Mechanics 1 - OER@AVU - African Virtual University
Transcription
Mechanics 1 - OER@AVU - African Virtual University
Mechanics 1 Mechanics 1 By Adolphe Ratiarison African Virtual university Université Virtuelle Africaine Universidade Virtual Africana African Virtual University Notice This document is published under the conditions of the Creative Commons http://en.wikipedia.org/wiki/Creative_Commons Attribution http://creativecommons.org/licenses/by/2.5/ License (abbreviated “cc-by”), Version 2.5. African Virtual University Table of contents I. Mechanics 1_______________________________________________ 3 II. Prerequisite Course or Knowledge_ _____________________________ 3 III. Time_____________________________________________________ 3 IV. Materials__________________________________________________ 3 V. Module Rationale_ __________________________________________ 4 VI. Content___________________________________________________ 4 6.1 Overview ____________________________________________ 4 6.2 Graphic Organizer______________________________________ 6 VII. General Objectives_ _________________________________________ 8 VIII. Specific Learning Objective(s)__________________________________ 9 IX. Learning Activities__________________________________________ 11 X. Key Concepts_ ____________________________________________ 16 XI. Required Readings_________________________________________ 17 XII. Essentiel Resources_ _______________________________________ 25 XIII. Useful links_______________________________________________ 35 XIV. Learning Activities__________________________________________ 49 XV. Synthesis of the Module____________________________________ 218 XVI. Summative Evaluation______________________________________ 220 XVII.References_ _____________________________________________ 227 XVIII. Grades and results of student’s evaluation_ ____________________ 230 XIX. Main Author of the Module _ ________________________________ 231 XX. File Structure ____________________________________________ 232 African Virtual University I. Mechanics 1 Pr Adolphe RATIARISON II. Prerequisites / Previous knowledge needed To follow this module, the students should possess knowledge of the following concepts: • • • • • • • • • Space, time, translation, rotation, reference system, change of coordinates cartesian coordinates cylindrical coodinates spherical coordinates polar coordinates vector field paths velocity fields differentiation integration III. Times 120 hours IV. Materials • • • • Internet access Computer with CDROM Adequate software (MS office) Television African Virtual University V. Module Rationale This module is part of a training program for teachers. It helps to lay the basic skills acquired in the secondary school teaching system. It addresses the movement of objects that are crucial in the physical universe. The description of these movements is the essential work of physicists in the development of science since Galileo and Aristotle. This module helps the learner to better understand the laws governing movement. VI. Content 6.1 Brief summary This module of Mechanics 1 addresses aspects experienced in daily life and in our environment including: • • • • • Physical quantities and vector operators; Kinematics of a material point in one dimension and two dimensions: - Research of parametric equations and trajectories of a moving object - Calculation of velocity and acceleration vectors in different coordinate systems - The composition law of velocities and accelerations Static solids (forces acting on a system) The dynamics of material points using Newton’s laws The concepts of Work, Energy, Power, Mechanical theorem of kinetic energy and the conservation of mechanical energy. African Virtual University This module comprises of 4 units : Unit 1 : (15 hours). The measurable quantities of physics. • • • • classification and measurement, and errors in measurement, vectors, scalars, vector operations. Unit 2 : (30 hours). Kinematics of a material point : • • One-dimensional movement, Two and three-dimensional movement Unit 3 : (30 hours). • Statics of solids Unit 4 : (45 hours). • • • • Composition law of movement Dynamics of a material point Work, energy, and mechanical power Oscillators African Virtual University 6.2 Graphic organizer Mechanics 1 Module Scalars and Vectors General physics Vector Operations Uniform movement Straight movement Varied uniform movement Sinusoidal movement Circular movement Kinematics of a material point Cycloidal movement Curvilinear movement Helical movement Cylindrical coordinates Coordinate systems Solid equilibrium Torques Center of gravity Equilibrium conditions Spherical coordinates Dynamics of a material point Galilean reference Non-Galilean reference Composition of movements Newton’s 3 laws Equilibrium stability Kinetic moment Work-Energy-Power Oscillators 5 African Virtual University Parametric equations Equatio ns pa ra métr iqu es x=x= x(t);x(t); y=y(t)y=y(t) f(x,y)=Cte f(x,y)=Cte Trajectory Equatio n d eequation l a traj ectoire • Composante sof d espeed l a vit esse Components G énér alités sur la Generalities cinématique du Of point kinematics Composante s d e l’ a ccélération Components of acceleration Composante s int r ins èques d e l’ a ccélération Intrinsic components of acceleration Composante s d e l a vit esse et d e l’ac céléra tion danof s diffé r velocity ents syst èmes deand Components coordonn ées acceleration systems in different coordinate Work of a constant force Work of conservative forces Work Energy Power Work of non-conservative forces Kinetic energy theorem Mechanical energy theorem • x ( t ); y( t ) •• •• x ( t ), y ( t ) dv v 2 ; dt R African Virtual University VII. General objectives The student should be able to: 1. learn about - - - Physical quantities, Concepts of energy and work Relation between energy and work 2. learn and apply the following concepts : - - - - - One-dimensional movement Two and three-dimensional movement Newton’s 3 laws Kinetic energy Working in a group to find solutions to an exercise 3. Students should be able to set, carry out experiments and analyse experimental data to establish relations between physical quantities African Virtual University VIII. Specific objectives related to learning activities Units Specific objectives Unit 1: (15 H) Measurable quantities of physics. - Their classification and nature, - Sources of error in measurement, - Vectors, - Scalars, - Vector operators Specific learning objectives - Define a physical quantity - Give examples of physical quantities - Give units of physical quantities Specific objectives of theoretical knowledge - Distinguish a vector quantity from a scalar quantity Unit 2 : (30 H) Kinematics of a material point : - One-dimensional movement, - Two or three-dimensional movement Learning objectives-Define the trajectory of a moving object - Define average velocity - Recall the components of acceleration vectors in a (o, x, y, z) coordinate system Specific objectives of theoretical knowledge - Write the parametric equations of movement. - Calculate average velocity of a moving object. - Calculate the instantaneous velocity of a moving object. - Calculate average acceleration of a moving object. - Calculate the instantaneous acceleration of a moving object - Integrate the instantaneous velocity - Integrate the instantaneous acceleration - Trace the trajectory of a moving object - Caclulate the intrinsic (local) components of the acceleration Specific objectives of group work - Accomplish an exercise with group members Unit 3 : (30 hours) Specific objectives of theoretical knowledge - Document forces acting on a body - Determine equilibrium conditions of a solid : - in rectangular translation - in rotation Statics of solids African Virtual University 10 Unit 4 : (45 hours) - The law of movement composition- Dynamics of material points – - Work, energy, and mechanical power – - Oscillators Specific learning objectives - Newton’s 3 laws - Apply Newton’s laws to solve problems Specific learning objectives - Apply the kinetic energy theory Specific objectives of theoretical knowledge - Calculate the work done by a constant force - Calculate the work done by a varying force - Calculate gravitational potential energy - Calculate the kinetic energy of a moving object - Calculate the mechanical energy of a system - Apply the kinetic energy theorem - Apply the conservation of mechanical energy theorem to a system Specific learning objective (Optional Be able to use two forms of evaluation educational material) Note when evaluations will take place African Virtual University 11 IX. Teaching and learning activities 9. Preliminary evaluation Title of preliminary evaluation: MECHANICS TEST 1 Justification : This test aims to evaluate knowledge that will be essential to understand this module. QUESTIONS 1. Movement means the ……………………………of a moving object from one place to another. 2. We call the trajectory of a moving object the set of points that a moving object follows when the time t………….. 3. A vector is a straight line : a. True b. False 4. Velocity is a scalar : a. True b. False 5. Accelerating a car causes the scalar product of its velocity and its acceleration to be positive: a. True b. False 6. We apply a force to : a. produce movement of an object b. modify the movement of an object c. deform an object African Virtual University 12 Check the correct answer(s) 7. You are in a car approaching a curve with velocity v. When the car 7-1. turns to the left, your body is thrown to the left : a. true b. false 7-2. turns to the right, your body is thrown to the left : a. true b. false 8. When a driver of a car moving with a speed ,v, on a level road, brakes suddenly, a. passenger in the car is thrown to a. the front b. the back c. the left d. the right Check the correct answer(s). 9. Two vectors which are equal in intensity have between them an angle a. R denotes the resultant of two vectors and U the common module of these two vectors. Associate the correct answers by matching the letter and number a. a = 90 ° 1. R=0 b. a = 0 ° c. a = 180 ° 2. R = U 2 3. R=2U d. a = 45° 4. R = U 3 10. A brick of mass M placed on a smooth table is : a. subject only to the action of its own weight b. not exposed to any force c. exposed only to the reaction of the table d. exposed to its own weight and the reaction of the table African Virtual University 13 Choose the correct answer. 11. The product of force and distance is : a. a vector b. a scalar 12. Kinetic energy and work have the same units a. True b. False 13. Power is the integral of energy a. True b. False 14. Gravity is a force a. True b. False 15. Mass is a scalar a. True b. False Correct Answers 1. Movement means the displacement of a moving object object from one place to another. Movement is essentially related to displacement. 2. We call the trajectory of a moving object the set of points that a moving object follows when the time, t varies. Good answer, in fact displacement is related to time. 3. a. Read the question carefully before answering b. Very good. A vector is always oriented and has a measure which is not the case of a ray. 4. a. We are talking about a velocity vector, therefore it cannot be a scalar. b. Very good, velocity is a vector. African Virtual University 14 5. True. For an accelerated movement, the scalar product of the acceleration and the velocity is positive 6. a. Correct. A force can displace objects. b. Correct. A force can also deviate the movement of an object. c. Correct. In fact, if we wanted to break an object, we could apply a force to it. 7. 7-1. a. Watch out, think carefully. b. Correct. You understand that we are ultimately thrown in the opposite direction. 7-2. a. Correct. We are thrown in the opposite direction. 8. a. Correct. We are thrown in the opposite direction. b. Incorrect c. Incorrect d. Incorrect 9. a2 ; b3 ; c1. are the correct answers, and you know how to calculate the result of two forces. For all other answers (a1, a3, b2, b1, c2, c3, d1, d2, d3, d4, a4, b4, c4,) : Think before answering. 10. a. Incorrect. b. Think about it, it is impossible c. A solid in equilibrium is subjected to at least 2 forces d. Correct. You are recalling action and reaction. 11. a. Watch out. Work is a scalar product of two vectors, but is not itself a vector. b. Correct. The work of a force is a scalar. African Virtual University 15 12. a. Correct. Work is a form of energy. b. Incorrect. 13 a. Watch out. Energy and power do not have the same units. b. Correct. The integration of energy cannot provide power. 14. a. Correct. Gravity is indeed a force. b. Incorrect. Think of the units. 15. a. Correct. Unlike gravity, mass is a scalar. b. Reread your lesson. Comments of students following Evaluation test in mechanics 1 (100-200 words) You took the pre-evaluation test. • • • • • If you have correctly answered all question, you have a grade of A +. You will not have difficulty following this module. If you answered 75% of the test correctly, you have an A grade. You will have no difficulty following this module. If you answered 60% of the test correctly, you have a B grade. You could very well succeed in this module, but you put in some extra effort. If you answered between 45% and 50% of the test correctly, you have a C grade. You must take some supplemental courses. If you answered under 45% of the test correct, you have the note D. You should strive to learn everything, while still following the module as it is taught. African Virtual University 16 X. Key concepts (glossary) 1. Acceleration: Change in velocity per unit of time 2. Freefall: Movement of an object subject only to its own weight (all resistant forces are neglected) 3. Kinetic Energy: Energy possessed by a body in motion 4. Potential energy: Energy stored by a body due to its position 5. Force: any means capable of producing a motion, to modify or deform an object. 6. Movement: Movement of a moving object object from one point to another 7. Mechanical power: work of a force per unit time 8. Referential: Object of reference 9. Mechanical work: Energy provided by a force when its point of application moves. 10. Speed: Change in the position of a moving object object per unit of time African Virtual University 17 XI. Required readings UNIT 1 : Measurable physical quantities. - - - - - Their classification and measure, Different sources of error of measurement, Vector quantities, Scalar quantities, Vector operators There are four required readings for Unit 1. They are grouped in Appendix 1. Reading #1 Complete references : RATIARISON Adolphe (2006). Grandeurs physiques – Mesures-Incertitudesopérations vectorielles. Madagascar. Université d’Antanarivo. The first two parts of this document are drawn from the following sites: http://www.bipm.fr/fr/si/si_brochure/chapter1/1-2.html http://www.cegep-ste-foy.qc.ca/freesite/index.php?id=3113 http://www.ulb.ac.be/cours/psycho/content/cognum/calcul.html Summary : The value of a physical quantity is usually expressed as the product of a number by a unit. For a particular quantity, we can use many different units. Among these units, we distinguish those of the International System (SI) based on seven base quantities. The measurement of a physical quantity can be done directly, such as the length with the meter, the voltage with a voltmeter, or indirectly such as a surface area obtained by the product of the length by width. Finally, the various operations on vectors are detailed. Justification: - - Any physicist must know the units of measure because we cannot add two different sizes without expressing in the same unit. The vector addition is not only part of the composition of forces, but it is also vitally important in the composition of movement that we will see later. African Virtual University 18 Reading #2 Complete references : http://tanopah.jo.free.fr/seconde/Vct2.html Addition, opposing, and subtraction of vectors. Summary : This course and nearly all elements and programming within, were designed and made by Jerome ONILLON. It is listed by the Irish tavern. Addition and subtraction of two vectors are well detailed. It highlights the properties of vector addition as: commutativity, associativity, existence of neutral elements without forgetting the Chasles relationship Justification: This completes the reading #1 The parallelogram rule used for addition and subtraction of vectors is well explained. Reading #3 Complete references : http://formation.etud.u-psud.fr/pcsm/physique/outils_nancy/apprendre/ chapitre2/ partie2/Title1res.htm Vectors. Vector addition. Summary : Vector addition is an internal composition law and has the following properties : Associativity • Commutativity • Neutral element • Symmetric element Hence, we can talk about subtracting a vector from another, and the Chasles relationship. • The multplication of a vector by a scalar is an external composition law.and has the following properties: • • • • Distributivity with respect to vector addition : Distributivity with respect to scalar addition : Associativity : Neutral element : These properties are followed by : The determination of the position of a point M on a segment AB, • The linear combination of two vectors. Justification : Starting from the linear combination of several vectors, we can define the centroid of several points affected by weights ai • African Virtual University 19 Reading #4 Complete references : http://fr.wikipedia.org/wiki/G%C3%A9om%C3%A9trie_vectorielle Vector geometry. Summary : We develop addition and subtraction of vectors, and multipying a vector by a scalar. Properties of a scalar product, vector product, mixed product and double vector product. Justification : Allows readers to gain an in-depth understanding of vector operations. Unité 2 : Kinematics of a material point 1D, 2D, and 3D movement There are 3 required readings in Unit 2. They are grouped in Appendix 2. Reading #5 Complete references : RATIARISON, A. (2006). Cinématique du point. Mouvement à 1D, 2D ou 3D. Madagascar. Université d’Antananarivo. Cours inédit Summary : The generality of the kinematic point concerns the definition of referentials, tracking a moving object in space, the curvilinear abscissa, the velocity vectors and acceleration vectors. This manual will then examine the rectilinear uniform motion and uniformly varied motion. When considering curvilinear movement, we emphasize the intrinsic components of acceleration, circular motion, cycloidal and spiral motion. Finally, the different coordinate systems and components of velocity and acceleration vectors in these coordinate systems are considered. Justification: Before we study the dynamics of a material point, we must have the kinematics of the point. To do this we need to know the topics listed above. African Virtual University 20 Reading #6 Complete references : http://abcsite.free.fr/physique/meca/me_ch3.html Kinematics of a point Summary : This reading completes the previous calculations of components of speed and acceleration vectors in different coordinate systems. Polar coordinates and semi-polar coordinates are also still taught. In this reading we encounter the so-called hodograph. The different diagrams are clearly legible. Justification: This course is easy to read, and can offer significant help to students. Reading #7 Complete references : http://www.chez.com/mecasite/Mecanique/cinematsol.htm Kinematics of a point. Summary : This reading reinforces our knowledge of movement, the average velocity, average acceleration, instantaneous velocity and instantaneous acceleration. The rotational motion and uniform circular motion varied uniformly are also highly developed. Justification: In addition to the two previous readings, it completes the course of the kinematics of the point. UNIT 3 : Equilibrium of a solid on a horizontal plane In Unit 3, there are 3 required readings, which are grouped in Appendix 3. African Virtual University 21 Reading #8 Complete reference : RATIARISON, A. (2006). Equilibre d’un solide sur un plan – Faculté des Sciences- Université d’Antananarivo –MADAGASCAR, Cours inédit Summary : This reading is mainly concerned with the equilibrium of a solid on a plane. A solid can slide or rotate on a plane if it is not in equilibrium. To introduce the equilibrium of a solid, we speak of torque, which is a system of free vectors. This system of free vectors is reduced to the resultant forces and resultant moment of all forces applied to the system considered. The equilibrium condition is defined by a torque of zero, meaning a general zero result and zero moment. Justification: In the module only zero resultant forces have been defined, but to broaden the knowledge of students we must also mention the zero moment of the forces applied to the system in question. Unit 3 : Reading #9 Complete reference : Statique du solide taken from « http://fr.wikipedia.org/wiki/Statique_du_solide » A Wikipedia article. Solid Statics Summary : The possible movements, sometimes called degrees of freedom are of two kinds: translations (3 main directions) and rotation (around the three directions). While the translations may not be caused by forces, rotations are generated by moments of these forces, or other pairs of force. When the equilibrium point requires that the establishment of 3 algebraic relations (equation of vector forces in 3 dimensions), while that of the solid demands the consideration of 3 additional equations (moments vector equation). The fundamental principle of statics can then be considered: 1. the theorem of the resultant (sum of forces is zero). 2. the theorem of the moment (sum of moments is zero). Justification: The study of equilibrium of a solid always requires the consideration of these 2 theorems, even if in some simple cases of mechanics of a point, they seem to be resolved with one of the 2 parts. Generally, it is not possible to treat the two aspects separately (forces and moments): it is actually a complex 6-dimensional problem. African Virtual University 22 Unit 3 : Reading #10 Complete reference : http://www.ac-poitiers.fr/cmrp/cpge/docs/Coursdemodelisationetdestatique.doc Solid statics Summary : The mechanical action is anything likely to maintain a body at rest, create or modify a motion to deform a body, and manifests itself in two forms: - The translational motion due to the resultant forces applied to the solid - The rotation due to the resultant moment of these forces Before stating the Fundamental Principle of Statics (FPS), the author speaks of the modeling contact activities: - - Contact with a fluid on a solid, The contact of two solids. Justification: One of the characteristics of this reading is the mechanical actions applied to a balance: - The mechanical action at a distance (gravity, electromagnetic, electrostatic, ...) - The mechanical action of contact (pressure, contact, ...) This reading is very beneficial for students. Unit 4 : Composition of movements Dynamics of material pointsWork, energy, and mechanical power – Oscillators African Virtual University 23 Reading #11 Complete reference : RATIARISON, A. (2006). Composition de mouvement, Dynamique du point matériel, Travail – Energie - Puissance, Oscillateurs– Faculté des SciencesUniversité d’Antananarivo –MADAGASCAR, Cours inédit Topics on dynamics and oscillators were taken from : http://abcsite.free.fr/index.html Summary : This unit begins by addressing the law of movement composition and Newton’s 3 laws, with their practical applications. It continues by discussing evidence on Coriolis inertial forces. It highlights the definition and calculation of work produced by the conservative forces and that produced by non-conservative forces. It establishes the theorem of kinetic energy and the theorem of mechanical energy. It concludes with the study of damped harmonic oscillators. Justification: To get a general idea of absolute motion and relative motion, the course begins with the generalization of different velocities and accelerations of the three Newton laws, and theorems of mechanical and kinetic energy on the basis of the dynamic point. Reading #12 Complete reference : Papanicola Robert, http://www.sciences-indus-cpge.apinc.org/IMG/pdf/ CIN2_ DERIVATION_VECTORIELLE.pdf Vectorial derivation. Summary : This course of vector derivation leads to the composition law of motion. It therefore complements the course of Ratiarison Adolphe. For the concept of the composition of three rotations, the author brings the three Euler angles, namely precession, nutation and proper rotation. Justification:The three Euler angles are not on the agenda because in practice this concerns the kinematics of sound. It is therefore not essentially that a student spends considerable time on it. The composition of rotations is well developed in the course of Ratiarison. African Virtual University 24 Reading #13 Complete reference : http://abcsite.free.fr/physique/meca/me_ch3.html Dynamics of a material point Work, energy, and power Oscillators Summary : A complete course on the dynamics of a material point. It follows the site : http://abcsite.free.fr/physique/meca/me_ch3.html that was already cited in the kinematics portion. Justification : A course that is easy to read. Reading #14 DIOUF, S. (2004). L’Evaluation des apprentissages. Sénégal. Université Cheikh Anta DIOP de Dakar. FASTEF (ex ENS) Summary: This text is recommended to respond to an optional formal evaluation of educational nature. It contains different parts including: Evaluation that deals with various issues relating to the assessment The different forms of evaluation where it is also about the roles and moments of assessment Strategies for collecting information. In this section you will find ways to correct the issues relating to objective and subjective correction. It also includes the steps of building a subject of examination and the characteristics of the evaluation. Justification: Reading this text enables students to answer questions correctly during a formative assessment of educational nature. All answers to the assessments are contained in this text. African Virtual University 25 XII. Essential resources Resource #1 Complete reference : RATIARISON, A. (2006), Cours de mécanique générale 1 Faculté des Sciences -Université d’Antananarivo - Madagascar Summary : This mechanics course is taught in the first year of university in the Faculté des Sciences, at the Ecole Normale and l’Ecole Supérieure Polytechnique at l’Université d’Antananarivo. It discusses the vector operators, and the kinematic point in a Galilean reference. The laws of composition of movements are dealt with in the kinematics portion. Central acceleration movements are also developed. Justification: This is useful for practical exercises from a distance. Resource #2 Complete reference: PEREZ, J. P. (1997). Mécanique – Fondements et applications. Université Paul Sabatier Toulouse – France. Edition MASSON, 120 bd St Germain 75 280 Paris Cedex 06 Summary : It is a comprehensive manual for students from first to third year. The mechanics of a material point, the dynamics of solids, the movement of central acceleration, oscillators, analytical mechanics, and fluid mechanics are treated. Justification: Students will always need this book during their studies, because apart from the topics of kinematics and mechanics of a solid, there are also fluid mechanics topics and several applications that are treated.. African Virtual University 26 Resource #3 Complete reference : http ://www.hazelwood.k12.mo.us/grichert/sciweb/applets.htlm Summary : This site is a compilation of links leading to other internet sites containing physics-based simulations. Justification : Students will always have a need for this manual during their studies, as many physics topics are developed. Resource #4 Complete reference: CAZIN, M. (1995), Cours de mécanique générale et industrielle– Gautier Villars – tome 1, NY 1003 -1995 Summary : A complete course, but slightly difficult to read. However, it contains many applications and is very useful in further studies. Justification : The student will find many applications to mechanics. Resource #5 Complete reference: The Free High School Science Texts: A Textbook for High - School Students Studying Physics.- FHSST Authors1 - December 9, 2005 -http://savannah. nongnu.org/projects/fhsst Summary : Many physics topics are in this manual, including mechanics, electricity, optics, and electromagnetism. The student can learn all about physics by consulting this site. Justification: Students will always find a use for this book, since the physics topics are very well developed. African Virtual University 27 Resource #6 Complete reference: http://www.google.ca/search?client=firefox_a&rls=org.mozilla%3Aen-US%Aofficial&hl=en&q=c3%A9equilibre+d%27un+solide+sur+plan&meta Summary : This site contains practical exercises of equilibrium of a solid on a place, subject to many forces. Justification: Students can do practical exercises on the site. Resource #7 Complete reference: http://www.chimix.com/an5/prem5/hotp5/force1htlm Summary : This site contains practical exercises of equilibrium of a solid on a place, subject to many forces. Visualisation of free fall and apparent motion. Justification: Students can do practical exercises on the site. Resource #8 Complete reference: http://fr.wikipedia.org/wiki/statique-du-solide Summary : This page summarizes static equilibrium of a solid. Justification : Students can do practical exercises on the site. Resource #9 Complete reference: http://formation.edu-psud.fr/pcsm/physique/outils_nancy/apprendre/Chapitre2/Title1res.htm Summary : Developed in this site: - - the vector sum and its properties (associativity, commutativity, identity element, element symmetrical), the difference of two vectors, the relationship Chasles the product of a vector by a scalar and its properties (distributivity over vector addition, distributivity with respect to the addition of scalar, associativity, and the existence of the neutral element). African Virtual University 28 Applications of vector addition that are found: - - - - - - The position of a point on a line, The linear combination of 2 vectors Coplanar vectors The centroid of n weighted points Isobarycentre of 3 points, not aligned (center of gravity of a triangle) Isobarycentre of 4 points in space (center of gravity of a tetrahedron) Justification: This document is a valuable resource that can complete the course and teach that the research of the center of gravity is a vector addition. Resource #10 Complete reference: http://formation.edu-psud.fr/pcsm/physique/outils_nancy/apprendre/Chapitre3/partie3 / Title1res.htm Summary : This document geometrically represents complex numbers. Addition and subtraction of complex numbers relates to addition and subtraction of vectors. Justification: This site demonstrates that addition and subtraction of vectors has other applications in the field of science. Resource #11 Complete reference: http://msch2.microsoft.com/fr-fr/library/system.windows.forms.paddings.op_addition. aspx http://msch2.microsoft.com/fr-fr/library/system.windows.forms.paddings.op_methods. aspx http://mathexel.site.voila.fr/index.htlm Summary : These documents execute the addition and subtraction of vectors on the computer screen. They show different operations using the « Padding » method. Justification: The student is, with the aid of an instructor, familiarized with vector operations. African Virtual University 29 Resource #12 Complete reference: http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/lissajou_ j.html http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/cycloi_j.html http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/pndhgs_ j.html Summary: The first document sets out a Lissajous curve corresponding to the addition of two perpendicular sinusoidal movements of their phase. A cycloid is the trajectory of a fixed point of a circle when it rolls without slipping on a line. The second document shows how to trace a cycloid as a function of the travel speed of the circle. The third document highlights the oscillation of a cycloidal pendulum, which is called the Huygens pendulum. Justification: The visualization of these phenomena provides a very specific vision for the student. The equations of Lissajous curves are very complex unless they are reduced to that of the ellipse. Thus, visualization of these curves is very helpful to students. Similarly, an abstract design and a cycloid cycloidal pendulum is difficult. Resource #13 Complete reference : http://electronics.free.fr/school/article.phys3?id_article=9#5 Summary : This site belongs to a young Moroccan born February 5, 1988 who is passionate about philosophy, mathematics and computing. That’s why he created this site which is a medium of exchange of knowledge and experience. This article is a summary of the kinematics of a particle in a Galilean reference. It defines: - - - - - - - The position vector The velocity vector The acceleration vector The average acceleration vector The average velocity Cartesian coordinates of the acceleration vector Coordinates of the acceleration vector in the Frenet reference It develops some specific movements: - The rectilinear motion (uniform and uniformly varying) - The circular motion (uniform and uniformly varying) Justification: We have already developed all of the topics, but it is interesting to see what others are doing. African Virtual University 30 Resource #14 Complete reference: http://www.chez.com/Mecanique/cinematipts.htm Summary : After defining the kinematic characteristics (velocity and acceleration) the author speaks of: - - - Uniform rectilinear movements and uniformly varying Movements of rotation, the normal components and tangential acceleration Movements of uniform rotation and uniformly varying Justification: We have already developed all of the topics, but it is interesting to see what others are doing. Resource #15 Complete reference : http://www.chez.com/Mecanique/dynamiqu.htm Summary : This site contains : Fundamental principle of the dynamics of solids under rectilinear translation. D’Alembert ;s principle ; Rotational movement with respect to a fixed axis. Justification: We have already developed all of the topics, but it is interesting to see what others are doing. Resource #16 Complete reference : http://www.chez.com/Mecanique/energeti.htm Summary : This site summarizes the mechanical energy of a point. The work of a force, the work of a couple, the gravitational potential energy, elastic energy of a spring, kinetic energy of a solid translation, the kinetic energy of a solid rotation, the average power, the power developed by a force, and the concept of performance are shown. Justification : This completes our course. African Virtual University 31 Resource #17 Complete reference : http://www.sciences.univ-nantes.fr/physique/perso/gtulloue/aquadiff.html Summary : The purpose of this site is to illustrate the solution of linear differential equations of first and second order frequently encountered in physics. The solution itself is developed in mathematics courses and will not be detailed here. However, there is a summary of results and examples. Illustrations and animations found here include: - The presentation of the harmonic oscillator. - The horizontal linear oscillator - The elastic pendulum - The weighted pendulum - The tension of a pendulum wire - The period of the pendulum weight - The Botafumeiro - The cycloidal pendulum Justification : This is useful for practical exercises from a distance. Resource # 18 Complete reference http://www.n-vandewiele.com/TDMeca2.pdf Summary : Seven corrected exercises concerning the composition of movement and changing reference states. Justification: Since there are not many exercises concerning the compostion of movement, the student should familiarize themselves with this topic from other resources as well. Resource # 19 Complete reference : http://www.ens-lyon.fr/Infosciences/Climats/Dynam-atmo/Cours-Coriolis Summary : The purpose of this site is to supplement knowledge of the Coriolis force. The author tries to introduce the concepts gradually so that the Coriolis force is understandable with minimal prior knowledge. • • • This site consists of seven paragraphs: The first shows the existence of forces of inertia and the Coriolis force. The second gives us the mathematical expression of the Coriolis force. African Virtual University 32 • • The third shows some manifestations of the Coriolis force. The fourth examines the movement of air masses moving on the ground to see how clear the Coriolis force is. • The fifth gives us additional information. • The sixth offers a simple experiment to demonstrate the deviation of trajectories in a rotating frame • The seventh, a conclusion, examines a planet invented by Antoine de Saint Exupéry in “Le Petit Prince” Justification: This site is not only dedicated to the mathematical formulation of the Coriolis force, but describes the various manifestations of the Coriolis force in everyday life. It is useful, necessary and even essential that teachers and students read this site. Resource #20 Complete reference : http://www.ucd.ma/fs/modules/meca1/um1./modules3/cin2.htm http://perso.orange.fr/rmchs/physique_05/cours_physique/cours_mecach5_cinematique.pdf Summary : A course on different coordinate systems and on the laws of composition of velocities and accelerations. Justification: We have already developed all of the topics, but it is interesting to see what others are doing. Resource #21 Complete reference : http://www.keepschool.com/cours-fiche-les_systèmes_oscillants Summary : This site serves as a supplement to courses on oscillators. It talks about: - classification of experimental oscillators (experimental properties and characteristic properties of oscillators) - free mechanical oscillators (simple pendulum, horizontal elastic pendulum) - mechanical oscillators forced (torsion pendulum in forced oscillations, resonance phenomena) Justification: The course of this site is given a simple way. It can help the student understand oscillators. African Virtual University 33 Resource #22 Complete reference: http://www.logitheque.com/fiche.asp?I=18755 Summary : Static is an educational software used in physical science at the high school level dealing with the static point of solid material subjected to one or more forces (or forces couples) to show the conditions of equilibrium solids. STATIC revolves around six themes related to statics - Equilibrium point; - Equilibrium of a solid rotation about an axis; - Equilibrium of a solid subjected to couples of forces; - Equilibrium of a rod rotating about an axis; - Static solid on an inclined plane with or without friction forces; - Static floaters (Archimedes principle). Justification: The learner will deepen their knowledge on the equilibrium of a solid rotation about an axis and of static floaters. Resource #23 Complete reference : http://www.univ-lemans.fr/enseignements/physique/01/statique.htm Summary : A brief summary of the equilibrium and dynamics of points in a Galilean reference. Justification : This module summarizes the different forces that can act on a point or an object. African Virtual University 34 Resource #24 Complete reference : http://www.univ-lemans.fr/enseignements/physique/02/meca/couplage3.html Summary : We have here a simulation of a coupling of 3 mechanic oscillators, neglecting friction. The independent pulsations of the oscillators are w12 = K/M1, w22 = K/M2,. w32 = K/M3. Each mass is subjected to the restoring force of 2 springs attached to it. The movement equations are : If the 3 masses are equal, the solution to the system is : To treat all cases in the program, this system of coupled differential equations is solved numerically using the Runge-Kutta order of 4. By assumption, the initial velocity of the two masses is always zero. One can see that for any initial conditions the solution is usually a complex aspect. It is a linear combination of the three proper modes. It is of the form: Xi = Ai.cos (wpt) + Bi.cos (wqt) + Ci.cos (wrt) (i = 1, 2, 3) The values of the constants Ai, Bi and Ci are a function of initial conditions. Justification: The simulation work helps students to understand physical phenomena. African Virtual University 35 XIII. Useful links Useful link #1 Title : Parabolic trajectory URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/tir_para_ j.html Screen capture : Justification : We can see the envelope trajectory (parabola of safety) if we vary the direction and intensity of the initial velocity. The learner can calculate the equation of the parabola of safety. African Virtual University 36 Useful link #2 Title :Trajectory and free fall URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/tirchu_ j.html Screen capture : Justification : This animation shows the meeting point of two moving object objects. The learner can calculate the z component of the meeting point of the projectile and the other object, and the time at which they will meet. African Virtual University 37 Useful link #3 Title : Movement of the moon and a solar planet. URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/ terlun_j.html Screen capture : Justification : The animation shows the movement of the moon and a solar planet. The trajectories are presented in two different references. African Virtual University 38 Useful link #4 Title :Longitudal oscillations of a spring URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/prlong _j.html Screen capture : Justification : One can observe the sinusoidal signal propagation along the spring and the displacement of a localized point M of the spring. African Virtual University 39 Useful link #5 Title : Multiple pendulums URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/pendmu _j.html Screen capture : Justification : The animation here shows the conservation of mechanical energy. You can choose the number of pendulums N released without initial velocity and common initial angle. African Virtual University 40 Useful link # 6 Title :Coupled oscillators URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/osccpl_j.html Screen capture : Justification : We have here the coupling of three springs of respective stiffness k, k0 and K. You can vary the stiffness k0 in the second spring and we can have the proper modes of periods T1 and T2. African Virtual University 41 Useful link #7 Title :Uniform rotational movement URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/manege_ j.html. Screen capture : Justification : The student may vary the period of rotation of the carousel, the pathways of rays Ra and Rb, and calculate the centrifugal force of inertia applied to A and B. African Virtual University 42 Useful link #8 Title :Trajectory of a grenade URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/grenad_j.html Screen capture : Justification : In this site we find another reference that is the centroid reference. We therefore study two different references (the fixed reference and the centroid reference). African Virtual University 43 Useful link #9 Title : :Oscillation with solid friction URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/frtsol_ j.html Screen capture Justification : By changing the parameters b, x0 and T0, we visualize the range of equilibrium and location of extremum. The student can then write the equation of motion. African Virtual University 44 Useful link #10 Title :Trajectory of the sun in the galaxy URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/galaxi_ j.html Screen capture: Justification : The trajectory of the sun is not perfectly circular because it describes a circle of radius R in the plane Oxy galactic center O, but it varies more along the axis Oz, perpendicular on both sides of this plane. African Virtual University 45 Useful link #11 Title : The Big Wheel URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/gdroue_ j.html Screen capture : Justification: Study of circular movement in a vertical plane. African Virtual University 46 Useful link #12 Title :Epicycle of Ptoémée URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/epiclc_j.html Screen capture : Justification : The Earth T and another planet P demonstrate a circular motion around the sun. It shows the relative motion of P relative to T. African Virtual University 47 Useful link #13 Title :Trajectory of a dog running after its master URL : http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/chien_ j.html Screen capture : Justification : By varying the velocity of the dog and its handler, it displays the path of the dog and the student can find the equation of the trajectory based on these velocities. African Virtual University 48 Useful link #14 Title :Trajectory of 4 flies http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/4mouche_j.html Screen capture : Justification : Before finding the distance traveled by each fly, the student tries to find the equation of the trajectory of each fly. African Virtual University 49 XIV. Learning activities Learning activity 1 Activity title • • • Vector quantities Addition and subtraction of vectors Vector operations Specific learning objectives The learner must be able to: • • • • • • • • • • Properly represent a physical quantity Recall some units of physical quantities Add vectors Subtract two vectors Perform scalar products Recall the physical meaning of the scalar product Perform vector products Recall the physical meaning of vector products Calculate the double vector product Calculate the mixed product Activity summary The main aim of this module is the dynamics of material points subjected to various forces that can be represented by vectors. Thus, this activity is to familiarize oneself with the common vector operators. As the movement of particles can be movements of translation and / or rotation, we can not confine ourselves to only addition and subtraction of vectors, but we must also investigate other operations of vectors, such as the vector product. African Virtual University 50 Key concepts General result: vector sum of several vectors Scalar product: Operation vector giving the projection of a vector on the support another to a constant. Vector product: Operation vector whose norm is equal to the surface generated by the two vectors and the vector product is directly perpendicular to both vectors. Mixed product: Operation vector containing both the scalar product and vector product, scalar representing the volume generated by the 3 vectors. Double vector product: Twice the vector product. Appropriate readings (IN APPENDIX 1) 1° RATIARISON, A. (2006). Grandeurs physiques – Mesures-Incertitudesopérations vectorielles.Madagascar. Université d’Antanarivo 2° ht tp://tanopah.jo.free.fr/seconde/Vct2.html Addition and subtraction of vectors 3° http://formation.etud.u-psud.fr/pcsm/physique/outils_nancy/apprendre/ chapitre2/partie2/Title1res.htm Vectors. Addition of vectors. 4° http://fr.wikipedia.org/wiki/G%C3%A9om%C3%A9trie_vectorielle Vector geometry. Wikipedia article. Appropriate resources ANSERMET J.-P. (Version 2004-2005), La mécanique rationnelle – Formation de base des Sciences et des ingénieurs – Institut de Physique des nanostructures- Ecole Polytechnique Fédérale de Lausanne de Lausanne– PHB – Ecublens, 1015 Lausanne TIPLER, P. A. (1995) , Physics for Scientists and Engineers – New York, NY 1003. Worth Publishers PEREZ, J. P. (1997), Mécanique: Fondements et applications, MASSON The Free High School Sciences: A Textbook for High School Students Studing physics – FHSSt Authors- December 9, 2005 from http://savannah.nongnu. org/projects/fhsst http://www.google.ca/search?client=firefox_a&rls=org.mozilla%3Aen-US%Aofficial&hl=en&q=c3%A9equilibre+d%27un+solide+sur+plan&meta African Virtual University 51 Useful links http://www.infoline.ru/g23/5495/Physics/English/waves.htlm http://www.infoline.ru/g23/5495/index.htlm http://formation.edu-psud.fr/pcsm/physique/outils_nancy/apprendre/Chapitre2/Title1res.htm http://formation.edu-psud.fr/pcsm/physique/outils_nancy/apprendre/Chapitre3/partie3 /Title1res.htm http://msch2.microsoft.com/fr-fr/library/system.windows.forms.paddings. op_addition.aspx http://msch2.microsoft.com/fr-fr/library/system.windows.forms.paddings. op_methods.aspx http://mathexel.site.voila.fr/index.htlm Detailed activity description In this activity, there are twenty independent questions on vector calculus. They can check whether students master the various operations on vectors. The students will discuss on an online chat to have the same understanding of the different parts of the course: Physical - Measurement-Uncertainty-vector operations. For each exercise, students will be organized in groups for collaborative work. These 20 questions and corrected exercises include: - - - - - - Units of physical quantities. The practical meaning of vector operations, Addition and subtraction vector treated graphically and analytically; The vector product; Double vector product; The combination product. African Virtual University 52 Evaluation of Activity 1 Twenty questions and exercises Exercise 1 What does following physical quantity signify ? : M=5,25 ± 0,02 Kg Exercise 2 Write the following expression correctly : D= 15,83379 ± 0,173 m Exercise 3 Consider m as a physical quantity defined by the following equality : m=m1-m2-m3 Write Dm as a function of ∆m1, ∆m2 et ∆m3 Exercise 4 What does the relative uncertainty ∆a .represent. a Give the precision of the measure if we have: m= 25,4 ± 0,2 Kg Exercise 5 How do we add two vectors : - - If they are parallel If they are not parallel Exercise 6 What is the scalar product of a vector with any unit vector? African Virtual University 53 Exercise 7 What does the modulus of the vector product of two vectors represent? Exercise 8 When is the vector product equal to zero ? Exercise 9 What does the mixed product of three vectors represent geometrically ? Exercise 10 The mixed product of three vectors is invariant under permutation of these ( three vectors. Write the mixed product in different forms V1 , V2 , V3 ) Exercise 11. Vector division. Consider the equality : a ∧ x = b (1) where a and b are 2 given vectors and x the unknown vector. Our goal is to solve this equation in the following scenarios : a) What is the solution x if a = 0 and b = 0 b) What is the solution x si a ≠ 0 and b = 0 c) What is the solution x if a = 0 and b ≠ 0 d) We suppose a ≠ 0 and b ≠ 0 and a is not perpendicular to b e) We suppose the general case: a ≠ 0 and b ≠ 0 and a perpendicular to b • We suppose that the equation in question has a particular solution x0 . We can thus write a ∧ x 0 = b (2). By subtracting term by term in equations (1) and (2), write the general form of the solution x of equation (1) knowing a particular solution x0 • We are looking for a particular solution x0 of equation (2). For this we multiply vectorally the left of equation (2). What is the particularity of African Virtual University 54 x0 to achieve it in an easier fashion. Write x0 . • Write the solution x of equation (1). • We represent x by the vector OM . What is the complete M portion of the solution of the equation a ∧ OM = b . Exercise 12 Consider 2 vectors V1 and V2 , of respective modulus 5 m/s and 3 m/s , ( that have an angle of a=30° between then. Calculate V1 + V2 ( ) 2 ) Find the modulus of the vector sum V1 + V2 . Trace the vector sum. Exercise 13 A boat is crossing a river at a speed of 6 km / h. The velocity of the incoming flow perpendicular to the boat is 3 km / h (these velocities are measured from the reference ground, say, by an observer located on a shoreline). In what direction the boat is headed? Exercise 14 Prove that the diagonals of a parallelogram intersect in the middle. Exercise 15 Prove that the diagonals of a rhombus are perpendicular. Exercise 16 Determine a unit vector perpendicular to the plane formed by the vectors A = 2i − 6 j − 3k and B = 4i + 3 j − k Exercise 17 Show that the sine law holds in a triangle. . African Virtual University 55 Exercise 18 Consider two vectors ur ur 2 ur ur 2 ur 2 ur A ∧ B + A.B = A B ( ) . Show that 2 Exercise 19 How is it that a person moving along the x axis with velocity U must tilt their umbrella to protect most of the rain that falls parallel to the y-axis with velocity V. Exercise 20 Consider 3 non-aligned points and a point O as an origin We let OA = a , , OB = b,. r r r r r OC = c r Show that : a ∧ b + b ∧ c + c ∧ a is a perpendicular vector in the plane ABC. Corrected exercises Evaluation of activity 1 1°) M=5,25 ± 0,02 Kg signifies that 5,23 Kg < M < 5,27 Kg 2°) A more correct way of writing it would be D= 15,8 ± 0,2 m 3°) m=m1-m2-m3 ⇒∆m = ∆m1+ ∆m2 + ∆m3 4°) The relative uncertainty ∆a represents the precision of the measurement. a If we have : m= 25,4 ± 0,2 Kg, the precision of the measurement of m is ∆m 0,2 = = 0,8% m 25,4 African Virtual University 56 5) If the two vectors are parallel, we draw the second vector on the line of action of the first vector. If the two vectors are not parallel, we use the parallelogram rule. 6°) The scalar product of a vector with a given unit vector is an orthogonal projection of the first vector on the unit vector. 