Compte rendu

Transcription

Compte rendu
Evolution
du Raffinage et
de la Pétrochimie
Christian Dupraz
14 Janvier 2013
Maison des Arts & Métiers
1
Plan de la Présentation
•
•
Axens en Bref
Evolution des marchés
• À moyen Terme (2017)
• À long Terme (2030)
•
Conséquences sur les outils
• de raffinage
• de pétrochimie
•
Production de carburants et produits
« pétrochimiques » à partir de biomasse
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
2
Built on Strong Foundations
Axens’ Industrial History
Catalysts & Adsorbents
Technologies
Procatalyse
IFP Industrial Division
1821
Al2O3 ore is discovered and
named “Bauxite” after the
Southern French town of LesBaux-de-Provence.
1944
French Institute of Petroleum
is created in RueilMalmaison, France
1855
1st industrial production of
Alumina in Salindres, near
Les-Baux-de-Provence.
1955
Start-up of the
1st IFP-licensed unit
1950s
Focus on refining and
petrochemistry. Production of
alumina-based catalysts.
1960s
1st licenses for HDS,
Reforming and Cyclohexane
production.
Paris
RueilMalmaison
2001 Merger
Procatalyse
+
IFP Industrial Division
Salindres
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
100% subsidiary of
3
Markets Served & Ambitions
Business Units
Markets Served
Ambitions
• Benchmark company for Clean Fuels and Aromatics production,
• Leader in purification for olefins/polyolefins, syngas, refining and
petrochemical, and natural gas streams,
• Innovator in the biodiesel market and syngas to liquids technology.
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
4
How Do We Operate?
Products
Technologies
Services
Outside Axens perimeter
Equipment Supply
Catalyst Management
Training
First
Load
Catalysts
Unit Revamping
Integrated Process Solutions (IPS)
License
Technical
Consulting
Detailed
Engineering
Basic
Engineering
Construction
Start-up & Follow-up
Assistance
Advanced
Process Control
Simulators
Feasibility Study Tender and
technology
choice
Replacement
Load
Catalysts
Project Achievement
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Unit on-stream
5
Sales Growth
300
Axens Group Sales,
100 basis in 2001 (creation)
~ 285 in 2011
250
200
150
2001-2011
Axens Group revenues
almost trebled
100
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
6
Commercial Network Development
Axens Canada
Specialty Aluminas Inc.
(Brockville)
•Axens
Axens Headquaters
(Rueil-Malmaison, France)
Vostok
(Moscow)
Axens (Beijing) Axens Far East KK
(Tokyo)
Trading Co Ltd
(Beijing)
Axens India Private Ltd
Axens Middle East SPC (New Delhi)
Axens North America
(Houston & Princeton)
(Bahrain)
Axens South East Asia Sdn Bhd
(Kuala Lumpur)
• 2007: Axens (Beijing) Trading Co Ltd
• 2008: Axens Middle East SPC
• 2009: Axens India Private Ltd
• 2010: Axens Vostok
• 2010: Axens Canada Specialty Aluminas Inc.
