Fault Detection using Parameter Estimation applied to a Winding
Transcription
Fault Detection using Parameter Estimation applied to a Winding
ai Fault Detection using Parameter Estimation applied to a Winding Machine Philippe WEBER, Sylviane GENTIL Laboratoire d’Automatique de Grenoble UMR-CNRS 5528-UJF Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 1 Outline Objective Identification Choice of a model structure and an estimation method Consequence of a fault on parameter estimates Actuator fault example Diagnosis Residual generation for detection Residual fuzzyfication Signature table generation for isolation Symptom Aggregation Isolation Function by fuzzy inference Isolation Function by distance computation Diagnosis task architecture Application Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 2 Objective Diagnosis using Parameter estimation applied to a complex process! 8No physical parameters 8No additive signal ! 8A fast and simple estimation method Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 3 Choice of a model structure and an estimation method 8 ARMAX MISO discrete model e(k) u1(k-d1) ... ui(k-di) ... uI(k-dI) A(q ) ⋅ y ( k ) = C A −1 B1 A + Bi A + + I ∑B i =1 i ( q −1 ) ⋅ u i ( k − d i ) + C ( q −1 ) ⋅ e ( k ) y(k) ☺ transfer function parameter estimation + ☺ low complexity and no biased parameters BI A 8 RELSE with forgetting factor achieved by Orthonormal Transformation on line variance and parameter estimation good numerical properties Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 4 Consequence of a fault on parameter estimates Two kinds of faults y1=F1 u1 + F2 y2 y2=F3 u2 u1 y1 F1 process fault variation of static or dynamic characteristics F2 y2 u2 F3 actuator or sensor fault a global perturbation of all parameters and variance increase Es1 Es2 Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 5 Residual generation for detection The reference model [ Es l = Θ 1 Θp ... The tracking model ] + - long horizon estimate vector with λ = 1 [ Es s = θ1 ... θ p ] short horizon estimate vector with λ = 0.99 RESIDUALS rj = Θ j − θ j { } = E {Θ } − E {θ } E rj j j 0 if no fault occurred ! Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 6 Actuator fault example Two different forgetting factors fault occurred at k=80 1.8 λ=0.98 1.7 λ=1 1.6 1.5 1.4 1.3 50 55 60 65 70 75 80 85 90 95 100 k sampling period Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 7 Residual fuzzyfication Probability density No detection σ1 σ ≤σ 2 Variance σ 2 1 =σ 1 2 Θj +σ 2 rj ≤ σ2 σ 2 θj 2 2 2 = σ + σ θj Θj 2 σ2 False detection µp µZ rj The membership function of the fuzzy sets POSITIVE residual and ZERO residual : 1 rj 0.35σ1 2σ2 Uncertainty 2 σ r − 0 . 35 ⋅ j 1 µ P ( r j ) = m in 1, m ax 0 , 2 ⋅ σ 2 2 − 0.35 ⋅ σ 1 2 µ ( r ) = 1− µ ( r ) Z j P j Membership functions Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 8 Signature table generation for isolation The signature table D(n,h) defines the relation between faults and short estimate vector Eshs y1=F1 u1 + F2 u2 y2=F3 u1 + F4 u2 model m1 model m2 } y1=F5 u1 + F6 y2 Fault on D(n,h) Es1s Es2s Es3s u1 u2 y1 y2 Sg1 Sg2 Sg3 Sg4 1 1 1 0 1 1 0 1 1 0 1 1 model m3 isolation Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 9 Symptom Aggregation FAULT a global perturbation of residuals for the model mh The symptom sm h is based on the residual vector : h h r ... r 1 ph aggregation AND T-norm OR T-conorm min Arithmetic mean The symptom is defined by two complementary fuzzy sets : Gp Globally perturbed Np Not perturbed max The membership functions for each model are computed by an aggregation 1 µ G p ( sm h ) = h p ph ∑µ j =1 P ( r jh ) Aggregated symptom vector [ Sp = µ G p ( s m 1 )... µ G p ( s m H ) and µ (s ) = 1 − µ (s ) Np mh Gp mh ] Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 10 Isolation function by fuzzy inference (in single fault case) Sp µFn(Sp) = 0 match ? no fault Fn 0 < µFn(Sp) < 1 fault Fn suspicion Sgn µFn(Sp) = 1 D(n,h) Es1s Es2s Es3s Sg1 Sg2 Sg3 Sg4 1 1 1 0 1 1 0 1 1 0 1 1 fault Fn The rule for Sg2 Np Gp IF sm1 is Gp and sm2 is Gp and sm3 is Np THEN the fault is F2 and is a T-norm computed by a min operator, the rule becomes : µF2(Sp) = min {µGp(sm1) , µGp(sm2) , µNp(sm3)} Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 11 Isolation function by distance computation The Isolation Function F(Sp,Sgn) represents a degree of likeness between Sp and the fault signature Sgn F(Sp, Sgn) = 0 m2 no fault n 0 < F(Sp , Sgn) < 1 fault n suspicion degree Sg1(1,1) 1 F(Sp , Sgn) = 1 fault n D1 General formula by distance computation Sp(0.7,0.2) F ( Sp, Sgn ) = 1 − D2 1 ω H ( ∑ | µ G p ( s mh ) − D ( n , h )| ) q h =1 Sg2(1,0) 1 1 D (n, h) = 1 0 1 m1 Hamming distance q=1 ω=space dimension 1 F ( Sp , Sg n ) = 1 − H H ∑ |µ h =1 Gp ( s mh ) − D ( n , h )| Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 12 1 q Isolation function by distance computation No fault [ Sp = 0 0 ] 1 F ( Sp , Sg 2 ) = 1 − [ 0 − 1 + 0 − 0 ] = 0.5 2 eliminate insensitive dimensions 1 F ( Sp , Sg n ) = 1 − Wn 1 1 1 D (n, h) = 1 0 F(Sp,Sg2) ∑ {| µ h =1 [ Sp = 0 Sg1 Sp H [ Sp = 0.7 Sg2 1 0 Gp ( smh ) − D ( n , h ) |⋅ D ( n , h ) } ] F ( Sp , Sg 1 ) = 0 F ( Sp , Sg 2 ) = 0 0 .2 F ( Sp , Sg 1 ) = 0.45 F ( Sp , Sg 2 ) = 0.7 ] Useful too for multiple fault analysis Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 13 Diagnosis task architecture u Process fault Actuator fault Sensor fault y Process Two horizon Es lh Es c h Residual generation - r jh Knowledge Aggregation ∑ ∑ Membership functions Signature table Sg n Fuzzification Symptom vector Sp Isolation F(Sp,Sg n ) Sensor or actuator fault indicators Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 14 Application After off line parameter estimation: A1(q-1).T1(k)=B12(q-1). Ω2(k-d12)+B1u1(q-1).u1(k-d1u1) A2(q-1).Ω2(k)= B2u2(q-1).u2(k-d2u2) A3(q-1).T3(k)=B32(q-1). Ω2(k-d32)+B3u3(q-1).u3(k-d3u3) Ω1 Ω3 Ω2 T1 Redundant transfer function generation: A11(q-1).T1(k)=B11u2(q-1).u2(k-d11u2)+B11u1(q-1).u1(k-d1u1) A33(q-1).T3(k)=B33u2(q-1).u2(k-d33u2)+B33u3(q-1).u3(k-d3u3) T3 M1 M2 u1 u2 u3 Bias on D Es1 Es2 Es3 Es 4 Es5 T1 SgT1 1 0 0 1 0 Ω2 SgΩ2 1 1 1 0 0 T3 SgT3 0 0 1 0 1 u1 Sgu1 1 0 0 1 0 u2 Sgu2 0 1 0 1 1 u3 Sgu3 0 0 1 0 1 Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 M3 15 Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 Fault suspicion degree using fuzzy rules 1 0.5 0 0 1 µ(FT1) 100 200 300 400 500 0.5 0 0 1 µ(FΩ2) 100 200 300 400 500 0.5 0 0 1 µ(FT3) 100 200 300 400 500 0.5 0 0 1 µ(Fu1) 100 200 300 400 500 0.5 0 0 1 µ(Fu2) 100 200 300 400 500 0.5 16 0 0 µ(Fu3) 100 200 300 400 500 Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 Fault isolation function evolution 1 0.5 0 0 1 F(Sp,SgT1) 50 100 150 200 250 300 350 400 450 500 0.5 0 0 1 F(Sp ,SgΩ2) 50 100 150 200 250 300 350 400 450 500 0.5 0 0 1 F(Sp , SgT3) 50 100 150 200 250 300 350 400 450 500 0.5 0 0 1 F(Sp , Sgu1) 50 100 150 200 250 300 350 400 450 500 0.5 0 0 1 F(Sp , Sgu2) 50 100 150 200 250 300 350 400 450 500 0.5 17 0 0 F(Sp , Sgu3) 50 100 150 200 250 300 350 400 450 500 Conclusion Fault detection and isolation of sensor or actuator FAULTS • transfer function redundancy better isolation performance • fuzzy residual evaluation taking uncertainty into account • symptom aggregation allows comparison with the fault signature table • the result with a classical fuzzy inference system in a single fault case method validation • the result with distance computation for classification possibility of multiple faults isolation Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 18 Future work Parameter estimation method with adaptive forgetting factor using information like condition number, prediction error, to solve the non-persistent excitation problem Find an optimal signature table Closed loop application Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 19 PRBS Step input 5 Step input +fault 5 5 x 10 10 9 9 9 8 8 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 0 50 100 150 200 50 100 150 200 0 0 0.5 0.5 0.5 0.45 0.45 0.45 0.4 0.4 0.35 0.35 0.3 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.05 0.05 0.05 0 0 50 100 150 200 0 0 50 100 150 200 0 0 0.01 0.009 0.009 0.009 0.008 0.008 0.008 0.007 0.007 0.007 0.006 0.006 0.006 0.005 0.005 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0 0 50 100 150 200 0 0 50 100 150 200 0 0 2 2 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 0 0 0 -0.5 -0.5 -0.5 -1 0 50 100 150 200 -1 0 50 100 150 200 -1 0 200 50 100 150 200 50 100 150 200 50 100 150 200 Parameters 2 150 Prediction error 0.01 0.01 100 Variance 0.4 0.35 50 conditioning number Suivi paramètrique pour la surveillance d’installations complexesFault Detection using Parameter Estimation applied to a Winding Machine Aussoi 97IAR 1997 x 10 10 x 10 10 On line conditioning number evolution 20
Documents pareils
l is tedescha în estv
648.....Jordan Satellite Channel
649.....Kurd1
650.....Armenia 1
651 ......Armenia TV
652 .....Shant
653 .....Vesti
654.....Murr TV
655 .....NBN
656 .....Future TV
657 .....Nessma
658 .....Al Jadee...
curriculum vitae - IHPST
FWO Researcher, Department of Philosophy and Moral Sciences and Sarton Centre for History of
Science, Ghent University (2011-2018)
Associate member of the Unit for History and Philosophy of Science...