7°) The modulus of the vector product of two vectors is the area of the parallelogram generated by the two vectors. 8°) The vector product is zero only if : - one of the vectors is zero - the two vectors are parallel. 9°) The mixed product of three vectors represents the volume of the parallelepiped defined by the three vectors. ur ( ur u ur u ) ( ur ur u ur u ) ur u ( ur u ur ur u ) ( ur ur u 10°) V1 • V 2 ∧ V3 = V1 ,V 2 ,V3 = V 2 • V3 ∧ V1 = V3 • V1 ∧ V 2 ) 11°) Vector division r r r r r r r r a) a ∧ x = b ➙ 0 = 0 ➙ indetermination : all vectors x of the vectorial space is a solution to (1) r r b) a ∧ x = 0 ➙ x = la , the vectors x parallel to the vector a are solutions to (1) c) Equation (1) is written 0 = b , which is impossible : There is no vector x satisfying equation (1). r r r r r d) no solution since a ∧ x = b implies that a ⊥ b r r r e) a ∧ x = b (1) r ur u r a ∧ x0 = b (2) r r ur u r r ur u r (1)-(2) ➙ a ∧ (x − x0 ) = 0 ➙ x = x0 + la • African Virtual University 57 r r ur u r r r ur u r ur u r r a ∧ a ∧ x0 = a ∧ b ➙ a.x0 a − a 2 x0 = a ∧ b . . If x0 is perpendicular r r ur u r ur u a∧b to a , we can easily have x0 = 0 ➙ x0 = − 2 a r r r r a∧b • x = − 2 + la a ( • ) ( ) b ( ) − a ∧b a2 H M a The group of points M, at the extremities of vectors x belong to the segment r r uuur a∧b (∆) passing by the point H, such tat OH = − 2 and (∆) is parallel to a . a African Virtual University 58 Exercise 12 (V 1 + V2 )=V 2 2 2 V1 + V2 = 2 2 + V2 + 2V1 .V2 = V1 + V2 + 2 V1 .V2 cos α 1 2 2 V1 + V2 + 2 V1 . V2 cos 30o = 25 + 9 + 2.5.3. =7.745 V1 +V2 V2 V1 Exercise 13 V 1 Vitesse de la pirogue V2: Vitesse du courant Rives The boat is deviated by an angle b of its original direction such that tan β = V2 3 1 = = V1 6 2 3 2 African Virtual University 59 Exercise 14 Call ABCD the parallelogram, P the intersection point of AC and BD , a = AB = DC , b = AD = BC . We have : Or uuur uuur uuur r r BD = CD − CB = −a + b uuur r r BP = x(−a + b) uuur uuur uuur r r AC = AB + BC = a + b uuur r r AP = y(a + b) uuur uuur uuur r r AB = AP + PB a + b r r r r r a = y(a + b) − x(−a + b) r r r a = (x + y)a + ( y − x)b For the equality to be true, the following system must remain true : x + y = 1 and y – x =0 ➙x = ½ and y=1/2 . P is thus the midpoint of BP and AC. African Virtual University 60 Exercise 15 Call OPQR the rhombus. PR and OQ the two diagonals. P Q O R Form the scalar product OQ.RP OQ.RP = (OR + RQ).(RQ + QP) 2 2 2 OQ.RP = OR.2 cos(RO, RQ) + OR � OR + RQ cos(QR , QP) The an- gles are supplementary, as they have opposite cosines. Thus are perpendicular. Exercise 16 A ∧ B is a perpendicular vector in the place formed by vectors A and B 2 4 15 A ∧ B = − 6 ∧ 3 = − 10 − 3 −1 30 The unit vector parallel to à A ∧ B is u = A∧B A∧B African Virtual University 61 u= 15i − 10 j − 30 k (15 ) + ( − 10 ) + ( 30 ) = 3 2 6 i − j− k 7 7 7 Exercise 17 a , b, c represents the 3 sides of triangle ABC and α, β, γ the three angles. a+b+c=0 If we multiply this vector sum by a or by b or by c , we will always obtain a zero vector. Ainsi : r r r r r r r r r r r r r a ∧ a + b + c =b ∧ a + b + c =c ∧ a + b + c =0 ( ) ( ) ( r r r r r r r r r r a ∧ ( b + c) = b ∧ ( a + c) = c ∧ ( a + b ) = 0 r r r r r r r r r r r r r a ∧ b+ a ∧ c = b ∧ a + b∧ c = c ∧ a + c ∧ b = 0 And thus : r r r r r r a ∧ b = b∧ c = c ∧ a This vector equality implies the equality of the moduluses : ) African Virtual University 62 r r r r r r a ∧ b = b∧ c = c ∧ a absinγ =bcsinα=casinβ By dividing this double equality by the product abc, we have : sinγ sinα sin β = = c a b Exercise 18 ur ur 2 ur ur A ∧ B + A.B ur ur A∧ B ur ur A∧ B 2 2 ( ) ur ur + ( A.B ) ur ur + ( A.B ) 2 2 2 ur r ⎞ 2 ⎛ ur ur ur r ⎞ 2 ⎛ ur ur = ⎜ A B sin( A,b)⎟ . + ⎜ A B cos( A,b)⎟ ⎝ ⎠ ⎝ ⎠ ur 2 ur 2 ur r ur r = A B sin 2 ( A,b). + cos 2 ( A,b) { ur 2 ur = A B } 2 Exercise 19 V’ is the velocity of the raindrops with respect to (R’). uur ur ur V / = V −U African Virtual University 63 U is the driving velocity The person must tilt their umbrella by an angle a, such that tan α=U/ V. Exercise 20 OA = a , , OB = b,. OC = c . r r r r r r a ∧ b + b ∧ c + c ∧ a is a perpendicular vector to the plane ABC. M is a point on plane ABC. Assume OM = r . r r r r (( ) r r ) The mixed product (r − a ). b − a ∧ (a − c) = 0 r r r r r r r r (r − a ). b ∧ c − b ∧ a − a ∧ c = 0 ( ) r r r r r r r r (r − a ).( a ∧ b + b ∧ c + c ∧ a ) = 0 From this last equation, we deduce that : ( r r r r r r r r a ∧ b + b ∧ c + c ∧ a is perpendicular to (r − a ) . ) ( r r r r r r ) Thus a ∧ b + b ∧ c + c ∧ a is perpendicular to the plane ABC., Learning activities The students must do all the exercises. They are organized in groups for collaborative work. Each group completes the proposed exercises and designates a leader of the group who will report for each group. The professor gives a deadline for each exercise, at which time each group will send an attached file of their reports to the professor of the course. Teacher’s guide The professor will correct the group reports, and will place the corrections in a workspace accessible to students. The corrections are accompanied by adequate feedback. The scores for each group are assigned to group members and will count for 20% of the final evaluation of the module. African Virtual University 64 Learning activity 2 Activity title 1D, 2D and 3D Kinematics of a Point Specific learning objectives The student must be able to: • • • • • • • • Locate the position of a moving object in a given reference system Establish the parametric equations of a moving object Calculate the coordinates of a vector in a given reference system Determine the velocity of a moving object Calculate the coordinates of the acceleration vector of a moving object Calculate the acceleration of a moving object Calculate intrinsic components of acceleration Find the equations of the trajectory of a moving object Activity summary This activity includes: • • • identifying the position, finding the path, calculate speed and acceleration of a moving object in a Cartesian, spherical, cylindrical or polar coordinate system, and the intrinsic components of acceleration for curved movements. Key concepts • • • • • Ray vector: Vector indicating the position of the moving object at time t Peak: Maximum height reached by a projectile Range: Maximum distance reached by the projectile from the point of shooting Details of a moving object: the ray vector components over time. Cartesian coordinates [ x(t), y(t), z(t)]: Cylindrical coordinates [ ρ (t), θ (t), z(t)] Spherical coordinates [ ρ (t), θ (t), ϕ(t)] Polar coordinates [ ρ (t), θ (t)]) Trajectory: curve described by the moving object when the time t varies. African Virtual University 65 • • Binormal: vector directly perpendicular to the unit vector of the tangent and the unit vector of the normal to the trajectory. Intrinsic components of acceleration: Components of the acceleration vector on the tangent and normal to the trajectory. Appropriate readings (IN APPENDIX 2) 1°) RATIARISON, A. (2006). Cinématique du point. Madagascar. Université d’Antanarivo. Cours inédit 2° http://abcsite.free.fr/physique/meca/me_ch3.html Kinematics of a point. 3°) http://www.chez.com/mecasite/Mecanique/cinematsol.htm Kinematics of a point. Appropriate resources - http://www.infoline.ru/g23/5495/Physics/English/waves.htlm - http://www.infoline.ru/g23/5495/index.htlm Useful links • • • • • • • • • • • http://perso.orange.fr/rmchs/physique_05/cours_physique/cours_ mecach5_cinematique.pdf Calculs vectoriels Composition de forces Dérivation vectorielle PEREZ, J. P. (1997), Professeur de Physique – Université Paul Sabatier Toulouse – France. - Mécanique – Fondements et applications , Edition MASSON, 120 bd St Germain 75 280 Paris Cedex 06 http ://www.hazelwood.k12.mo.us/grichert/sciweb/applets.htlm M. CAZIN (1995), Cours de mécanique générale et industrielle– gautier viullars – tome 1, NY 1003 -1995 http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/ chien_j.html http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/ 4mouche_j.html http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/ lissajou_j.html http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/ cycloi_j.html African Virtual University 66 • • • • • • http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/ pndhgs_j.html http://electronics.free.fr/school/article.phys3?id_article=9#5 http://www.chez.com/Mecanique/cinematipts.htm http://www.ucd.ma/fs/modules/meca1/um1./modules3/cin2.htm http://perso.orange.fr/rmchs/physique_05/cours_physique/cours_ mecach5_cinematique.pdf http://www.ucd.ma/fs/modules/meca1/um1./modules3/cin2.htm Detailed activity description The activity has two parts : Part I: Detailed study of free fall. This section serves not only as a complement to the course, but also during revision of what we have already seen in secondary classes. In this section, the student will have the opportunity to see: - Free fall without friction force, - Free fall with friction force proportional to the velocity of fall - Free fall on a slope. The student will become familiar with the equation of projectile trajectories by varying the firing angle, keeping the other parameters constant, and doing the same by varying the initial velocity. He or she will review methods for integrating equations of first or second order. By downloading the website below he or she will have fun checking the calculations of the peak, range (depending on the angle of the shot) and the initial velocity of the projectile. Part Two: A series of 9 corrected exercises, dealing mostly with the calculation of parametric equations, velocity and acceleration of a moving object in a coordinate system. In some cases, one must determine the equation of a trajectory. The student is already familiar with integration methods he or she saw in the first part of Unit 2. African Virtual University 67 Evaluation First portion of activity 2 evaluation : Detailed study of free fall http://e.m.c.2.fr_chute-libre.htm\e.m.c.2.free.fr\pj00wdel.htm A – Studied situation: See the virtual animation on the site http://e.m.c.2.fr_chute-libre.htm\e.m.c.2.free.fr\pj00wdel.htm We shoot with initial velocity an uncharged object of constant mass m in a region small enough that the intensity of gravity can be regarded as constant. We choose the point O as the starting point of the moving object M. We choose a plane xOz containing and in the following fashion: The x axis is horizontal in the direction of initial movement. The z axis is vertical and directed upwards. We choose a y-axis perpendicular to the 2 previous, thus horizontal, and such as the trihedral Ox, Oy, Oz is direct or that: African Virtual University 68 We have as the oriented angle B - System: The projectile of constant mass m, uncharged C - Referentiel: Assumed Galilean. D – Balance of forces: a- Gravity , vertical, directed downward, in the following manner: b - Air resistance neglected (this approximation is the least justified). It may be important, it is partly why airplanes fly at 30 000 feet. It depends on the velocity: F = - k V (laminar regime), F = - k = V2 or F - k V3 or more complex in the turbulent regimes. The last km / h of velocity achieved by the TGV, for example, are very expensive. Skydiving : a form of free fall. Beginning of fall : 3 600 m. End of fall : 1 500 m. Duration : 45 s. Competition between 2 forces: the weight, being constant, and the air resistance, increasing with velocity and is opposed to weight. It is therefore expected, after an extended period of time, to have an equilibrium between the 2 forces, resulting in a zero resistance, a zero acceleration and therefore a constant velocity. During this jump, we travel after about 8 seconds, at 55 m / s or 200 km / h. c – Buoyancy of air: neglected since The air has a density of about 1.3 kg/m3 while the bodies that we are studying the movement of have densities of about 1000 kg/m3 or more. African Virtual University 69 E – Fundamental relation of dynamics - Acceleration: If the chosen system was “Earth + projectile”, the weight is not an external force. The mass is simplified because it is the same mass that the projectile weight and inertia to the movement express. We obtain the following vector differential equation: The acceleration is independent of time. It is equal to - g (with the orientation of Oz upward). It depends (as does g), altitude and latitude of the land. It also depends on the mass of the attractor (moon, sun, planet ...) and the altitude and latitude. By integrating, we must not forget that the constants can be determined by the initial conditions imposed by the situation: F - First integration - The velocity: African Virtual University 70 There are two constants in this movement: - - Vy the velocity along the axis Oy initially zero, remains zero, this means that the projectile remains in the plane xOz. Now we can ignore what happens outside the plane xOz. The velocity vx (horizontal component) along the axis Ox is always equal to v0 cos α. In effect, the force (weight) has a zero component along Ox and Oy since there can not be any change in velocity along these 2 axes. However, the velocity vz (vertical component) depends on time t. (The weight has a nonzero vertical component). vz is positive if is directed upward. vz vanished at the moment THe projectile elevates since Oz vz is negative diminishes with time. The projectile rises. The altitude of the projectile Behaviour of the velocity and its components vx and vz. The angle which the direction of the velocity with the horizontal axis Ox makes at time 0, but in general, the generic instant t: if African Virtual University 71 Soon, we will better understand the particular significance of this moment. This is the moment when the projectile from an altitude z0 (eventually 0) passes through the same altitude z0 (eventually 0). The normal of the velocity also depends on time: if , time of launch. , the instant when the projectile has the same altitude as the launch altitude. G - Second integration – Time law of movement – The parametric equation of trajectory: Recall the solution At the instant t = 0: Where the time law of movement is: African Virtual University 72 Uniform rectilinear motion of the orthogonal projection of the projectile on the axis Ox. The flat trajectory is contained in the plane xOz. Parabolic behavior of the border (or altitude) z. This law is also called the time parametric equation of the trajectory (the parameter being the time) because by giving t, we can calculate x and z and find the corresponding set of points where the projectile passes. H – Cartesian equation z ( x ) of the trajectory: Recall the parametric equation: Eliminate the time t in line 3 by using equation in line 1: 1 gives : which, inserted in 3, gives the cartesian equation of the trajectory: It is a concave parabola oriented downward ( coefficient of x2 < 0 and axis Oz upward ). The quotient is in meters: the first term of the second expression is homogeneous in length. African Virtual University 73 Experiment at home : Webcam - 25 images per second - Pose 1/250 s – Rule of 30 cm. I – Calculation of the peak h: 1°) Utilizing tS : and In thus m. Is a maximum for = 90°. 2°) Utilisation of the derivative dz / dx: We express the abscissa xS of the summit of the parabola. or African Virtual University 74 Thus: Maximum for Then we insert in J – Calculation of the scope: Let C be the point where the projectile struck the ground. The scope is OC. C is the intersection of the trajectory of the projectile and the line z = 0 is thus Maximum for . K - Variant 1: The projectile from a non-zero altitude z0. We must restart from the initial condition of z. All the above (acceleration, velocity, x (t) and y (t)) remain unchanged. Only change z (t). At time t = 0, z is not equal to 0 but is equal to z0; C3 constant is then equal to z0 where the new time law is: African Virtual University 75 The moment of transition in S is the same. The peak is increased by z0. It is more difficult to determine the scope. We must solve the quadratic equation: with And here, L - Variant 2 – Sloping terrain: The terrain ( sloping up or down ) can be represented by the segment z = z’0 ± a . x or z = z’0 ± x . tan There is not much extra difficulty, except to solve the equation To obtain the abcissa of the point of impact. African Virtual University 76 First portion of activity 2 evaluation : Series of exercises 1. a, k and ω are constants. We give the acceleration vector of a point on a moving object M ( a = ak 2 6ωt x − 48ωt y + 12z ) Determine the velocity vector V ( M ) and the position vector M 0 M . M0 is the initial position of the moving object M and we note V0 as the initial velocity. ( ) , x , y , z , consider a point 2. With respect to a fixed orthonormal reference R O on a moving object M whose trajectory is given as a function of time by the following parametric equations: ⎧ x = 4t 2 t3 ⎪⎪ y = 4 ( t − ) ⎨ 3 ⎪ ⎪⎩ z = 3t + t 3 a) Determine the velocity vector of the moving object M b) Determine the velocity algebraically c) Prove that the tangent to the trajectory is a constant angle with the axis (O, z ) 3. Compared to an orthonormal reference, a point M is animated by a movement defined in cylindrical coordinates by: ⎧r = 1 + cos θ ⎪ ⎨ θ = ωt ⎪ z = sin θ ⎩ a) Calculate the components in cylindrical coordinates of the velocity and acceleration vectors b) Let m be the orthogonal projection of M in the xy plane. Write the polar equation of m. African Virtual University 77 4. A point M describes the curve of parametric equations: ⎧x=t ⎪ 2 ⎨y = t ⎪z = t 3 ⎩ a) Determine the unit vectors of the Frenet reference at t = 1. b) Write the equations of the tangent, normal and binormal at a point M of the trajectory. 