• 2012: Axens South East Asia Sdn Bhd
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
7
Production Facilities Expansion
Brockville
(2010)
Willow Island
(2011)
Calvert City (2005)
Salindres
Savannah
July 5, 2011 - "Axens and GENTAS to Build Hydroprocessing Catalyst Manufacturing Plant
in Saudi Arabia"
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
8
Axens Today
Selected Business Segments
•
Adsorbents and Claus
•
•
Synergies from the acquisition of Criterion’s
business make Axens a leader in catalytic
reforming catalysts and process technology
Selective Hydrogenation & Liquid Catalysis
•
•
of worldwide refineries operate at least
one refining unit licensed by Axens
Catalytic Reforming
•
•
Synergies from the acquisition of Rio Tinto’s
activated alumina business make Axens a
leader in the segment today
~ 42%
Axens is a leading pioneer (Nobel Prize) with
a high performance product range
Hydroprocessing
•
•
Gasoline: 50% of the world’s FCC gasoline is
desulfurized by Axens’ Prime-G+™ process
Middle Distillates: Over 100 licenses for
Prime-D™ & Prime-K™
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
~ 20%
of gasoline and diesel
used in the world is
produced by refining
units licensed by Axens
9
Plan de la Présentation
•
•
Axens en Bref
Evolution des marchés
• À moyen Terme (2017)
• À long Terme (2030)
•
Conséquences sur les outils
• de raffinage
• de pétrochimie
•
Production de carburants et produits
« pétrochimiques » à partir de biomasse
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
10
GDP Growth (%)
2010 – 2011 – 2012 – 2013
5.1 3.8
3.3 3.6
4.5
10 11
12 13
World
2.0 1.4 -0.4 0.2
10
10 11
-0.8
10 11 12 13
12 13
Japan
Russia
10 11 12 13
2.4 1.8 2.2 2.1
2.2 1.2
4.3 4.3 3.7 3.8
Euro area
11 12 13
United States
10.4
10.1
6.8
4.9
6.0
9.2
7.8 8.2
7.5
2.7
4.0
10
1.5
11 12 13
India
10
11 12 13
China
10 11 12 13
Brazil
Source: International Monetary Fund (World Economic Outlook, October 2012)
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
11
11
Oil Demand
Short Term Outlook
92
2011, 2012 & 2013
Oil Demand
Latest estimates
Mbpd
91
90.5
89.7
90
89
92
91
90
88.9
89
88
88
87
87
2011
2011, 2012 & 2013
Oil Demand Forecast
(revised every month by IEA)
Mbpd
2012
2013
2012 Oil demand estimates: -1.4 Mbpd
(from 91.1 Mbpd in August 2011 to 89.7 Mbpd in October 2012)
Source: International Energy Agency (Oil Market Reports)
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
12
12
Oil Demand
Medium Term Outlook
Mbpd
Oil Demand
95.7
96
95
94.5
1.6
1.34
1.4
1.22
94
93.2
93
91.8
92
1.29
1.23
1.2
1.0
0.8
91
0.88 0.84
0.81
90.5
89.7
90
89
Mbpd
Oil Demand
Annual Change
88.9
0.6
0.4
88
0.2
87
0.0
2011 2012 2013 2014 2015 2016 2017
2011 2012 2013 2014 2015 2016 2017
Year-on-year oil demand differential may increase after 2013
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Source: International Energy Agency
(Medium Term Oil Market Report, October 2012)
13
13
Oil Demand
Medium Term Outlook
Mbpd
Oil Demand
OCDE
OCDE
Non OCDE
52
Mbpd
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
50
48
46
44
42
40
2011 2012 2013 2014 2015 2016 2017
2011 2012 2013 2014 2015 2016 2017
2014: Non-OCDE demand > OCDE demand
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Oil Demand
Annual Change
Source: International Energy Agency
(Medium Term Oil Market Report, October 2012)
14
14
Refinery Feedstock
Current Feedstock Quality
(°API, Sulfur)
Note: Size of lozenge is proportional to total production
Changes in Feedstock Quality
°API change
2011-2017 (°API, Sulfur)
°API
39
1.8
1.4
1.0
34
29
0.6
0.2
-0.2
24
2.0
1.5
1.0
0.5
0.0
Sulfur content (wt%)
-0.6
+0.1
0.0
-0.1
Sulfur content change (wt%)
In contrast with past analyses, by 2017 refinery feedstock
is expected to globally become lighter and sweeter
(Strong US tight oil effect during the 2012-2014 period;
°API will decrease (heavier feedstock) after 2014)
