SPIRou @ CFHT : a nIR échelle

Transcription

SPIRou @ CFHT : a nIR échelle
SPIRou @ CFHT : a nIR spectropolarimeter
SPIRou @ CFHT :
a nIR échelle spectropolarimeter
for detecting Earth-like planets in the
habitable zone of low-mass stars
Executive summary
SPIRou is a nIR spectropolarimeter proposed as a new-generation CFHT instrument
mostly aimed at detecting Earth-like planets in the habitable zone of low-mass
stars and at investigating how magnetic fields impact star/planet formation.
We present here results of a feasibility study, discussing all relevant issues from the
science drivers and corresponding instrumental specifications, to the optical design
and associated technical developments, and to the operations and data processing.
No significant problem with SPIRou was identified throughout this study, that we
conclude with a tentative budget, a preliminary agenda and a realistic project team.
1/79
SPIRou @ CFHT : a nIR spectropolarimeter
Table des matières
Introduction
4
Main scientific drivers
4
Detecting Earth-like planets in habitable zones of low-mass stars
4
Investigating magnetised star/planet formation
5
Dynamo processes in brown dwarfs
7
Exploring stellar environments & envelopes
7
Other potential applications
8
Instrument specifications
8
Instrument concept & preliminary optical design
9
Overall concept & performances
9
SPIRou: a unique opportunity
10
Preliminary optical design & thermal background estimate
10
Development requirements
11
Identify a technical device providing a stable RV reference
11
Identify adequate glass & coating for the rhomb retarders
12
Modify the GIANO cryogenic bench/tank for SPIRou
12
Operations & data processing
13
Operations
13
Data processing
13
Development roadmap, project team & first cost estimate 14
Development roadmap
14
Project team
14
Tentative budget
15
2/79
SPIRou @ CFHT : a nIR spectropolarimeter
Appendix A : preliminary optical design of the cryogenics
spectrograph (in French)
16
Appendix B : preliminary estimate of the instrument thermal
background
60
Appendix C : preliminary study of nIR Fresnel rhombs for
SPIRou
63
Appendix D : deriving accurate RVs from nIR spectra - the
telluric-line issue
72
Appendix E : crushing down the activity-induced RV jitter with
nIR spectropolarimetry
77
3/79
SPIRou @ CFHT : a nIR spectropolarimeter
1. Introduction
SPIRou is a nIR spectropolarimeter proposed as a new-generation CFHT instrument (to be
implemented in 2014). Technically speaking, SPIRou is essentially a nIR version of ESPaDOnS/NARVAL
with improved RV stability (1 m/s level), and consists of a high-resolution cryogenic échelle
spectrograph fiber-fed from a Cassegrain achromatic polarimeter. It yields nearly complete spectral
coverage in the JHK bands (ie from 0.9 to 2.4µm) at a spectral resolution of 50,000.
The main science goal is to attempt detecting Earth-like planets in the habitable zone of low-mass
stars and to investigate the role of magnetic fields in the star/planet formation process.
2. Main scientific drivers
Fig 1: artist view of the habitable planet
around the M dwarf Gl 581 (©ESO)
a. Detecting Earth-like planets in
habitable zones of low-mass stars
90% of the ~300 known exoplanets were
discovered with the radial velocity (RV) method,
which for Sun-like stars is limited to planets with
masses larger than 10 Earth masses or in very
close orbits. This is because habitable Earth-mass
planets induce RV wobbles (a few cm/s around a
Sun-like star) that are too small to be detectable
with existing instruments. To investigate
thoroughly the properties of Earth-like planets,
and in particular those located in habitable zones
(ie with surface temperatures allowing for the presence of liquid water), low-mass dwarfs are an
extremely promising option. The RV wobble induced by an Earth-mass planet is more than an order of
magnitude larger for an M dwarf than for a G star (~2 m/s for an Earth-mass planet around a 0.1 Msun
star, see Fig 2), not only because the planet/star mass ratio is larger but also because the habitable
zone is closer to the star (to ensure a similar stellar flux at the planet surface).
Low-mass dwarfs vastly dominate the stellar population (8 of 9) in the solar neighborhood and
are likely the hosts of most planets in our Galaxy. Systematic RV observations of nearby M dwarfs
should thus provide a broader view on the diversity of planetary formation and yield a quantitative
estimate of the fraction of habitable Earth-like planets about the Sun. However, M dwarfs will be
difficult to observe with future space missions (eg DARWIN & TPF) aimed at investigating habitability
of extrasolar planets due to their intrinsic faintness. Ground pre-launch preparation is thus essential
for selecting the best few M dwarfs on which DARWIN & TPF could concentrate. While ground
photometry can reveal a number of potential candidates through transits (eg the MEarth project,
Irwin et al 2008, arXiv:0807.1316), spectroscopic observations are absolutely necessary both to obtain
detections of non-transiting systems (only 1% of habitable planets in M dwarfs transit their star) and
confirm the planetary nature of photometric candidates showing transits. Similarly, follow-up
spectroscopic observations will be needed for all KEPLER transit detections.
Presently, dwarfs with masses lower than 0.25 Msun are mostly out of reach of current optical
extra-solar planet RV surveys as a result of their small sizes and low surface temperatures (fluxes of
late M dwarfs peak at ~1.5 µm); exploring them therefore requires a high-resolution nIR échelle
spectrograph providing simultaneously high RV accuracy (1 m/s), high throughput (15%) and wide
single-shot spectral coverage (0.98-2.4 µm, ie the YJHK bands, to maximise the line content). Low
4/79
SPIRou @ CFHT : a nIR spectropolarimeter
Fig 2: detectability of a habitable planet as function of the host star mass
and the instrument RV accuracy. Earth-like habitable planets are mostly
accessible for nIR instruments.
mass stars apparently feature a rich nIR
spectrum of atomic and molecular lines
whose strengths increase at lower
temperatures (eg McLean et al, 2007, ApJ
658, 1217), ensuring that potential planets
generate detectable RV wobbles. The impact
of telluric lines on the estimated RVs is
minimised by observing from the driest nonpolar observatory on Earth (ie MaunaKea)
and can be further reduced with subtraction
techniques (see Appendix D).
By monitoring simultaneously the
magnetic field topology of the host star
(using the polarimetric capabilities of
SPIRou), we can filter out efficiently the
activity noise from the RV signal. Preliminary
studies indicate that the activity-induced RV
jitter of M dwarfs is smaller in the nIR
(< 2 m/s, see also Appendix E) and roughly
constant with spectral type (eg Endl et al, 2006, ApJ 649, 436). With the proposed filtering scheme,
RV accuracies of 1 m/s should be attainable.
A nIR spectropolarimetric survey of ~800 slowly rotating M dwarfs (out of the several
thousand available within 50 pc) observed with a peak spectral quality of S/N=250 can be obtained
with about 150 n/yr on a timescale of 7 yr. This corresponds to average observing times of about
0.5 hr per star (J=10, ie a M3 dwarf @ 40 pc or a M5 dwarf @ 18 pc) and per visit, with an average of
25 visits per star. Extrapolating from the (small) number of very-low-mass planets detected with
HARPS/ESO indicates that at least 80 planetary systems hosting planets less massive than 20 Earth
masses could be detected with SPIRou.
Searching for massive planets around L dwarfs (detectable from spectra with S/N~40) is also
very interesting; a 20 m/s RV accuracy survey of about 100 L brown dwarfs of different spectral
types (limited at J<14) with SPIRou would require about 15 n/yr for 7 yr.
SPIRou will also be very useful for detecting planets around young low-mass stars, and young M
dwarfs in particular, yielding improved constraints on timescales of planet formation. Previous
attempts at detecting planets around young stars have failed or produced false planet claims (eg
Setiawan et al 2008, Nature 451, 38) due to their high level of intrinsic activity (magnetic fields &
cool spots). Going to the infrared (where the spot/photosphere contrast is much lower, see Appendix
E) will provide a drastic improvement by strongly reducing the activity jitter in the RV curve (by at
least a factor of 5 between the V and H band, Huelamo et al 2008, arXiv:0808.2386). Several tens of
K and M classical T Tauri stars featuring narrow spectral lines and mK < 10 should be accessible with
SPIRou for such investigations.
b. Investigating magnetised star/planet formation
Whereas the understanding of most phases of stellar evolution made considerable progress
throughout the whole of the twentieth century, stellar formation remained rather enigmatic and
poorly constrained by observations until about three decades ago. One major discovery obtained at
this time is that protostellar accretion discs are often associated with bipolar flows (eg Snell et al
1980, ApJ 239, L17), now known to be powerful, highly-collimated jets escaping the disc along its
rotation axis. These jets (and in particular their collimation) have been attributed to the presence of
magnetic fields and to the so-called magneto-centrifugal processes (eg Pudritz & Norman, 1983, ApJ
274, 677). Another important discovery is that low-mass magnetic protostars are rotating significantly
5/79
SPIRou @ CFHT : a nIR spectropolarimeter
slower than predicted by a non magnetized
collapse (eg Bertout 1989, ARA&A 27, 351);
this is likely due to the large-scale magnetic
field coupling the protostar to its accretion
disc (eg Königl, 1991, ApJ 370, L39). Both
results demonstrate that magnetic fields play a
central role throughout stellar formation.
For exploring magnetic fields (through
Zeeman polarisation of spectral lines) in star
forming regions, and in particular in low-mass
protostars and protostellar accretion discs, a
nIR spectropolarimeter is optimally suited
Fig 3: artist view of a protostellar accretion disc.
(with respect to an optical instrument), Zeeman
splitting in magnetically sensitive spectral lines
being much stronger in the nIR. Moreover, low-mass protostars are often quite cool, the youngest ones
being often surrounded by a dust envelope (mostly opaque at visible wavelengths); studying them at
nIR wavelengths is by far the optimal solution. By detecting Zeeman signatures in young stars/discs
and by monitoring them as the stars/discs rotate, we will be able to model their large-scale magnetic
topologies (eg Donati et al 2007, MNRAS 380, 1297, see Fig 4) and derive a wealth of brand new
constraints on how magnetic fields impact the birth of stars and their planetary systems, how they
participate in launching jets and how they control their angular momentum history.
For this program, we need high spectral resolution (>50,000) to provide as much details as
possible on the shape of Zeeman signatures; we also need the largest possible spectral domain
accessible in a single exposure (ie 0.98-2.5 µm, the YJHK bands) to ensure that (i) we maximise the
number of spectral lines from which Zeeman signatures are extracted and improve the accuracy to
which magnetic fields are detected and modeled (ii) we collect as many different spectral proxies as
possible (eg lines formed at the footpoints of accretion funnels, or at the inner rim of the accretion
disc) to monitor the magnetospheric accretion processes simultaneously with (and further constrain)
the magnetic topology. Magnetically sensitive Ti lines @ 2.22 µm, as well as CO lines @ 2.31 µm have
often been used in this aim (eg Johns Krull 2007, ApJ 664, 975); many other atomic and molecular
lines are also suitable for this purpose throughout the whole YJHK bands. With good RV stability
(10 m/s), we can also investigate whether closein giant planets are already present around
Fig 4: magnetosphere of the cTTS V2129 Oph derived with
forming protostars (ie before their disc is fully
ZDI from sets of spectropolarimetric Zeeman signatures
(Donati et al 2007).
dissipated).
With an efficient high-resolution nIR
spectrograph like SPIRou, we should be able to
access more than 200 young objects with mK<11
for such studies. This program would typically
require as much as 50 nights/yr over a period of
5yr to investigate a large enough sample of
protostars and protostellar discs and study how
their large-scale magnetic topologies correlate
with fundamental parameters (such as mass,
age, rotation rate, outflow properties, disc
density distribution) and vary on a timescale of
a few yr (to look for activity or accretion
cycles, or at planet migration within the inner
regions of protostellar accretion discs like
FUOrs).
6/79
SPIRou @ CFHT : a nIR spectropolarimeter
c. Dynamo processes in brown dwarfs
In the last 20yrs, very-low-mass stars and brown dwarfs have
triggered an enormous burst of interest. Very little was known
about these objects before; despite considerable progress in
recent years, their physics, internal structure and atmospheric
properties are still poorly understood, with a number of
important issues remaining unexplained. For instance,
quantities as basic and fundamental as their radius and
emergent spectra are still poorly reproduced by existing
models; similarly, the magnetic topologies of late M and early L
dwarfs are also poorly known, despite having an obvious impact
on convection and therefore on the overall structure of these
objects (eg Chabrier et al, 2007, A&A 472, L17). Radio
observations demonstrate that strong large scale magnetic
fields are likely present in brown dwarfs as late as at least L3
(Berger, 2006, ApJ 648, 629); spectropolarimetric data
collected with ESPaDOnS (eg Donati et al 2006, Science 311,
633) demonstrate that large-scale magnetic topologies of M
Fig 5: artist view of a brown dwarf.
dwarfs can be reliably imaged, but late M and early L brown
dwarfs are still out of reach due to their intrinsic faintness at
optical wavelengths.
Observing at nIR wavelengths should drastically improve the efficiency of spectropolarimetric
studies and make them applicable to late M and early L brown dwarfs that radiate most of their
photons between 1-2µm. Moreover, Zeeman splitting in magnetically sensitive spectral lines is much
stronger in the nIR, where spectra show a large number of both atomic and molecular lines. A nIR
spectropolarimeter thus offers a unique opportunity of studying dynamo processes in brown dwarfs
and give us the key to understand why these objects rotate significantly faster than the mid-M
dwarfs and strongly violate the radio/X-ray flux correlation applying to all cool stars including the Sun;
it will also allow us to study how magnetic fields affect convection and impact the overall structure of
brown dwarfs. Tomographic techniques applied to molecular lines can also be used to study "weather"
patterns on brown dwarfs.
For this program, we need high spectral resolution (>50,000) to provide as much details as
possible on the shape of spectral lines and Zeeman signatures; we also need the largest possible
spectral domain accessible in a single exposure (ie 0.98-2.5 µm, the YJHK bands) to ensure that we
maximise the number of atomic (eg Ti @ 2.22µm) and molecular (eg FeH @ 1.00µm, CO @ 2.31µm) lines
from which Zeeman signatures are extracted and improve the accuracy to which magnetic fields are
detected and modeled. With an efficient high-resolution nIR spectropolarimeter, we are able to
access more than 200 young objects with mJ<10 & mK<11 for such studies. This program would typically
require as much as 25 nights/yr over a period of 5 yr to investigate a large enough sample of late M
and early L brown dwarfs.
d. Exploring stellar environments & envelopes
SPIRou is also very well suited for studying spatially-extended circumstellar environments like
protostellar dust cocoons, accretion discs and jets around young stars, winds around massive stars,
excretion discs around Be stars or extended envelopes around cool giant stars.
At nIR wavelengths in particular, the luminosity contrast between the central star and the
surrounding accretion discs or dust envelopes are much smaller than at optical wavelengths, making
their direct spectral investigation much easier. For instance, modeling CO molecular lines from
7/79
SPIRou @ CFHT : a nIR spectropolarimeter
protostellar accretion discs can reveal the dynamics and physical properties (eg density &
temperature) of the inner disc’s surface layers (eg Greene et al 2008, ApJ 135, 1421; Najita et al
2008, arXiv:0809.4267v1).
By looking at the polarisation in line profiles, and in particular to how the scattering
polarisation of emission lines formed in specific regions of the spatially-extended circumstellar
environment (eg nIR emission lines from the Paschen series) differ from that of the continuum (mostly
produced from the point-like central star), one can investigate the localisation, the geometry and to
some extent the physical properties of the scattering medium at spatial scales that interferometry
cannot yet reach (eg Takami et al 2006, ApJ 641, 357; Vink et al 2005, MNRAS 359, 1049; Kurosawa
et al 2005, 358, 671).
In particular, SPIRou will help alleviate limitations of existing studies. At nIR wavelengths, the
effect of veiling (ie the dilution of the star+disc spectrum by an added hot featureless continuum, eg
from accretion hot spots at the stellar surface) is lower than at optical wavelengths by a large factor,
making the disc spectral features easier to observe and less ambiguous. Moreover, by monitoring how
the line polarisation varies with time throughout several spectral lines simultaneously, SPIRou should
disclose many more properties of scattering environments than presently possible and determine which
of the various models (eg narrow accretion funnel vs accretion veils) best describes the observations.
Such studies are crucial to understand the geometry and physical mechanisms at play in the
star-disc interaction zone and inner disc regions where planets are expected to form and/or settle.
e. Other potential applications
SPIRou can also be used for many other front-line applications, from planetology to galactic and
extragalactic astrophysics:
★ Chemistry & winds in the atmospheres of solar-system planets: High resolution spectra and precise
RVs (estimated from different sets of specific spectral lines) over the visible hemisphere of solarsystem planets can tell us how winds distribute both horizontally and vertically in the planetary
atmospheres. With its large nIR domain and high precision RVs, SPIRou will be particularly well
adapted for such tasks and will usefully complement observations secured from space.
★ Chemical evolution & kinematics of the MilkyWay - stellar archeology: With its large spectral
domain (eg compared to CRIRES@VLT), SPIRou will be highly competitive for measuring elemental
abundances and velocities both in the bulge and in the distant regions of our Galaxy. It will also be
very useful for studies on stellar archeology aiming at abundances of elements in giant stars whose
spectrum is only accessible in the nIR (eg F & K) - to be compared with predictions of evolutionary
models & nucleosynthesis.
★ Extragalactic astronomy & cosmology: SPIRou can also provide a wealth of information on topics
like damped Ly-alpha systems, black holes in obscured AGNs, or absorption lines against
GRBs @ z>2.5.
