Corrections Cours 3, Transparent 21 Miki (Nicolas) Hermann (CNRS
Transcription
Corrections Cours 3, Transparent 21 Miki (Nicolas) Hermann (CNRS
!#"$&%'(*)+"-,/.10 243653798:36;<>=@?BADCFEGHJIK?BL!L 79M-81NOQPSR(;T<>=UGVW<>=YX*ZJGT;\[!L]36^_!G`C GIa?B3U=cbed!fegBhjilkk!m]n&oqpsrctSunlvew!f]x`dkQolyBz!f{r}|g ~1{1Q -D }D$D(\'! } ]B$YT> NP¡ $eD }!e\D}D:¢e\'£e¤}DYT ¢!l\De\ S e¥Tl }¦ (S) §`¨ S = {[(x ∧ ¬y) ≡ z]} ©>¨ S = {[(x 6≡ y) ≡ z], [(x ∨ y) ≡ z]} ª>¨ S = {[(x 6≡ y) ≡ z], [(x ∧ y) ≡ z]} « ¨ S = {[(x ≡ y) ≡ z], [(x ∨ y) ∧ z]} ¬ (]]®¯±°&²} §`¨{³ ´¥q R = [(x ∧ ¬y) ≡ z] = {000, 010, 101, 110} ¨±µ ¶}DYT · S\º» \¸ ( ¥*T £e§ ¥` TT£e000 · Sº»\ (* $eD ¹ D lT∈ R¥q111 ¹ 6∈T [(x ∧ ¬y) ≡ z] ¹ · Sº»\ (* ¼F T ¹ ¬000 = 111 6∈ R ¹ · Sº»\ (*£>*T±¼F¹ 101T ∧ 110 = 100 6∈ R ¹ · Sº»\ (*{¢e ½ ¥q ¹ T 101 ∨ 110 = 111 6∈ R ¹ · maj(000, 101, 110) = 100¨ 6∈ R ¹ ·¿+TS º»\ (À*\ÁsD¾l ¹ T ¹ 000 + 010 + 101 = 111 6∈ R D -] (S) \ (!l$YT ¨ Pol(R ) = I ©>¨{³ ´¥q 0 0 0 0 0 0 0 0 0 R1 = [(x 6≡ y) ≡ z] = {000, 011, 101, 110} R2 = [(x ∨ y) ≡ z] = {000, 011, 101, 111} µ ¶}DYT R = [(x 6≡ y) ≡ z] · S\º» \¸ ( ¥*T £e§ ¹¥`T T £e 000T∈ R ¹ · Sº»\ (* $eD¹ D l ¥q111 6∈T R ¹ · Sº»\ (* ¼F T ¹ ¬000 = 111 6∈ R ¹ · Sº»\ (*£>*T±¼F¹ 011T ∧ 101 = 001 6∈ R ¹ · Sº»\ (*{¢e ½ ¥q ¹ T 101 ∨ 110 = 111 6∈ R ¹ · ¹ maj(011, 101, 110) = 111 6∈ R ¹ § 1 1 1 1 1 1 1 ·-\ ¾D { >¨e µ ¶ }D}YT ½ Dl \ x + y + z = 0 ¨ R = [(x ∨ y) ≡ z] £e ¹ T) =000L ∈ R ¹ · ¸§ ¥¥¹TTPol(R · S º»\ (£e*¹ ¼FT111 · \ {£>*T±¼F ¹ T∈T R011¹ ∧ 101 = 001 6∈ R ¹ D · Sº»\ (*{¢e ½ e ¹ ¥q 000T∨ m = m ¹ 111 ∨ m = 111 011 ∨ 101 = 111 ∈ R ¹ · Sº»\ (*s¾ T ¹ maj(000, 011, 101) = 001¨ 6∈ R ¹ ·- ¨ ¿+T011 +}101 + 111 = 001 6∈ R ¹ \ l Á D Pol(R , R ) = I D s! (S) \ (!l$YT ¨ Pol(R ) = V ¹ ª>¨{µ \:e}eD }\1£eY }DYT R = [(x 6≡ y) ≡ z] À £ec½ el\ ¨Q³ ´¥q:Y }DYT Ále R = [(x ∧ y) ≡ z] = {000, 010, 100, 111} · \ ¸ ¥T£e ¹ T 000 ∈ R ¹ · S\º» \§ ( ¥*T £e ¹ $ eTD111 · \ {¼s T Dl∈ ¥qR ¹ T ¬010 = 101 6∈ RD ¹ · Sº»\ (*¹ £> *T±000¼F∧ m T= 000 ¹ 111 ∧ m = m 010 ∧ 100 = 000 ∈ R ¹ · Sº»\ (*{¢e ½ ¥q ¹ T 010 ∨ 100 = 110 6∈ R ¹ · Sº»\ (*s¾ T ¹ maj(010, 100, 111) = 110¨ 6∈ R ¹ ·- ¨ ¿ T010 + 100 + 111 = 001 6∈ R ¹ À\ÁDl ¹ Pol(R , R ) = I D s! (S) \} (]B$YT ¨ Pol(R ) = E ¹ « ¨{³ ´¥q 1 0 2 2 2 2 2 2 2 2 1 2 0 1 3 3 3 3 3 3 3 3 3 1 3 0 R4 = [(x ≡ y) ≡ z] = {001, 010, 100, 111} R5 = [(x ∨ y) ∧ z] = {011, 101, 111} µ ¶}DYT R = [(x ≡ y) ≡ z] · S\º» \§ (¥*Ts£e¸ ¥`TT £e ¹ T 000 6∈ R ¹ · Sº»\ ( * ¹ $ eD111 · Sº»\ (*¼F T Dl∈ ¥qR ¹ ¹ T ¬001 = 110 6∈ R ¹ · Sº»\ (*£>*T±¼F¹ 001T ∧ 010 = 000 6∈ R ¹ · Sº»\ (*{¢e ½ ¥q ¹ T 001 ∨ 010 = 011 6∈ R ¹ · = 000 6∈ R ¹ ½ Dl010, \ 100) ¨ ·-\ ¾\ ( }B¨e µ ¹ ¶ } DYÀmaj(001, x+y+z =1 T · Sº» \¹ (Pol(R *s¸ )¥`T=£eL ¹ T 000 6∈ R R¹ = [(x ∨ y) ∧ z] · S\º» \§ ( ¥*T£e¼F ¹ T 111 · \ {£>*T±¼F ¹ TT 011∈ R∧ ¹101 = 001D 6∈ R ¹ · \ (¢e ½ce ¥q ¹ T 111 ∨ m = 111 011 ∨ 101 = 111 ∈R ¹ · Sº»\ (*s ¾¹ T maj(011, 101, 111) = 111 ∈ R¨ D maj(m, m, m ) = m ¹ ·- 011 + 101 + 111 = 001 6∈ R ¹ Pol(R ) = S ¨ ¿ T }\ÁDl ¹ Pol(R , R ) = I D s! (S) \ (!l$YT ¨ 4 4 4 4 4 4 4 4 1 5 5 5 5 5 0 5 5 5 2 01 © 4 5 1