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Source: International Energy Agency
(Medium Term Oil Market Report, October 2012)
15
15
Plan de la Présentation
•
•
Axens en Bref
Evolution des marchés
• À moyen Terme (2017)
• À long Terme (2030)
•
Conséquences sur les outils
• de raffinage
• de pétrochimie
•
Production de carburants et produits
« pétrochimiques » à partir de biomasse
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
16
2030 Oil Demand
Axens Scenario
110
Global Oil Product Demand,
Mbdoe
105
105
99.8
99,8
100
95
90 88,2
85
80
•
2010
2020
2030
~ 100 Mbdoe oil demand by 2020
• 2010-2020 AAGR = + 1.2%
•
~ 105 Mbdoe oil demand by 2030
• 2020-2030 AAGR = + 0.5%
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Mbdoe = Million barrel oil equivalent / day
Source: Axens, IEA & other sources (2010)
17
Global Oil Product Demand Outlook
2010-2030 AAGR
by Product
Other*
LPG
Naphtha
Motor Gasoline
Jet/Kerosene
On-road diesel
Off-road diesel
Fuel Oil
0.7%
0.5%
2.2%
0.8%
1.9%
1.7%
0.4%
-0.5%
Global 2010-2030 AAGR: 0.9%
Market Structure
2010 vs. 2030
100%
13%
13%
80%
9%
7%
8%
9%
60%
27%
26%
40%
5%
6%
16%
19%
20%
0%
13%
10%
11%
7%
2010
2030
88.2 Mbdoe 104.7
•
Demand growth driven by transportation fuel
•
•
•
•
Mbdoe
mainly middle distillates
Gasoline: lower growth than middle distillates, but main contributor by 2030
Naphtha growth driven by petrochemicals
Heavy fuel oil demand = only 7% of the global demand by 2030
Source: Axens & Other sources (2011)
Other* = Kerosene (≠ Jet Kerosene), Refinery Gas, Petroleum Coke, NGL, Lubricants, Bitumen, Paraffin Wax, Refinery Losses, …
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
18
2020 Demand Growth Will be Driven by
Emerging Countries…
14,8
23,3 23,5
4,3 5,1
14,6
FSU
14,3
10,0
4,9
Europe
North America
7,4
9,5
3,4 4,3
India
Middle East
3,3
6,1 7,4
China
4,5
Japan
10,5 12,3
4,2
Africa
Other Asia Pacific
Latin America
Global demand
2010
2020
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Mbdoe
88.2
99.8
Unit: Mbdoe
Source: Axens Estimates
19
2010-2020 Incremental Demand
by Products
0,2
0,0
0,8
2,0
0,4
FSU
0,6
1,6
0,2
0,4
0,0
1,2
0,2
-0,2
0,0
-0,2
-0,4
-0,4
-0,6
0,8
Europe
-0,6
0,6
0,4
0,2
0,0
-0,2
North America
Fuel oil
Distillate =
Diesel +
Kerosene/Jet
Gasoline
Naphtha
1,0
0,8
0,6
0,4
0,2
0,0
-0,2
-0,4
0,6
0,3
0,0
Latin America
0,0
Middle East
0,6
0,4
0,2
0,0
-0,2
China
0,2
0,0
-0,2
-0,4
Japan
India
0,8
0,6
0,4
0,2
0,0
Other Asia Pacific
Africa
Global demand
2010
2020
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
0,4
Mbdoe
88.2
99.8
Unit: Mbdoe
Source: Axens Estimates
20
Gasoline Specifications Chart
Source: IFQC, WWFC
EN 228
1993
Euro II
Dir 98/70
2000
Euro III
Dir 98/70
2005
Euro IV
Dir 98/70
2009
Euro V
WWFC
Fourth
Category
(Final Proposal)
Aromatics, vol%, max
-
42
35
35
35
Olefins , vol%, max
-
18
18
18
10
Benzene, vol%, max
5.0
1.0
1.0
1.0
1.0
Oxygen, wt%, max
-
2.7
2.7
2.7/3.7 (2)
2.7
Sulfur, ppm, max
500
150
50(10) (1)
10
5-10
RVP, kPa
35 - 100
60.0 / 70.0
60.0 / 70.0
60.0 / 70.0 (3)
Lead, g/l max
0.013
None
None
None
None
(1) 2005 introduction of 10ppm sulphur – Fuel must be geographically available in an appropriately balanced manner
(2) 3.7% by mass in “high biofuel petrol” (Methanol: 3% vol, Ethanol: 10% vol, Iso-propyl alcohol: 12% vol, Tert-butyl alcohol:
15% vol, Iso-butyl alcohol: 15% vol, ETBE: 22%vol, other oxygenates: 15%vol)
(3) The legal vapor pressure limit remains at 60kPa for both gasoline grades and at 70kPa for Member States with arctic or
severe weather conditions. However, blending ethanol in gasoline results in a non-linear change of the vapor pressure, and, as
oil refiners do not currently produce low vapor pressure gasoline, the commission has introduced a permitted vapor pressure
waiver that is directly linkedto the percentage of ethanol blended in gasoline (ranging from 0 vol% to 10 vol%).