3. Instrument specifications
The science requirements from the main drivers are as follows:
★ spectral domain: 0.98-2.4 µm (w/ full coverage up to ~2 µm)
★ spectral resolution > 50,000 (70,000 if possible)
★ radial velocity accuracy < 1m/s
★ S/N=150 per 3 km/s pixel in 1 hr @ J=12 & K=11
★ thermal instrument background in the K band < telescope thermal emission, ie K>13.5
★ all polarisation states accessible with >99% efficiency and <1% crosstalk over full spectral domain
8/79
SPIRou @ CFHT : a nIR spectropolarimeter
The corresponding instrument specifications are:
★ peak throughput > 10% (telescope & detector included)
★ stellar spectra recorded as 2 orthogonal polarisation channels (interleaved spectra) at all times,
with possibility of swapping polarisation state of both channel between successive exposures
★ reference calibration spectrum recorded as third (interleaved) channel at all times
★ retarders achromatic to < 1% over full spectral domain
★ transmission tip/tilt module proving image stability (1 Hz) at entrance aperture ~ 0.02" and image
quality ~ 0.5"
★ atmospheric dispersion corrector (ADC) providing correction up to airmass 2.7
★ entrance pinhole within mirror and camera to provide viewing/guiding in a 1' field
★ usual calibration facilities (flat field & thorium lamps) plus wavelength reference with high spectral
line density (>100 lines/order) and < 1 m/s stability
★ fibre-fed bench-mounted cryogenic spectrograph cooled down to LN2 temperature (77 K) with
pressure (1 mbar) and temperature (0.01 K) control
★ spot diagrams from spectrograph optics < 1 ccd pxl (~3 km/s) throughout full spectral domain
4. Instrument concept & preliminary optical design
a. Overall concept & performances
To meet the above listed specifications, SPIRou must consist of:
★ a Cassegrain module collecting stellar light from a small (200 µm = 1.4") circular pinhole and
containing all optical components (Wollaston prism, rhomb retarders and achromats) needed for an
achromatic polarisation analysis and an adequate focal reduction (f/8 to f/4). Interface with the
telescope is achieved through another module including an atmospheric dispersion corrector, a
transmission tip-tilt image stabilisation unit and a viewing/guiding camera looking at the entrance
aperture; it also provides the usual spectral calibration facilities, as well as a stable wavelength
reference module.
★ a 20 m triple fiber feed (2 object & 1 reference fibers) conveying the light to the spectrograph.
Using ultra-low OH silica fibers (eg made of Suprasil 300, 100/110 µm core/clad diameters)
ensures a transmission of 85% at 2 µm, 60% at 2.2 µm and ~10% at 2.4 µm. A 3 slice/fiber Bowen/
Walraven image slicer coupled to a focal reducer (f/4 to f/8), both cooled down by a Peltier unit,
provides the entrance slit for the spectrograph (1.85x0.07 mm). Light from all 3 fibers is recorded
at all times.
★ a cryogenic spectrograph (dual pupil design) featuring a 15 cm pupil, 2 parabolic off-axis
collimators (having 1.2m focal length), a R2 diffraction grating (with 23.2 gr/mm), a prism-train
cross-disperser (providing 0.55 mm minimal inter-order separation at detector level) and a f/2
fully dioptric camera (32 cm focal length). With a 2k x 2k hawaii detector (18 µm pixels), orders
#85 (0.98 µm) to #32 (2.4 µm) can be recorded simultaneously, ensuring 50 K spectral resolution
with almost complete spectral coverage (full order coverage at 2 µm, 84% order coverage at
2.4 µm).
Being similar to ESPaDOnS, this design should provide a total throughput of 15% (atmosphere and
detector included) - at J=12 and K=11, it should yield S/N=150 for a 1 hr observation. Pressure and
thermal control should ensure RV accuracies similar to those achieved with HARPS.
The spectrograph cryostat can be copied from GIANO, ie featuring a stainless steel cylinder
(2m long & 1.3m wide) and containing an optical bench/tank filled with LN2 and on which all the
spectrograph optics is mounted.
9/79
SPIRou @ CFHT : a nIR spectropolarimeter
To improve its RV stability, SPIRou will feature a fixed spectrograph configuration (as opposed
to ESPaDOnS offering 3 different setups). All frames recorded with SPIRou will include 2 interleaved
stellar spectra (one for each orthogonal state of the selected polarisation) and one spectrum of the
RV reference cell.
b. SPIRou: a unique opportunity
As such, SPIRou fills a scientific niche and represent a unique opportunity. All existing nIR
spectrographs have very narrow spectral domains:
instrument /
telescope
spectral
resolution
slit
width
accessible
domain
simultaneous coverage
in single exposure
Pheonix / GEMINI
75 000
0.17”
0.8-2.5 µm
0.02 µm
NIRSPEC / KECK2
25 000
0.40”
0.9-2.5 µm
0.2 µm
IRCS / SUBARU
20 000
0.14”
1-3 µm
0.2 µm
CRIRES / VLT
40 000
0.5”
1-5 µm
0.02 µm
Very few instruments similar to SPIRou (with full coverage of the spectral domain in a single
exposure) are in construction or in preparation :
instrument /
telescope
spectral
resolution
slit width
full spectral
domain
status
GIANO / TNG
50 000
0.50”
0.9-2.4 µm
in construction (open 2010)
PRVS / GEMINI
50 000
fibre feed
0.9-1.8 µm
abandoned
NAHUAL / GTC
50 000
0.175”
0.9-2.4 µm
not funded yet
Only GIANO is being constructed at the moment (with commissioning planned for 2010).
Moreover, neither GIANO nor NAHUAL are fiber-fed; for reaching the 1 m/s RV accuracy, both will
therefore need to implement an absorption cell, known to strongly plague the instrument efficiency.
Finally, as opposed to GIANO/NAHUAL, SPIRou implements polarimetric capabilities directly
inherited from the ESPaDOnS/NARVAL experience.
SPIRou therefore appears as a unique opportunity for carrying out all science goals.
c. Preliminary optical design & thermal background estimate
The key component of SPIRou is a cryogenic spectrograph (dual pupil design) featuring a 15 cm pupil, 2
parabolic off-axis collimators (with 1.2 m focal length), a R2 diffraction grating (with 23.2 gr/mm and
154x306 mm ruled surface), a prism-train cross-disperser (providing minimum inter-order separation
of 0.55 mm at detector level) and a f/2 fully dioptric camera (32 cm focal length). Orders #85
(0.98 µm) to #32 (2.4 µm) can be recorded simultaneously on a Hawaii-2 detector with 18µm pixels.
The optics provides spot diagrams (80% encircled energy) smaller than 1 ccd pxl throughout the full
spectral domain (0.98-2.4µm) and over the ±5deg field. This design is significantly different than that
of GIANO; in particular, it includes an efficient (>80% throughput) fully dioptric camera (whereas
GIANO uses mirrors).
10/79
SPIRou @ CFHT : a nIR spectropolarimeter
A first (preliminary) optical design has
been obtained (see Appendix A) matching all
specifications; in particular, adequate optical
quality is achieved throughout the whole
wavelength domain. Several options (eg
concerning the actual location of the crossdispersor) are possible and will be studied in
more details in the next design stage. One
possible solution is shown on Fig 6 (see Appendix
A for additional details on all options).
A preliminary thermal background budget of the
Fig 6: Preliminary optical design of
instrument (see Appendix B) indicates that the
the SPIRou cryogenic spectrograph
main contributors are:
★ the polarimeter, and in particular the last
lens of the focal reducer
★ both input and output optics of the image slicer
These 2 contributions are larger than the telescope thermal emission (the main contributor to the
thermal background, at a level of K~13.5) if working at room temperature; the contribution of the
cryogenic spectrograph itself remains small provided we implement a cold slit at the entrance.
We will thus incorporate the polarimeter output optics into a small dewar cooled to ~250 K and
featuring the output polarimeter lens on one side, the fiber-head holder on the other side and a
polished baffle linking both. We will also put the whole image slicer into a similar device. With such a
setup, we decrease the instrument thermal emission by an order of magnitude and ensure that it is
smaller than the telescope thermal emission (see Appendix B for more details).
5. Development requirements
Apart from the optical design and thermal background estimate (detailed above), several specific
technical developments are required for SPIRou. The main issues are detailed below.
a. Identify a technical device providing a stable RV reference
To check that we indeed reach the 1m/s RV accuracy, monitor the short- and long-term RV stability
and potentially compensate for small RV drifts of the recorded spectrum, we need to have a specific
calibration module providing a very stable RV reference. While evacuated instruments with
temperature/pressure control are intrinsically very stable (eg HARPS at a 1 m/s level), having such a
wavelength reference module is nevertheless necessary, for regular stability checks at the very least.
Experiments carried out with the PathFinder spectrograph @ Penn State University (Ramsey
et al 2008, PASP 120, 887) suggest that a standard ThAr hollow cathode lamp is potentially usable in
this purpose, and that a UAr hollow cathode lamp would provide a significantly higher line density in
the nIR. However, prior experiments with such lamps (eg SOPHIE spectrograph) demonstrates that
stability problems may arise when lamps are aging. We therefore aim at another more accurate option
(keeping this one only as a backup).
Another possibility is to use an athermal Fabry-Perot etalon (with both pressure and
temperature control) in conjunction with a halogen lamp. The advantage of this option would of course
be to provide a very high and regular density of lines throughout the whole spectrum (>100 of lines per
order). The Geneva group is exploring this option in the framework of the CODEX/EXPRESSO ESO
project at getting an ultra-stable calibration cell (1 cm/s), has started designing and building a stable
11/79
SPIRou @ CFHT : a nIR spectropolarimeter
Fabry-Perot unit and should start testing it on HARPS by early 2009. We are in close interaction with
F Pepe - in charge of this experiment and our contact in Geneva - on this issue. Provided that their unit
fulfills our less stringent specification of 1 m/s (highly probable), we will simply adapt their design to
nIR wavelengths (in collaboration with them) and build a specific Fabry-Perot unit for SPIRou.
A third solution is to implement a laser frequency comb with a Fabry-Perot filtering cavity (eg
Li et al 2008, Nature 452, 610; Steinmetz et al 2008, Science 321, 1335); this promising solution is
also very accurate and expected to provide accuracies of 1 cm/s. However, it is not completely clear
how adaptable it is to our case (broad spectral domain, nIR) in a reasonable time-scale and budget. We
will keep contact with the developers to ensure that we can switch to this third solution if needed.
As the light from the wavelength reference module is brought to the instrument through an
optical fiber, we can easily make provisions for future developments (such as the laser comp solution)
if it turns out necessary for matching the specifications, or to improve further the accuracy of the
reference cell.
b. Identify adequate glass & coating
for the rhomb retarders
To obtain an achromatic polarimetric analysis
over the whole spectral domain of SPIRou
(0.98-2.4 µm), we need to find the adequate
glass that can provide both the nominal
retardation and the optimal transmission; we
also need to check that ultra-low birefringence
samples are available.
The first preliminary study (see
Appendix C) indicates that several options are
possible. The 2 best solutions apparently
consist in using S-FTM16 with MgF2 coating or
ZnSe with CVD diamond (see Fig 7), both
providing a nominal retardance within better
than 0.5% over the whole wavelength range and
field of view. In the next stage of the design
study, we will order several chunks of both
glasses and ask for accurate measurements of
the residual stress birefringence.
Fig 7: Retardance of a quarter-wave rhomb made of ZnSe
with diamond CVD coating on full-reflection surface
c. Modify the GIANO cryogenic bench/
tank for SPIRou
The spectrograph cryostat (copied from GIANO,
see Fig 8) is a stainless steel cylinder (2m long &
1.3m wide) with standard multilayer thermal shield,
containing an optical bench/tank (also copied from
GIANO) isostatically mounted on a hexapod system
and filled with LN2 (100 l). Pressure (10-5 mbar) and
thermal (77 K) control within the cryostat ensures
an ultra-accurate (0.01 K) long-term stability of the
instrument. All optical components are installed on
the bench via a 4 mm cover plate used as a thermal
interface. Cooling the whole system requires ~400 l
12/79
Fig 8: The cryostat and bench/tank of GIANO, from
which SPIRou will be adapated
SPIRou @ CFHT : a nIR spectropolarimeter
of LN2 while maintaining the system at working temperature uses ~25 l/d. Temperature stability is
obtained by controlling the pressure of the out-boiling gas within 1 mbar.
The optical design that we have is different than that of GIANO. The physical dimensions are
however similar, implying that we can almost exactly replicate the existing bench/tank design with
minimal changes to the overall properties and performances. We will work out these changes in the
next design stage, in collaboration with the GIANO team.
6. Operations & data processing
a. Operations
Operations of SPIRou will be very much like (and derived from) that of ESPaDOnS.
As SPIRou is essentially a point & shoot instrument (with a unique instrument configuration), there will
only be a very limited number of motors to operate (ADC, tip/tilt, calibration & density wheels in the
interface module, rhombs in the polarimeter, shutters & focus in the spectrograph). In addition to
those, we will need temperature and pressure controls for the cryogenics spectrograph. The overall
instrument control is therefore expected to be fairly similar to that of ESPaDOnS.
We expect to operate SPIRou in the very same way as ESPaDOnS, starting and ending each
night with a series of calibration frames, and taking sequential series of 4 subexposures on each star
we look at. We will then process spectra in real time with the automatic pipeline reduction routine and
will derive polarised spectra, LSD profiles and accurate RVs on the fly.
The whole operation of SPIRou will be mostly automated - as it is for ESPaDOnS - recording all
calibration frames, taking all astronomical exposures on a given star, or reducing all collected data with
a single command line.
b. Data processing
As for all instruments, we of course need to set-up an automatic reduction pipeline capable of turning
series of raw spectropolarimetric frames into wavelength-calibrated polarised echelle spectra. We will
mostly adapt Libre ESpRIT - the automatic reduction pipeline of ESPaDOnS & NARVAL - to the
specific purpose of SPIRou; in particular, and following the HARPS & SOPHIE experience, we will
incorporate all operations needed to match the 1 m/s precision in RV.
We will also implement a new tool aimed at subtracting some telluric lines as accurately as
possible. This is not crucial for reaching the expected performance of SPIRou; simply dropping all
wavelength regions where telluric features are deeper than 5% to compute RVs ensures that the
'telluric jitter' is lower than 0.5 m/s while leaving at least 0.30 µm of useable domain (thanks to the
very good nIR transparency of MaunaKea), ie 3 times larger than the HARPS domain used for M
dwarfs (see Appendix D). Subtracting telluric lines may however help in further improving the
efficiency of SPIRou and widening significantly (by ~50%, see Appendix D) the spectral range available
for RV measurements. We will also have a similar tool for removing OH airglow lines from the sky
background.
Finally, we will also develop and implement a new tool aimed at correcting RV measurements
from the intrinsic activity jitter of M dwarfs. The activity jitter from the majority of (weakly-active)
M dwarfs is expected to be of a few m/s only in the nIR (see Appendix E), and will therefore not
compromise the main goals of SPIRou. Correcting from this jitter will however further increase the
performances of SPIRou. Spectropolarimetric results on mid M dwarfs obtained with ESPaDOnS (eg
Morin et al 2008, arXiv:0808.1423; Donati et al 2008, arXiv:0809.0269) indicate that RV fluctuations
correlate with the magnetic topologies; by working out in detail how activity jitters relate to the
magnetic topologies (derived from the Zeeman spectropolarimetric signatures simultaneously collected
13/79
SPIRou @ CFHT : a nIR spectropolarimeter
with SPIRou), we will thus be able to model activity jitters (from the observed magnetic topology) and
remove them (to some extent) from the RV data. This technique should thus further extend the range
of SPIRou to both smaller planets and more active dwarfs.
7. Development roadmap, project team & first cost
estimate
a. Development roadmap
The future project milestones are as follows:
★ 2009: phase A study, concentrating on the development requirements listed above (modifications
in the cryogenics spectrograph mechanics, tests for a stable RV reference & testing various
potential rhomb glasses)
★ 2010-2011: complete design study
★ 2012-2013: construction & AIT
★ 2014a: transport to CFHT & commissionning
★ 2014b: open access to whole CFHT community
b. Project team
SPIRou is a collaborative project proposed jointly by Toulouse (LATT) and Grenoble (LAOG) and to
which up to 5+ countries are involved worldwide (Taiwan, Canada, Switzerland, UK, USA). Listed below
are the names of the persons involved in SPIRou.
For the project core team:
★ PI : JF Donati, Toulouse
★ PM : D Kouach, Toulouse
★ IS : X Delfosse, Grenoble
★ SE : E Artigau, tbc
★ Optics: P Rabou, Grenoble & L Parès, Toulouse
★ Cryogenics: M Bouyé, Toulouse & Ph Feautrier, Grenoble
★ Mechanics: G Gallou, B Dubois, Toulouse
★ Detector: SY Wang, Taiwan
★ Control: S Baratchart, M Dupieux, Toulouse
★ CFHT contact: G Barrick
All key people are therefore already identified and available to work on SPIRou (when needed). While
we do not have a System Engineer position yet, we already have a very good candidate; E Artigau, a
specialist in cryo-optomechanics from Montreal (Doyon's team) and presently working @ Gemini-S, is
an optimal candidate for the job and is very interested in the position. We have therefore asked INSU
for a position (matching the specific needs of SPIRou) in the coming years.
