Direct numerical simulation of turbulent heat - HAL UPEC
Transcription
Direct numerical simulation of turbulent heat - HAL UPEC
Direct numerical simulation of turbulent heat transfer in annuli: Effect of heat flux ratio Meryem Ould-Rouiss, L. Redjem Saad, Guy Lauriat To cite this version: Meryem Ould-Rouiss, L. Redjem Saad, Guy Lauriat. Direct numerical simulation of turbulent heat transfer in annuli: Effect of heat flux ratio. International Journal of Heat and Fluid Flow, Elsevier, 2009, 30 (4), pp.579-589. <10.1016/j.ijheatfluidflow.2009.02.018>. <hal-00734060> HAL Id: hal-00734060 https://hal-upec-upem.archives-ouvertes.fr/hal-00734060 Submitted on 21 Sep 2012 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. List of Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 Shemati of the omputational domain. . . . . . . . . . . . . . . . . . . . . Two-point orrelations in the axial diretion. . . . . . . . . . . . . . . . . . . Two-point orrelations in the azimuthal diretion. . . . . . . . . . . . . . . . Mean veloity prole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RMS veloity utuations: (a) streamwise, (b) radial, () azimuthal. . . . . Positions of zero total shear stress r0 and maximum veloity rmax . . . . . . Mean temperature proles. (a) inner ylinber, (b) outer ylinder . . . . . . RMS of temperature utuations for q ∗ = 1. . . . . . . . . . . . . . . . . . . RMS of temperature utuations for various heat ux ratios. (a) q ∗ ≤ 1, (b) q ∗ ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turbulent heat uxes for q ∗ = 1. (a) streamwise omponent, (b) wall-normal omponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Streamwise turbulent heat ux for various heat ux ratios. (a) q ∗ ≤ 1, (b) q∗ ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wall-normal turbulent heat ux for various heat ux ratios. (a) q ∗ ≤ 1, (b) q∗ ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Position of zero wall-normal turbulent heat ux versus heat ux ratio. . . . 17 18 19 20 21 22 23 24 25 26 27 28 29 30 R1 R2 L Figure 1: Shemati of the omputational domain. 18 (a) 1 vz Θ 0.8 Rvv(z) 0.6 0.4 0.2 0 inner -0.2 0 (b) 2 4 6 z/δ 8 10 12 1 vz Θ 0.8 Rvv(z) 0.6 0.4 0.2 0 outer -0.2 0 2 4 6 z/δ 8 Figure 2: Two-point orrelations in the axial diretion. 19 10 12 (a) 1 vz Θ 0.8 Rvv(θ) 0.6 0.4 0.2 0 -0.2 inner -0.4 0 (b) 0.02 0.04 0.06 rθ/δ 0.08 0.1 0.12 1 vz Θ 0.8 Rvv(θ) 0.6 0.4 0.2 0 outer -0.2 0 2 4 rθ/δ 6 Figure 3: Two-point orrelations in the azimuthal diretion. 20 8 1.5 (a) vz/ub Chung et al. (2002) vz/ub 1 0.5 0 0 0.5 1 1.5 2 y/δ 25 inner outer (b) 20 + + vz =2.5 ln (y )+5.5 vz + 15 10 + 5 0 0 10 + vz =y 10 1 y + Figure 4: Mean veloity prole. 21 10 2 3 (a) 2.5 + v’z(rms) 2 1.5 1 Interne Externe Chung et al (2002) 0.5 0 0 20 40 y+ 60 80 100 1 (b) 0.8 + v’r(rms) 0.6 0.4 0.2 Interne Externe Chung et al (2002) 0 20 40 y+ 60 80 100 1.2 (c) + v’θ(rms) 0.8 0.4 Interne Externe Chung et al (2002) 0 0 20 40 y+ 60 80 100 Figure 5: RMS veloity utuations: (a) streamwise, (b) radial, () azimuthal. 22 1.5 1.5 (a) v’zv’r v’zv’r+1/Re(dvz/dy) y/δ=0.64 1 2 v’zv v’zr/(u /uτb)e 1 0.5 y/δ=0.61 0 0.5 -0.5 -1 0 0 0.5 0.5 11 1.5 1.5 y/δ 2 1.5 1.5 DNS y/δ=0.64 v’zv’r v’zv’r-1/Re(dvz/dy) 1 b 2 v’zv’vr/(u /u τ)e 1 0.5 z y/δ=0.61 0 0.5 -0.5 (b) -10 00 0.5 0.5 11 1.5 1.5 y/δ Figure 6: Positions of zero total shear stress 23 r0 and maximum veloity 22 rmax . 20 * q =1 * q =0.01 * q =100 Θ =(1/0.362)ln(y )+1.8 + + Θ+ 15 10 Θ =Pr.y + 5 + 0 0 10 10 1 + 10 2 10 2 y 20 * q =1 * q =0.01 * q =100 Θ =(1/0.362)ln(y )+1.8 + + Θ+ 15 10 5 Θ =Pr.y + 0 0 10 + 10 1 + y Figure 7: Mean temperature proles. (a) inner ylinber, (b) outer ylinder 24 5 inner outer inner Chung et al. (2003) outer Redjem et al. (2007) 4.5 } 4 3.5 Θ’+rms 3 2.5 2 1.5 1 0.5 0 0 20 + 40 y Figure 8: RMS of temperature utuations for q ∗ = 1. 25 60 0.03 (a) q*=1 * q =0.5 * q =0.25 q*=0.1 * q =0.01 Θ’rms 0.02 0.01 0 0 0.5 1 y/δ 1.5 (b) 2 q*=1 * q =2 * q =5 q*=10 q*=100 0.15 Θ’rms 0.1 0.05 0 0.5 1 1.5 2 y/δ Figure 9: RMS of temperature utuations for various heat ux ratios. (a) q ∗ ≤ 1, (b) q∗ ≥ 1 26 10 (a) inner outer inner outer Chung et al. (2003) Redjem et al. (2007) } 8 v’zΘ’+ 6 4 2 0 0 20 y+ 40 60 1.5 (b) inner outer inner outer Chung et al. (2003) Redjem et al. (2007) } v’rΘ’+ 1 0.5 0 0 20 + 40 60 y Figure 10: Turbulent heat uxes for q ∗ = 1. (a) streamwise omponent, (b) wall-normal omponent 27 0.003 (a) * q =1 q*=0.5 * q =0.25 * q =0.1 * q =0.01 v’zΘ’ 0.002 0.001 0 0 0.5 1 1.5 2 y/δ 0.018 (b) * q =1 q*=2 * q =5 * q =10 * q =100 v’zΘ’ 0.012 0.006 0 0 0.5 1 1.5 2 y/δ Figure 11: Streamwise turbulent heat ux for various heat ux ratios. (a) q ∗ ≤ 1, (b) q∗ ≥ 1 28 0.0004 * q =1 * q =0.5 * q =0.25 * q =0.1 * q =0.01 v’rΘ’ 0.0002 0 (a) -0.0002 0 v’rΘ’ 0.0005 0.5 1 y/δ 1.5 2 (b) 0 -0.0005 * q =1 q*=2 * q =5 * q =10 q*=100 -0.001 -0.0015 0 0.5 1 y/δ 1.5 Figure 12: Wall-normal turbulent heat ux for various heat ux ratios. (a) q ∗ ≤ 1, (b) q∗ ≥ 1 29 2 10 1 y/δ *0.53 y/δ=0.46q 0 y/δ 10 10-1 10-2 -2 10 10 -1 0 10 * 10 1 10 2 q Figure 13: Position of zero wall-normal turbulent heat ux versus heat ux ratio. 30