21
European Diesel Specifications
Sulfur, ppm max
Polyaromatics,
vol% max
Cetane Number,
min
Density,
@15°C, kg/m3, min-max
Distillation,
°C, T95, max
EN 590
Euro II
1993
Dir 98/70
Euro III
2000
Dir 98/70
Euro IV
2005
Dir 98/70
Euro V
2009
2000/500
350
50(10)*
10
11
11
11
8
46-49
51
51
51
820-860
845
845
845
360
360
360
360
* 2005 introduction of 10ppm sulphur – Fuel must be geographically available in an appropriately balanced
manner
Source: IFQC
22
Regional Gasoline & Diesel
Quality Forecasts
Sulfur, ppm
Sulfur, ppm
Gasoline
Pool
1000
800
600
400
200
0
2010
2015
2020
2025
2030
4500
4000
3500
3000
2500
2000
1500
1000
500
0
2010
On-Road
Diesel Pool
2015
2020
Sulfur, ppm
Europe
North America
Asia-Pacific
CIS
Latin America
Africa
Middle East
2025
2030
Off-Road
Diesel Pool
5000
4000
3000
2000
Source: Hart WRFS 10
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
1000
0
2010
2015
2020
2025
2030
23
Sulfur Limits
Marine Bunker Fuel
Emission Control Areas (ECA)
1.5 wt% 1 wt%
Current 2010
4.5 wt%
0.1 wt%
2012
2015
2018
3.5 wt%
2020
2025
0.5 wt%
Review to assess
sufficient
availability of
0.5% sulfur FO
If not
Final adoption of
0.5 wt% deferred
Global
Source: IFQC 2009
Abatement technologies (e.g. exhaust-gas scrubbing) is allowed as an alternative to using compliant
fuel
Important Scale Change and Uncertainty
25
Refining & Petrochemicals Synergies
Market Analysis
Crude Oil Demand
by Sector
World Demand Index
Polymer Demand
900
Average
Growth
Rate
1990-05
800
700
600
5.6%
500
Mb/d
80
Power generation
60
Residential/other ind.
GDP*
400
Transportation fuels
40
300
3.2%
2.1%
1.5%
200
100
Petrochemicals
Gas Production
Oil Production
1980
1990
2000
20
13%
0
0
•
•
•
100
2010
2020
2030
1980 2005 2030
Polymer demand growth >> Crude oil production growth
Crude oil demand share dedicated to petrochemicals increases
Let’s see the impact on polymer demand
Source : TOTAL
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
GDP*: Gross Domestic Product
26
Polymer Demand 2010-2020
Average Annual Growth Rate
North
America
+2.0%
Europe
+2.0%
China
+6.0%
Middle East
+5.8%
Rest of Asia
+4.4%
Rest of the World
+5.4%
Global Polymer Demand
2010-2020 AAGR: +4.3%
Source: Total
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
27
Plan de la Présentation
•
•
Axens en Bref
Evolution des marchés
• À moyen Terme (2017)
• À long Terme (2030)
•
Conséquences sur les outils
• de raffinage
• de pétrochimie
•
Production de carburants et produits
« pétrochimiques » à partir de biomasse
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
28
Raffinerie simple ‐ début des années 70
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Source: IFP Training
29
Raffinerie avec conversion classique ‐
années 80‐‐90
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Source: IFP Training
30
Raffinerie d’aujourd’hui et de demain
(2010 ‐ 2020)
MTBE
TAME
HDS
Conversion
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Source: IFP Training
31
Resid Upgrading
Option 1: H-OilRC + Mild HCK + FCC
C
D
U
FG
Prime-D
LPG
C3=
Naphtha
V VGO Mild
D
HCK
U
AR
100
Gasoline
FCC
MD
VR
Fuel Oil
H-OilRC
HCO
126
20
21
3 15
2 33
5
wt
LPG and C5+ production
28
183
Total: 95
238
37
32
Resid Upgrading
Option 2: H-OilRC + HyK
FG
C
D
U
AR
100
Prime-D
LPG
Naphtha
V
D
U
VGO
HyK
MD
HCK
Residue