In a broader science context, many people are very interested with SPIRou, given the very unique
science opportunity that it will represent for stellar/planet research in particular. A list of the core
science team is given below:
★ France:
JF Donati, P Fouqué (Toulouse)
X Delfosse, X Bonfils, J Bouvier, T Forveille, F Ménard, C Dougados (Grenoble)
14/79
SPIRou @ CFHT : a nIR spectropolarimeter
C Catala, E Lellouch (Meudon)
C Moutou, M Deleuil (Marseille)
V Hill (Nice)
★ UK:
A Cameron, M Jardine, S Gregory, J Barnes
★ Switzerland:
F Pepe, P Figueira
★ Canada:
D Bohlender, J Landstreet, G Walker
★ Taiwan:
SY Wang, DV Trung, J Lim
★ USA:
E Shkolnik
c. Tentative budget
The total cost of Spirou is estimated to be about 3 M€.
The budget details (including a 20% overhead on all items), is:
★ spectrograph optics: 1 M€
★ spectograph cryomechanics: 1 M€
★ Cassegrain module, RV reference module & polarimeter: 0.4 M€
★ detector & detection control: 0.4 M€
★ instrument control: 0.2 M€
This budget is fairly conservative, eg compared to the initial budget estimate of GIANO (1.3 M€). We
are therefore very confident that the final budget will not exceed this amount.
15/79
SPIRou @ CFHT : a nIR spectropolarimeter
Appendix A : preliminary optical design of the
cryogenics spectrograph (in French)
SPIROU
Design Optique Préliminaire
du Spectrographe
16/79
SPIRou @ CFHT : a nIR spectropolarimeter
1.DESIGN OPTIQUE PRELIMINAIRE DU SPECTROGRAPHE
basé sur le design optique d'ESPaDOnS.
1.1Fente d’entrée
La fente d’entrée du spectrographe est formée par l’image de 3 fibres coupées en 3 tranches
chacune par un dissecteur d’image de type Bowen-Walraven et une optique relais (la dissection
s’effectue suivant la direction x).
• D: diamètre de la gaine de la fibre, Φ: diamètre du coeur de la fibre
• Angle de dissection: θ
• Angle d’inclinaison des fibres / dissecteur: ψ
•
•
•
•
•
•
Longueur de la fente / fibre: LS = 3 Φ cos(θ)
Longueur de la fente totale: LST = 2 D cos(ψ) / sin(θ) + LS
Distance inter-fentes: dS = (LST – 3 LS) / 2
Largeur de la fente: WS = Φ sin(θ)
Surface de la tranche centrale relative à la surface de la fibre: SC / S = (2θ + sin(2θ)) / π
Surface des tranches latérales relative à la surface de la fibre: SL / S = (1 - SC / S) / 2
Si la fente est inclinée d’un angle δ, pour atteindre une largeur de fente projetée de 3 WS:
• Angle d’inclinaison de la fente est de: sin(δ) ≈ 2 WS / LST
• La largeur projetée de la fente sur l’axe y est de: WSTY = WS cos(δ) + LST sin(δ)
• La longueur de la fente totale projetée sur l’axe x est alors de: LSTX = LST cos(δ) + WS sin(δ)
Option 1 (image de fibre coupée en 3 tranches de largeurs égales):
Figure 1. Fente d’entrée option 1
• Angle de dissection: sin(θ) = 1 / 3, θ = 19.471221°
• Angle d’inclinaison des fibres / dissecteur: ψ, cos(ψ) = (Φ / D) cos(θ) + sqrt(1 - (Φ / D)2) sin(θ)
17/79
SPIRou @ CFHT : a nIR spectropolarimeter
Option 2 (image de fibre coupée en 3 tranches de largeurs inégales):
Figure 2. Fente d’entrée option 2
• Angle de dissection: tan(θ) = D / (3 Φ)
• Angle d’inclinaison des fibres / dissecteur: ψ = 0°
Application numérique (fibres 100/110 µm coeur/gaine à F/4) en entrée spectro F/8:
• D: 220 µm, Φ: 200 µm
Option 1:
•
•
•
•
•
•
•
•
•
Angle de dissection: θ = 19.471221°, sin(θ) = 1 / 3, cos(θ) = 2 sqrt(2) / 3
Angle d’inclinaison des fibres / dissecteur: ψ = 5.148757°
Longueur de la fente / fibre: LS = 565.685 µm
Longueur de la fente totale: LST = 1880.359 µm
Distance inter-fentes: dS = 91.652 µm
Largeur de la fente: WS = 66.667 µm
Largeur des tranches de fente: 3 x 66.667 µm
Surface relative des tranches de fente: 29.179 %, 41.642 %, 29.179 %
Angle d’inclinaison de la fente: δ ≈ 4.066°, WSTY = 2.997 WS = 199.832 µm, LSTX = 1880.353 µm
Option 2:
•
•
•
•
•
•
•
•
•
Angle de dissection: θ = 20.136303° , sin(θ) = 0.344255, cos(θ) = 0.938876
Angle d’inclinaison des fibres / dissecteur: ψ = 0°
Longueur de la fente / fibre: LS = 563.326 µm
Longueur de la fente totale: LST = 1841.449 µm
Distance inter-fentes: dS = 75.736 µm
Largeur de la fente: WS = 68.851 µm
Largeur des tranches de fente: 65.575 µm, 68.851 µm, 65.575 µm
Surface relative des tranches de fente: 28.525 %, 42.950 %, 28.525 %
Angle d’inclinaison de la fente: δ ≈ 4.289°, WSTY = 2.997 WS = 206.360 µm, LSTX = 1841.442 µm
18/79
SPIRou @ CFHT : a nIR spectropolarimeter
Le dissecteur d’image génère une inclinaison en focalisation de la fente.
L’angle minimum d’incidence sur la lame dissectrice pour avoir une réflection interne totale est
donné par:
• sin(η) = 1 / nMIN, avec nMIN indice de réfraction minimum (pour la plus grande longueur d’onde).
L’angle de défocalisation moyen de l’image de la fente et son chromatisme à la sortie du
dissecteur d’image sont donnés par:
• tan(ϕ) = 1 /(nMOY tan(η)), avec nMOY indice de réfraction moyen sur la bande spectrale.
• tan(Δϕ) = -Δn/nMOY sin(2ϕ)/2, avec Δn variation de l’indice de réfraction sur la bande spectrale.
Il est à remarquer que l’angle de défocalisation moyen β décroit quand l’indice de réfraction nMOY
augmente et quand l’incidence sur la lame dissectrice α augmente.
L’angle de défocalisation moyen au niveau de la fente d’entrée du spectrographe et son
chromatisme sont donnés par:
• tan(ϕ’) = Gy tan(ϕ), avec Gy grandissement transverse de l’optique relais.
• tan(Δϕ’) = -Δn/nMOY sin(2ϕ’)/2
Si le dissecteur d’image est fait en Infrasil,
• nMIN = 1.43 à 2.5 µm, soit η > 44.37°.
• nMOY = 1.44 sur la bande 0.95-2.5 µm, soit si α = 45°, tan(ϕ) = 1/1.44, ϕ = 34.78°
• Δn = ± 0.0106 sur la bande 0.95-2.5 µm, soit tan(Δϕ) = ± 3.45e-3, Δϕ = ± 0.20°
Si la focalisation sur le dissecteur d’image se fait à F/24 (grandissement de l’image de la fibre d’un
facteur 6), l’optique relais image la fente à l’entrée du spectrographe à F/8, soit:
• Gy = 1/3 et tan(ϕ’) = 1/(3x1.44), ϕ’ = 13.03°, Δϕ’ = ± 0.09°
Le spectrographe a une inclinaison de la fente d’entrée optimale pour annuler la
défocalisation des bords de la fente sur le détecteur.
Elle est donnée par:
• tan(ϕ0) = 4 tan(γ) cos2(β / 2), avec β angle hors-axe parabole, γ angle hors-littrow réseau.
Si on ne fait pas attention à l’orientation du dissecteur d’image, on peut soit partiellement
compenser (ϕ0 - ϕ’), soit empirer (ϕ0 + ϕ’) l’inclinaison en défocalisation de l’image de la fente sur
le détecteur:
• Pour β = 6.466° et γ = 0.6°, ϕ0 = 2.39°, ϕ0 - ϕ’ = -10.64°, ϕ0 + ϕ’ = 15.42°
• Pour β = 10° et γ = 1.2°, ϕ0 = 4.75°, ϕ0 - ϕ’ = -8.28°, ϕ0 + ϕ’ = 17.78°
• Pour β = 11.6° et γ = 1.7°, ϕ0 = 6.70°, ϕ0 - ϕ’ = -6.33°, ϕ0 + ϕ’ = 19.73°
Les spot diagrammes suivants (sur la meilleure surface image pour une caméra parfaite) montrent
l’effet de l’inclinaison en focalisation de la fente (option 1), pour la configuration β = 6.466° et γ =
0.6°, pour une inclinaison de ϕ’ = 0° (pas de dissecteur d’image) et une inclinaison de ϕ’ = -13.03°
(dissecteur d’image orienté dans le pire cas).
On voit que la tache de défocalisation en bord de fente couvre environ la moitié du pixel.
19/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 3. Spot diagramme ordre 57, inclinaison fente ϕ’ = 0°
(croix = 18 µm, 1 pixel)
Figure 4. Spot diagramme ordre 57, inclinaison fente ϕ’ = -13.03°
(croix = 18 µm, 1 pixel)
20/79
SPIRou @ CFHT : a nIR spectropolarimeter
1.2Spectrographe
1.2.1Calcul des paramètres du spectrographe
Le nombre d’ouverture d’entrée du spectrographe est de N1 = 8.
La résolution du spectrographe doit être > 50000, partagée quadratiquement entre l’image de la
largeur de la fente d’entrée sur le détecteur (1 pixel) et la taille de la PSF sur le détecteur (1 pixel).
Soit RS = 50000 sqrt(2) = 70710 pour chacun des 2 contributeurs.
Le spectrographe est composé de:
•
•
•
•
•
•
Un collimateur (focale F1)
Une caméra (focale F2)
Un réseau échelle R2: substrat silice, n = 23.2 t/mm, incidence: α = 63.435°, tan(α) = 2
Domaine spectral: > 0.96-2.4 µm (ordres 32-80)
Couverture spectrale complète sur le détecteur pour: λ < 2 µm, ordres 38-80
Un détecteur: HgCdTe , 2048 x 2048 pixels de largeur WPIX = 18 µm (36.864 x 36.864 mm)
• Image de la largeur de la fente d’entrée sur le détecteur: WS’ = WS F2 / F1 = WPIX
• Résolution de la fente: RS = 2 tan(α) F1 / WS = 2 tan(α) F2 / WPIX
Soit:
•
•
•
•
•
Focale du collimateur: F1 > RS WS / 4
Diamètre de la pupille sur le réseau: ΦP = F1 / N1
Grandissement de la fente d’entrée: GS = WPIX / WS
Focale de la caméra: F2 = F1 GS
Nombre d’ouverture de la caméra: N2 = F2 / ΦP
Application numérique:
Fente option 1:
• Focale du collimateur: F1 > 50000 sqrt(2) 66.67e-3 / 4 = 1179 mm
on choisit F1 = 1200 mm, soit RS = 72000
• Diamètre de la pupille sur le réseau: ΦP = 150 mm
• Grandissement de la fente d’entrée: GS = 0.270
• Focale de la caméra: F2 = 324 mm
• Nombre d’ouverture de la caméra: N2 = 2.16
Fente option 2:
• Focale du collimateur: F1 > 50000 sqrt(2) 68.85e-3 / 4 = 1217 mm
on choisit F1 = 1200 mm, soit RS = 69716
• Diamètre de la pupille sur le réseau: ΦP = 150 mm
• Grandissement de la fente d’entrée: GS = 0.261
• Focale de la caméra: F2 = 313.7 mm
• Nombre d’ouverture de la caméra: N2 = 2.09
Les calculs effectués dans les sections suivantes utilisent l’option 1 de la fente d’entrée (plus
grande longueur de fente). L’option 2 de la fente d’entrée devrait permettre d’avoir une plus grande
séparation des images de fente sur le détecteur.
21/79
SPIRou @ CFHT : a nIR spectropolarimeter
1.2.2Collimateur
Le collimateur est un miroir parabolique hors-axe (2 miroirs découpés sur la parabole de base).
• Focale de la parabole de base: F0
• Angle de hors-axe: β
Soit:
• Focale de la parabole hors-axe: F1 = F0 / cos2(β / 2)
• Hauteur de hors-axe: h = 2 F0 tan(β / 2)
Application numérique:
• Focale de la parabole de base: F0 = 1200 mm
• Angle de hors-axe: β = 6.466°
• Focale de la parabole hors-axe: F1 = 1203.83 mm
• Hauteur de hors-axe: h = 135.568 mm
1.2.3Spectrographe échelle
Le spectrographe est composé des éléments suivants:
• Le collimateur PM1 (miroir parabolique hors-axe) qui collimate le faisceau issu de la fentre
d’entrée ES sur le réseau échelle.
• Le réseau échelle EG est incliné de γ = 0.6° (angle hors-littrow) perpendiculairement à sa
dispersion et renvoie le faisceau dispersé sur le collimateur PM1.
• Le collimateur PM1 focalise le faisceau et le renvoie sur un miroir de repli FM
• Le miroir de repli FM renvoie le faisceau sur un deuxième collimateur PM2 qui collimate le
faisceau et le renvoie vers le disperseur croisé (pupille blanche WP).
Note: Le réseau n’est pas placé au foyer du collimateur, ce qui induit une légère non télécentricité
en entrée. Cette position pourra etre ajustée en fonction des encombrements mécaniques (change
la position de la pupille blanche).
Figure 5. Spectrographe échelle
Table 1. Données optiques du spectrographe échelle
Surface
Distance /
Surf suiv.
1200
Matériau
Diamètre
0 Fente d’entrée
Rayon de
courbure
infini
Objet
1.886 x 0.067
1 Parabole 1
-2400
-1360
Miroir
220 x 340
22/79
Décentrem.
Rotation
-6.466 (x)
SPIRou @ CFHT : a nIR spectropolarimeter
2 Réseau
infini
1360
Miroir
306 x 154
3 Parabole 1
-2400
-1200
Miroir
220 x 340
100
Air
100
Miroir
1200.533
Air
-1056.036
Miroir
220 x 340
Air
150.332
Lentille
Paraxiale
Image
150.332
4
5 Miroir de repli
infini
6
7 Parabole 2
-2400
8 Pupille blanche
9 Caméra
10 Détecteur
-324.9
(focale)
-598.22
-324.9
0.6 (xS)
63.435 (yS)
-135.568 (y)
1.2 (x)
20 x 180
36.86 x 36.86
Figure 6. Spot diagramme ordre 32
(croix = 1.8 µm, 0.1 pixel)
23/79
135.568 (yS)
0.00708 (y)
SPIRou @ CFHT : a nIR spectropolarimeter
1.2.4Disperseur croisé (4 prismes)
• minimum de déviation pour l'ordre 57
Prismes 1, 2 et 3:
• matériau: ZnSe, apex: 24.2°, incidence: 31.08°
Prisme 4:
• matériau: Infrasil, apex: 54°, incidence: 41.04°
Séparation minimum des images de fente sur le détecteur (longueur d’onde centrale):
• 87.5 µm (4.86 pixels) (ordres 48-49)
Séparation minimum interordre sur le détecteur (longueur d’onde centrale):
• 579 µm (ordres 46-47)
Séparation maximum interordre sur le détecteur (longueur d’onde centrale):
• 789 µm (ordres 32-33)
• 877 µm (ordres 79-80)
Distance ordres 32-80 sur le détecteur (longueur d’onde centrale):
• 32.631 mm
A cause de l’anamorphose de la longueur de fente due aux prismes, la séparation minimum des
images de fente (ordres 48-49) est différente de la séparation minimum interordre (ordres 46-47).
Figure 7. Dispersion croisée (ordonnée minimum à 4 pixels)
24/79
SPIRou @ CFHT : a nIR spectropolarimeter
Table 2. Données optiques du disperseur croisé
Surface
Rayon de
courbure
Matériau
8 Pupille blanche
Distance /
Surf suiv.
195
9
0
Air
Diamètre
Décentrem.
Rotation
Air
18.98341 (x)
10 Prisme 1 S1
infini
-50
ZnSe
200 x 220
12.1 (xS)
11 Prisme 1 S2
infini
0
Air
200 x 220
-12.1 (xS)
12
-105
Air
18.98341 (x)
13
0
Air
18.98341 (x)
14 Prisme 2 S1
infini
-50
ZnSe
200 x 220
12.1 (xS)
15 Prisme 2 S2
infini
0
Air
200 x 220
-12.1 (xS)
16
-105
Air
18.98341 (x)
17
0
Air
18.98341 (x)
18 Prisme 3 S1
infini
-50
ZnSe
200 x 220
12.1 (xS)
19 Prisme 3 S2
infini
0
Air
200 x 220
-12.1 (xS)
20
-125
Air
18.98341 (x)
21
0
Air
14.04574 (x)
22 Prisme 4 S1
infini
-110
Infrasil
232 x 220
27 (xS)
23 Prisme 4 S2
infini
0
Air
232 x 220
-27 (xS)
-80
Air
-324.9
Lentille
Paraxiale
Image
24
25 Caméra
26 Détecteur
-324.9
(focale)
-57944 (y)
-653.87 (x)
14.04574 (x)
230
36.86 x 36.86
Figure 8. Spot diagramme ordre 32
(croix = 32 µm, 1.78 pixel)
25/79
6.2 (y)
-0.00456 (y)
-0.01407 (x)
SPIRou @ CFHT : a nIR spectropolarimeter
Le disperseur croisé amplifie les aberrations d’astigmatisme du spectrographe échelle de manière
linéaire en fonction de la dispersion. Minimiser la dispersion croisée permet donc de minimiser les
aberrations globales du spectrographe SPIROU.
