HwSln 5
Transcription
HwSln 5
HW 5 (Integration by parts – Due Sep 26, Wed 1. Find indefinite integrals Z (a) xe2x dx dv = e2x dx 1 • du = dx, v = e2x Z2 1 2x 1 2x 1 1 • Soln= xe − e dx = xe2x − e2x + C 2 2 2 4 • u = x, Z (b) (x + 1)e2x dx dv = e2x dx 1 • du = dx, , v = e2x 2 Z 1 2x 1 e dx • Soln= (x + 1)e2x − 2 2 1 1 • = (x + 1)e2x − e2x + C 2 4 Z √ √ x ln xdx (c) • u = (x + 1), √ 1 • u = ln x = ln x, dv = x1/2 dx 2 1 −1 2 • du = x , v = x3/2 2 3 Z Z 1 1 1 1 3/2 −1 3/2 3/2 x x dx = ln x · x − x1/2 dx • Soln= ln x · x − 3 3 3 3 1 2 • = ln x · x3/2 − x3/2 + C 3 9 Z ln x (d) dx x2 • u = ln x, dv = x−2 dx • du = x−1 , v = −x−1 Z Z −1 −1 −1 −1 • Soln=− ln x · x − x (−x )dx = − ln x · x + x−2 dx Z (e) • =− ln x · x−1 − x−1 + C x √ dx 2x + 3 1 dv = (2x + 3)−1/2 dx 1 (2x + 3)1/2 • du = dx, v = = (2x + 3)1/2 2 1/2 Z 1 (2x + 3)3/2 • Soln=x(2x + 3)1/2 − (2x + 3)1/2 dx = x(2x + 3)1/2 − 2 3/2 3/2 (2x + 3) +C • = x(2x + 3)1/2 − 3 • u = x, Z (f) 3x2 (ln x)2 dx • • • • use IBP two times. 1st time u = (ln x)2 , dv = 3x2 dx du = 2 ln xdx, v =Z x3 • Soln=(ln x)2 x3 − 2 ln x · x3 dx Z • 2nd time calculating ln x · x3 dx dv = x3 dx x4 −1 du = x , v = 4 Z Z 1 1 3 4 ln x · x dx = ln x · x − x−1 x4 dx 4 4 1 1 = ln x · x4 − x4 4 16 1 4 1 4 2 3 ln x · x − x Soln= (ln x) x − 2 4 16 • u = ln x, • • • • Z (g) √ e− x dx. Hint: first, make the substitution t = √ 1 • t = x, dt = √ dx, 2 x Z Z √ • e− x dx = e−t 2tdt √ dx = 2 xdt = 2tdt • u = 2t, dv = e−t dt −t • du = 2dt, v = −e Z • Soln=−2te−t − 2 Z (h) √ x then integration by parts. √ √ √ (−e−t )dt = −2te−t − 2e−t + C = −2 xe− x − 2e− x + C x2 sin(2x)dx 2 • Use IBP two times • 1st time: • u = x2 , dv = sin(2x)dx 1 • du = 2xdx, v = − cos(2x) 2 Z Z 1 2 1 1 2 • Soln=− x cos(2x) − 2x[− cos(2x)]dx = − x cos(2x) + x cos(2x)dx 2 2 Z2 • 2nd time: calculate x cos(2x)dx • u = x, • • • • dv = cos(2x)dx 1 du = dx, v = sin(2x) 2 Z Z 1 1 x cos(2x)dx = x sin(2x) − sin(2x)dx 2 2 1 1 = x sin(2x) + cos(2x) 2 4 1 2 1 1 Soln= − x cos(2x) + x sin(2x) + cos(2x) + C 2 2 4 2. The velocity of a dragster t sec after leaving the starting line is 100te−0.2t ft/sec What is the distance covered by the dragster int he first 10 sec of its run? Soln: Z 10 D= 100te−0.2t dt 0 dv = e−0.2t dt 1 −0.2t du = 100dt, v = e = −5e−0.2t −0.2 Z u = 100t, F (t) = −0.2t 100te dt = −500te −0.2t F (t) = −500te−0.2t − 2500e−0.2t F (10) = −1015, F (0) = −2500 D = F (10) − F (0) = 1485 fts 3 + 500 Z e−0.2t dt