Exercice 1 SAT is NP-complete Exercice 2 3-SAT is NP

Transcription

Exercice 1 SAT is NP-complete Exercice 2 3-SAT is NP
1
SAT
Exercice 1
SAT is NP-complete
Exercice 2
3-SAT is NP-complete
Exercice 3
NAESAT is NP-complete ( Not All Equal SAT )
Exercice 4
3-COLORING is NP-complete.
Exercice 5
n-COLORING is NP-complete.
Exercice 6
ILP is NP-complete (Integer Linear Programming). Let {x1 , . . . , xn } = X be variables,
xi1,1 , . . . , xin,n ∈ X. Are they instanciations of x1 , . . . , xn in positive intergers such that the
inequations
– E1 : c1,1 xi1,1 + . . . + c1,n xi1,n ≥ b1
– ...
– En : cn,1 xin,1 + . . . + cn,n xin,n ≥ bn
are verified.
Exercice 7
Succint SAT is NEXP-complete.
Exercice 8
Domino NEXP-complete.
Exercice 9
FO2 on words NEXP-complete.
1

Documents pareils

Visite de l`Ambassadeur d`Espagne en France

Visite de l`Ambassadeur d`Espagne en France 2.+2=! $+7%3! %#72! -+2! -:9#3A! %3! ;+7=$:! %+! B+6:9&:2! C#$&2DE#-! %+! "#$7+,! #99:05#67)! %3! ;:72+&--+$! F9:7:0&G3+! +=! ;:00+$9&#-!%+!-H/01#22#%+,!-:$2!%.37+!*&2&=+!:$6#7&2)+!5#$!-H/6+79+!%+!...

Plus en détail