Figure 9. Spot diagramme ordre 32, dispersion nulle
(croix = 32 µm, 1.78 pixel)
Figure 10. Spot diagramme ordre 32, dispersion moitié
(croix = 32 µm, 1.78 pixel)
26/79
SPIRou @ CFHT : a nIR spectropolarimeter
1.2.5Caméra:
• focale de la caméra F2 = F1 GS = 1203.83 x 0.27 = 325.03 mm.
• dioptrique, focale 324.9 mm F/2.16, 6 lentilles.
• matériaux: CaF2 (lentilles 1, 3 et 5), S-FTM16 (lentille 2), Infrasil (lentilles 4 et 6).
• détecteur incliné de 0.1° dans la direction de la dispersion croisée.
Figure 11. Caméra spectrographe
Table 3. Données optiques de la caméra
Surface
Distance /
Surf suiv.
-55
Matériau
Diamètre
25 Lentille 1 S1
Rayon de
courbure
-556.14
CaF2
228
26 Lentille 1 S2
290.72
-8.765
Air
228
27 Lentille 2 S1
282.30
-25
S-FTM16
228
28 Lentille 2 S2
-2212.3
-1
Air
228
29 Lentille 3 S1
-479.66
-35
CaF2
228
30 Lentille 3 S2
infini
-188.094
Air
228
31 Lentille 4 S1
-538.32
-35
Infrasil
222
32 Lentille 4 S2
1477.6
-225.914
Air
222
33 Lentille 5 S1
-90.464
-50
CaF2
144
34 Lentille 5 S2
-1487.9
-27.487
Air
144
35 Lentille 6 S1
664.54
-50
Infrasil
104
36 Lentille 6 S2
-123.42
-7.318
Air
66
37 Détecteur
619.51
Image
52.134
La table suivante donne les concentrations dans le pixel de l’ensemble du spectrographe:
• Spot diagramme: pourcentage de rayons
• PSF: pourcentage de l’énergie diffractée
• PSF / PSF parfaite: pourcentage de l’énergie diffractée PSF aberrante / PSF sans aberrations
27/79
SPIRou @ CFHT : a nIR spectropolarimeter
Table 4. Qualité image sur le détecteur (% dans le pixel)
Spot Diagramme
k
λ3 (µm)
λ1
λ2
λ3
λ4
PSF
λ5
λ1
λ2
λ3
PSF / PSF parfaite
λ4
λ5
λ1
λ2
λ3
λ4
λ5
32 2.40956 80.9 100 100 100 88.7
74.8 89.5 87.6 88.3 78.2
82.4 99.0 97.7 99.0 88.0
33 2.33654 79.8 100 100 100 87.9
75.0 89.7 87.8 88.9 78.5
82.5 99.0 97.5 99.3 87.9
34 2.26782 81.7 100 100 100 86.5
77.5 89.6 87.6 89.2 78.4
85.1 98.6 97.0 99.2 87.4
35 2.20302 83.6 100 100 100 84.4
79.4 89.2 87.2 89.2 77.8
87.0 98.0 96.2 98.9 86.5
36 2.14183 85.6 100 100 100 81.9
80.8 88.7 86.5 89.0 76.9
88.4 97.3 95.2 98.3 85.1
37 2.08394 87.6 100 100 100 79.2
81.6 88.0 85.7 88.6 75.4
89.2 96.3 94.0 97.6 83.2
38 2.02910 89.5 100 100 100 77.4
82.0 87.1 84.7 88.0 74.2
89.6 95.3 92.8 96.7 81.6
39 1.97707 90.9 100 100 100 79.7
82.3 86.3 83.8 87.3 75.5
89.7 94.3 91.6 95.7 82.8
40 1.92764 91.5 100 100 100 82.1
82.4 85.6 82.9 86.7 76.5
89.8 93.4 90.6 94.8 83.8
41 1.88063 91.8 100 100 100 84.4
82.6 85.0 82.4 86.1 77.4
89.9 92.6 89.9 94.1 84.6
42 1.83585 91.8 100 100 100 86.3
83.0 84.8 82.0 85.7 78.2
90.1 92.3 89.3 93.5 85.4
43 1.79316 92.0 100 100 100 88.0
83.5 84.8 82.1 85.5 79.2
90.5 92.2 89.4 93.2 86.4
44 1.75240 92.5 100 100 100 89.2
84.2 85.2 82.6 85.7 80.3
91.0 92.4 89.7 93.2 87.3
45 1.71346 93.4 100 100 100 90.2
85.1 85.9 83.4 86.1 81.3
91.8 93.0 90.4 93.5 88.4
46 1.67621 94.8 100 100 100 91.2
86.2 86.8 84.4 86.7 82.7
92.7 93.8 91.4 94.0 89.7
47 1.64055 96.6 100 100 100 92.5
87.3 87.9 85.7 87.5 84.0
93.8 94.7 92.7 94.7 91.1
48 1.60637 99.3 100 100 100 94.3
88.5 89.1 87.2 88.5 85.5
94.8 95.8 94.0 95.6 92.5
49 1.57359 100 100 100 100 96.6
89.6 90.3 88.6 89.5 86.9
95.9 96.9 95.4 96.6 93.9
50 1.54212 100 100 100 100 99.3
90.7 91.3 90.0 90.5 88.3
96.9 97.8 96.6 97.5 95.3
51 1.51188 100 100 100 100 100
91.6 92.3 91.2 91.5 89.6
97.7 98.6 97.8 98.3 96.5
52 1.48280 100 100 100 100 100
92.3 93.0 92.2 92.3 90.7
98.3 99.3 98.7 99.0 97.4
53 1.45483 100 100 100 100 100
92.8 93.5 92.9 92.9 91.6
98.8 99.7 99.3 99.5 98.2
54 1.42789 100 100 100 100 100
93.1 93.8 93.5 93.3 92.2
99.0 99.9 99.7 99.8 98.7
55 1.40192 100 100 100 100 100
93.1 93.9 93.8 93.6 92.6
99.0 99.9 99.9 99.9 99.0
56 1.37689 100 100 100 100 100
93.1 93.8 93.8 93.7 92.8
98.9 99.8 99.9 99.8 99.1
57 1.35273 100 100 100 100 100
92.8 93.6 93.8 93.6 92.8
98.6 99.5 99.7 99.7 99.0
58 1.32941 100 100 100 100 100
92.5 93.3 93.5 93.4 92.7
98.2 99.1 99.4 99.4 98.8
59 1.30688 99.5 100 100 100 100
92.0 92.8 93.2 93.1 92.5
97.7 98.6 99.0 99.0 98.4
60 1.28510 98.5 100 100 99.9 99.9
91.4 92.3 92.7 92.7 92.2
97.0 98.0 98.5 98.5 98.0
61 1.26403 96.9 99.2 99.6 99.5 99.4
90.8 91.7 92.2 92.2 91.8
96.2 97.3 97.8 97.9 97.5
62 1.24364 94.7 97.7 98.8 98.8 98.8
90.0 91.0 91.5 91.5 91.3
95.4 96.5 97.1 97.1 96.9
63 1.22390 92.1 95.5 97.4 97.6 97.8
89.2 90.2 90.8 90.8 90.6
94.4 95.6 96.2 96.3 96.2
64 1.20478 89.3 93.3 95.4 96.2 96.1
88.4 89.4 90.0 90.0 90.0
93.5 94.7 95.4 95.5 95.5
65 1.18624 86.7 91.1 93.2 94.8 94.0
87.6 88.6 89.2 89.3 89.3
92.5 93.7 94.4 94.6 94.7
66 1.16827 84.7 88.9 91.3 92.8 91.7
86.8 87.8 88.4 88.5 88.7
91.7 92.9 93.6 93.7 94.0
67 1.15083 83.1 86.8 89.2 90.8 89.8
86.2 87.2 87.7 87.8 88.1
90.9 92.1 92.8 92.9 93.3
68 1.13391 82.1 85.2 87.5 89.1 88.1
85.9 86.7 87.2 87.3 87.6
90.4 91.5 92.1 92.3 92.7
69 1.11748 81.7 84.3 86.3 87.9 87.0
85.7 86.4 86.8 86.9 87.3
90.2 91.1 91.6 91.8 92.3
70 1.10151 82.0 84.1 85.8 87.3 86.4
85.9 86.4 86.8 86.9 87.2
90.3 91.0 91.5 91.7 92.2
71 1.08600 83.0 84.7 86.0 87.4 86.4
86.3 86.8 87.0 87.1 87.4
90.6 91.2 91.6 91.8 92.2
72 1.07091 84.6 86.2 87.2 88.3 87.1
87.2 87.4 87.5 87.5 87.8
91.5 91.8 92.0 92.2 92.6
28/79
SPIRou @ CFHT : a nIR spectropolarimeter
73 1.05624 86.7 88.6 89.1 90.1 88.6
88.2 88.3 88.3 88.3 88.4
92.5 92.7 92.8 92.9 93.2
74 1.04197 89.4 91.8 92.0 92.4 90.7
89.3 89.4 89.3 89.3 89.3
93.6 93.8 93.8 93.9 93.9
75 1.02808 92.5 95.4 95.4 95.1 93.5
90.6 90.7 90.6 90.4 90.3
95.0 95.1 95.0 94.9 94.9
76 1.01455 96.1 98.0 98.5 97.9 96.5
91.9 92.0 91.8 91.6 91.3
96.3 96.4 96.3 96.2 95.9
77 1.00137 98.9 99.5 100 100 98.8
92.9 93.2 93.0 92.8 92.3
97.3 97.6 97.5 97.3 96.9
78 0.98854 99.9 100 100 100 99.8
93.0 94.2 94.0 93.8 92.9
97.4 98.6 98.5 98.3 97.4
79 0.97602 96.0 100 100 100 100
90.2 94.6 94.8 94.4 92.4
94.4 99.1 99.3 98.9 96.9
80 0.96382 79.2 100 100 100 94.2
79.8 92.7 94.5 93.9 88.6
83.5 97.0 98.9 98.3 92.8
29/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 12. Spectrographe SPIROU
30/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 13. Répartition des ordres sur le détecteur
31/79
SPIRou @ CFHT : a nIR spectropolarimeter
(image de la fente d’entrée)
Figure 14. Spot diagramme ordre 57
(croix = 18 µm, 1 pixel)
32/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 15. Spot diagramme ordre 32
(croix = 18 µm, 1 pixel)
33/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 16. Spot diagramme ordre 80
(croix = 18 µm, 1 pixel)
34/79
SPIRou @ CFHT : a nIR spectropolarimeter
35/79
SPIRou @ CFHT : a nIR spectropolarimeter
2.INDICES DE RÉFRACTION ET CONTRACTION CRYOGÉNIQUES DES MATÉRIAUX
Les coefficients de Sellmeier des indices de réfraction absolus (dans le vide) dépendant de la
température ont été obtenus par des mesures effectuées à l’aide du réfractomètre cryogénique
CHARMS de la NASA, D.B. Leviton & al (2005, 2006).
Table 5. Coefficients de Sellmeier des indices de réfraction absolus
Coeffs
S1(T)
S2(T)
S3(T)
λ1(T)
λ2(T)
λ3(T)
K-1)
CaF2
25 K ≤ T ≤ 300 K; 0.4 µm ≤ λ ≤ 5.6 µm (ΔnABS/ΔT = -8.54-6
T0
1.04834
-3.32723e-3
3.72693
7.94375e-2
0.258039
34.0169
T1
-2.21666e-4
2.34683e-4
1.49844e-2
-2.20758e-4
-2.12833e-3
6.26867e-2
T2
-6.73446e-6
6.55744e-6
-1.47511e-4
2.07862e-6
1.20393e-5
-6.14541e-4
T3
1.50138e-8
-1.47028e-8
5.54293e-7
-9.60254e-9
-3.06973e-8
2.31517e-6
T4
-2.77255e-11
2.75023e-11
-7.17298e-10
1.31401e-11
2.79793e-11
-2.99638e-9
K-1)
Infrasil
35 K ≤ T ≤ 300 K; 0.5 µm ≤ λ ≤ 3.6 µm (ΔnABS/ΔT = 5.96e-6
T0
0.105962
0.995429
0.865120
4.500743e-3
9.383735e-2
9.757183
T1
9.359142e-6
-7.973196e-6
3.731950e-4
-2.825065e-4
-1.374171e-6
1.864621e-3
T2
4.941067e-8
1.006343e-9
-2.010347e-6
3.136868e-6
1.316037e-8
-1.058414e-5
T3
4.890163e-11
-8.694712e-11 2.708606e-9
-1.121499e-8
1.252909e-11
1.730321e-8
T4
1.492126e-13
-1.220612e-13 1.679976e-12
1.236514e-11
-4.641280e-14 1.719396e-12
K-1)
ZnSe
20 K ≤ T ≤ 300 K; 0.55 µm ≤ λ ≤ 5.6 µm (ΔnABS/ΔT = 61.69e-6
T0
4.41367
0.447774
6.70952
0.198555
0.382382
73.3880
T1
-1.13389e-3
1.11709e-3
-8.18190e-2
-3.62359e-5
-1.56654e-4
-5.06215e-1
T2
2.00829e-5
-1.80101e-5
5.77330e-4
7.20678e-7
2.56481e-6
3.06061e-3
T3
-8.77087e-8
8.10837e-8
-1.89210e-6
-3.12380e-9
-1.07544e-8
-8.48293e-6
T4
1.26557e-10
-1.18476e-10
2.15956e-9
4.51629e-12
1.53230e-11
6.53366e-9
K-1)
BaF2
50 K ≤ T ≤ 300 K; 0.45 µm ≤ λ ≤ 5.6 µm (ΔnABS/ΔT = -13.29e-6
T0
0.8285359
0.3315039
4.367314
8.362026e-2
-0.1148764
49.21549
T1
-8.986505e-4
9.091254e-4
-1.161161e-2
8.880306e-4
3.381142e-3
-6.672202e-2
T2
-1.884197e-6
1.656780e-6
7.204123e-5
-1.277585e-5
-1.897870e-5
4.283633e-4
T3
-1.332822e-10 5.257707e-10
-4.302326e-8
5.231437e-8
4.686248e-8
-3.280396e-7
T4
3.650068e-12
-3.904140e-12 -1.764139e-10 -7.312824e-11 -4.348650e-11 -8.848551e-10
Le coefficient Δn/ΔT des indices de réfraction absolus (dans le vide) du S-FTM16 a été obtenu par
des mesures effectuées à l’aide du réfractomère cryogénique de l’Université de l’Arizona, par W.R.
Brown & al (2004).
S-FTM16
ΔnABS/ΔT = -2.4 e-6 ± 0.3 e-6 K-1, pour 77K ≤ T ≤ 298K; 0.6 µm ≤ λ ≤ 2.6 µm
36/79
SPIRou @ CFHT : a nIR spectropolarimeter
Table 6. Indice de réfraction absolu (dans le vide) cryogénique
293K
k
λ3 (µm)
80K
ZnSe
Infrasil
CaF2
S-FTM16
ZnSe
Infrasil
CaF2
S-FTM16
32 2.40956
2.44227
1.43199
1.42202
1.55504
2.43001
1.43075
1.42381
1.55554
33 2.33654
2.44294
1.43327
1.42244
1.55627
2.43066
1.43203
1.42423
1.55677
34 2.26782
2.44362
1.43443
1.42283
1.55740
2.43131
1.43319
1.42462
1.55790
35 2.20302
2.44432
1.43549
1.42318
1.55843
2.43198
1.43425
1.42498
1.55893
36 2.14183
2.44502
1.43646
1.42351
1.55939
2.43266
1.43522
1.42531
1.55989
37 2.08394
2.44575
1.43736
1.42381
1.56027
2.43335
1.43611
1.42561
1.56078
38 2.02910
2.44648
1.43818
1.42410
1.56110
2.43406
1.43693
1.42590
1.56160
39 1.97707
2.44723
1.43894
1.42436
1.56186
2.43478
1.43769
1.42616
1.56237
40 1.92764
2.44799
1.43964
1.42461
1.56258
2.43551
1.43839
1.42641
1.56309
41 1.88063
2.44877
1.44030
1.42484
1.56325
2.43626
1.43904
1.42665
1.56376
42 1.83585
2.44957
1.44091
1.42506
1.56389
2.43702
1.43965
1.42687
1.56439
43 1.79316
2.45038
1.44148
1.42527
1.56448
2.4378
1.44022
1.42707
1.56499
44 1.75240
2.45121
1.44201
1.42546
1.56505
2.43859
1.44075
1.42727
1.56556
45 1.71346
2.45206
1.44251
1.42565
1.56559
2.43941
1.44125
1.42746
1.56610
46 1.67621
2.45292
1.44298
1.42582
1.56610
2.44023
1.44172
1.42763
1.56661
47 1.64055
2.45380
1.44343
1.42599
1.56658
2.44108
1.44217
1.42780
1.56709
48 1.60637
2.45470
1.44385
1.42615
1.56705
2.44194
1.44259
1.42796
1.56756
49 1.57359
2.45562
1.44424
1.42630
1.56750
2.44282
1.44298
1.42812
1.56801
50 1.54212
2.45655
1.44462
1.42645
1.56792
2.44372
1.44336
1.42826
1.56844
51 1.51188
2.45751
1.44498
1.42659
1.56834
2.44463
1.44372
1.42841
1.56885
52 1.48280
2.45848
1.44532
1.42673
1.56873
2.44556
1.44406
1.42854
1.56925
53 1.45483
2.45948
1.44565
1.42686
1.56912
2.44652
1.44438
1.42867
1.56963
54 1.42789
2.46049
1.44596
1.42699
1.56949
2.44749
1.44470
1.42880
1.57000
55 1.40192
2.46152
1.44626
1.42711
1.56985
2.44848
1.44499
1.42892
1.57037
56 1.37689
2.46258
1.44654
1.42723
1.57020
2.44949
1.44528
1.42904
1.57072
57 1.35273
2.46365
1.44682
1.42734
1.57055
2.45051
1.44555
1.42916
1.57106
58 1.32941
2.46474
1.44708
1.42746
1.57088
2.45156
1.44582
1.42927
1.57140
59 1.30688
2.46586
1.44734
1.42757
1.57121
2.45263
1.44607
1.42938
1.57172
60 1.28510
2.46699
1.44758
1.42767
1.57153
2.45372
1.44632
1.42949
1.57204
61 1.26403
2.46815
1.44782
1.42778
1.57184
2.45482
1.44655
1.42959
1.57236
62 1.24364
2.46933
1.44805
1.42788
1.57215
2.45595
1.44678
1.42970
1.57267
63 1.22390
2.47052
1.44827
1.42798
1.57245
2.45710
1.44701
1.42980
1.57297
64 1.20478
2.47175
1.44849
1.42808
1.57275
2.45827
1.44722
1.42990
1.57327
65 1.18624
2.47299
1.44870
1.42818
1.57304
2.45946
1.44743
1.42999
1.57356
66 1.16827
2.47425
1.44890
1.42828
1.57334
2.46067
1.44764
1.43009
1.57385
67 1.15083
2.47554
1.44910
1.42837
1.57362
2.4619
1.44784
1.43018
1.57414
68 1.13391
2.47685
1.44930
1.42846
1.57391
2.46316
1.44803
1.43028
1.57443
69 1.11748
2.47819
1.44949
1.42856
1.57419
2.46444
1.44822
1.43037
1.57471
70 1.10151
2.47955
1.44968
1.42865
1.57447
2.46573
1.44841
1.43046
1.57499
71 1.08600
2.48093
1.44986
1.42874
1.57475
2.46706
1.44859
1.43055
1.57526
72 1.07091
2.48233
1.45004
1.42883
1.57502
2.4684
1.44877
1.43064
1.57554
37/79
SPIRou @ CFHT : a nIR spectropolarimeter
73 1.05624
2.48376
1.45021
1.42892
1.57530
2.46977
1.44894
1.43073
1.57581
74 1.04197
2.48521
1.45039
1.42900
1.57557
2.47116
1.44911
1.43082
1.57609
75 1.02808
2.48669
1.45056
1.42909
1.57584
2.47257
1.44928
1.43090
1.57636
76 1.01455
2.48819
1.45073
1.42918
1.57611
2.47401
1.44945
1.43099
1.57663
77 1.00137
2.48972
1.45089
1.42927
1.57638
2.47547
1.44962
1.43108
1.57690
78 0.98854
2.49128
1.45105
1.42935
1.57665
2.47695
1.44978
1.43116
1.57717
79 0.97602
2.49286
1.45121
1.42944
1.57692
2.47846
1.44994
1.43125
1.57744
80 0.96382
2.49446
1.45137
1.42952
1.57719
2.48000
1.4501
1.43133
1.57771
38/79
SPIRou @ CFHT : a nIR spectropolarimeter
Les coefficients d’expansion thermique dépendant de la température ont été obtenus par des
mesures effectuées à:
•
•
•
•
•
CaF2, ZnSe et BaF2: U.S. National Bureau of Standards, A. Feldman & al (1979).