VR
H-OilRC
Fuel Oil
17
109
LPG and C5+ throughput
4
27
108
17
7
46
wt
Total: 97
337
52
33
Resid Upgrading
Option 3: Delayed Coker + HyK
FG
C
D
U
AR
Prime-D
LPG
V
D
U
100
Naphtha
VGO
HyK
MD
HCK
Residue
VR
DC
Coke
109
17
LPG and C5+ production
330
20
115
18
7
46
wt
Total: 95
325
50
34
Resid Upgrading
Option 4: HyK + Hyvahl + R2R
C
D
U
FG
LPG
C3=
V
D
U
AR
100
VR
Naphtha
VGO
Gasoline
HyK
MD
HCK
Residue
Hyvahl
R2R
Fuel Oil
5
34
8
49
319 13
2
10
69
LPG and C5+ production
wt
Total: 94
22
142
44
286
35
Global Capacity Requirements for 2020
Geographical Breakdown
40%
Source: Hart & Axens Estimates
30%
26%
40%
20%
40%
30%
11%
10%
30%
8%
20%
0%
10%
20%
10%
13%
8%
10%
0%
8%
40%
0% 0%
North America
30%
30%
20%
10%
14%15%
14%
51%
20%
50%
10%
40%
0%
30%
40%
40%
20%
60%
23%
20%
Europe
0%
FSU
30%
0%
0% 0%
37%
35%
34%
23%
Middle East
9%
10%
2%
4%
25%
20%
6%
10%
0%
5%
0%
Africa
0%
Asia-Pacific
Latin America
Crude Distillation
Light Oil
Processing
∆= + ~ 10.0 Mbpd
(Reforming,
Isomerization,
Alkylation)
∆= + ~ 1.5 Mbpd
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Hydroprocessing
Conversion
(Naphtha, gasoline,
Middle Distillates HDT
AR / VRDS)
(HCK, Resid HCK,
Coking,
RFCC/FCC, MHC)
∆= + ~ 9.5 Mbpd
∆= + ~ 5.0 Mbpd
40
Plan de la Présentation
•
•
Axens en Bref
Evolution des marchés
• À moyen Terme (2017)
• À long Terme (2030)
•
Conséquences sur les outils
• de raffinage
• de pétrochimie
•
Production de carburants et produits
« pétrochimiques » à partir de biomasse
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
41
Refining & Petrochemical Flow Exchanges
Refining
Technology
Petrochemicals
•Unsaturated ROG
•FCC C3 cut
•PRU
•FCC C4-C5 cuts
•Conversion to C3=
Final
Products
(C3=) PP
•Coker C3-C4 cuts
•Saturated ROG
•Purification
•Excess of C3, C4
•Dehydrogenation
H2, C4, Pygas
•SR Naphtha
•Cracked Naphtha
•CCR Reformate
•Gas Oil
•HC bleed
Steam
Cracker
•HDT & Splitter
•to Aromatics
•to SC
•VGO
•to SC or PetChem FCC
•AR/VR
•PetChem RFCC
Gasoline Pool Bases
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
(C2=) PE, PVC
(C3=) PP
…
Raffin.
Pygas
Aromatics
Complex
ParamaX
(Styrene) PS
Polyethylene
terephthalate
PET
…
42
Case Study 1
Refinery with HCK, HP FCC + ParamaX
SR Naphtha
CDU
Naphtha
Aromatic Complex
ParamaX
Naphtha
H2
Benzene
Paraxylene
Gasoline
Toluene rich cut, A8+
Pool
A9+, raffinate, light naphtha
Kero
HCK
VDU
Gasoline
Bleed
VGO
HP FCC
Delayed HCGO
Coker
Propylene
LPG
Coke
Refinery production
400,000 bbl/d
Diesel
Aromatics production
Paraxylene: 700 kt/y (2.5% of 2010 PX world production)
Benzene: 140 kt/y
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
43
Case Study 2
Existing Refinery with Steam Cracker + ParamaX
Heavy Naphtha
Aromatic Complex
ParamaX
Benzene
Paraxylene
Existing refinery
Gasoline
H2 export
Pygas
Kero
Diesel
Residue
Propylene
C2, LPG, raffinate
Light Naphtha
SC
Aromatics production
Existing Refinery production
400,000 bbl/d
Ethylene
Paraxylene: 1,400 kt/y (5% of 2010 PX world production)
Benzene: 650 kt/y
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
44
Case Study 3
Refinery + ParamaX + HP FCC + Steam Cracker
Naphtha SR
LPG
CDU
150 000
bpsd
Kero
Diesel
LPG
Naphtha
HDT &
Splitter
VDU
LN
Kero
LCGO
HCK
HHN
Ethylene export
Pygas
&
Naphtha
HDT
C4 recycle
Butadiene
C4
HP FCC
Propylene
Butadiene
Extrac.