5. Consider a point describing a curve (C). In a fixed, direct orthonormal reference R at time t, the components of point M are: ⎧ x = 4 cos t ⎪ ⎨ y = −4 sin t ⎪ z = 3t + 5 ⎩ a) Determine the unit vectors of the Frenet trihedral b) Determine the curvature and torsion of the curve (C) M. 6. If V , a and S are respectively the velocity, acceleration and jerk-acceleration (derivative of acceleration), a point M describes a curve (C), show that the curvature and torsion can be written as: ur r V ∧a = ur 3 V and et ur r ur V ,a ,S = − ur r 2 V ∧a ( ) 7. In a direct orthonormal R, the coordinates of a moving object M are at every moment t: a and w are positive constants ( a, is in the dimension of length and w is the inverse of the time t). ⎧ x = a ( 2e ⎪ ⎨ y = 2a (e ⎪z = 0 ⎩ − ω t −e − 2 ω t ) − ω t −e − 2 ω t ) African Virtual University 78 a) Write the cartesian equation of the trajectory of the point M b) Write the velocity vector of the point M c) Draw the trajectory for t>0 d) Determine the acceleration vector a and the tangential acceleration aT e) Determine the path taken by the moving object and the area swept by OM for t varying from 0 to . 8. A canon is fired at a boat from the top of a cliff. The height of the cliff is in and the distance of the boat from the foot of a cliff is D. a) What angle α must be drawn such that the initial velocity of the projectile is as low as possible? b) What will be the velocity v0? c) What is the velocity of the projectile at the impact on the boat? d) When does this impact occur? a. A material element is launched from a fixed point O downstream at an inclined plane of angle a with respect to the horizontal plane. If the launch velocity makes an angle of g with the inclined plane and the projectile falls at a point P on ; determinethe distance OP. b. the angle g as a function of a such that OP is a maximum, and calculate this maximum. African Virtual University 79 Correction of exercises of evaluation of activity 2 Exercise 1. dV = a ➙ d V = adt ➙ V = dt a) V = ak ( ∫ adt ➙ ) ∫ 6 ω t x − 48 ω t y + 12 z dt ➙ ( ) V = ak 2 3ω 2 t 2 x − 16ω 2 t 3 y + 12t z + V0 dM 0 M =V dt b ) ➙ d M 0 M = Vdt ➙ M0M = ( ) ∫ Vdt ➙ M 0 M = ak 2 ∫ 3ω 2 t 2 x − 16ω 2 t 3 y + 12t z + V0 dt ( M 0 M = ak 2 ω 2 t 3 x − 4ω 2 t 4 y + 6t 2 z + V0 t ) Exercise 2. 1°) Velocity vector of M 8t d OM V = 4(1 − t 2 ) V= ➙ dt 3(1 + t 2 ) 2°) Algebraic velocity of M s is the curvilinear abcissa V= ds dt We have : ⎛ ds ⎞ ⎛ dx ⎞ ⎛ dy ⎞ ⎛ dz ⎞ ⎜ ⎟ = ⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ = 64t + 16(1 − t ) + 9(1 + t ) ⎝ dt ⎠ ⎝ dt ⎠ ⎝ dt ⎠ ⎝ dt ⎠ ⎛ ds ⎞ ⎜ ⎟ = 25t + 50t + 25 = 25(1 + t ) ⎝ dt ⎠ African Virtual University 80 ⎛ ds ⎞ ⎛ dx ⎞ ⎛ dy ⎞ ⎛ dz ⎞ ⎜ ⎟ = ⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ = 64t + 16(1 − t ) + 9(1 + t ) ⎝ dt ⎠ ⎝ dt ⎠ ⎝ dt ⎠ ⎝ dt ⎠ ⎛ ds ⎞ ⎜ ⎟ = 25t + 50t + 25 = 25(1 + t ) ⎝ dt ⎠ By orienting the trajectory in the direction of movement, we have : V= ds = 5 1+ t2 dt ( ) 3°) Angle of the tangent to the trajectory and the axis Oz dz dz dt 3(1 + t 2 ) 3 Cos(Oz, V) = = = = ds ds 5(1 + t 2 ) 5 dt The cosine of this angle is constant so the angle between the tangent to the trajectory and the axis Oz is constant. Exercise 3. a) The cyclindrical coordinates :( r, q, z). The coordinates of the velocity vector in cylindrical coordinates are (equation 71 of the course): dr = −ω sinθ dt • uuuuuuur dθ VR ( M ) = r θ = r = (1 + cosθ)ω dt • dz z= = ω cosθ dt • r= The coordinates of the acceleration vector are (equation 72 of the course) : African Virtual University 81 ⎛ • • •2 ⎞ 2 2 2 ⎜⎝ r − r θ ⎟⎠ = −ω cosθ − (1 + cosθ)ω = −ω (1 + 2cosϑ ) uuuuuuur aR ( M ) = • • ⎛ •• ⎞ 2 r θ + +2 r θ ⎜⎝ ⎟⎠ = −2ω sinθ •• z = −ω 2 sinθ Rc uuuuuuur aR ( M ) = Rc −ω 2 (1 + 2cosϑ ) −2ω 2 sinθ −ω 2 sinθ b) The polar equation of m, orthogonal projection of M in the place xOy. The parametric equations of the point m are: r=1+cosθ and θ = ωt The polar equation of m is r=1+cosθ which is a cardioid. Exercise 4. Determination of unit vectors of the Frenet reference. ( ) , i , j , k , the vector position is written as : In the referentiel O OM = t i + t 2 j + t 3 k d OM dt = i + 2t j + 3t k 2 d 2 OM = 2 j + 6t k dt 2 (M, e ,e T N ) , eB is the Frenet trihedral The vector e T is tangent to the trajectory African Virtual University 82 uuuur r r r r r r ur u 1 dOM i + 2t j + 3t 2 k i + 2 j + 3k eT = = = V dt 14 9t 4 + 4t 2 + 1 If we orient the trajectory in the direction of the movement V = 12 + ( 2t) 2 + ( 3t 2 ) 2 = 9t 4 + 4t 2 +1 The vector e T is thus : eT = 1 d OM i + 2t j + 3t 2 k i + 2 j + 3k = = 4 2 V dt 14 9t + 4t + 1 The binormal e B is directed as follows: ur uuuuur uuuur B = V(M) ∧ a(M) =| 1 ∧ | 0 =| 6 2 2 −6 3 6 2 r r r r r r ur u 6i − 6 j + 2k 3i − 3 j + k eB = = 76 19 The vector N of the normal at t=1 is : ur ur ur N = B ∧ T =| 6 ∧ | 1 =| −22 −6 2 −16 2 3 18 r r r r r r ur u −22i − 16 j +18k −11i − 8 j + 9k eN = = 1064 266 For t=1, x=1, y=1 and z=1 African Virtual University 83 The equation of the tangent is : x − 1 = 1 y − 1 2 z − 1 = 3 The equation of the principal normal is : x − 1 = − 11 y − 1 − 8 z − 1 = 9 The equation of the binormal is : x − 1 = 3 y − 1 − 3 z − 1 = 1 Exercise 5. The vectors of the Frenet trihedral are : eT = d OM 1 de T , eN = , eB = eT ∧ e N ds R ds x OM = y = t − 4 sin = z = eT = 4 cos t 3 t + 5 dOM dOM dt = x ds dt ds 2 2 2 2 ⎛ ds ⎞ = ⎛ dx ⎞ + ⎛ dy ⎞ + ⎛ dz ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ dt ⎠ ⎝ dt ⎠ ⎝ dt ⎠ ⎝ dt ⎠ = 16 sin 2 t + 16 cos 2 t + 9 2 ⎛ ds ⎞ = 25 ⎜ ⎟ ⎝ dt ⎠ ⇒ Calculation of dt 1 = ds 5 − 4 sin t d OM = − 4 cos t ➙ , e dt 3 = 1 5 − 4 sin t − 4 cos t 3 African Virtual University 84 With ur u 2 deT ⎛ 4⎞ R= = ⎜ ⎟ ⎝ 25 ⎠ ds ur u 25 −4 ur u , eN = | cost ⇒ eN =| −cost 4 25 sint 4 Where sint 0 25 0 ur u ur u ur u 1 1 eB = eT ∧ eN = | −4sint ∧ | −cost = | −3sint 5 5 −4cost sint −3cost 3 0 −4 Calculation of the torsion de ds de ds τ = = τe = = de dt dt ds de = ds = 1 de 5 = dt − cos t 3 sin t 25 0 3 25 Exercise 6 The velocity vector V is the derivative of the ray vector OM V= d OM d OM ds = = Ve T dt ds dt The acceleration a is the derivative of the velocity a = dV dt = dV dt eT + V d e T ds ds dt = dV dt 2 e T + V ρe N African Virtual University 85 ρ= 1 is called the curve of the trajectory R By calculating the vector product ⎛ dV ⎞ V ∧ a = Ve T ∧ ⎜ e T + V 2 ρe N ⎟ = V 3 ρe B ⎝ dt ⎠ By taking the modulus, we have : ρ = V∧a V 3 The jerk-acceleration is the derivative of the acceleration. S= S = S= S= S= d e ds da d 2 V dV d e T ds dV = 2 eT + . + 2V ρe N + ρV 2 N dt dt ds dt dt ds dt dt da d V = dt e + V dt dV dt . e + 2V ρ dV dt ρe + ρV de ds da d 2 V dV e N dV d = eT + V . + 2V ρe N + ρV 3 eB ∧ eT 2 dt dt ρ dt ds dt ( da = dt d V dt e +V ) de de dV e dV . + 2V ρe + ρV ∧ e + ρV e ∧ dt ρ dt ds ds e d 2V dV e N dV eT + V . + 2V ρe N + ρV 3 τe N ∧ e T + ρV 3 e B ∧ N 2 dt ρ dt ρ dt ( ) Form the mixed product S V, a ( S,V ,a ) = − ρ τV Where τ=- (V, a , S) V∧a 2 African Virtual University 86 Exercise 7 a) Cartesian equation of the trajectory : ⎧ x = a ( 2e ⎪ ⎨ y = 2a (e ⎪z = 0 ⎩ − ω t −e − 2 ω t ) − ω t −e − 2 ω t ) − ωt By letting f = e , this system is equivalent to : ⎧ x = a ( 2f − f ) ⎪ ⎨ y = 2a ( f − f ) ⎪z = 0 ⎩ ⎧ ⎪ ⎪⎪ ➙⎨ ⎪ ⎪ ⎩⎪ x = ( 2f − f 2 ) a y x y = (f − f 2 ) ⇒ − =f 2a a 2a ⎧ x = a ( 2f − f ) ⎪ ⎨ y = 2a ( f − f ) ⎪z = 0 ⎩ ⎧ ⎪ ⎪⎪ ➙⎨ ⎪ ⎪ ⎪⎩ x = (2f − f 2 ) a y x y = 2(f − f 2 ) ⇒ − = f 2 a a a 2 2 2 2 x y − =f a 2a x y − =f2 a a 2 ⎛x y ⎞ ⎛x y⎞ ➙⎜ − ⎟ = ⎜ − ⎟➙ (2x − y ) ⎝ a 2a ⎠ ⎝a a⎠ The trajectory is the branch of a parabola. b) Vector velocity • V= x = −2aω(f − f 2 ) • y = −2aω(f − 2f 2 ) 2 = 4a ( x − y ) African Virtual University 87 b) Draw the trajectory for t>0 We study the variation of the curve path as we did in the tracing of parametric curves. The table of variation is below. T 0 ∞ F 1 1/2 0 • x 0 - 0 X a 3a/ 4 0 • y 2aω + 0 - 0 Y a/2 0 0 African Virtual University 88 y M x I(t=0) 3a/4 0 (à t=∞) d) The acceleration vector a •• r x = 2aω 2 ( f − 2 f 2 ) a = •• y = 2aω 2 ( f − 4 f 2 ) The tangential acceleration a T ur 2 V = 4a 2ω 2 f 2 2 − 6 f + 5 f 2 ( ) By orienting the trajectory in the direction of the movement V = 2aω f (2 − 6 f + 5 f ) 2 The modulus of the tangential acceleration is : dV d aT = = ⎡⎢ 2aω f 2 − 6 f + 5 f 2 ⎤⎥ = aω 2 f ⎦ dt dt ⎣ ⎡ −2 + 9 f − 10 f 2 ⎤ ⎢ ⎥ ⎢⎣ 2 − 6 f + 5 f 2 ⎥⎦ African Virtual University 89 e) Path traveled by the moving object and the area swept by OM for t varying from 0 à ∞. The arc IM = ∫ vdt = 2a ∫ωf 2 − 6f + 5f dt To calculate this primitive, is written in a conventional manner: 2 2 ⎡⎛ 3⎞ ⎛1⎞ ⎤ 1 5f 2 − 6f + 2 = 5⎢⎜ f − ⎟ + ⎜ ⎟ ⎥ = ch 2 θ 5 ⎠ ⎝ 5 ⎠ ⎥⎦ 5 ⎢⎣⎝ 3 1 f − = shθ; 5 5 1 df = chθdθ 5 ch 2 θdθ 5f 2 − 6f + 2.df 5 5 1 (θ + sh θch θ ) , with θ as a function of f and f as a The primitive is : 10 5 function of t. shθ = 5f − 3; chθ = 1 + (5f − 3) 2 θ = Ln[5f − 3 + (5f − 3) 2 + 1 ] ( ) For t=0, f0=1, θ 0 = Ln 2 + 5 , shθ0=2, chθ 0 = For t=∞, f∞=0, θ ∩ The arc IO = = Ln ( 10 ) − 3, shθ =-3, ∞ 5 chθ ∞ = 10 ⎤ a ⎡ 2+ 5 + 2 5 + 3 10 ⎥ ⎢Ln ⎥⎦ 5 5 ⎣⎢ 10 − 3 African Virtual University 90 Exercise 8 a) Expression of α P designates the position of the boat, a the launch angle We are looking for the equation of the projectile’s trajectory. Following the Oy axis, the movement is uniform with the equation : y = V0 cosα.t Following the Oz axis, the movement is uniformly varied with a constant acceleration –g, of equation : z = − The trajectory equation is : 1 2 gt + V0 sinα.t 2 2 1 y z=− g 2 + V0 tanα.y 2 V0 cos 2 α The boat that is at a distance D from the cliff is hit by the projectile if and only if y=D and z= -h 1 D2 −h = − g 2 + tanα D (1) 2 V0 cos 2 α African Virtual University 91 z O y h D P Take V0 from this expression and write that V0 is a minimum, however is it best to write : f = −gD 2 2V02 Which gives : −h = f (α ) + D tanα cos 2 α By deriving this expression with respect to a, we have : 0= 1` df (α ) D 2 f sinα + + 2 2 cos α dα cos α cos 2 α And write that df (α ) = 0 , which gives dα V02 = gD tanα (2) 0 = D + 2 f tanα or also African Virtual University 92 Place equation (2) in equation (1). Thus : 1 D2 −h = − g + tanα D 2 gD tanα cos 2 α After simplification, we find : tan 2α = Or tan 2α = ⎛ D⎞ D 1 ➙ α = Arc tan ⎜ ⎟ h 2 ⎝ h⎠ D 2 tanα 2 tanα h = ⇒ 1 − tan 2 α = ⇒ 1 − tan 2 α − 2 tanα = 0 2 D h 1 − tan α D h We now have a second degree equation in X=tana which has a positive solution : X = h2 + D 2 − h = tanα b) Calculation of V0. The velocity V0 is such that V 2 = gD tanα = gD 0 ( ) h2 + D 2 − h c) velocity of the projectile at the moment of impact on the boat The movement is uniformly varied and we can write : V 2 − V02 = 2gh ⇒ V 2 = g ⎡⎢ h2 + D 2 + h⎤⎥ ⎣ ⎦ d) Time of impact of the projectile on the boat : Starting with the equation y = V0 cosα.t , on a : D = V0 cosα.t ➙ t= D V0 cosα African Virtual University 93 We raised to the power of 2 and we have : t2 = D2 2D 2 h2 + D 2 = = g V02 cos 2 α gsin 2α Exercise 9 Trajectory equation is : z=− g y2 + y tan(γ − α ) 2 V02 cos 2 (γ − α ) W are looking for coodinates of P under the form : yp= rcosa et zp= rsina Substitute P in the trajectory equation and we obtain : 2V02 cos 2 (γ − α ) 2V02 cos(γ − α )sinγ ⎡⎣ tanα + tan(γ − α ) ⎤⎦ = r = OP = g cosα g cos 2 α For r to be a maximum, the following expression must represent a maximum : sinγ cos(γ − α ) African Virtual University 94 The maxmum value of this expression corresponds to that of g. that has a zero derivative with respect to g. Thus : − sin(γ − α )sinγ + cos(γ − α )cosγ = 0 ⇒ cos(2γ − α ) = 0 2γ − α = π π α ➙γ = + 2 4 2 In these conditions rm ax imum V02 = g(1 − sinα ) Learning activities The students must do all the exercises. They are organized in groups for collaborative work. Each group completes the proposed exercises and designates a leader of the group who will report for each group. The professor gives a deadline for each exercise, at which time each group will send an attached file of their reports to the professor of the course. Teacher’s guide The professor will correct the group reports, and will place the corrections in a workspace accessible to students. The corrections are accompanied by adequate feedback. The scores for each group are assigned to group members and will count for 20% of the final evaluation of the module. African Virtual University 95 Learning activity 3 Activity title: Equilibrium of solids Specific learning objectives The student must be able to: - become familiar with the concepts of the equilibrium of a solid distinguish translational motion from rotational motion recall the result of a moment and the result of several forces. calculate the position of center of gravity of a solid or a group of solids Activity summary Statics is the study of conditions for which the bodies are immovable objects, relative to a reference R, Galilean or not, related to the observer. These conditions relate particularly to the distribution of forces on the body at rest. For this study, we introduced the notion of torsor which is reduced to the general resultant and resultant moment of all forces applied to a solid. The equilibrium of a solid subjected to one or more forces results in a zero torsor (general zero resultant and zero moment). Key concepts • • • • • General Resultant = the vector sum of a system of vectors (forces) Time = the resulting vector sum of moments of a system of vectors (forces) Torsor = system of free vectors (forces) which reduces to the general resultant and resultant moment Reaction: force opposed to an action Center of gravity = Point which where the entire mass of a system of material points appears to be concentrated. Appropriate readings (IN APPENDIX 3) 1°) RATIARISON, A. (2006). Equilibre des solides sur un plan. Madagascar. Université d’Antanarivo. Cours inédit 2°) http://fr.wikipedia.org/wiki/Statique_du_solide Solid statics. 3°) http://www.ac-poitiers.fr/cmrp/cpge/docs/Coursdemodelisationetdestatique. doc Solid statics. African Virtual University 96 Appropriate resources The Free High School Sciences: A Textbook for High School Students Studing physics – FHSSt Authors- December 9, 2005 ANSERMET, J.