SiIlice fondue IR: U.S. National Institute of Standards and Technology, N.J. Simon (1994).
S-FTM16: Université de l’Arizona, W.R. Brown & al (2004).
Al 6061: IR / EO Handbook, 3 , 358 (1993).
HgTe, CdTe, ZnTe: Smith & White (1975, 1979).
Table 7. Coefficients d’expansion thermique
Coeffs
CTE(T) (1e6 K-1)
CaF2
80 K ≤ T ≤ 300 K;
T0
-9.3655
-0.284113
T1
0.22867
-0.00093655
T2
-0.00065748
1.14335e-5
T3
6.9599e-7
-2.1916e-8
T4
0
1.73998e-11
Infrasil
80 K ≤ T ≤ 300 K;
T0
-1.479
0.0084842
T1
0.010916
-0.0001479
T2
-1.4319e-5
5.458e-7
T3
0
-4.773e-10
ZnSe
60 K ≤ T ≤ 300 K;
T0
-5.0557
-0.107688
T1
0.11566
-0.00050557
T2
-0.00039518
5.783e-6
T3
4.9225e-7
-1.31727e-8
T4
0
1.23063e-11
S-FTM16
77 K ≤ T ≤ 300 K;
T0
4.27
-0.201087
T1
0.0177
0.000427
T2
0
8.85e-07
BaF2
80 K ≤ T ≤ 300 K;
T0
-6.6823
-0.32439
T1
0.23875
-0.00066823
T2
-0.000837
1.19375e-5
T3
1.07e-6
-2.79e-8
T4
0
2.675e-11
Al 6061
4 K ≤ T ≤ 350 K;
T0
-4.103
-0.416569
T1
0.2068
-0.0004103
T2
-0.0004845
1.034e-5
T3
3.0036e-7
-1.615e-8
T4
0
7.509e-12
HgCdTe
77 K ≤ T ≤ 300 K;
T0
-4.3001
ΔL/L293K(T) (%)
-0.0762474
39/79
SPIRou @ CFHT : a nIR spectropolarimeter
T1
0.10068
-0.00043001
T2
-0.00038371
5.034e-6
T3
4.9824e-7
-1.27903e-8
T4
0
1.2456e-11
Table 8. CTE, contraction, variation d’indice du matériau entre 293 K et 80 K
ZnSe
Infrasil
CaF2
S-FTM16
BaF2
Al 6061
HgCdTe
CTE(293K) (1e6 K-1)
7.29
0.49
18.70
9.46
18.33
22.45
4.79
CTE(80K) (1e6 K-1)
1.92
-0.70
5.08
5.69
7.61
9.49
1.55
AvCTE(293-80K) (1e6 K-1)
5.51
0.00
13.91
7.57
14.77
18.37
3.97
ΔL/L293K(80K) (%)
-0.117
-0.000
-0.296
-0.161
-0.315
-0.391
-0.084
Δn (293-80K)
-0.01314
-0.00127
0.00182
0.00051
0.00283
Pour éviter la défocalisation due au spectrographe échelle, les miroirs paraboliques hors-axe
doivent avoir la même expansion thermique que la structure.
On prend une structure et des miroirs en aluminium (Al 6061, contraction 293K-80K = -0.391 %).
• Focale de la parabole à 80K: F0 = 1195.306 mm
• Focale de la parabole hors-axe à 80K: F1 = 1199.120 mm
Le nombre de traits/mm du réseau échelle reste inchangé grâce à à l’expansion nulle de la silice
entre 293 K et 80 K.
La taille du pixel à 80 K est de 17.985 mm, la taille du détecteur à 80 K est de 36.833 mm
(HgCdTe, contraction 293K-80K = -0.084 %).
La caméra est optimisée à 80 K (indices de réfraction, rayons de courbure, épaisseurs à 80 K).
Les données de fabrication (à 293 K) seront calculées en fonction de l’expansion thermique des
matériaux.
• Grandissement de la fente d’entrée à 80 K: GS = WPIX / WS = 0.2698
• Focale de la caméra à 80 K: F2 = F1 GS = 323.5 mm
La correction image sur le détecteur à 80 K est légèrement meilleure que dans l’étude à 293 K,
grâce à une plus faible dispersion des prismes du disperseur croisé (-2.86 %).
Du fait de la baisse de l’indice de réfraction du ZnSe et de l’Infrasil entre 293 K et 80K, l’apex des
prismes en ZnSe doit être légèrement augmenté de façon à atteindre un minimum de séparation
entre les images de fentes de 4 pixels à 80 K.
L’incidence sur les prismes est ajustée au minimum de déviation pour 80 K à l’ordre 57.
Prismes 1, 2 et 3:
• matériau: ZnSe, apex: 24.44°, incidence à 80 K: 31.24°
Prisme 4:
• matériau: Infrasil, apex: 54°, incidence à 80 K: 41.02°
40/79
SPIRou @ CFHT : a nIR spectropolarimeter
Déplacement du spectre sur le détecteur entre 293 K et 80K: 6.49 mm
Séparation minimum des images de fente sur le détecteur (longueur d’onde centrale):
• 71.2 µm (3.96 pixels) (ordres 49-50)
Séparation minimum interordre sur le détecteur (longueur d’onde centrale):
• 564 µm (ordres 46-47)
Séparation maximum interordre sur le détecteur (longueur d’onde centrale):
• 775 µm (ordres 32-33)
• 848 µm (ordres 79-80)
Distance ordres 32-80 sur le détecteur (longueur d’onde centrale):
• 31.697 mm
Figure 17. Dispersion croisée 80K et 293K (ordonnée minimum à 4 pixels)
Table 9. Données optiques du spectrographe SPIROU à 80 K
Surface
Distance /
Surf suiv.
1195.306
Matériau
Diamètre
0 Fente d’entrée
Rayon de
courbure
infini
Objet
1.886 x 0.067
1 Parabole 1
-2390.612
-1354.680
Miroir
220 x 340
2 Réseau
infini
1354.680
Miroir
306 x 154
3 Parabole 1
-2390.612
-1195.306
Miroir
220 x 340
99.609
Air
99.609
Miroir
1195.837
Air
4
5 Miroir de repli
6
infini
41/79
20 x 180
Décentrem.
Rotation
-6.466 (x)
135.037 (yS)
0.6 (xS)
63.435 (yS)
SPIRou @ CFHT : a nIR spectropolarimeter
7 Parabole 2
-2390.612
-1051.905
Miroir
220 x 340
8 Pupille blanche
194.237
Air
150
9
0
Air
-135.037 (y)
1.2 (x)
19.02445 (x)
10 Prisme 1 S1
infini
-49.941
ZnSe
200 x 220
12.22 (xS)
11 Prisme 1 S2
infini
0
Air
200 x 220
-12.22 (xS)
12
-104.589
Air
19.02445 (x)
13
0
Air
19.02445 (x)
14 Prisme 2 S1
infini
-49.941
ZnSe
200 x 220
12.22 (xS)
15 Prisme 2 S2
infini
0
Air
200 x 220
-12.22 (xS)
16
-104.589
Air
19.02445 (x)
17
0
Air
19.02445 (x)
18 Prisme 3 S1
infini
-49.941
ZnSe
200 x 220
12.22 (xS)
19 Prisme 3 S2
infini
0
Air
200 x 220
-12.22 (xS)
20
-124.511
Air
19.02445 (x)
21
0
Air
14.01579 (x)
22 Prisme 4 S1
infini
-110
Infrasil
232 x 220
27 (xS)
23 Prisme 4 S2
infini
0
Air
232 x 220
-27 (xS)
-79.687
Air
24
14.01579 (x)
25 Lentille 1 S1
-555.982
-55
CaF2
228
26 Lentille 1 S2
298.967
-10.023
Air
228
27 Lentille 2 S1
288.261
-25
S-FTM16
228
28 Lentille 2 S2
-2027.04
-1
Air
228
29 Lentille 3 S1
-463.513
-35
CaF2
228
30 Lentille 3 S2
infini
-190.492
Air
228
31 Lentille 4 S1
-508.28
-35
Infrasil
222
32 Lentille 4 S2
1865.982
-223.552
Air
222
33 Lentille 5 S1
-88.8254
-50
CaF2
144
34 Lentille 5 S2
-1926.75
-24.800
Air
144
35 Lentille 6 S1
641.505
-50
Infrasil
104
36 Lentille 6 S2
-118.77
-7.260
Air
66
37 Détecteur
infini
Image
52.134
42/79
6.2 (y)
0.01316 (x)
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 18. Spot diagramme ordre 57 à 80K
(croix = 18 µm, 1 pixel)
43/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 19. Spot diagramme ordre 32 à 80K
44/79
SPIRou @ CFHT : a nIR spectropolarimeter
(croix = 18 µm, 1 pixel)
Figure 20. Spot diagramme ordre 80 à 80K
(croix = 18 µm, 1 pixel)
45/79
SPIRou @ CFHT : a nIR spectropolarimeter
Table 10. Qualité image sur le détecteur (% dans le pixel) à 80K
Spot Diagramme
k
λ3 (µm)
λ1
λ4
PSF
λ5
λ1
λ2
λ2
λ3
32 2.40956 84.7
100
100 100 92.3
78.5 89.6 88.1 88.4 80.6
86.5 99.2 98.3 99.2 90.7
33 2.33654 84.2
100
100 100 91.9
78.9 89.9 88.4 89.0 80.9
86.7 99.2 98.2 99.5 90.7
34 2.26782 86.8
100
100 100 91.0
81.0 89.9 88.4 89.4 81.1
88.9 99.0 97.9 99.5 90.5
35 2.20302 89.5
100
100 100 89.6
82.7 89.7 88.3 89.6 80.9
90.6 98.6 97.4 99.3 89.9
36 2.14183 92.2
100
100 100 87.8
83.8 89.4 87.9 89.5 80.3
91.8 98.1 96.7 98.9 89.0
37 2.08394 94.3
100
100 100 85.7
84.5 88.9 87.3 89.3 79.4
92.4 97.4 95.9 98.4 87.7
38 2.02910 95.5
100
100 100 84.4
84.9 88.3 86.7 89.0 78.6
92.8 96.6 95.0 97.7 86.6
39 1.97707 95.4
100
100 100 87.1
85.2 87.7 86.1 88.6 79.8
92.9 95.9 94.2 97.1 87.6
40 1.92764 95.1
100
100 100 89.4
85.3 87.2 85.5 88.2 80.7
93.0 95.2 93.4 96.5 88.5
41 1.88063 94.9
100
100 100 91.1
85.5 86.9 85.1 87.8 81.6
93.0 94.7 92.9 95.9 89.2
42 1.83585 95.1
100
100 100 91.7
85.8 86.7 84.9 87.5 82.3
93.2 94.4 92.5 95.5 89.8
43 1.79316 95.5
100
100 100 92.1
86.3 86.8 85.1 87.4 83.1
93.5 94.3 92.6 95.3 90.5
44 1.75240 96.2
100
100 100 92.7
86.8 87.2 85.4 87.6 83.8
93.9 94.5 92.8 95.2 91.3
45 1.71346 97.3
100
100 100 93.6
87.5 87.7 86.0 87.8 84.8
94.4 94.9 93.3 95.4 92.2
46 1.67621 99.0
100
100 100 94.8
88.3 88.4 86.9 88.3 85.8
95.1 95.5 94.1 95.8 93.1
47 1.64055 100
100
100 100 96.4
89.2 89.3 87.8 89.0 86.8
95.8 96.3 95.0 96.3 94.1
48 1.60637 100
100
100 100 98.4
90.1 90.2 88.9 89.7 87.9
96.6 97.0 95.9 97.0 95.1
49 1.57359 100
100
100 100 100
91.0 91.1 90.0 90.5 89.0
97.3 97.8 96.9 97.6 96.1
50 1.54212 100
100
100 100 100
91.8 91.9 91.0 91.3 90.0
98.0 98.5 97.8 98.3 97.1
51 1.51188 100
100
100 100 100
92.4 92.7 91.9 92.0 90.9
98.6 99.1 98.5 98.8 97.9
52 1.48280 100
100
100 100 100
92.9 93.2 92.6 92.6 91.7
99.0 99.5 99.1 99.3 98.5
53 1.45483 100
100
100 100 100
93.2 93.6 93.2 93.0 92.3
99.3 99.8 99.6 99.6 99.0
54 1.42789 100
100
100 100 100
93.4 93.8 93.6 93.4 92.7
99.4 99.9 99.8 99.8 99.3
55 1.40192 100
100
100 100 100
93.5 93.9 93.8 93.6 93.0
99.4 99.9 99.9 99.9 99.4
56 1.37689 100
100
100 100 100
93.4 93.9 93.8 93.7 93.2
99.3 99.8 99.9 99.9 99.5
57 1.35273 100
100
100 100 100
93.3 93.7 93.8 93.6 93.2
99.1 99.6 99.8 99.7 99.4
58 1.32941 100
100
100 100 100
93.0 93.5 93.6 93.5 93.1
98.8 99.3 99.5 99.5 99.2
59 1.30688 100
100
100 100 100
92.7 93.1 93.3 93.3 92.9
98.4 98.9 99.2 99.1 98.9
60 1.28510 100.0 100
100 100 100
92.3 92.7 92.9 92.9 92.7
97.9 98.4 98.7 98.7 98.5
61 1.26403 99.4
100
100 100 100
91.8 92.2 92.5 92.5 92.4
97.3 97.8 98.2 98.2 98.1
62 1.24364 98.6
99.7
99.9 99.7 99.9
91.2 91.6 91.9 92.0 92.0
96.6 97.2 97.6 97.6 97.7
63 1.22390 97.4
98.7
99.3 99.2 99.5
90.7 91.0 91.4 91.4 91.5
95.9 96.4 96.9 97.0 97.1
64 1.20478 95.9
97.0
98.3 98.4 99.0
90.1 90.4 90.8 90.8 91.0
95.3 95.8 96.2 96.3 96.6
65 1.18624 94.5
95.2
96.6 97.3 98.1
89.6 89.8 90.2 90.2 90.6
94.6 95.1 95.5 95.6 96.0
66 1.16827 92.8
93.5
94.9 96.2 97.2
89.1 89.3 89.6 89.7 90.1
94.0 94.4 94.8 95.0 95.5
67 1.15083 91.3
92.2
93.4 95.1 95.8
88.7 88.9 89.1 89.2 89.7
93.5 93.9 94.2 94.4 95.0
68 1.13391 90.5
91.4
92.3 94.2 94.8
88.5 88.6 88.8 88.9 89.4
93.2 93.5 93.8 94.0 94.6
69 1.11748 90.2
90.9
91.6 93.3 93.9
88.5 88.4 88.5 88.7 89.3
93.1 93.2 93.4 93.7 94.4
70 1.10151 90.6
91.0
91.5 93.1 93.6
88.7 88.6 88.6 88.7 89.3
93.2 93.3 93.5 93.7 94.4
71 1.08600 91.4
91.8
91.9 93.4 93.8
89.1 88.9 88.9 89.0 89.6
93.6 93.5 93.6 93.8 94.5
72 1.07091 92.7
93.2
93.0 94.3 94.5
89.8 89.5 89.4 89.4 89.9
94.2 94.1 94.1 94.2 94.9
46/79
λ3
PSF / PSF parfaite
λ4
λ5
λ1
λ2
λ3
λ4
λ5
SPIRou @ CFHT : a nIR spectropolarimeter
73 1.05624 94.5
94.9
94.6 95.8 95.8
90.5 90.3 90.1 90.1 90.5
95.0 94.8 94.7 94.8 95.4
74 1.04197 96.4
97.0
96.7 97.4 97.5
91.4 91.2 91.0 90.9 91.2
95.9 95.7 95.6 95.6 96.0
75 1.02808 97.9
98.5
98.9 99.0 98.8
92.3 92.2 91.9 91.8 91.9
96.8 96.7 96.5 96.4 96.7
76 1.01455 98.9
99.3
100 99.9 99.8
93.2 93.1 92.9 92.8 92.7
97.7 97.6 97.5 97.4 97.4
77 1.00137 99.7
100.0 100 100 100
93.9 94.0 93.8 93.7 93.4
98.4 98.5 98.3 98.2 98.0
78 0.98854 100
100
100 100 100
94.2 94.7 94.5 94.4 93.8
98.6 99.2 99.1 98.9 98.4
79 0.97602 100
100
100 100 100
92.9 95.0 95.1 94.8 93.7
97.3 99.5 99.6 99.4 98.2
80 0.96382 88.1
100
100 100 100
86.9 94.3 95.1 94.7 91.8
90.9 98.7 99.5 99.2 96.2
47/79
SPIRou @ CFHT : a nIR spectropolarimeter
3.CONCLUSION PRÉLIMINAIRE
Le concept optique proposé pour le spectrographe de SPIROU atteint toutes les spécifications.
