDT C4 recycle Butadiene C4 HP FCC Propylene Butadiene Extrac. Naphtha LPG Diesel C4 HDT Aromatics production Refinery production 150,000 bbl/d Propylene Ethylene HCGO Coke Steam Cracker C2 C3 UCO Paraxylene Pygas C5 Recycle HN LPG LN+Kero Benzene HDT Pygas + FCCN Raffinate Middle Distillate HDT Naphtha Delayed Coker HN Kero HDT VGO Aromatic Complex ParamaX Paraxylene: 780 kt/y (2.9% of 2010 PX world production) Benzene: 690 kt/y Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 45 Refining & Petrochemicals Integration Case Studies Petrochemical Yield Case Study 1 & Refinery + Aromatic Complex 6-7 % Case Study 2 & Refinery + Aromatic Complex + Steam Cracker Complex 18-19 % Case Study 3 & Increasing integration Refinery + Aromatic Complex + Steam Cracker Complex + Zero Gasoline > 40 % Key Message 1 Refining & Petrochemical integration generates • CAPEX Advantages: optimized design capacities + shared utility production • OPEX Advantages: energy efficiency by utilities consumption lower CO2 emissions = positive environment effect Technology creates value by increasing asset profitability Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 46 Focus on Shale Gas Definitions • What is Shale Gas? • • • Shale Gas: Natural gas trapped within shale formations Shale: Dark fine-grained sedimentary rock formed by the compression of clay-rich sediment Shale constitutes about 50-60% of all the sedimentary rock found in the Earth’s crust Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 • What makes it different from conventional natural gas? Nature of the reservoirs Extraction • Hydraulic fracturing: In conjunction with horizontal drilling Quality • Shale gas ethane content is higher than natural gas ethane content 47 Focus on Shale Gas US • In the US, since late 2005, shale gas production increased drastically: • 2010: 142 Gm3 (23% of total U.S. dry gas production) • 2011: ~207 Gm3 (32% of total) • 2035: 385 Gm3 (49% of total) Number of drilling rigs in the US: Source: DOE EIA Main shale gas fields: • • • Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Barnett (Texas) - historical Marcellus (North East) - attractive Haynesville (Louisiana) - attractive 48 Gas Prices 20 $/MMBtu 18 16 14 12 10 8 6 4 2 0 Jan-02 Jan-03 Annual averages ($/MMBtu) Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan.10 Jan.11 Jan.12 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 (end Q3) Henry Hub (US) 3.4 5.5 5.9 8.8 6.7 7.0 8.9 3.9 4.4 4.0 2.6 Zeebrugge (NWE) 2.6 3.6 4.4 7.3 7.9 6.1 10.9 4.9 6.7 9.2 9.2 Indonesian LNG (Japan) 3.9 4.4 5.2 6.2 7.1 7.4 10.2 6.6 8.3 13.7 16.2 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 49 Unités Vapocraquage En Opération 34 Mt 27 Mt 4 Mt North America Europe 49 units 59 units CIS 15 units 16 Mt 26 Mt China Middle East 30 units 30 units 2 Mt 5 Mt South America 33 Mt Africa Asia Oceania* 60 units 6 units 15 units Capacity given for C2= in millions tons Chart bars given for C2= capacity *Does not include China 264 running Steam Crackers worldwide Total C2= capacity : 148 Mt Utilization rate: 83% Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 50 Steam Crackers Feedstock By Region Global Feedstock: 351 Mt/y Source: SuperProud Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 51 Shale Development Impacts USGC Olefins Spread Olefins Margin Naphtha = ∆ (Ethylene price – Naphtha price) Olefins Margin Ethane = ∆ (Ethylene price – Ethane price) 1200 $/ton 1000 800 600 400 200 0 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan.10 Jan.11 Jan.12 -200 Annual averages $/ton 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 (end Q2) Olefins Margin Naphtha USGC 144 191 325 456 323 260 205 49 274 287 341 Olefins Margin Ethane USGC 189 184 342 523 436 357 390 243 520 669 966 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 52 Plan de la Présentation • • Axens en Bref Evolution des marchés • À moyen Terme (2017) • À long Terme (2030) • Conséquences sur les outils • de raffinage • de pétrochimie • Production de carburants et produits « pétrochimiques » à partir de biomasse Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 53 Global Supply Diversification by 2030 110 100 90 80 70 60 50 40 30 20 10 0 Global Demand (Mbdoe) Mbdoe 3.0 2.3 1.2 74.4 1.4 72.7 3.9 4.9 Alternative Fuels* 1.6 74.9 Others (incl. Proc. Gains) 78.5 82.5 83.9 84.4 NGL+ Condensates Crude Oil * Alternative Fuels = Biodiesel (FAME+HVO) + BioJet (HVO) + BtL Diesel + GtL Diesel + CtL & DCL Diesel + Ethanol-1G and -2G 2008 2009 2010 2015E 2020E 2025E 2030E 86.5 85.5 88.2 94.1 99.8 103.0 104.7 Alternative Fuels* could represent ~ 5% of global supply (volume basis) by 2030 Source: Axens estimates (2011) Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 54 Axens Estimates Alternative Liquid Fuels 2005 - 2030 5,0 4,5 4,0 Source: Axens estimates (2011) Mbdoe • • • • 3,5 2015: “plateau” reached for FAME & Ethanol-1G 2020+: Biojet, Biofuels-2G & coal-based fuels GtL: outlook improved by shale gas 2030: 8.5% of alt. fuels into on-road fuels • ~ 25% of 2010-2030 incremental demand CtL+DCL liq. 0.78 Mbdoe GtL liq. 0.51 Mbpdoe Ethanol-2G 0.88 Mbdoe 3,0 BtL 0.20 Mbdoe 2,5 Ethanol-1G 2,0 1.34 Mbdoe 1,5 Biojet (HVO) 1,0 0.43 Mbdoe 0,5 Biodiesel (FAME + HVO) 0.80 Mbdoe 0,0 2005 2008 2011 est. 2015 est. 2020 est. 2025 est. 2030 est. CtL + DCL liq. = Liquids from Coal to Liquids (CtL) and DCL (Direct Coal Liquefaction). GtL liq. = Liquids from Gas to Liquids BtL = Biodiesel from Biomass to Liquids ; FAME = Fatty Acid Methyl Ester ; HVO = Hydrotreated Vegetable Oils. 55 Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Axens’ Biofuels Portfolio Esterfip-H™ Renewable Oils & Fats Transesterification Vegan™ Renewable Kerosene and Diesel Prime-D™ Partially Renewable Kerosene and Diesel Hydrotreatment Mineral Diesel Biomass* Co-processing Gasification Bio Diesel (FAME) Syngas Gasel® Fischer-Tropsch + Upgrading High Quality Kerosene, Diesel and Naphtha … + other biofuel pathways under development (bio-oil upgrading,…) * When Biomass replaced by Natural Gas or Coal Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 production of GTL or CTL 56 Bio-Ethylene from Ethanol Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 57 Conclusion Axens’ Commitment Developing Markets: Innovative and market-orientated grassroot schemes Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013 Mature Markets: Improved Competitiveness of existing assets 58 Evolution du Raffinage et de la Pétrochimie 14 Janvier 2013 Maison des Arts & Métiers 59