-P. ( 2004-2005), La mécanique rationnelle – Formation de base des Sciences et des ingénieurs – Institut de Physique des nanostructures- Ecole Polytechnique Fédérale de Lausanne de Lausanne– PHB – Ecublens, 1015 Lausanne TIPLER, P. A. (1995). Physics for Scientists and Engineers –– Worth Publishers. New York, NY 1003 PEREZ, J.P. (1997). Mécanique : Fondements et applications. MASSON http://www.google.ca/search?client=firefox_a&rls=org.mozilla%3AenUS%Aofficial-&hl=en&q=c3%A9equilibre+d%27un+solide+sur+plan&meta African Virtual University 97 Useful links http://fr.wikipedia.org/wiki/statique-du-solide http://savannah.nongnu.org/projects/fhsst http://www.logitheque.com/fiche.asp?I=18755 http://www.chimix.com/an5/prem5/hotp5/force1htlm African Virtual University 98 Detailed activity description This activity has two parts: • The first part includes an additional course on the forces acting on a solid. Forces can, depending on their intensity: - - - - Maintain a strong balance Develop a strong translational motion, Develop a solid rotation around a fixed axis. Deform an object. To supplement the knowledge of students on these facts, it seems useful and necessary to make a point of being on these points. This add-on courses: - - - - - The weight of a body, The reaction of a support, The forces of solid-solid friction, The equilibrium of a solid on an inclined plane with rough contact surfaces, The study of the deformation of a spring under different forces. • a second part consisting of eight exerciss that relate to a solid balanced on a support. For each exercise, the corresponding scheme is given. In most exercises, it is required to find the equilibrium conditions of the solid or of the system. African Virtual University 99 Evaluation Part 1 : Course compliment – Forces acting on a solid macroscopic forces on a solid resultant of microscopic forces distribution over a surface or volume The weight of a body Definition : We call the weight of a point object, situated in a given point M, the foce opposing the force exerted by a thread that holds this point object at rest relative to the solid Earth, taken as reference. In this reference system, the weight form: of the point object can be put in the = m or is, by definition, the vector field of terrestrial gravity at the point M considered. Remark : For an object of finite dimensions, the assembly should be under vacuum in order to overcome the buoyancy. Note that each microscopic particle (atom, molecule, ion, etc..) of the object is subjected to the gravitational pull of the Earth, represented by the vector force. . The sum of the forces dispersed in the volume of the solid body is . Can we confuse the weight of an object and the gravitational attractive force that the Earth applies to an object ? Strictly speaking, we should write : - = + + is the weight of the object. - is the gravitational attractive force of high intensity that the Earth applies to an object. - is a force of low intensity due to the attraction of terrestrial bodies other t than the Earth (moon, sun, etc.) on this object. - is a force of low intensity due to the rotation of the Earth acting on the object. - In the problems studied in Unit 1, we can neglect and . We confuse the weight of the object and the gravitational attraction exerted by earth on this object. African Virtual University 100 We write : = Remark : In certain problems studied in further courses, we cannot neglect and . Actually : is responsible for the tides. Force explains that the direction of the plumb line does not pass ex Force actly through the center of the Earth. The weight of an object is characterised by : - Its point of application: the center of gravity of the object coincides with the center of inertia. - The direction of the plumb line, almost confused with the vertical. - Its orientation: downward. - its Intensity P = mg (1) where m is the mass of the object (in kg) and g, the intensity of the gravity vector (in N / kg). The value of g varies slightly with latitude and heavily with altitude. In France, at sea level, g = 9,81 N/kg. The reaction of a support Consider a solid S at rest on a horizontal table. Figure 1 African Virtual University 101 Reference to be studied : the solid Earth. System to be studied : the solid S. The solid S is subjected to 2 forces : - the weight - the force (essentially the gravitational action of the Earth on the solid S) (vertical action of the table on the solid S) The existance of the force is governed by the principle of inertia, studied in high school. For a terrestrial observer, every body perseveres in its state of rest or uniform rectilinear motion, if the forces exerted on him compensate each other. Here, for a terrestrial observer, the solid S is at rest. The sum of forces acting on it must be zero. To compensate for the vertical weight , directed downward, the table must exert a vertical contact force , directed upward such that : (2) Remark : The force represents the sum of the forces distributed over the contact area between the table and the solid S. These forces are due to electromagnetic interactions between atoms of the table and the solid. Solid-solid frictional forces. Place a solid S in a slightly inclined place. If the contact is sufficiently rough, solid S is at rest relative to the reference ground. It does not slip on the inclined plane. African Virtual University 102 Figure 2 According to the principle of inertia (for a terrestrial observer, every body perseveres in its state of rest or uniform rectilinear motion, if the forces exerted compensate for the observer’s forces) the weight vertical, directed downward, is again compensated by a force , vertical, directed upward such that: (3) This contact force exerted by the inclined plane on the solid S peut être can be broken down into two components : , the normal action of the inclined plane on the solid, perpendicular to the plane, that prevents the solid from penetrating the support. , tangential action of the inclined plane on the solid, on the tangent parallel to the line of greatest slope on the plane, which opposes movement of the solid. This force models the frictional forces when we are dealing with a rough surface. We can write = + (4) (3) which describes the equili- Use relation (4) in relation brium of the solid S with a terrestrial reference. We obtain : - + + = from equation (4) Remark : according to the principle of inertia, the relation + + = in equation (4), which is equivalent to the relation in equation (3), is still satisfied if the solid slides along the portion of the inclined plane with the greatest slope. Absence of friction: Without friction, the forces on the solid reduce to . Under the action of and equilibrium of the solid is impossible (the sum + is different that the zero vector ). The solid, placed without velocity on the inclined plane, assumes a movement of rectilinear motion with with an increasing velocity following the line of greatest slope on the plane. African Virtual University 103 Figure 3 2- Exemples d’effets produits par des forces s’exercant sur un solide - - - - Forces can maintain a solid in equilibrium (see example 1 and example 2). Forces can put an object into translational movement (see example 3). Forces can make a solid rotate around a fixed axis. Consider, for example, a door ajar and an immovable object. A force applied on the gate will generally revolve around the fixed axis (unless the force is parallel to the axis if the force meets the shaft). Forces may have other effects. We will study a little more detail of their work on a spring. Exercise : Deformation of a spring. Consider a spring wound with non-touching turns with lenth Lo = 15 cm and negligible mass. It hangs at one end to a fixed support. When we attach a solid S (mass marked m) at its other end, its length is L. We vary m and note the different lengths L at equilibrium: m (in g) L (in cm) 0 15,0 50 15,5 100 20,0 150 22,5 200 25,0 a- Draw the force diagram. Represent the two forces acting on the solid and the spring. African Virtual University 104 b- Construct the graph representing the common value T of the two forces acting on the spring according to the spring extension. c- Show that we can write T = k (L - Lo). Determine the value of k, called the coefficient of stiffness of the spring. We will assume g = 10 N/kg. Solution FORCE DIAGRAM : Figure 4 African Virtual University 105 Now represent the forces acting on the spring of negligible mass. Figure 5 b- Construct the graph representing the common value T of the two forces acting on the spring according to the spring extension. In the table given, we add two lines giving the value of the force T and the value of the extension x. It uses the international system of units. M in Kg L in cm T=mg=10.m in N X=L-L0 =L-0,150 in m 0 0,150 0 0 0,050 0,175 0,500 0,025 0,100 0,200 1,000 0,050 0,150 0,225 1,500 0,075 0,200 0,250 2,000 0,100 African Virtual University 106 Figure 6 c-Show that we can write T = k (L - Lo) The graph above shows that the points are on a line through the origin The force T is a linear function of the elongation x = L - Lo. We can write T = K (L - Lo). The tension T of the spring is proportional to its elongation. The coefficient K is called the coefficient of stiffness of the spring. Its value is : K = T / (L - Lo) , K = 2,00 / 0,100 thus : K = 20 N / m Remarks : Under vector form, we can write : =K (figure 5). The relation associated with the equilibirum of a solid S in a terrestrial reference system is : + m = +K (figure 4) = or : m -K = African Virtual University 107 Second Portion of Activity 3 Evaluation : Series of Exercises Exercise 1. Ra L3 = 3 m Rb L = 10 m L1 = 1 m D A L2=1 m F C B E P W A plank of 12 m weighing P1 = 90 N is held by two supports A and B. A is 2 m from B, in the orientation of vector BA , we place a weight of P2 = 360 N. Find the forces exerted by A and B. Exercise 2 A ladder of length L = 5m and weight of intensity P = 60 N rests on a rough horizontal floor AB and a vertical wall BC. Assume that the wall exerts no frictional force on the ladder. The foot of the ladder on level ground is at z = 3 m from the foot of the wall. F1 K C m 5 y F2 P Fn / Horizontal floor A B FS x z=3m 1° What are the forces in place that allow equilibrium of the ladder ? African Virtual University 108 2° Draw these forces on the diagram. 3° Find the distance BC = y, 4° The center of gravity of the ladder is G, which is projected orthogonally on D on the horizontal surface. Find the distance AJ=x. 5° The scale is in static equilibrium under the effect of several non-parallel forces means that these forces are under concurrent support. What is the minimum coefficient of static friction necessary between the ladder and the ground so that the ladder does not slip. Exercise 3 A ladder AB of mass m and length l, is leaning against a wall of height h (see figure), the contacts A and B being void of friction, maintains the scale tilted at an angle α relative to the vertical through a horizontal wire OA. Calculate the reaction supports in A and D and the wire tension. B D g C h O A African Virtual University 109 Exercise 4 We want to hang a picture, height h on a smooth wall, so that the nail attachment F is on the wall at the same level as the highest point on the wall (see figure). 1. Show that the point of attachment to the rear of the table should be placed at a fixed distance from the lowest point of the table. 2. Assess, based according to the wire length and h, the angle of the table with the vertical. Deduce that l must be between two values that we express F T g C A African Virtual University 110 Exercise 5 We wish to make efforts to link the console shown in the figure. The bar AB of length l is horizontal, and the bar of length 4l / 3 makes an angle of 30o with the vertical. The horizontal bar supports a uniformly distributed load value P. We neglect the weight of the bars. Calculate the efforts in A, D and E. A D 30° E P B g African Virtual University 111 Exercise 6 A moving object ABC, shaped like an isosceles triangle (AB = AC = h) is installed on a pipe of diameter 2r as shown in the figure. The factor of static friction between the console and the pipe is mS. Neglect the weight of the console in front of load P placed on AC. Calculate the distance to the x axis of the pipe to which the burden can be supported without sliding. x A’ A C h h g P B’ B African Virtual University 112 Exercise 7 A ladder consists of two simple scales, AO and BO of the same length, same weight Mg, articulated without friction at the common vertex O. The angle is 2a at the top of the two ladders and m, the friction factor with the ground. A man of weight mg, climbs the ladder AO to point H at a distance, x, from the top O. Show that if the angle a increases, it is the ladder BO that will slide first. Discuss the influence of x in the special case where m = M. Exercise 8. D H E 30° C 4a 2b c F A 2a B x African Virtual University 113 Three rods AD, DB and CH of negligible mass lie in the same vertical planeas shown. The assembly is subjected to an outside vertical force F1 . Find the reaction on each joint, so that the system is in equilibrium. (For reasons of simplicity of the problem, it is required that the reaction C is normal to the rod DB). Exercise 9 Determine the center of mass (center of gravity) of a quarter of a homogeneous disk. Exercise10 Determine the center of mass (center of gravity) of half a homogeneous disk of radius R and mass M. African Virtual University 114 Exercise11. Determine the center of mass (center of gravity) of a homogeneous half-sphere of radius R and mass M. African Virtual University 115 Correction of Activity 3 exercises : Exercise 1 This system is in equilibrium if the torsor of the effect in A or in B is zero. ➙The general resultant of forces applied to the system is zero: Ra + Rb + W + P = 0 ➙Ra +Rb-W-P=0➙Ra+Rb=W+P ➙The resultant moment in A is zero : -W.AC - P.AC + Rb.AB=0 Rb = W.AC + P.AC = and Ra=W+P-Rb= AB Exercise 2 The forces acting on the plate are: its weight P , the horizontal reaction of the wall F1 and the floor reaction F2 . These three forces must be concurrent and let K be the point of intersection of the supports of these three forces. The components of the force F2 along the vertical and the horizontal are respectively Fn and Fs . The equilibrium condition is no torsor: ur u ur u ur r following the horizontal ⎧ Fs − F1 = 0 ⇒ Fs = F1 F1 + F2 + P = 0 ⇒ ⎨ ⎩ Fn − P = 0 ⇒ Fn = P = 60 N following the vertical African Virtual University 116 The moment of these forces on O is zero : F1.BC – P. x =0 ➙ F1 = Px 60 x1,5 = = 22,5 N BC 4 If m is the coefficient of friction of the floor, the floor does not slide if : Fs ≤ µFn ==> m = F s 22,5 = = 0,395 Fn 60 F1 K C m 5 y F2 P Fn / Horizontal floor A B FS x z=3m African Virtual University 117 Exercise 3 T, R A , R D are respectively the tension of the wire, the reaction in A and the reaction in D. The ladder being an immovable object : mg + T + R A + R D = 0 and uuur ur uuur uur r AC ∧ mg + AD ∧ R D = 0 By projecting following the axes, we have : -T+RDcosα=0 -mg+ RA + RD .sinα=0 mg(l/2)sinα=0 mg(l/2)sinα-(RDh)/cosα=0 Thus: R D = mgl sin(2α ),T = R D cosα,etR A = mg − R D sinα 4h Exercise 4 1. For the torsor associated to the three forces mg , the reaction R in O and thread tension T to be zero, they must to be coplanar and concurrent. It follows that the points F, A and H are aligned. The triangle AFO and AHC are homothetic. Therefore, if Ao = a, we have: h − a CH 1 h 2 = = d’où a = a OF 2 3 2. Since l 2 = h2 cos 2 θ + a 2 − 2ahcos 2 θ ➙ cos 2 θ = 0 ≤ cos 2 θ ≤ 1 , we find that : h 2h ≤l ≤ 3 3 3l 2 1 − et h2 3 African Virtual University 118 Exercise 5 The balance of the rod AB is achieved if the resultant force is zero and also the resultant moment of the force at A is zero. Let (XA, YA) be the components of the reaction A (XD, YD) those of reaction D (XE, YE) those of reaction E XA+XD = 0 ; YA+ YD – P = 0 and P l 2l − YD =0 2 3 Similarly, the equilibrium of DE results in writing that the sum and moment of the forces are zero in D: XE-XD = 0 ; YE - YD = 0 and (−YE + X E 3) 2l =0 3 Thus : YD = YE = 3 3 P P ; X D = X E = − X A = P ; YA = 4 4 4 Exercise 6 Under the action of the load, the contacts appear in B and point A ‘, symmetrical with respect to the axis of the pipe. Translate the equilibrium conditions by canceling the torsor of external actions in A ‘. Let (XA ‘YA’) be the components of the reaction in A ‘, (XB, YB) those of the reaction in D We have : XA’+XB = 0 ; YA’+ YB – P = 0 and (x+r)P-hXB – 2rYB =0 Since A ‘is based on the pipe, XA’ <0, XB> 0, IS ‘> 0, YB> 0 because these components are opposed to the emerging shift downward. African Virtual University 119 Solving this system gives : P = YA ' + YB = −ms X A ' + ms X B = 2ms X B x+r = x= h + 2r ms 2ms h 2ms Exercise 7 Translate the equilibrium of the system by canceling the torsor of the forces exerted on O and the torsor of the forces exerted on the stem of O. Thus: and ur ur ur ur r uuur ur uuur ur uuur ur r R A + R B + 2 M g + mg = 0 et OA Λ R A + OB Λ R B + OH Λ mg = 0 ur ur ur ur r uuur ur uuur ur uuur ur r R et OA Λ R A + R B + 2 M g + mg = 0 A + OB Λ R B + OH Λ mg = 0 uuur And for OB : and ur ur ur r uuur ur uuur ur r R B + R a → b + M g = 0 et OG 2 Λ M g + OB Λ M g = 0 ur ur ur r uuur ur uuur ur r R B + R a → b + M g = 0 et OG 2 Λ M g + OB Λ M g = 0 African Virtual University 120 r r By projecting in the base (e x , e y ) , we obtain : X A + X B = 0, YA + YB − (2 M + m)g = 0 and : X A l sinα X B −xsinα −l sinα 0 0 −l cosα Λ YA + −l cosα Λ YB + −xcosα Λ −mg = 0 0 0 0 0 0 0 0 It results that : −l YA sinα + l X A cosα + l YB sinα + l X B cosα + mgxsinα = 0 such soit that l(YB − YA ) + mgx sinα + l X B cosα + mgxsinα = 0 soit l(YB − YA ) + mgx = 0 Since X A + X B = 0 . We deduce that : YB = (2 M + m) g gx g x −m = Mg + m (1 − ) et YA = (2 M + m)g − YA 2 2 l 2 l uuur Cancel the moments of the actions that exert themselves in O on OB : XB 0 l sinα 0 −l cos(α / 2) Λ − Mg + −l cosα Λ YB = 0 0 0 0 0 0 l sin(α / 2) By letting u = m(1 − x / l ) / M , we obtain : X A = − X B = tanα(− and YB = Mg + Mg Mg tanα + YB ) = 2 2 mg x u (1 − ) = Mg(1 + ) 2 l 2 ⎡ m⎛ 1− ⎢1 + M ⎜⎝ ⎣ x ⎞ ⎤ Mg tanα (1 + u) ⎥= l ⎟⎠ ⎦ 2 African Virtual University 121 The discussion is facilitated by using a Cartesian plane where the abscissa and the ordinate of the forces are 1 (Fig. S23.5). In the case where m = M , we have, in reduced coordinates : XA tanα = −xB = (1 + u) Mg 2 Y u yB = B = (1 + ) Mg 2 Y u y A = A = 3 − yB = 2 − Mg 2 xA = For equilibrium to be possible, we need the segment | x A / m s | to cut the segments representing Ya and Yb in the interval [0,1] for u : Several cases present themselves: : No equilibrium possible : Points A and B will slide : Point B slides before A : No sliding African Virtual University 122 Exercise 8 Here we have a problem with 5 joints: the joints are at points A, B, C, D and E. In the system of coordinates on the diagram the various components of forces applied to the system are: F1 0 F1 , R1 X1 Y1 , R2 X2 Y2 , R3 X3 Y3 , R4 X4 Y4 , R5 X5 Y5 R 1 the reaction in A R 2 the reaction in B R 3 the reaction in C R 4 the reaction in D R 5 the reaction in E The immobility of HC gives the following equations : X5 X3 0 0 ur u ur u ur u r ⎧⎪ X 5 + X 3 = 0 ➙ F1 + R5 + R3 = 0 ⇒ − F1 + Y5 + Y3 = 0 ⇒ ⎨ − F + Y + Y3 = 0 0 ⎪⎩ 1 5 0 0 0 (1) (2) African Virtual University 123 ➙ Sum of the moments with respect to E is zero F1.HE+Y3.EC=0 F1.c +Y3.a =0 (3) ➙ Y3 = − (3) F1c a (4) 0 R 3 cos 30 R 3 = R 3 sin 30 0 = 0 X 3 = R3 5 R3 = X5 = − 3 2 R3 2 0 3 3 c 3 = − X 5 or X 3 = R3 = − F1 2 2 a x = −R (4)➙ R3 3 3 2 (5) −2F1 c a , in modulus R 3 = 2F1 c a F1c 3 Fc 3 ,in modulus X 5 = 1 a a (6) (2) and (4) give ⎛ F c⎞ ⎛ c⎞ Y5 = F1 − Y3 = F1 − ⎜ − 1 ⎟ = F 1⎜ 1 + ⎟ a⎠ ⎝ ⎝ a ⎠ Immobility of the stem AD uur uur uur r R4 + R5 + R1 = 0 (7) African Virtual University 124 X4 X5 X1 0 Y4 + Y5 + Y1 = 0 0 0 0 0 moment ⎧ X 4 = X1 ⎪ ⇒ ⎨ X 4 + X 5 + X1 = 0 ⎪Y + Y + Y = 0 5 1 ⎩ 4 (8) and (9) Immobility of the stem DB uur uur uur r R4 + R3 + R2 = 0 X4 X3 −X2 0 Y4 + Y3 + −Y2 = 0 0 0 0 0 moment with respect to point B uuur uur uuur ur u r BD ∧ R4 + BC ∧ R3 = 0 (8) (9) (10) African Virtual University 125 X 4 −2a sin 30 X 3 −4a sin 30 0 +4a cos30 ∧ Y4 + +2a cos30 ∧ Y3 = 0 0 0 0 0 0 −4a sin 30Y4 − 4a cos30 X 4 − 2a sin 30Y3 − 2a cos30 X 3 = 0 We have the relation Y4 + Y3 − Y2 = 0 cF1 cF1 cF − − Y2 = 0 ⇒ Y2 = − 1 2a a 2a 3c F =0 2a 1 2c 3c ⇒ Y4 + F1 − F =0 2a 2a 1 Y4 + R3 − ⇒ Y4 − Then Y4 + Y3 − Y2 = 0 cF1 cF1 cF − − Y2 = 0 ⇒ Y2 = − 1 2a a 2a c F =0 2a 1 ou bien Y4 = c F 2a 1 African Virtual University 126 X4 + X3 − X2 = 0 and c 3F1 cF1 3 c 3F1 + − X2 = 0 ⇒ X2 = − 2a a 2a − From (10) Y1 = − Y4 − Y5 = 0 cF1 cF − F1 − 1 2a a ⎛ 3c ⎞ Y1 = − F1 ⎜ 1 + ⎟ 2a ⎠ ⎝ Y1 = − Exercise 9 uuur The center of gravity is defined by M OG = ∫ uuuur OM dm (S ) Consider a base sector rdq , of radius r. The angle q is counted beginning at the axis Ox. Center of gravity du 64748 ⎛2 ⎞ r cosθ ⎜⎝ 3 ⎟⎠ lecentr e de gr avite xG = 1 M π 2 ∫σ 0 sec teur Surface ⎛ 1 2 ⎞ 4r ⎜⎝ 2 r dθ ⎟⎠ = 3π 1424 3 sur facedu sec teur African Virtual University 127 Center of gravity du 64748 ⎛2 ⎞ ⎜⎝ 3 r sinθ ⎟⎠ lecentr e de gr avite 1 M yG = π 2 ∫σ 0 sec teur Surface ⎛ 1 2 ⎞ 4r ⎜⎝ 2 r dθ ⎟⎠ = 3π 1424 3 sur facedu sec teur Exercise 10 dy By reason of symmetry, the center of gravity is found on the axis Oy . dm = σ dS = 2σ dyr r = R 2 − y2 R MyG = ∫ 2σ ydy R 2 − y2 0 We let 0 R 2 − y2 = u and we integrate in terms of U going from R to 0 yG = ∫ −2σu2 du = R 4R 3π African Virtual University 128 Exercise 11 R R 0 0 R MzG = ∫ zρdV = ∫ zρπr dz = ∫ zρ(R 2 − z2 )dz = zG = 2 0 ρπ R 4 4 3R 8 Learning activities The students should read a complementary course on forces being applied to solids. The students must do all the exercises. They are organized in groups for collaborative work. Each group completes the proposed exercises and designates a leader of the group who will report for each group. The professor gives a deadline for each exercise, at which time each group will send an attached file of their reports to the professor of the course. Teacher’s guide The professor will correct the group reports, and will place the corrections in a workspace accessible to students. The corrections are accompanied by adequate feedback. The scores for each group are assigned to group members and will count for 20% of the final evaluation of the module. African Virtual University 129 Learning activity 4 Activity title • • • • Composition of movementsDynamics of a material point– Work, energy power – Oscillators Specific learning objectives • • • • • • The student must be able to: Calculate the kinematic characteristics of a moving object (velocity and acceleration) Calculate the kinetic energy Calculate the work of a force Apply energy theorems Use the laws of composition of movements Activity summary This actvities allow students to accomplish the following • Master calculations of velocity and acceleration • Describe the various forces applied to a given system, • Learn to manipulate vector operators and mathematical tools Then, knowing the Newton’s three laws, work, the theorem of kinetic energy, we can easily write and solve differential systems governing the laws of motion. Key concepts • • • • • • • • Work = Energy granted by a force to move a body from one place to another. Absolute Movement = movement against a fixed reference or absolute Relative motion = movement against a moving object reference Training Movement = movement that a moving object would have, if it was fixed relative to the reference of the moving object. Energy = kinetic energy of moving masses Pendulum = all suspended bodies Oscillator = any body that oscillates around an equilibrium position Period = time taken by an oscillator to complete a full oscillation African Virtual University 130 Appropriate readings (Toutes en Annexe 4) 1°) RATIARISON, A. (2006). Référentiels, Dynamique du point matériel, Travail-Puissance-Energie.-fFaculté des Sciences -Oscillateurs. Université d’Antanarivo. Cours inédit. 2°) Papanicola Robert, http://www.sciences-indus-cpge.apinc.org/IMG/ pdf/ CIN2_DERIVATION_VECTORIELLE.pdf Vectorial derivation 3°) http://abcsite.free.fr/physique/meca/me_ch3.html Dynamics of a material point Work, energy, power Oscillators 4°) RATIARISON, A. (2006). Grandeurs physiques, Opérations vectoriellles. Madagascar. Université d’Antanarivo. Cours inédit. Appropriate resources * * * * * * * * * * * CAZIN, M. (1972). Cours de mécanique générale et industriielle- Gauthier Villars- Tome 1 PEREZ, J. P. (1995), Mécanique Fondement et applications –MASSONTIPLER, P. A. – Worth Publishers (1995) , Physics for Scientists and Engineers – New York, NY 1003 – * The Free High School Sciences: A Textbook for High School Students Studing physics – FHSSt Authors- December 9, 2005 from http://savannah.nongnu.org/projects/fhsst ANSERMET, J. P. (Version 2004-2005), La mécanique rationnelle – Formation de base des Sciences et des ingénieurs – Institut de Physique des nanostructures- Ecole Polytechnique Fédérale de Lausanne de Lausanne– PHB – Ecublens, 1015 Lausanne. CLAUDE, S. B. Exercises de mécanique from http://www.univ-nantes. fr MEYER, D. Exercises de mécanique. from http://www.chimix.com/mines/dyna1.htlm http://www.infoline.ru/g23/5495/Physics/English/waves.htlm http://www.infoline.ru/g23/5495/index.htlm SAINT BLANQUET Claude, Exercises de mécanique, http://www.univnantes.fr D. MEYER, Exercises de mécanique, http://www.chimix.com/mines/ dyna1.htlm http ://www.hazelwood.k12.mo.us/grichert/sciweb/applets.htlm African Virtual University 131 Useful links • • • • • • • • Vectorial calculations Kinematics Vectorial derivation Integration of functions of several variables Vectorial integration • • • http://www.chez.com/Mecanique/dynamiqu.htm http://www.chez.com/Mecanique/energeti.htm http://www.sciences.univ-nantes.fr/physique/perso/gtulloue/aquadiff. html http://www.n-vandewiele.com/TDMeca2.pdf http://www.ens-lyon.fr/Infosciences/Climats/Dynam-atmo/Cours-Coriolis http://www.ucd.ma/fs/modules/meca1/um1./modules3/cin2.htm http://perso.orange.fr/rmchs/physique_05/cours_physique/cours_ mecach5_cinematique.pdf http://www.keepschool.com/cours-fiche-les_systèmes_oscillants • • • • • • • • http://www.infoline.ru/g23/5495/Physics/English/waves.htlm http://www.infoline.ru/g23/5495/index.htlm http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/epiclc. html http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/prlong. htm http://www.univ-lemans.fr/enseignements/physique/02/meca/couplage3.html http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/froflu. htm Detailed activity description This course is divided into two main parts: Part I: A supplementary course with basic knowledge and general knowledge. In addition to this course, there are four exercises showing us physical phenomena seen in everyday life such as: - - - - The field of terrestrial gravity, The deviation towards the East when you drop an object without initial velocity, The deviation of the Foucault pendulum, The tides. The students can download the sites below to see animations. African Virtual University 132 Part II: Four exercises, related to the laws of composition of velocity and acceleration, application of the fundamental principle of dynamics in a fixed reference or a reference relative to that of the theorem of kinetic energy and damped and undamped mechanical oscillators. These exercises are required. They will be solved individually by each student who will produce their own report to be sent by email to the professor. African Virtual University 133 Evaluation First portion of activity 4 evaluation Course complement Table of Contents Contact the author Phenomena of terrestrial dynamics Illustrations and animations of Geneviève Tulloue Rotation of the Earth Coriolis Effect Plan 1. The field of terrestrial gravity 2. Deviation to the East 3. Foucault pendulum 4. The tides Pendulum on a turning surface Foucault pendulum Depressions Tides (influence of the sun) Tides (influence of the Moon and the sun) Roche’s limit The seasons CABRI In a reference linked to earth’s surface, the fundamental equation of dynamics can be written: a r (M ) is the relative acceleration of M m is the mass of M uuuuuuur KM r G T ( M ) = − 2 T z is the universal field of attraction at a distance r RT , r radius of the Earth African Virtual University 134 ur Ω is the velocity of rotation of the Earth uuuuuuur uuuuuur m⎡G A ( M ) − G A (C ) ⎤ is the universal attraction of planetary bodies other ⎣ ⎦ than the Earth Fa is the force applied on the object M The field of terrestrial gravity and the gravity field The weight of a body are defined by the relation : where radius of the Earth is the universal field of attracton at a distance We call the direction of the vector as downward. At ground level, and , also as a first approximation we often confuse and . explains the variations of the terrestrial gravity field. Often, we assume . African Virtual University 135 Deviation towards the East if we neglect the gravitation of planets other than Earth, and if there are no forces acting on the object. By projecting the Oxyz reference, we obtain: By neglecting the term I At the instant above the ground in front of , we drop the object without initial velocity from a height . By integration, and by neglecting z in front of and in front of , we find and . This phenomenon is known under the name of deviation to the East. is equal to 27 mm for et . This effect is very weak and is often neglected. There, in the Northern Hemisphere (South), a deviation from the South (North) even more negligible. African Virtual University 136 The Foucault pendulum The simple pendulum of length is only sli- ghtly sloped with respect to the vertical. ; ; ( ) ; ; The cord of the simple pendulum is inextensible and the mass m is subject to its weight and tension due to the cord. The proper rotation vector of the Earth is : also , African Virtual University 137 In the last equation, the term we neglect the Coriolis force), the term is negligible (it is not written when also (pendulum always slightly away from vertical). This allows us to write . The equations become To solve this system can be decoupled by derivation, or better, using the complex variable which leads to By integrating, we obtain : This solution shows a turning movement in the plane Oxy to the pulsation (period where is the sidereal period of Earth). The rotation is counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. This phenomenon has been studied by Foucault in the last century with a pendulum of 67 m in length suspended in the dome of the Pantheon. Note: There are other phenomena showing the rotation of the Earth itself, the most famous are the swirling drain of a sink, and preferential erosion of one bank of a river ‘s flow towards the north or south. African Virtual University 138 4. The tides Considering the huge mass of water of an ocean, it is no longer possible to ignore the term which is responsible for the tides. To start with, we will only consider the influence of the moon. At the two points Z and N, is directed outward from the Earth and is opposed to Earth’s gravity while staying in the same direction. On a point M, has a horizontal component [maximum if Z (or N) is 45 ° CM] producing a deviation from the vertical. It is the same for the Sun. The maximum deviations are 0.017 «for the action of the moon, of 0.008» for the Sun. These deviations, although very low, are highlighted by the variation of the surface of the ocean: it changes every minute so as to be constantly perpendicular to the vertical. The effects of the other stars are negligible, so that in practice only the effects due to the Moon and Sun are considered. These effects are added when the Sun, Earth and Moon are aligned: the tides of spring are compensated when the directions Sun-Earth-Moon and Earth are perpendicular: it is the tides of neap tide. Finally, during the equinoxes of spring and autumn, the effect due to the sun is at its highest: it is the equinox tides. The rotation of the Earth itself explains the existence of two high tides and two low tides each day. African Virtual University 139 Second portion of activity 4 evaluation Series of exercises Exercise 1. A ring of mass m, dimensions negligible, slips and moves on a circular helix axis Oz and whose parametric equations are: x = r cos q, y = r sin q, z = h q. The applied forces are the weight, a frictional force of constant intensity f, collinear with the velocity but opposite in direction, and the reaction of the track, normal to the movement at every moment. In a terrestrial Galilean reference : 1. Express the Cartesian components of the friction force against f, r, q, and a, the angle between the velocity and the horizontal plane. For the following we shall assume that this angle is constant and tan a is expressed in terms of h and r. 2. Calculate the work of the friction force when moving between points B (q p = 4) and A (q = 0). 3. Expressed in terms of given data the weight and reaction of the track between B and A. 4. Deduce the velocity of the ring at point A given that its initial velocity was zero at B. Discuss. African Virtual University 140 Exercise II - A solid (S) mass m = 5 kg is moving on rails ABC located in a vertical plane. AB = 4.0 m; BD is the arc of a circle of radius R = 10 m. (S) is initially an immovable object in A. We exert, between A and B, on (S), a force F parallel to AB and constant. The solid goes to D and then goes back. H = 3 m g = 9.8 m s-2. The friction is negligible. 1. Express and calculate the velocity of (S) B. 2. Express and calculate the value of F. 3. Express and calculate the velocity of (S) in C. (H = 1.5 m). Show that the velocity C is similar going and returning. 4. Determine the action R of the support at point C. 5. At point D can the solid be balanced? 6. Compare the length of journeys AB and BA. II-friction is no longer neglected. The value of friction f is constant. The solid stops as it returns to B. 1. 2. Express and calculate f and F. Compare the forward and return journeys: - The values of the velocity at any point of the arc BD - Travel time BC and CB. III We exert on the solid (S) a weak force F ‘; it reaches D, then stops, returning to a height h’ = 0.5 m. Justify this behavior of the solid. African Virtual University 141 Exercise 3 We are interested in some properties of the oscillators in one dimension, ie whose evolution over time can be analyzed by a function x (t). Called harmonic oscillator any system whose function x (t) is the corresponding solution of the differential equation: w0 rad/s,is the pulsation of the oscillator The elastic pendulum : Consider a solid (S) mass m, center of mass G. When S is an immovable object in the laboratory reference, G is in O, origin of the horizontal axis x’x. The solid S ‘s only movement possible is rectilinear translation along the axis x’x. S is submitted to a single force, the tension T of an elastic spring of stiffness constant k, of negligible mass. There is no friction and the weight of the solid is compensated by the reaction of the support. The position of S is marked by the abscissa of G. 1. Prove that we have made a harmonic oscillator whose evolution over time is governed by the equation: Explain the function x (t) if the initial conditions of movement are at t = 0, x (0) = A, positive amplitude and v (0) = 0. 2. We call phase space (in this case, plan of phases) the plan of coordinates (x, dx / dt). What is, for the harmonic oscillator, the trajectory of P characteristic of the state of the system in the phase space? 3. From which potential energy function does the tension T derive itself from? Retrieve the above equation using conservation of mechanical energy. African Virtual University 142 Exercise 4 1. The solid S previous stated, comparable to a material point, is a moving object without friction along the x axis. It is subjected to a force F collinear with the axis x’x and deriving from a potential energy function Ep (x) that does not depend explicitly on time - - Can the two trajectories of point P in the phase space, defined in the previous question, be cut? What conditions Ep (x) and its derivatives with respect to x have to verify so that the movement of M is in the vicinity of an equilibrium position M0, abscissa x0 comparable to that of a harmonic oscillator. 2. The force field is performed as follows: M is the object moving without friction on the axis x’x through a spring of stiffness k and void length l0. O is the orthogonal projection of A on the x-axis, and we let OA = l which can be larger or smaller than l0. - - - Express the potential energy Ep(x) as a function of x and the parameters k, l and l0. Are there equilibrium positions? What are the types of the function Ep(x)? In the vicinity of these positions can one speak of a harmonic oscillator? 