Un problème potentiel à résoudre est la dimension des prismes, en particulier ceux en ZnSe,
l’épaisseur maximale des substrats étant de l’ordre de 40 mm (voir prismes GIANO).
En réduisant au maximum l’épaisseur et la hauteur des prismes, on peut arriver à une épaisseur
de base de 80 mm. On peut alors atteindre l’épaisseur maximale de 40 mm en scindant chaque
prisme en deux prismes rectangles mis dos à dos, l’assemblage pouvant se faire soit avec un
espace entre les 2 prismes, soit par adhérence moléculaire.
Le nombre total de prismes ZnSe serait alors de 6, assemblés par paires.
On peut peut-être aussi envisager d’autres matériaux à forte dispersion dans les courtes longueurs
d’onde (As2S3, AMTIR-1, …), mais les dimensions possibles des substrats sont à étudier.
Une autre option est de placer les prismes de dispersion croisée en pré-dispersion plutôt qu’en
post-dispersion, ils sont alors utilisés en double passage avant et après le réseau échelle.
Avantages:
• Réduit le nombre et l’apex des prismes.
• Les prismes sont dans un faisceau collimaté sans aberrations -> pas d’amplification des
aberrations.
• Réduit la taille des optiques de la caméra (dans la pupille blanche).
• Réduit les aberrations à corriger par la caméra.
Inconvénients:
• Nécessite l’augmentation de l’angle hors-axe des paraboles et de l’angle hors-littrow du réseau.
• Augmente la taille du miroir de repli et des paraboles hors-axe.
• Les prismes ne travaillent plus au minimum de déviation -> grandissement plus important dans
le sens de la fente.
• Induit une plus forte rotation et courbure des spectres diffractés par le réseau échelle.
• Induit un vignettage par le réseau échelle dans le sens de la dispersion croisée.
Cette option, ainsi qu’une option pré-post dispersion sont étudiées dans les sections suivantes.
48/79
SPIRou @ CFHT : a nIR spectropolarimeter
4.PRÉ-DISPERSION CROISÉE
Paramètres du collimateur parabolique (à 80 K):
•
•
•
•
Focale de la parabole de base à 80 K: F0 = 1195.306 mm
Angle de hors-axe: β = 11.6°
Focale de la parabole hors-axe à 80 K: F1 = 1207.639 mm
Hauteur de hors-axe à 80 K: h = 242.829 mm
Angle hors-littrow du réseau échelle: γ = 1.7°
Le miroir de repli est positionné sur l’image intermédiaire du spectre.
Les séparations entre optiques et faisceau sont réduites au minimum (> 5 mm) de façon à
minimiser l’angle hors-littrow.
Paramètres de la caméra (à 80 K):
• Grandissement de la fente d’entrée à 80 K: GS = WPIX / WS = 0.2698
• Focale de la caméra à 80 K: F2 = F1 GS = 325.8 mm
L’incidence sur les prismes est ajustée au minimum de déviation pour 80 K à l’ordre 57.
Prismes 1, 2 et 3 assemblés en un seul prisme:
• matériau: ZnSe, apex: 9.8°, apex du groupe: 29.4°, incidence du groupe à 80 K: 38.45°
Prisme 4:
• matériau: Infrasil, apex: 43°, incidence à 80 K: 31.99°
Rotation du détecteur autour de son axe: 2.858°
La correction image sur le détecteur est bien meilleure que pour la post-dispersion croisée.
49/79
SPIRou @ CFHT : a nIR spectropolarimeter
Séparation minimum des images de fente sur le détecteur (toutes longueurs d’onde):
• 66.7 µm (3.70 pixels) (ordres 53-54)
Distance ordres 32-80 sur le détecteur (longueur d’onde centrale):
• 36.563 mm
Distance ordres 32-80 incluant les images de fente sur le détecteur (toutes longueurs d’onde):
• 37.521 mm
On pourrait faire rentrer complètement les spectres sur le détecteur en diminuant la dispersion
croisée, mais ce serait au détriment de la séparation minimum des images de fente sur le
détecteur qui est déjà inférieure à 4 pixels.
Figure 21. pré-dispersion croisée (ordonnée minimum à 3 pixels)
50/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 22. Spectrographe SPIROU (pré-dispersion croisée)
51/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 23. Répartition des ordres sur le détecteur (pré-dispersion croisée)
(image de la fente d’entrée)
Table 11. Qualité image sur le détecteur (% dans le pixel) à 80K (pré-dispersion croisée)
Spot Diagramme
k
λ3 (µm)
λ1
λ2
λ3
λ4
λ5
PSF
λ1
λ2
λ3
PSF / PSF parfaite
λ4
λ5
λ1
λ2
λ3
λ4
λ5
32 2.40956 100 100 100 100 100
86.8 87.1 86.0 84.9 83.9
97.1 97.8 97.2 96.9 96.5
33 2.33654 100 100 100 100 100
87.6 87.8 86.2 85.5 84.5
97.5 98.1 96.9 97.0 96.5
34 2.26782 100 100 100 100 100
88.1 88.0 86.2 86.0 85.0
97.7 97.9 96.3 96.9 96.5
35 2.20302 100 100 100 100 100
88.6 88.2 86.1 86.4 85.6
97.9 97.7 95.8 96.8 96.7
36 2.14183 100 100 100 100 100
88.9 88.3 86.1 86.8 86.4
98.0 97.6 95.5 96.8 97.0
37 2.08394 100 100 100 100 100
89.2 88.6 86.4 87.4 87.1
98.2 97.7 95.5 97.0 97.4
38 2.02910 100 100 100 100 100
89.5 88.9 86.9 88.0 87.8
98.4 97.9 95.8 97.3 97.7
39 1.97707 100 100 100 100 100
89.7 89.4 87.5 88.6 88.4
98.5 98.2 96.3 97.7 98.0
52/79
SPIRou @ CFHT : a nIR spectropolarimeter
40 1.92764 100 100 100 100 100
90.0 89.8 88.2 89.2 88.9
98.6 98.6 96.9 98.2 98.2
41 1.88063 100 100 100 100 100
90.2 90.2 88.9 89.7 89.3
98.7 98.9 97.5 98.6 98.4
42 1.83585 100 100 100 100 100
90.3 90.6 89.5 90.2 89.5
98.8 99.2 98.1 99.0 98.4
43 1.79316 100 100 100 100 100
90.5 90.9 90.1 90.6 89.7
98.8 99.5 98.6 99.3 98.5
44 1.75240 100 100 100 100 100
90.6 91.2 90.5 90.9 89.8
98.8 99.6 99.0 99.5 98.4
45 1.71346 100 100 100 100 100
90.7 91.4 90.9 91.1 89.8
98.7 99.7 99.4 99.7 98.4
46 1.67621 100 100 100 100 100
90.8 91.6 91.2 91.3 89.8
98.6 99.8 99.6 99.8 98.3
47 1.64055 100 100 100 100 100
90.8 91.7 91.5 91.4 89.8
98.5 99.8 99.7 99.8 98.2
48 1.60637 100 100 100 100 100
90.9 91.9 91.7 91.5 89.8
98.4 99.8 99.8 99.8 98.1
49 1.57359 100 100 100 100 100
90.9 92.1 91.9 91.7 89.8
98.3 99.7 99.8 99.8 97.9
50 1.54212 100 100 100 100 100
91.0 92.2 92.1 91.8 89.8
98.1 99.7 99.8 99.7 97.8
51 1.51188 100 100 100 100 100
91.0 92.4 92.3 91.9 89.8
98.0 99.7 99.8 99.7 97.7
52 1.48280 100 100 100 100 100
91.0 92.5 92.4 92.0 89.9
97.9 99.6 99.8 99.6 97.5
53 1.45483 100 100 100 100 100
91.0 92.6 92.6 92.2 89.9
97.7 99.6 99.8 99.6 97.4
54 1.42789 100 100 100 100 100
91.0 92.7 92.8 92.3 90.0
97.6 99.6 99.8 99.5 97.3
55 1.40192 100 100 100 100 100
91.0 92.8 92.9 92.4 90.1
97.5 99.5 99.7 99.5 97.3
56 1.37689 100 100 100 100 100
91.0 92.9 93.0 92.6 90.2
97.4 99.5 99.7 99.4 97.2
57 1.35273 100 100 100 100 100
91.0 93.0 93.1 92.7 90.4
97.3 99.5 99.7 99.4 97.1
58 1.32941 100 100 100 100 100
91.1 93.1 93.2 92.8 90.5
97.3 99.4 99.7 99.4 97.1
59 1.30688 100 100 100 100 100
91.1 93.1 93.3 92.9 90.6
97.2 99.4 99.7 99.3 97.0
60 1.28510 100 100 100 100 100
91.2 93.2 93.3 92.9 90.7
97.3 99.4 99.6 99.3 97.0
61 1.26403 100 100 100 100 100
91.3 93.2 93.4 93.0 90.8
97.3 99.4 99.6 99.3 97.0
62 1.24364 100 100 100 100 100
91.4 93.3 93.4 93.0 90.9
97.4 99.4 99.6 99.2 97.0
63 1.22390 100 100 100 100 100
91.6 93.3 93.5 93.1 91.0
97.4 99.4 99.6 99.2 97.0
64 1.20478 100 100 100 100 100
91.8 93.4 93.5 93.1 91.1
97.6 99.4 99.6 99.2 97.1
65 1.18624 100 100 100 100 100
92.0 93.5 93.6 93.2 91.1
97.7 99.4 99.6 99.2 97.1
66 1.16827 100 100 100 100 100
92.2 93.6 93.7 93.2 91.3
97.8 99.4 99.6 99.2 97.2
67 1.15083 100 100 100 100 100
92.4 93.7 93.7 93.3 91.4
98.0 99.4 99.6 99.2 97.2
68 1.13391 100 100 100 100 100
92.6 93.8 93.8 93.3 91.5
98.1 99.5 99.6 99.2 97.4
69 1.11748 100 100 100 100 100
92.8 93.9 93.9 93.4 91.7
98.2 99.5 99.6 99.2 97.4
70 1.10151 100 100 100 100 100
93.0 94.0 94.0 93.5 91.8
98.4 99.5 99.6 99.2 97.5
71 1.08600 100 100 100 100 100
93.1 94.0 94.0 93.6 92.0
98.5 99.5 99.6 99.2 97.6
72 1.07091 100 100 100 100 100
93.3 94.1 94.1 93.6 92.1
98.6 99.5 99.6 99.2 97.7
73 1.05624 100 100 100 100 100
93.4 94.2 94.1 93.7 92.2
98.7 99.5 99.6 99.2 97.8
74 1.04197 100 100 100 100 100
93.5 94.2 94.2 93.7 92.4
98.7 99.5 99.6 99.2 97.9
75 1.02808 100 100 100 100 100
93.6 94.3 94.2 93.8 92.4
98.8 99.5 99.6 99.2 97.9
76 1.01455 100 100 100 100 100
93.6 94.2 94.2 93.8 92.5
98.8 99.5 99.5 99.1 97.9
77 1.00137 100 100 100 100 100
93.6 94.2 94.2 93.7 92.5
98.8 99.4 99.4 99.0 97.8
78 0.98854 100 100 100 100 100
93.5 94.1 94.1 93.6 92.4
98.7 99.3 99.3 98.9 97.7
79 0.97602 100 100 100 100 99.9
93.4 94.0 94.0 93.5 92.3
98.5 99.1 99.1 98.7 97.5
80 0.96382 100 100 100 100 99.7
93.1 93.7 93.7 93.3 92.0
98.2 98.9 98.9 98.4 97.2
53/79
SPIRou @ CFHT : a nIR spectropolarimeter
5.PRÉ-POST DISPERSION CROISÉE
Paramètres du collimateur parabolique (à 80 K):
•
•
•
•
Focale de la parabole de base à 80 K: F0 = 1195.306 mm
Angle de hors-axe: β = 10°
Focale de la parabole hors-axe à 80 K: F1 = 1204.455 mm
Hauteur de hors-axe à 80 K: h = 209.151 mm
Angle hors-littrow du réseau échelle: γ = 1.2°
Le miroir de repli est positionné sur l’image intermédiaire du spectre.
Paramètres de la caméra (à 80 K):
• Grandissement de la fente d’entrée à 80 K: GS = WPIX / WS = 0.2698
• Focale de la caméra à 80 K: F2 = F1 GS = 325.0 mm
L’incidence sur les prismes est ajustée au minimum de déviation pour 80 K à l’ordre 58.
Prismes 1, 2 et 3 assemblés en un seul prisme (pré-dispersion):
• matériau: ZnSe, apex: 10.4°, apex du groupe: 31.2°, incidence du groupe à 80 K: 41.24°
Prisme 4 (post-dispersion):
• matériau: Infrasil, apex: 60°, incidence à 80 K: 46.30°
Rotation du détecteur autour de son axe: 1.907°
La correction image sur le détecteur est légèrement moins bonne que pour la pré-dispersion
croisée, mais bien meilleure que pour la post-dispersion croisée.
54/79
SPIRou @ CFHT : a nIR spectropolarimeter
Séparation minimum des images de fente sur le détecteur (toutes longueurs d’onde):
• 70.0 µm (3.89 pixels) (ordres 50-51)
Distance ordres 32-80 sur le détecteur (longueur d’onde centrale):
• 34.368 mm
Distance ordres 32-80 incluant les images de fente sur le détecteur (toutes longueurs d’onde):
• 35.411 mm
La pré-dispersion pourrait être légèrement augmentée pour une couverture maximale du détecteur
et se rapprocher plus de la séparation minimum des images de fente sur le détecteur de 4 pixels.
