Formulae sheet - Department of Zoology, UBC
Transcription
Formulae sheet - Department of Zoology, UBC
Please do not mark on the formula sheets or tables. Formulae for Basic Statistics n ΣY Pooled variance df s2 + df 2 s22 2 sp = 1 1 df1 + df 2 i Y = i =1 n Σ(Yi − Y ) 2 s= n −1 ( ) 2 s= Σ Yi − nY 2 n −1 F= € Standard error of the mean € s/ n t= 2 χ test of goodness-of-fit (Oi − Ei )2 2 χ =∑ Ei i Binomial Probability Distribution ! N$ x N− x P[x] = # p (1 − p) " x% Normal Probability Distribution − 1 P[x] = e 2πσ 2 ( x − µ) 2σ € € € € 2 (Y1 − Y2 ) SE Y1 −Y2 2 tα ( 2),df Y −µ s/ n x −µ Z= σ t= #1 1& SE Y −Y = s2p % + ( 1 2 $ n1 n 2 ' Y −Y t= 1 2 " s12 s22 % 2 s12 s22 $ + ' + # n1 n 2 & n1 n 2 df = 2 " s2 n 2 s22 n 2 ) % ( ) ( 1 1 $ ' + $ n1 −1 n 2 −1 ' # & Mann-Whitney U 2 € n ( n + 1) U = n1n 2 + 1 1 − R1 2 U # = n1n 2 − U Z= Confidence Interval for the variance of a normal distribution df s2 df s2 2 ≤ σ ≤ € χ α2 χ2 α ,df s22 s12 1 Confidence Interval for the mean of a normal distribution Y ± SEY tα (2),df 2 or (Y1 − Y2 ) ± SEY −Y ln(Oˆ R) − Z α SE[ln(Oˆ R)] ≤ ln(OR) ≤ ln(Oˆ R) + Z α SE[ln(Oˆ R)] ad Oˆ R = bc Poisson Probability Distribution µ x e− µ P[x] = x! s12 s22 1− ,df 2 2U − n1n 2 n1n 2 ( n1 + n 2 + 1) /3 Agresti-Coull method: p" = X +2 . n+4 $ $ p"(1− p") ' p"(1− p") ' && p" − Z )) ≤ p ≤ && p" + Z ) n +€4 ( n + 4 )( % % € € Please do not mark on the formula sheets or tables. Formulae for regression and correlation (∑ X )(∑Y ) ∑(X − X )(Y − Y ) = ∑( XY ) − n ∑(X i € ∑(X i − X) r= ∑(X # & % ∑ Yi ( $ ' = ∑ Yi 2 − n 2 SSresidual + SSregression = SSTotal SS MSx = x DFx SS r 2 = regression SSTotal MSresidual SE b = 2 ∑ ( Xi − X ) rs = 1 − € € n3 − n 2 MSerror = s pooled − b∑ ( X i − X )(Yi − Y ) MSresidual = 2 i ANOVA etc. MS groups F= MS error MSgroups i ∑ (Y − Y ) 6∑ di2 SSregression = b ∑ ( Xi − X )(Yi − Y ) ∑ (Y − Y ) 2 1 − r2 SE r = n−2 " 1+ r $ z = 0.5ln # 1− r % 1 σz = n−3 2 2 − X) i a = Y − bX − X )(Yi − Y ) i − X )(Yi − Y ) b= SSTotal ∑(X n −2 Y = ∑ s (n −1) = 2 i i N −k ∑ n (Y −Y ) = i 2 i k −1 ∑ n (Y ) i i N SS groups b ± tα [2 ],ν SEb Yˆ ± t SE ˆ R2 = b − β0 t= SE b (b − b2 ) − ( β1 − β2 ) t= 1 SEb1− b2 ( SS ) + ( SSerror )2 ( MSerror ) p = error 1 ( DFerror )1 + ( DFerror )2 Kruskal-Wallis " Ri 2 % 12 H= ∑ n ' − 3( N + 1) N ( N + 1) $# i & α [2],ν SEb1−b2 = SS total Y ( MSerror ) p + ( MSerror ) p # # 2& 2& %∑( X − X ) ( %∑( X − X ) ( $ '1 $ '2 Tukey-Kramer: q= Yi − Y j SE &1 # 2 $ + 1 !. SE = s pooled $n ! % i nj "
Documents pareils
Binôme souhaité tous les destinataires en