Naphtha
LPG
Diesel
C4 HDT
Aromatics production
Refinery production
150,000 bbl/d
Propylene
Ethylene
HCGO
Coke
Steam
Cracker
C2
C3
UCO
Paraxylene
Pygas
C5 Recycle
HN
LPG
LN+Kero
Benzene
HDT Pygas + FCCN
Raffinate
Middle
Distillate
HDT
Naphtha
Delayed
Coker
HN
Kero
HDT
VGO
Aromatic
Complex
ParamaX
Paraxylene: 780 kt/y (2.9% of 2010 PX world production)
Benzene: 690 kt/y
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
45
Refining & Petrochemicals Integration
Case Studies
Petrochemical Yield
Case Study 1
&
Refinery + Aromatic Complex
6-7 %
Case Study 2
&
Refinery + Aromatic Complex +
Steam Cracker Complex
18-19 %
Case Study 3
&
Increasing
integration
Refinery + Aromatic Complex +
Steam Cracker Complex +
Zero Gasoline
> 40 %
Key Message 1
Refining & Petrochemical integration generates
• CAPEX Advantages: optimized design capacities
+ shared utility production
• OPEX Advantages: energy efficiency
by utilities consumption
lower CO2 emissions = positive environment effect
Technology creates value by increasing asset profitability
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
46
Focus on Shale Gas
Definitions
•
What is Shale Gas?
•
•
•
Shale Gas: Natural gas trapped within
shale formations
Shale: Dark fine-grained sedimentary
rock formed by the compression of
clay-rich sediment
Shale constitutes about 50-60% of all
the sedimentary rock found in the
Earth’s crust
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
•
What makes it different from
conventional natural gas?
Nature of the reservoirs
Extraction
• Hydraulic fracturing: In conjunction with
horizontal drilling
Quality
• Shale gas ethane content is higher than
natural gas ethane content
47
Focus on Shale Gas
US
•
In the US, since late 2005, shale gas production increased
drastically:
•
2010: 142 Gm3 (23% of total U.S. dry gas
production)
•
2011: ~207 Gm3 (32% of total)
•
2035: 385 Gm3 (49% of total)
Number of drilling rigs in the US:
Source: DOE EIA
Main shale gas fields:
•
•
•
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Barnett (Texas) - historical
Marcellus (North East) - attractive
Haynesville (Louisiana) - attractive
48
Gas Prices
20
$/MMBtu
18
16
14
12
10
8
6
4
2
0
Jan-02
Jan-03
Annual averages
($/MMBtu)
Jan-04
Jan-05
Jan-06
Jan-07
Jan-08
Jan-09
Jan.10
Jan.11
Jan.12
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
(end Q3)
Henry Hub (US)
3.4
5.5
5.9
8.8
6.7
7.0
8.9
3.9
4.4
4.0
2.6
Zeebrugge (NWE)
2.6
3.6
4.4
7.3
7.9
6.1
10.9
4.9
6.7
9.2
9.2
Indonesian LNG (Japan)
3.9
4.4
5.2
6.2
7.1
7.4
10.2
6.6
8.3
13.7
16.2
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
49
Unités Vapocraquage En Opération
34 Mt
27 Mt
4 Mt
North
America
Europe
49 units
59 units
CIS
15 units
16 Mt
26 Mt
China
Middle
East
30 units
30 units
2 Mt
5 Mt
South
America
33 Mt
Africa
Asia
Oceania*
60 units
6 units
15 units
Capacity given for C2= in millions tons
Chart bars given for C2= capacity
*Does not include China
264 running Steam Crackers worldwide
Total C2= capacity : 148 Mt
Utilization rate: 83%
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
50
Steam Crackers Feedstock
By Region
Global Feedstock: 351 Mt/y
Source: SuperProud
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
51
Shale Development Impacts
USGC Olefins Spread