Figure 24. pré-post-dispersion croisée (ordonnée minimum à 3 pixels)
55/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 25. Spectrographe SPIROU (pré-post-dispersion croisée)
56/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 26. Répartition des ordres sur le détecteur (pré-post-dispersion croisée)
(image de la fente d’entrée)
Table 12. Qualité image sur le détecteur (% dans le pixel) à 80K (pré-post-dispersion
croisée)
Spot Diagramme
k
λ3 (µm)
λ1
λ2
λ3
λ4
PSF
λ5
λ1
λ2
λ3
PSF / PSF parfaite
λ4
λ5
λ1
λ2
λ3
λ4
λ5
32 2.40956 99.6 100 100 100 100
87.9 87.2 86.5 85.0 84.2
98.1 97.8 97.8 97.1 96.9
33 2.33654 99.0 100 100 100 100
88.2 88.4 87.6 86.5 85.0
98.1 98.6 98.4 98.0 97.2
34 2.26782 98.8 100 100 100 100
88.5 88.8 87.8 87.2 85.6
98.1 98.7 98.1 98.2 97.3
35 2.20302 98.8 99.9 100 100 100
88.8 88.9 87.7 87.7 86.2
98.1 98.5 97.5 98.1 97.4
36 2.14183 99.0 99.7 100 100 100
89.1 89.0 87.5 88.0 86.8
98.2 98.3 96.9 98.1 97.5
37 2.08394 99.1 99.7 99.9 100 100
89.4 89.3 87.5 88.4 87.3
98.3 98.3 96.6 98.1 97.6
38 2.02910 99.4 99.7 99.9 100 100
89.6 89.6 87.7 88.9 87.7
98.5 98.5 96.6 98.3 97.6
57/79
SPIRou @ CFHT : a nIR spectropolarimeter
39 1.97707 99.6 99.8 99.9 100 100
89.8 90.0 88.2 89.4 88.1
98.6 98.8 96.9 98.6 97.6
40 1.92764 99.8 99.9 99.9 100 100
90.0 90.4 88.7 89.9 88.3
98.6 99.2 97.4 98.9 97.5
41 1.88063 99.9 100 100 100 100
90.0 90.8 89.3 90.4 88.3
98.6 99.5 97.9 99.3 97.3
42 1.83585 100 100 100 100 100
90.0 91.1 89.8 90.7 88.4
98.4 99.8 98.5 99.6 97.2
43 1.79316 100 100 100 100 100
90.0 91.4 90.3 91.1 88.3
98.2 100 99.0 99.8 96.9
44 1.75240 100 100 100 100 100
89.9 91.6 90.8 91.3 88.2
98.0 100 99.4 100 96.7
45 1.71346 100 100 100 100 100
89.8 91.8 91.2 91.5 88.1
97.7 100 99.7 100 96.5
46 1.67621 100 100 100 100 100
89.6 91.9 91.5 91.6 87.9
97.4 100 99.9 100 96.3
47 1.64055 100 100 100 100 100
89.5 92.1 91.7 91.7 87.8
97.2 100 100 100 96.1
48 1.60637 100 100 100 100 100
89.4 92.2 92.0 91.8 87.7
96.9 100 100 100 95.9
49 1.57359 100 100 100 100 100
89.3 92.3 92.1 91.9 87.6
96.6 100 100 100 95.7
50 1.54212 100 100 100 100 100
89.2 92.4 92.3 91.9 87.6
96.3 99.9 100 100 95.5
51 1.51188 100 100 100 100 100
89.2 92.5 92.5 92.0 87.6
96.2 99.9 100 100 95.4
52 1.48280 100 100 100 100 100
89.2 92.6 92.6 92.2 87.6
96.0 99.8 100 99.9 95.2
53 1.45483 100 100 100 100 100
89.2 92.7 92.8 92.3 87.7
95.9 99.8 100 99.8 95.2
54 1.42789 100 100 100 100 100
89.2 92.8 92.9 92.4 87.8
95.8 99.7 100 99.7 95.1
55 1.40192 100 100 100 100 100
89.3 92.9 93.0 92.5 88.0
95.7 99.7 100 99.7 95.1
56 1.37689 100 100 100 100 100
89.4 93.0 93.1 92.6 88.2
95.7 99.6 99.9 99.6 95.1
57 1.35273 100 100 100 100 100
89.5 93.0 93.2 92.8 88.4
95.8 99.6 99.9 99.6 95.2
58 1.32941 100 100 100 100 100
89.7 93.1 93.3 92.9 88.7
95.9 99.6 99.9 99.6 95.2
59 1.30688 100 100 100 100 100
89.9 93.2 93.4 93.0 88.9
96.0 99.6 99.9 99.5 95.4
60 1.28510 100 100 100 100 100
90.1 93.3 93.4 93.1 89.1
96.1 99.6 99.9 99.5 95.5
61 1.26403 100 100 100 100 100
90.3 93.3 93.5 93.1 89.4
96.3 99.6 99.9 99.5 95.6
62 1.24364 100 100 100 100 100
90.6 93.4 93.6 93.2 89.7
96.5 99.6 99.8 99.5 95.8
63 1.22390 100 100 100 100 100
90.9 93.5 93.7 93.3 89.9
96.7 99.6 99.9 99.5 96.0
64 1.20478 100 100 100 100 100
91.2 93.6 93.7 93.4 90.1
96.9 99.6 99.9 99.5 96.1
65 1.18624 100 100 100 100 100
91.4 93.7 93.8 93.4 90.3
97.1 99.7 99.9 99.5 96.3
66 1.16827 100 100 100 100 100
91.7 93.8 93.9 93.5 90.5
97.3 99.7 99.9 99.6 96.5
67 1.15083 100 100 100 100 100
91.9 93.9 94.0 93.6 90.7
97.5 99.7 99.9 99.6 96.6
68 1.13391 100 100 100 100 100
92.1 94.0 94.0 93.7 90.9
97.6 99.7 99.9 99.6 96.8
69 1.11748 100 100 100 100 100
92.3 94.1 94.1 93.7 91.1
97.7 99.7 99.9 99.6 96.9
70 1.10151 100 100 100 100 100
92.4 94.2 94.2 93.8 91.2
97.8 99.7 99.9 99.6 97.0
71 1.08600 100 100 100 100 100
92.5 94.2 94.3 93.8 91.4
97.8 99.7 99.9 99.5 97.0
72 1.07091 100 100 100 100 100
92.5 94.3 94.3 93.9 91.4
97.8 99.7 99.9 99.5 97.0
73 1.05624 100 100 100 100 100
92.5 94.3 94.4 93.9 91.4
97.7 99.7 99.8 99.4 96.9
74 1.04197 100 100 100 100 100
92.4 94.3 94.4 93.9 91.3
97.5 99.6 99.8 99.3 96.8
75 1.02808 100 100 100 100 100
92.1 94.2 94.3 93.8 91.1
97.2 99.4 99.7 99.2 96.5
76 1.01455 100 100 100 100 100
91.7 94.0 94.2 93.6 90.7
96.8 99.2 99.5 99.0 96.0
77 1.00137 100 100 100 100 99.4
91.0 93.7 94.0 93.3 90.1
96.0 98.9 99.3 98.6 95.3
78 0.98854 100 100 100 100 98.2
89.9 93.1 93.6 92.8 89.1
94.9 98.3 98.8 98.0 94.2
79 0.97602 100 100 100 100 96.7
88.1 92.2 92.9 91.9 87.5
93.0 97.3 98.1 97.1 92.4
80 0.96382 99.2 100 100 99.9 94.3
85.2 90.6 91.7 90.5 84.8
90.0 95.7 96.8 95.5 89.6
58/79
SPIRou @ CFHT : a nIR spectropolarimeter
6.CONCLUSION
Les options de pré-dispersion (totale ou partielle) sont séduisantes, bien qu’elles s’éloignent du
concept optique d'ESPaDOnS (post-dispersion).
Elles permettent un design plus compact, des optiques (prismes et lentilles) de plus petite taille et
une meilleure correction de l’image sur le détecteur, mais des miroirs (paraboles et miroir de repli)
de plus grande taille.
Une optimisation plus poussée du poids relatif du ZnSe et de l’Infrasil dans la dispersion croisée
devrait permettre d’ajuster au mieux le remplissage du détecteur et la séparation minimum entre
les images de fente.
59/79
SPIRou @ CFHT : a nIR spectropolarimeter
Appendix B : preliminary estimate of the instrument
thermal background
This document is for the thermal background estimation of SPIROU. According to the system
specifications, the thermal instrument background in the K band should be smaller than the telescope
thermal emission, i.e. K>13.5. To meet this goal, the analysis on the actions to limit the thermal
background is reported.
The calculation is done at 2.4 µm which is longest wavelength of SPIROU and is expected to
have highest thermal background. A bandwidth of 1e-4 micron was used to fit the resolution of
SPIROU. In the calculation, standard CFHT parameters and the optics parameters from Espadons
were used. Some of the calculation will be refined after the optical design of SPIROU is finalized. It
should be noticed that due to the large number of optics, the radiation sources closer to the dewar of
SPIROU is more important than the ones that is far from the cooled region. The efficiency for
different modules in SPIROU is assumed as:
★ telescope: 0.75 (each mirror 0.866)
★ polarimeter: 0.80
★ fiber: 0.80
★ slicer: 0.85
1. The thermal radiation from the sky and telescope:
The sky background and the radiation from the telescope were firstcalculated assuming the radiation
is collected in the (200 µm=1.4") circular pinhole of the Cassegrain module. All radiation collected here
will have the same optical path with the star signal, so these are the unavoidable radiation unless a cold
stop is added. The radiation from the sky is calculated assuming a 0.76 emissivity at 250K. The total
radiation intensity collected is about 1.22x10-18 W at the pinhole. (11 ph/s/m2/nm/arcsec2). This value
is very close to sky background of the K=13.5 star. However, if we use the spectrum of Gemini’s sky
background, the sky level is about 2.0x10-19 W from the lowest flux point in the K band. Here we will
use this value as the goal of the thermal background reduction from the other parts of SPIROU. The
reflectivity of the mirrors is assumed to be 0.866 in the calculation.
The radiation from the primary mirror is 6.1x10-19 W and the radiation from the secondary is
5.39x10-19 W. The number here in calculated assuming the emissivity of the mirrors is 0.027 and the
temperature is 275 K. If we could add a cold stop, the radiation from the primary mirror will be
5.29x10-19 W and the radiation from the secondary will be reduced to 4.65x10-19 W.
2. The thermal radiation from the polarimeter:
The radiation will be focused to the fiber pickup head after the polarimeter. Due the complicated
optical path of the polarimeter, the thermal radiation from the optical components can hardly reach
the fiber. Only the radiation from the last lens will contribute most picked up by the optical fiber.
With the parameter of the proposed fiber Heraeus Suprasil 300 (NA ~ 0.22), the effective incident
angle is 12.7 degrees and the core diameter is 200 µm. Only the radiation within this angular range will
be coupled into the fiber. The thermal radiation from the last lens coupled into the fiber is thus
3.02x10-18 W if the temperature is 275K. The used distance from the last lens to the fiber is
18.41mm and the emissivity is 0.05. This is much higher than the thermal background of the sky and
the telescope. Considering the transmission of the whole polarimeter is 80%, the thermal radiation
from the last lens should be less than 9.78x10-19 W. The last lens needs be cooled around
250 K. At 250 K the radiation generated will be 3.41x10-19 W.
60/79
SPIRou @ CFHT : a nIR spectropolarimeter
Schematics of the polarimeter. The part that needs cooling is outlined with the red box.
3. The thermal radiation from the fiber:
The radiation from the fiber itself was also considered. According to Heraeus, the index of refraction
of the fiber core is 1.4571 and for the cladding it is 1.4404. A model for the fiber was generated with
optical simulation tool ASAP. With such model, the thermal radiation from the cladding and the cover
of the fiber is simulated. Due to the small effective cross section of the fiber, the ratio for the
radiation to propagate to the fiber core is less than 0.001%. We thus neglect the background from the
fiber cladding. Some experiment might be needed to verify this result in the future. However, the
radiation from the fiber core to the image slicer is calculated. At 275K, it is about 1.22x10-18 W.
Again, this is higher than the sky background, the fiber exit part and the focusing lens for the image
slicer needs to be cooled to 250 K. The radiation will then be 1.37 x10-19 W.
4.The thermal radiation from the image slicer and spectrometer:
The spectrometer will be cooled to 77K, so the radiation is negligible for the components inside the
dewar. It is more important to investigate the radiation from the components of the image slicer.
Fortunately, the complicated optical path of the image slicer also helps to block the unwanted
radiation to enter the spectrometer if a suitable slit is design in the dewar. With the optical model of
Espandons, a 77K cold entrance slit inside the dewar with a size of 0.12x1.8mm could effectively block
the unwanted radiation. However, the thermal radiation along the optical path will still be coupled into
the system. The thermal radiation for this part is about 7.02 x10-19 W. The sky background is reduced
to 6.65 x10-19 W, if we assume the throughput of the image slicer is 80%. Again, we need to cool this
part to 250K or include it in the spectrometer dewar. The thermal radiation will be 7.94 x10-20 W if
cooled to 250K.
Schematics of the image slicer. The part that needs cooling are outlined with the blue boxes on both sides.
5. Final summary
If we compare the thermal radiation from different parts, the major radiation source is the last lens
of the polarimeter, then the fiber exit, slicer focusing lens, sky background, primary mirror and finally
the secondary telescope mirror.
In summary, special treatments are needed to reduce the thermal background in SPIROU
including:
★ cool the last lens of the polarimeter with the fiber pickup head to -30°C with TE cooler. A vacuum
or nitrogen contained chamber is needed.
★ cool the focusing lenses of the image slicer and fiber exist part to -30°C with TE cooler. A vacuum
or nitrogen contained chamber is needed.
61/79
SPIRou @ CFHT : a nIR spectropolarimeter
★ cool the collimator and the focusing lens for the spectrometer to -30°C with TE cooler. A vacuum
or nitrogen contained chamber is needed. Or include this part into the dewar.
★ a cooled entrance long slit in the dewar of the spectrometer is needed. The detailed size will be
given after the design of SPIROU is settled.
If we further compare the thermal radiation in different cases, we find:
★ polarimeter & slicer @ room temperature : 1.01x10-17 W ~ 71 ph/s/m2/nm/arcsec2.
★ cooling polarimeter output lens only : 6.25x10-18 W ~ 44 ph/s/m2/nm/arcsec2.
★ polarimeter output lens & slicer optics cooled : 2.47 x10-18 W ~ 17 ph/s/m2/nm/arcsec2.
By cooling both the polarimeter output optics and the image-slicer module, we can therefore reduce
the instrument thermal emission in the K band by about an order of magnitude and keep it lower than
the thermal emission from the telescope.
62/79
SPIRou @ CFHT : a nIR spectropolarimeter
Appendix C : preliminary study of nIR Fresnel
rhombs for SPIRou
Preliminary study of the feasibility of quarter-wave retardation rhombs
for SPIROU
1. Introduction:
Fresnel rhombs exhibits the less chromatic effect and larger spectral range than other conventional
quarter-wave retardation devices like crystalline plates. Using a thin-film coating of MgF2 on one
face were occurs a total reflection, improves the achromacity of the rhomb
This solution has been used with success in the two twin spectropolarimetric instruments Espadons
at CFHT, Hawaii and Narval at Pic du Midi, France. The two instruments work in the spectral band
0.37 – 1µm.
The present document gives the current results about the feasibility of this kind of coated rhombs in
the IR bands covering 0.9-2.4 µm
2. Model
Given a material with an index of refraction n(λ) depending of the wavelength λ, the retardation
between the two polarizations and // occurring at total reflection in a dielectric can be expressed
by (according to Born & Wolf) :
: incidence angle
This relation is valid for a bare substrate (no thin film coating)
The model of a reflection with thin film has been done in an Excel sheet. The details are not
included in the document. This Excel sheet has already been used for the Espadons and Narval
instruments, only the spectral range has been changed, corresponding refractive index for both the
substrate and coating have been updated.
3. Solution with optical glasses and MgF2 coating
The choice of glasses has been restricted to the OHARA glass catalog.
63/79
SPIRou @ CFHT : a nIR spectropolarimeter
3.1.Valid range of refractive index:
1.
Minimum refractive index
For non-coated glass, only a glass with an index greater than 1.497 can have a retardation of 45°
(quarter-wave retardation).
For n>1.497 there is two solutions giving 45°: small angle (A1) and big angle (A2)
The solution A2 should be preferred than the A1 solution has it gives better results in term of
sensitivity to incidence angle.
2.
Maximum refractive index
With an MgF2 coating, the thin film formulas work if the index of refraction of the glass is
inferior to 1.61.
3.2.Minimum internal transmission of glass
The total path of light in a rhomb (with two total internal reflection) is equal to 2*h* tan(θ) with θ
the angle of the Rhomb and h the aperture size of the rhomb.
The aperture of the rhomb is close to 10 mm and the angle of the rhomb between 53 and 63° (A2
solution), the total path of light in the rhomb is between 26.5 and 39.25 mm.
As it is planned to have 1 quarter-wave rhomb and two half-waves rhombs for polarimetric
analysis, this means 5 times the total path of a quarter-wave rhomb : at least 130 mm.
In the OHARA catalog, the internal transmission is given for 10 mm thickness
3.3.Available glasses for MgF2 coating
Using the refractive index criteria the choice of glasses in the OHARA catalog are
REFRACTIVE INDICES
Glass
S-TIL 2
S-FTM16
S-TIM 8
S-TIM 5
S-TIM 3
PBM 3
S-TIM 2
Code(d)
541472
593353
596392
603380
613370
613370
620363
Code
(IR)
521498
567471
572491
579484
587479
588533
594481
n2325
1.511176
1.55603
1.560749
1.567531
1.57589
1.578136
1.582398
n1970
1.516261
1.561539
1.566151
1.57306
1.58154
1.583021
1.588056
64/79
n1530
1.521761
1.567666
1.572121
1.579177
1.58781
1.588539
1.594349
n1129
1.5267241
1.5735659
1.5777844
1.585003
1.59381
1.5940509
1.6004127
Abbe IR
49.864406
47.198934
49.177923
48.493072
47.906275
53.359
48.10049
SPIRou @ CFHT : a nIR spectropolarimeter
INTERNAL TRANSMISSION (10mm Thick)
Glass
S-TIL 2
S-FTM16
S-TIM 8
S-TIM 5
S-TIM 3
PBM 3
S-TIM 2
900
0.998
0.999
0.997
0.998
0.998
0.999
0.999
1200
0.997
0.999
0.996
0.998
0.996
0.998
0.999
1600
0.995
0.994
0.993
0.994
0.994
0.995
0.995
1800
2000
0.987
0.989
0.983
0.982
0.983
0.984
0.984
0.97
0.987
0.968
0.966
0.971
0.969
0.971
2200
0.942
0.959
0.935
0.923
0.929
0.936
0.93
2400
0.917
0.953
0.915
0.902
0.913
0.917
0.914
Only one glass exhibits an acceptable absorption: S-FTM16 in the 2200-2400 nm band.
In the IR, all these glasses have equivalent dispersion (except PBM3 but this is an obsolete glass).
To have a comparison, in the visible (Espadons and Narval), the chosen glass for the rhomb was an
equivalent to the S-BSL7 glass: nd=1.516, vd=64.1.The available glasses for SPIROU with an
MgF2 coating are much more dispersive in comparison.
