Corrections Cours 3, Transparent 21 Miki (Nicolas) Hermann (CNRS
Transcription
Corrections Cours 3, Transparent 21 Miki (Nicolas) Hermann (CNRS
!#"$&%'(*)+"-,/.10
243653798:36;<>=@?BADCFEGHJIK?BL!L
79M-81NOQPSR(;T<>=UGVW<>=YX*ZJGT;\[!L]36^_!G`C
GIa?B3U=cbed!fegBhjilkk!m]n&oqpsrctSunlvew!f]x`dkQolyBz!f{r}|g
~1{1Q
-D
}D$D(\'! }
]B$YT> NP¡ $eD
}!e\D}D:¢e\'£e¤}DYT
¢!l\De\ S e¥Tl
}¦ (S)
§`¨ S = {[(x ∧ ¬y) ≡ z]}
©>¨ S = {[(x 6≡ y) ≡ z], [(x ∨ y) ≡ z]}
ª>¨ S = {[(x 6≡ y) ≡ z], [(x ∧ y) ≡ z]}
« ¨ S = {[(x ≡ y) ≡ z], [(x ∨ y) ∧ z]}
¬ (]]®¯±°&²}
§`¨{³ ´¥q R = [(x ∧ ¬y) ≡ z] = {000, 010, 101, 110} ¨±µ ¶}DYT
· S\º»
\¸
( ¥*T £e§ ¥` TT£e000
· Sº»\
(* $eD ¹ D lT∈
R¥q111 ¹ 6∈T [(x ∧ ¬y) ≡ z] ¹
· Sº»\
(* ¼F T ¹ ¬000 = 111 6∈ R ¹
· Sº»\
(*£>*T±¼F¹ 101T ∧ 110 = 100 6∈ R ¹
· Sº»\
(*{¢e ½
¥q ¹ T 101 ∨ 110 = 111 6∈ R ¹
·
maj(000, 101, 110) = 100¨ 6∈ R ¹
·¿+TS º»\
(À*\ÁsD¾l
¹ T ¹ 000
+ 010 + 101 = 111 6∈ R
D
-] (S) \
(!l$YT ¨
Pol(R ) = I
©>¨{³ ´¥q
0
0
0
0
0
0
0
0
0
R1 = [(x 6≡ y) ≡ z] = {000, 011, 101, 110}
R2 = [(x ∨ y) ≡ z] = {000, 011, 101, 111}
µ ¶}DYT
R = [(x 6≡ y) ≡ z]
· S\º»
\¸
( ¥*T £e§ ¹¥`T T £e 000T∈ R ¹
· Sº»\
(* $eD¹ D l
¥q111 6∈T R ¹
· Sº»\
(* ¼F T ¹ ¬000 = 111 6∈ R ¹
· Sº»\
(*£>*T±¼F¹ 011T ∧ 101 = 001 6∈ R ¹
· Sº»\
(*{¢e ½
¥q ¹ T 101 ∨ 110 = 111 6∈ R ¹
·
¹ maj(011, 101, 110) = 111 6∈ R ¹
§
1
1
1
1
1
1
1
·-\
¾D
{ >¨e
µ ¶ }D}YT
½ Dl
\
x + y + z = 0 ¨
R = [(x ∨ y) ≡ z]
£e ¹ T) =000L ∈ R ¹
· ¸§ ¥¥¹TTPol(R
· S º»\
(£e*¹ ¼FT111
· \
{£>*T±¼F ¹ T∈T R011¹ ∧ 101 = 001 6∈ R ¹ D
· Sº»\
(*{¢e ½ e ¹
¥q 000T∨ m = m ¹ 111 ∨ m = 111 011 ∨ 101 = 111 ∈ R ¹
· Sº»\
(*s¾ T ¹ maj(000, 011, 101) = 001¨ 6∈ R ¹
·-
¨ ¿+T011 +}101
+ 111 = 001 6∈ R
¹
\
l
Á
D
Pol(R , R ) = I D
s! (S) \
(!l$YT ¨
Pol(R ) = V
¹
ª>¨{µ \:e}eD
}\1£eY }DYT
R = [(x 6≡ y) ≡ z] À
£ec½ el\ ¨Q³ ´¥q:Y }DYT
Ále
R = [(x ∧ y) ≡ z] = {000, 010, 100, 111}
· \
¸ ¥T£e ¹ T 000 ∈ R ¹
· S\º»
\§
( ¥*T £e ¹ $ eTD111
· \
{¼s T Dl∈
¥qR ¹ T ¬010 = 101 6∈ RD
¹
· Sº»\
(*¹ £> *T±000¼F∧ m T= 000 ¹ 111 ∧ m = m 010 ∧ 100 = 000 ∈ R ¹
· Sº»\
(*{¢e ½
¥q ¹ T 010 ∨ 100 = 110 6∈ R ¹
· Sº»\
(*s¾ T ¹ maj(010, 100, 111) = 110¨ 6∈ R ¹
·-
¨ ¿ T010
+ 100 + 111 = 001 6∈ R
¹
À\ÁDl
¹ Pol(R , R ) = I D
s! (S) \}
(]B$YT ¨
Pol(R ) = E
¹
« ¨{³ ´¥q
1
0
2
2
2
2
2
2
2
2
1
2
0
1
3
3
3
3
3
3
3
3
3
1
3
0
R4 = [(x ≡ y) ≡ z] = {001, 010, 100, 111}
R5 = [(x ∨ y) ∧ z] = {011, 101, 111}
µ ¶}DYT
R = [(x ≡ y) ≡ z]
· S\º»
\§
(¥*Ts£e¸ ¥`TT £e ¹ T 000 6∈ R ¹
· Sº»\
( * ¹ $ eD111
· Sº»\
(*¼F T Dl∈
¥qR ¹ ¹ T ¬001 = 110 6∈ R ¹
· Sº»\
(*£>*T±¼F¹ 001T ∧ 010 = 000 6∈ R ¹
· Sº»\
(*{¢e ½
¥q ¹ T 001 ∨ 010 = 011 6∈ R ¹
·
= 000 6∈ R ¹
½ Dl010,
\
100)
¨
·-\
¾\
( }B¨e
µ ¹ ¶ } DYÀmaj(001,
x+y+z =1
T
· Sº» \¹
(Pol(R
*s¸ )¥`T=£eL ¹ T 000 6∈ R R¹ = [(x ∨ y) ∧ z]
· S\º»
\§
( ¥*T£e¼F ¹ T 111
· \
{£>*T±¼F ¹ TT 011∈ R∧ ¹101 = 001D
6∈ R ¹
· \
(¢e ½ce
¥q ¹ T 111 ∨ m = 111 011 ∨ 101 = 111
∈R ¹
· Sº»\
(*s ¾¹ T maj(011, 101, 111) = 111 ∈ R¨ D
maj(m,
m, m ) = m ¹
·-
011 + 101 + 111 = 001 6∈ R
¹ Pol(R ) = S ¨ ¿ T }\ÁDl
¹ Pol(R , R ) = I D
s! (S) \
(!l$YT ¨
4
4
4
4
4
4
4
4
1
5
5
5
5
5
0
5
5
5
2
01
©
4
5
1