Exercice 1 SAT is NP-complete Exercice 2 3-SAT is NP
Transcription
Exercice 1 SAT is NP-complete Exercice 2 3-SAT is NP
1 SAT Exercice 1 SAT is NP-complete Exercice 2 3-SAT is NP-complete Exercice 3 NAESAT is NP-complete ( Not All Equal SAT ) Exercice 4 3-COLORING is NP-complete. Exercice 5 n-COLORING is NP-complete. Exercice 6 ILP is NP-complete (Integer Linear Programming). Let {x1 , . . . , xn } = X be variables, xi1,1 , . . . , xin,n ∈ X. Are they instanciations of x1 , . . . , xn in positive intergers such that the inequations – E1 : c1,1 xi1,1 + . . . + c1,n xi1,n ≥ b1 – ... – En : cn,1 xin,1 + . . . + cn,n xin,n ≥ bn are verified. Exercice 7 Succint SAT is NEXP-complete. Exercice 8 Domino NEXP-complete. Exercice 9 FO2 on words NEXP-complete. 1
Documents pareils
Visite de l`Ambassadeur d`Espagne en France
2.+2=! $+7%3! %#72! -+2! -:9#3A! %3! ;+7=$:! %+! B+6:9&:2! C#$&2DE#-! %+! "#$7+,! #99:05#67)! %3! ;:72+&--+$! F9:7:0&G3+! +=!
;:00+$9-!%+!-H/01#22#%+,!-:$2!%.37+!*&2&=+!:$6#7&2)+!5#$!-H/6+79+!%+!...