3.4.Performances of S-FTM16 rhomb
Thickness = 30.8 mm with an entrance aperture of 10 mm.
65/79
SPIRou @ CFHT : a nIR spectropolarimeter
3.5.Performances of S-TIL2 rhomb
Thickness = 27.6 mm with an entrance aperture of 10 mm.
3.6.Performances of S-TIM8 rhomb
Thickness = 31 mm with an entrance aperture of 10 mm.
66/79
SPIRou @ CFHT : a nIR spectropolarimeter
3.7.Performances of S-TIM5 rhomb
Thickness = 31.4 mm with an entrance aperture of 10 mm.
3.8.Performances of S-TIM2 rhomb
Thickness = 32 mm with an entrance aperture of 10 mm.
4. Solution with ZnSE
A good IR coating on the entrance and exit face of the rhomb is mandatory due to the high index of
ZnSe (n= 2.45 in the IR). The
67/79
SPIRou @ CFHT : a nIR spectropolarimeter
ZnSe Calculated Transmission Profiles
Calculated transmission profiles of Zinc Selenide (ZnSe) at 293K for substrate thicknesses between
2.0 and 4.5mm
1µm = 10 000 cm-1 ; 2µm = 5 000 cm-1 ; 2.4 µm = 4166 cm-1
4.1.MgF2 coating
Only the A1 solution is applicable.
Thickness = 9.3 mm with an entrance aperture of 10 mm.
68/79
SPIRou @ CFHT : a nIR spectropolarimeter
4.2.Diamond CVD
A2 solution is applicable
Thickness = 43 mm with an entrance aperture of 10 mm.
5. Other possibilities
A different coating with an index of refraction lower than the index of refraction of the substrate
may widen the chose of OHARA glasses. For example : SiO2, Al2O3, HfF4…
Other materials for thin films coating are available.
An Applied Optics article ( Appl.Opt. 36, N°10 April 1997 p2157, Optical and durability properties
of infrared transmitting thin films) gives some index of refraction in the Ir with some durability of
the different coatings.
The optical glass catalog is classified by decreasing transmission at 2400 nm.
REFRACTIVE INDICES
Glass Code(d) Code(IR)
n2325
n1970
n1530
n1129
S-NPH 2
923189
861385 1.84214
1.85093
1.86146
1.87327
S-FTM16
S-TIM28
S-TIH 4
S-TIH14
S-TIH11
S-TIH 1
S-TIH23
593353
689311
755275
762265
785257
717295
785263
567471
657477
717476
723467
743470
683474
744479
1.561539
1.650622
1.710541
1.71554
1.73639
1.67636
1.737316
1.567666
1.657451
1.71784
1.723018
1.74397
1.68344
1.744751
1.5735659
1.6643807
1.7256073
1.7310194
1.7522185
1.69075
1.7528429
1.55603
1.644633
1.7043
1.709159
1.729984
1.67018
1.731025
69/79
Abbe IR
38.561325
47.198934
47.785795
47.645084
46.708367
47.002786
47.494093
47.965846
SPIRou @ CFHT : a nIR spectropolarimeter
S-TIH 3
S-TIH53
S-TIM35
S-TIM25
S-TIH10
S-TIH18
S-TIH 6
BAH32
LAM58
740283
847238
699301
673321
728285
722292
805254
670393
720420
704476
800464
666465
642476
692468
687473
763476
644563
694605
1.69065
1.785306
1.652825
1.629881
1.679341
1.673842
1.74917
1.633958
1.683741
1.69685
1.792048
1.659053
1.635832
1.685617
1.680025
1.755582
1.638994
1.688768
1.70405
1.800161
1.66615
1.642578
1.692863
1.68715
1.763205
1.64471
1.694481
1.71162
1.8092673
1.6733528
1.6493303
1.7004036
1.6945255
1.7715962
1.6504341
1.7002367
47.667569
46.469098
46.583583
47.603337
46.856866
47.387687
47.658016
56.356711
60.552847
INTERNAL TRANSMISSION (10mm Thick)
Glass
S-NPH 2
S-FTM16
S-TIM28
S-TIH 4
S-TIH14
S-TIH11
S-TIH 1
S-TIH23
S-TIH 3
S-TIH53
S-TIM35
S-TIM25
S-TIH10
S-TIH18
S-TIH 6
BAH32
LAM58
Code(d) Code(IR)
923189
593353
689311
755275
762265
785257
717295
785263
740283
847238
699301
673321
728285
722292
805254
670393
720420
861385
567471
657477
717476
723467
743470
683474
744479
704476
800464
666465
642476
692468
687473
763476
644563
694605
900
1200 1600 1800 2000 2200 2400
0.996 0.997 0.996 0.992 0.988 0.977 0.961
0.999 0.999 0.994 0.989 0.987 0.959 0.953
0.998 0.998 0.996 0.989 0.983 0.961 0.948
0.999 0.997 0.994 0.987 0.981 0.961 0.942
0.999 0.999 0.996 0.988 0.982 0.961 0.942
0.998 0.999 0.996 0.989 0.982 0.964 0.942
0.999 0.998 0.995 0.988 0.981 0.957 0.941
0.998 0.999 0.996 0.988 0.981 0.962 0.937
0.999 0.999 0.996 0.988
0.98 0.955 0.933
0.999 0.999 0.997 0.989 0.981 0.964 0.933
0.999 0.999 0.995 0.988
0.98 0.942 0.931
0.998 0.998 0.995 0.987 0.977 0.944
0.93
0.998 0.998 0.993 0.985 0.977 0.947 0.929
0.999 0.999 0.995 0.986 0.978 0.948 0.928
0.998 0.998 0.995 0.986 0.978 0.958 0.928
0.998 0.997 0.995 0.988
0.98 0.951 0.927
0.998 0.999 0.998 0.993 0.986 0.966 0.924
New materials arise but as the index of refraction increased, the angle of the rhomb increased with
the thickness of the rhomb.
Only the S-NPH2 material seems interesting by comparison with S-FTM16.
So-far only NdF3 coating seems available.
70/79
SPIRou @ CFHT : a nIR spectropolarimeter
Thickness = 38 mm with an entrance aperture of 10 mm.
6. Comparison matrix
The internal transmission is calculated with the thickness of the rhomb.
For ZnSe transmission , the attenuation coefficient has been taken equal to 0.005 cm-1
(conservative number , data given at 10.6 µm give < 0.005 cm-1)
Δδ is the difference between the maximal and minimal retard for a normal incidence
δ+i mean(°) is the mean value of the retardation for a +0.15° incidence
δ-i mean(°) is the mean value of the retardation for a -0.15° incidence
Material
Coating
Rhomb
Angle(°)
Δδ (°)
ecoating (nm) rhomb
Internal
Internal
thickness( transmission transmission
mm)
2200 nm
2400 nm
ZnSe Diamond 65.078 20.417
S-NPH2
NdF3 62.2159 26.91
S-FTM16 MgF2 56.996 32.13
S-TIL2
MgF2 54.067 39.45
S-TIM8
MgF2 57.203 30.518
S-TIM2
MgF2 57.967 28.77
S-TIM5
MgF2 57.46
30.08
ZnSe
MgF2 24.942 83.5
43
38
30.8
27.6
31
32
31.4
9.3
0.9787
0.915
0.874
0.848
0.812
0.793
0.775
0.995
0.9787
0.86
0.8567
0.7873
0.76
0.75
0.723
0.995
0.041
0.2687
0.426
0.605
0.41
0.376
0.402
2.824
δ+i
δ–i
mean(°) mean(°)
89.784
89.196
89.826
89.9
89.82
89.807
89.817
93.12
90.22
90.8
90.17
90.09
90.18
90.19
90.18
86.7
For an optimal transition, the best solution is obviously to use a ZnSe rhomb with a diamond CVD
coating. We now have to check that ZnSe is available in low-enough birefringence chunks for our
purpose. This will be done in the next design stage
71/79
SPIRou @ CFHT : a nIR spectropolarimeter
Appendix D : deriving accurate RVs from nIR
spectra - the telluric-line issue
The near infrared 1-2.5 micron wavelength range is known to have numerous telluric features of the
Earth's Atmosphere. To obtain accurate radial velocity (RV) measurement it is crucial to mask such
telluric line: they are moving on the stellar spectrum in function of the barycentric velocity
correction and could blend different stellar line according on the time of the observation. Two
procedures exist : (1) eliminate the wavelength bands with telluric lines from the RV computation
or (2) subtract the telluric lines (by using telluric standard stars, or models, or the sigma-clipped
procedure of Bailey et al 2007, PASP 119, 228). The latter option can be use with confidence only
for stable and thin telluric line. The most important features are due to H2O, CO2, O2 and CH4. H2O
is inhomogeneously located in the atmosphere and its quantity is strongly variable in time; it is
more advisable to reject the wavelength range having water vapor lines. CO2, O2 and CH4 Earth's
lines are more easily removable because such species are well mixed in the atmosphere, more stable
and produce in general thin lines.
From our experience with HARPS and SOPHIE, we fix the maximum depth of « acceptable »
telluric lines at 5% and reject (from the RV computation) all regions where H2O lines are deeper
that this limit. CO2, O2 and CH4 lines are tolerable until a relative depth of 40-50%, using
contemporaneous spectra of standards stars and a specific correction procedure (eg Bailey et al.
2007) to subtract them down to a level of better than 5%.
The IR telluric spectrum of reference is from Hinkle, Wallace and Linvingston (1995, PASP 107,
1042) and has been completed at the Kitt Peak Observatory. To estimate the ratio between Mauna
Kea and Kitt Peak H2O lines we use 15 spectrums of the O9V star 10Lac (V=4.87) observed with
EspaDons at CFHT, during 5 nights in Sept 04 and Jun 05. They are divided by an O9V stellar
spectra (fig. 1, top) to produce a telluric spectrum. The 0.94 - 1.0 µm wavelength range is used to
compare Mauna Kea and Kitt Peak telluric lines (fig. 1, bottom).
In Fig.2 we show the depth of ~110 common lines at Kitt Peak and during three nights at Mauna
Kea. The depths of H2O lines at Mauna Kea are between 10% and 60% of them of Kitt Peak. On
the five nights only one night (21/06) show a ratio superior at 0.31. We use this value as a reference,
then a H2O lines with typical depth of 5% at Mauna Kea, have a depth of ~16% in the Kitt Peak
reference spectrum.
The Y, J, H and K-band Kitt Peak telluric spectrum is showed in Fig. 3. The wavelength range
usable for RV measurements (with H2O lines no deeper than 5% at Mauna Kea, ie 16% at Kitt
Peak) is 0.988-1.075; 1.215-1.30; 1.52-1.75 and 2.08-2.16 µm. In the J band, O2 lines are present
with a depth of ~20% and can be subtracted. In the H band, CO2 absorption are visible with a
typical depth of ~30%; apart from the very strong CO2 features at ~1.57 and ~1.60 µm, they can be
subtracted. In the K band, the situation is more complex with a mix of saturated H2O, CO2 and CH4
lines. A more accurate study should be done to properly estimate which part of the K-band can be
used.
72/79
SPIRou @ CFHT : a nIR spectropolarimeter
Fig 1 : Top : telluric spectrum at Mauna Kea observatory obtained from EspaDons spectrum of
O9V stars. Bottom : details (0.97 – 0.98 µm) on telluric spectrum at Mauna Kea (black) and
KittPeak (green) Observatory. Red and blue triangle mark location of line, respectively at Mauna
Kea and Kitt Peak, used to estimate the ratio of water between the two observatory.
73/79
SPIRou @ CFHT : a nIR spectropolarimeter
Fig 2 : Depth of H2O lines, in the 0.94-1.00 µm range, at Mauna Kea and Kitt Peak observatory.
Below are tables summarizing our estimate of the usable spectral range for deriving accurate RVs:
band
Y
J
H
K
Total
Range (in µm) with lines no deeper than 5%
0.988 – 1.075
1.215 – 1.252; 1.28 - 1.30
1.52 – 1.57; 1.585 – 1.60; 1.62 – 1.63
2.08 – 2.16
~ 0.300 µm
band
Range (in µm) with H2O lines no deeper than 5%; and CO2, CH4, O2 lines
no deeper than 50%
0.988 – 1.075
1.215 – 1.30
1.52 – 1.57; 1.585 – 1.60; 1.62 – 1.75
2.08 – 2.16
~ 0.450 µm
Y
J
H
K
Total
Following the option used (retain wavelength range without any telluric lines deeper that 5% or
accept the presence of CO2, CH4, O2 lines with depth < 50%) a domain of 0.3 or 0.45 microns is
usable to compute accurate RVs. This is 3 to 4.5 times larger than the usable domain of HARPS
and SOPHIE, where a wavelength range of only ~0.1 µm (0.5-0.68 µm) is used (the flux of Mdwarfs below 0.5 µm being too low to obtain accurate RVs & rejecting 0.08 µm because of telluric
lines) and a RV accuracy of 1m/s is obtained for M-dwarfs.
74/79
SPIRou @ CFHT : a nIR spectropolarimeter
Fig 3 : nIR telluric spectrum at Kitt Peak (Hinkle, Wallace and Linvingston, 1995). The dark line
mark the depth of 16%.
75/79
SPIRou @ CFHT : a nIR spectropolarimeter
Figure 4 illustrates the clear advantage of SPIRou over an instrument working at visible
wavelengths like HARPS, thanks to both the intrinsic brightness of M dwarfs in the nIR and the
large spectral domain available.
Fig 4 : Synthetic spectrum of a mid-M dwarf (~3000K) and a late-M dwarf (2200K) at visible &
nIR wavelengths. The regions available for RV measurements are shown in yellow for SPIRou, and
in blue for visible spectrographs such as HARPS.
76/79
SPIRou @ CFHT : a nIR spectropolarimeter
Appendix E : crushing down the activity-induced RV
jitter with nIR spectropolarimetry
Apparent RV shifts do not always originate in the gravitational pull of a companion: in a rotating
star, stellar surface inhomogeneities such as plages and spots can break the exact balance between
light emitted in the approaching and receding stellar hemispheres. Of much interest to study the
topology of stellar magnetic fields, these structures are a real burden when searching for planets
with the radial-velocity method. At best, they may have short life and introduce a RV jitter that
averages out on long time-scales (at the cost of more measurements though). Surface structures can
however have long lifetimes (especially in late M dwarfs), possibly several years. Then, they act
much like red-noise in photometric measurements and are very difficult to average out over time.
At near-IR wavelengths, the spot/photosphere brightness contrast is lower than at visible
wavelengths, which decreases the impact on RVs. Assuming a black body spectral distribution for
both the spot and the star, we can quantitatively estimate the effect on RV (Fig 1). For a stellar
temperature of 3000 K, and a spot 300 K cooler, we found that the RV amplitude measured at
0.5 µm is 2.5 times larger than the radial-velocity measured at 2.2 µm (Fig 2). More generally, we
derived the gain as a function of spot temperature, for various stellar temperatures (Fig 3). The
results are very encouraging, even though the simplistic black body assumption is pessimistic. Spots
should actually be brighter in the nIR (than predicted by the blackbody model).
Recently, Setiawan et al (2007 Nature, 451 38) measured RVs of the young T-Tauri star TW Hya
and found RV variations with a 3.6-day period and a semi-amplitude of ~200 m/s. They used the
absence of correlation between the radial velocities and the line bisectors as a strong argument in
favor of a planet signal and claimed the detection of a hot Jupiter. However, Huelamo et al. (2008
A&A, arXiv:0808.2386) shows that, TW Hya being viewed mostly pole-on, the bisector analysis is
mostly insensitive to spots. Furthermore, they used the CRIRES spectrograph and measured RVs of
TW Hya in the nIR. They found that the true RV variability of TW Hya is lower than the
instrumental RV accuracy of CRIRES (about 30 m/s), rejecting the planet interpretation. For stars
as hot as TW Hya (having a large spot/photosphere temperature contrast), the gain in RV accuracy
at nIR wavelengths is a factor of at least 6.7. We will carry out observations of spotted stars
simultaneously at visible and nIR wavelengths to quantify further the advantage of nIR
spectroscopy for estimating RVs of M dwarfs.
Given the data collected so far with HARPS (at visible wavelengths), quiet (resp moderately active)
M dwarfs display a jitter of about 1 m/s (resp 5 m/s) only. Our simulation thus suggests that the nIR
RV jitter from spots in moderately active M dwarfs should not exceed 2 m/s and should often be
< 1m/s. Furthermore, the polarimetric capabilities of SPIRou will offer the option of modeling the
activity (from the simultaneously recorded Zeeman polarisation signatures) and thus further filter
out the RV jitter, giving access to the more active late M dwarfs.
We therefore conclude that the activity jitter of most M dwarfs in the nIR is below 1 m/s,
demonstrating the feasibility of high RV accuracy nIR searches for habitable Earth-like
planets around M dwarfs like that we propose for SPIRou.
77/79
SPIRou @ CFHT : a nIR spectropolarimeter
Fig 1 : our simulation involves a rotating sphere with a single spot (left). To obtain the integrated RV signal, we add the
brightness-weighted contributions of all points at the stellar surface (right).
Fig 2 : Simulation for Tstar=3000K; Tspot=2700K; Rstar=0.3Rsun; Rspot=0.2Rstar; Prot=10d;
incl=30°. With such stellar and spot parameters a jitter of K~25m/s could be observed at 0.5
micron (top); it is reduced at K~10 m/s if the observation are done at 2.2 µm (bottom).
78/79
SPIRou @ CFHT : a nIR spectropolarimeter
Fig 3 : Ratio between activity jitter in the visible (Kvis at 0.5 µm) and in the nIR (Kir at 2.2 µm) as
a function of the spot temperature and for various temperatures of the star.
79/79