Olefins Margin Naphtha = ∆ (Ethylene price – Naphtha price)
Olefins Margin Ethane = ∆ (Ethylene price – Ethane price)
1200
$/ton
1000
800
600
400
200
0
Jan-02
Jan-03
Jan-04
Jan-05
Jan-06
Jan-07
Jan-08
Jan-09
Jan.10
Jan.11
Jan.12
-200
Annual averages
$/ton
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
(end Q2)
Olefins Margin Naphtha USGC
144
191
325
456
323
260
205
49
274
287
341
Olefins Margin Ethane USGC
189
184
342
523
436
357
390
243
520
669
966
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
52
Plan de la Présentation
•
•
Axens en Bref
Evolution des marchés
• À moyen Terme (2017)
• À long Terme (2030)
•
Conséquences sur les outils
• de raffinage
• de pétrochimie
•
Production de carburants et produits
« pétrochimiques » à partir de biomasse
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
53
Global Supply Diversification by 2030
110
100
90
80
70
60
50
40
30
20
10
0
Global
Demand
(Mbdoe)
Mbdoe
3.0
2.3
1.2
74.4
1.4
72.7
3.9
4.9
Alternative Fuels*
1.6
74.9
Others (incl. Proc. Gains)
78.5
82.5
83.9
84.4
NGL+ Condensates
Crude Oil
* Alternative Fuels =
Biodiesel (FAME+HVO)
+ BioJet (HVO)
+ BtL Diesel
+ GtL Diesel
+ CtL & DCL Diesel
+ Ethanol-1G and -2G
2008
2009
2010 2015E 2020E 2025E 2030E
86.5
85.5
88.2
94.1
99.8
103.0
104.7
Alternative Fuels* could represent ~ 5% of
global supply (volume basis) by 2030
Source: Axens estimates (2011)
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
54
Axens Estimates
Alternative Liquid Fuels 2005 - 2030
5,0
4,5
4,0
Source: Axens estimates (2011)
Mbdoe
•
•
•
•
3,5
2015: “plateau” reached for FAME & Ethanol-1G
2020+: Biojet, Biofuels-2G & coal-based fuels
GtL: outlook improved by shale gas
2030: 8.5% of alt. fuels into on-road fuels
• ~ 25% of 2010-2030 incremental demand
CtL+DCL liq.
0.78 Mbdoe
GtL liq.
0.51 Mbpdoe
Ethanol-2G
0.88 Mbdoe
3,0
BtL
0.20 Mbdoe
2,5
Ethanol-1G
2,0
1.34 Mbdoe
1,5
Biojet (HVO)
1,0
0.43 Mbdoe
0,5
Biodiesel (FAME +
HVO)
0.80 Mbdoe
0,0
2005
2008
2011
est.
2015
est.
2020
est.
2025
est.
2030
est.
CtL + DCL liq. = Liquids from Coal to Liquids (CtL) and DCL (Direct Coal Liquefaction). GtL liq. = Liquids from Gas to Liquids
BtL = Biodiesel from Biomass to Liquids ; FAME = Fatty Acid Methyl Ester ; HVO = Hydrotreated Vegetable Oils.
55
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Axens’ Biofuels Portfolio
Esterfip-H™
Renewable
Oils & Fats
Transesterification
Vegan™
Renewable
Kerosene
and Diesel
Prime-D™
Partially
Renewable
Kerosene
and Diesel
Hydrotreatment
Mineral
Diesel
Biomass*
Co-processing
Gasification
Bio Diesel
(FAME)
Syngas
Gasel®
Fischer-Tropsch +
Upgrading
High Quality
Kerosene,
Diesel and
Naphtha
… + other biofuel pathways under development
(bio-oil upgrading,…)
* When Biomass replaced by Natural Gas or Coal
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
production of GTL or CTL
56
Bio-Ethylene from Ethanol
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
57
Conclusion
Axens’ Commitment
Developing Markets:
Innovative and
market-orientated
grassroot schemes
Conférence Maison des Arts & Métiers, C. Dupraz, 14 Janvier 2013
Mature Markets:
Improved
Competitiveness
of existing assets
58
Evolution
du Raffinage et
de la Pétrochimie
14 Janvier 2013
Maison des Arts & Métiers
59