1. Various physical systems can be modeled by a solid S similar to a material point of mass m moving along one axis, subjected to a tension of a spring and a viscous friction force, ie opposite to the velocity (- kx ‘), k is a positive constant. 2. Establish the differential equation satisfied by x (t). Specify the type of solutions depending on the value of the coefficient k. - - Why would using a Foucault current braking device be better than the braking force of a pallet in a liquid? What about the cases where l <0? African Virtual University 143 Exercise 5 Weighted pendulum : It consists of a solid of mass m and center of gravity G, a moving object without friction around a horizontal axis D perpendicular to the plane of the figure. The moment of inertia of the solid relative to this axis is J. 1. Establish the differential equation verified by q (t). Show that if q is small, the pendulum weight can be treated as a harmonic oscillator of angular frequency ω″0 = mga / J. 2. Consider briefly the case of a simple pendulum for which the solid consists of a particle of mass m suspended from a taut, of massless length l. Exercise 6 The potential energy of interaction between the atoms of a diatomic molecule is given by the expression of the Morse potential: E(r) =A(1-exp-a(r-r0) )². r : variable distance between atoms, a: positive constant, r0 and A: positive parameters which will determine the physical meaning. 1. What is the expression of molecular interaction forces. Determine r, for there balance? This equilibrium is stable? 2. Find these results using the potential energy. 3. Calculate the dissociation energy of the molecule. 4. The potential energy of interaction between 2 nucleons is given by the Yukawa potential: E (r) =- B r0 / r exp-r/r0. Deduce the interaction of nuclear forces. 5. Represent the previous forces and compare them. African Virtual University 144 Exercise 7 Consider a point particle of mass M orbiting at a distance r = OM from the center of a spherical body that is subject to an attractive force: weight of the particle is negligible. The 1. Express its potential energy as a function of K and r. 2. The trajectory of the particle is circular with center O, show that the movement is uniform, and calculate the kinetic energy of the particle. 3. Calculate the mechanical energy. 4. It causes a relative decrease of 10-4 of mechanical energy. What happens to the velocity and radius of the trajectory? 5. The initial distance is OM = r0. What are the minimum energy and velocity needed to provide for the rescue of the attraction of the spherical body. Exercise 8 A particle moves in the force field Following the trajectory defined by the parametric equations, in the SI system of units: x=3t ; y=2t2 ; z=t-2 1. Calculate the power received by the particle at time t. 2. What is the position of the particle when the power is minimized? 3. Calculate the work done by the force field between times t1 = 0s and t2 = 2s? 4. What is the work if the particle is compelled to move in a straight line from its position at time t1 = 0 to its position at time t2 = 2s? Conclusions? Exercise 9 1. The suspension of a car of mass M = 600kg, is shown by a spring of stiffness k. We note that the wheels, which we neglect the mass, leave the ground when the car is raised to a height h = 30cm. Determine: 2. The stiffness k of spring. 3. The equation of vertical motion, and the period of vertical oscillations of the empty car. 4. What is the period with 4 passengers totaling a mass m = 300kg. 5. We add to the previous suspension a damper which creates a frictional force proportional to the vertical velocity f =-bv. At rest, the system damping is critical. Write the equation of vertical motion. B. Determine African Virtual University 145 6. When the car has 4 passengers, what are - The equation of vertical motion. - The pseudo-period T ‘, and compare it to the natural period of damped oscillation. Assume g = 10m.s-2. Exercise 10 An elastic pendulum of mass m = 0.1 kg, stiffness = 20 N / m oscillates without solid friction along a rod that is at a constant angle with the vertical downward. 1) a) Establish the dynamic differential equation of the motion of A along the fixed rod. Find the position around which the movement takes place and calculate the oscillation period of the movement. b) We note that the oscillations are damped according to an exponential law. To what type of force do we attribute this depreciation? After 30 oscillations, the amplitude is divided by three. Calculate the logarithmic decrement and the quality factor of the pendulum. 2) The rod is rotated uniformly around the stem (the vertical) with an angular velocity. Express, in the rotational frame, the kinetic energy of the pendulum, the gravitational potential energy, elastic potential energy and the centrifugal potential energy. Establish, in the absence of friction, the differential equation of motion. Determine the equilibrium position and period of oscillations knowing that r sinθ o = 0,9ω o Exercise 11 Consider two springs the same length L and different stiffness k1 and k2. 1) The springs are placed vertically in parallel. The upper end is fixed and the other carries a weight of mass m. Find the expression of the pulsation of the oscillation formed. Conclude. 2) Answer the same question when both springs are placed in series. Conclude. African Virtual University 146 Exercise 12 Throughout the exercise, we take g = 10 m / s2. We neglect the friction. It uses a spring of negligible mass, wound with non-touching joints. 1 Preliminary study of the spring To determine the stiffness k of a spring, we hang one end to a fixed support. When we hang a mass m = 200 marked g at its other end, the spring stretches by 10.0 cm. a) Verify that the spring rate is 20.0 N / m. b) b) Using the theorem of the center of inertia, show that the stiffness can also be expressed in kg / s2. In which quantity does express itself ? 2- Study of an elastic oscillator a) We now fix the studied spring as shown in Figure 2. The spring is horizontal, one end is fixed. At its other end is a solid (S) mass m = 200 g. This solid can move without friction along a horizontal axis Ox. At equilibrium, the center G of the solid coincides with the origin 0 of the reference. - Establish the differential equation that governs the movement of G. Verify that, if we correctly choose To, the function , of period To, is the solution to the previous differential equation. - numerically, calculate the value of the period To. - b We compress the spring to the left. Point G occupies the position GO such that OGo = - 0.15 m. At time t = 0, we drop the solid without initial velocity. Determine the amplitude XM and phase F of movement and the expression of the velocity v (t) of the solid. Determine the value of the maximum velocity. c) Identify and express the mechanical energy of the undamped oscillator. Calculate its value at t = 0. (We take the potential energy of the initial spring when x = 0). By accepting and using the conservation of this mechanical energy, find the maximum value of the velocity of the solid. African Virtual University 147 Exercise 13 The numerical values necessary for the solution are given at the end of the exercise. To model the spring suspension system of car, one student suggests using a spring of spring constant k (value specified by the supplier). A – Study of free oscillations The student uses a system of data acquisition schematically shown in Figure 1. Two electrodes A and B, immovable objects, immersed in the solution S, are attached to positive and negative terminals of a voltage generator. A metal rod, covered with insulation along its entire length, is attached to the mass m. Its end E, slightly stripped of its insulation, follows exactly the movement of the mass m. Measuring the voltage between point E and the 0 V terminal of the generator can detect the position of E (the measuring device is not shown in the diagram). Thus, it is possible to know the position of mass m during the oscillations. After setting the parameters of the acquisition software, the student moves the mass m down by 1 cm, and leaves the system oscillate freely. The triggering of the acquisition is by moving to the position of equilibrium. The curve obtained is given in figure a. African Virtual University 148 • A-1 Discuss the shape of the curve. What type of oscillations is it? • A-2 Determine graphically the T0 period of oscillations of mass m hanging from the spring. • A-3 Is this value consistent with the theoretical value • A-4 We add to the extremity E of the stem a horizontal disc of negligible volume and mass. Frictional forces are now involved. Draw the shape of the curve obtained after a new acquisition. B – Study of forced oscillations Students now connects the upper end of the spring to an eccentric driven by a motor (Figure 2) and made several recordings for different velocity of rotation of the engine measured by the rotation frequency f in Hertz. At the end of the rod is always horizontal disk volume and negligible mass. African Virtual University 149 The student records the amplitude of each curve. f (Hz) 1,5 2,0 2,5 2,8 3,1 3,2 3,3 3,6 4,0 4,5 xmax (cm) 0,4 0,6 1,0 1,5 2,1 2,3 2,0 1,5 1,0 0,7 • B-1 What name do you give the engine fitted to the eccentric and the system (spring + mass)? • B-2 Build a plot of xmax as a function of the frequency f. What phenomenon do we observe at f = 3,2 Hz ? Compare the frequency fR of oscillations at a resonance corresponding to the frequency f0 of free oscillations of the undamped system (spring + mass). • B-3 (s) What change (s) would we observe if we used a more viscous solution S. C – Suspension of a moving object The suspension system of a moving object includes springs and shock absorbers. The moving object is a mechanical system oscillating at a frequency f0. Some desert tracks have an aspect of “corrugated iron”: they have a pattern of bumps, with a spacing of L (a few tens of centimeters). For a velocity VR, the vehicle undergoes large amplitude oscillations that dangerously diminish its handling. C-1 Explain this phenomenon. C-2 Express the velocity VR as a function of f0 and L. Calculate this velocity in km.h - 1 with f0 = 5,0 Hz and L = 80 cm. African Virtual University 150 Given : k = 40 N.m -1 m = 100 g π= 3,14 Exercise 14 Throughout the exercise, we take g = 10 m / s2. We neglect the friction. It uses a spring of negligible mass, wound with non-touching joints. 1 Preliminary study of the spring To determine the stiffness k of a spring, we hang one end to a fixed support. When we hang a mass m = 200 marked g at its other end, the spring stretches by 10.0 cm. a) Verify that the spring rate is 20.0 N / m. b) Using the theorem of the center of inertia, show that the stiffness can also be expressed in kg / s2. In which quantity does express itself ? 2- Study of an elastic oscillator a) We now fix the studied spring as shown in Figure 2. The spring is horizontal, one end is fixed. At its other end a solid (S) mass m = 200 g. This solid can move without friction along a horizontal axis Ox. At equilibrium, the center G of the solid coincides with the origin 0 of the reference. - Establish the differential equation that governs the movement of G. - Verify that, if we correctly choose To, the function , of period To, is the solution to the previous differential equation. - numurically calculate the value of the period To. b) We compress the spring to the left. Point G occupies the position GO such that OGo = - 0.15 m. At time t = 0, we drop the solid without initial velocity. Determine the amplitude XM and phase F of movement and the expression of the velocity v African Virtual University 151 (t) of the solid. Determine the value of the maximum velocity. c) Identify and express the mechanical energy of the undamped oscillator. Calculate its value at t = 0. (We take the potential energy of the initial spring when x = 0). By accepting and using the conservation of this mechanical energy, find the maximum value of the velocity of the solid. Exercise 15 A spring of stiffness K is horizontal, one end is fixed and at its other end a solid mass m. This solid can move along a horizontal axis Ox. O is the position of center of inertia of the body in equilibrium (see Figure). There is friction present. They are reduced to a force = - h, where it denotes the instantaneous velocity of the solid. The coefficient h is positive. • 1 - Establish the characteristic differential equation of motion of the solid. • 2 - What is the nature of this movement? What is the nature of x (t) depending on the value of damping coefficient A = h / m.? • 3 - The energy of the oscillator. a) Give the expression of the mechanical energy of the solid-spring system. b) Establish the relationship between the derivative of the mechanical energy versus time and power of the friction force. c) Comment on this relationship in terms of energy transfers. • 4 - Using an interface connected to a computer, there was a voltage portional to x u (t). The computer is programmed so that 1 volt corresponds 1 cm. African Virtual University 152 From the graph above: a) Determine the initial conditions imposed on this oscillator b) Calculate the pseudo-period. c) Determine the mechanical energy E m of the oscillator each time it is passed by a negative extremum of x (limited to the first four). What can be said of the value (Em) i / (Em) i + 1? Data: k = 10 N / m. d) Determine the work of the frictional force between the passages of the 1st and 4th negative extremum. Exercise 16 A point moving object of mass m is located relative to a Galilean frame ( ) R O, e x , e y , e z . We call R’ the reference of the center O and the base ur ur ur er ,eθ ,ez with OM = r e r + ze z ( ) ez M ey r ex e H H er (a)We take R ‘as a relative reference and a projection reference of the resultant vectors. Calculate by composition the movement V R ( M ) and find them again via a direct calculation. and a R ( M ) , (b)To continue the problem, we suppose z=0 ; the point M is a moving object ur ur on the plane xoy. In addition, its weight P = −mgez , is subjected to 2 forces F1 and F2 , defined by : African Virtual University 153 • ur ur u ur F1 = mr ⎛ 2θ er + eθ ⎞ ⎝ ⎠ t. and ur u ur ur u F2 = mlez ∧ VR (M ) , l is a scalar function of a) From the fundamental relation of dynamics, give the scalar equations of motion of M. b) Write the theorem of kinetic energy and show that there exists a first integral of energy. (c) We assume l=0 the point M is a frictionless moving object on a circle of center O with a radius that reacts with a bonding force L . We suppose at the instant t=0, the point M is an immovable object with q=0. With the help of the first energy integral, express L as a function of only q. Find the differential expression of movement M from the theorem of angular momentum at a point. Exercise 17 A material point M moving object of mass m is located relative to a Galilean ( ) reference frame R O, e x , e y , e z by the spherical coordinates (r, q, f). We call ( ur ur ur ) R’ the center reference O and of basis er ,eθ ,eφ , with OM = r e r . i) We take R ‘as a relative reference and projection reference on the resulting vectors. Calculate the composition by motion V R ( M ) Confirm them by direct calculation and a R ( M ) . ii) ° The point M describes the frictionless meridian circle with center O and ( uur uuuur ) radius a plan Oxz. A position is identified by the angle θ = Oz,OM . With respect to R. We consider the coordinates of the following points : A(0,0,-a), B(0,0,a), C(a,0,0) Assume that M is dropped without initial velocity at point B. During its move- ur ur u ment, it is subject to its own weight P = −mgez , , to the reaction L of the support, to the force F = k AM , k a positive constant. African Virtual University 154 a) Explain the basic law of dynamics and derive the differential equation of motion and expression of L. b) Write the theorem of kinetic energy and derive a first integral of motion, then the expression L as a function of q ; this will give the differential equation of movement. c) Given in part C, the expression of the linear velocity v of M, and that of the reaction L. d) Show that there exists a value of q for which L = 0. Numerical application mg . a k= Exercise 18 ( We consider a fixed reference R 0 O, x 0 , y 0 , z 0 ) and a relative reference ur u r ur u ur R 1 O, x , y, z 0 , such that x0 , x = y0 , y = ψ (t) . Consider a point M defined ( ) ( ) ( ) ( ) in the plane (Oyz0) by its polar coordinates ρ,θ ) on which we associate part of the unit vector v of OM , and the unit vector w , deduced from v by an angular rotation of π in the plane (Oyz0). 2 African Virtual University 155 ( ) The vectors x, v and w form the reference R O, x , v, w , of origin O. r and q are functions of the time t. In all of the problems, the results are expressed in a reference frame ( ) R O, x , v, w . (a) We designate v R 0 (M ) the velocity of M in its movement with respect to ( ) R 0 O, x 0 , y 0 , z 0 . Determine v R (M ) , v R 1 (M ) and v R 0 (M ) uuuuuuuuuuuur (b) We designate vR 0 ( M ∈ R1 ) the trailing velocity of M in its movement ( ) ( with respect to R 0 O, x 0 , y 0 , z 0 , R 1 O, x , y, z 0 reference. uuuuuuuuuuuur uuuuuuuuuuuur ) being the relative uuuuuuuuuuuur Prove the relation : vR 0 ( M ∈ R1 ) = vR 1 ( M ∈ R ) + vR 0 ( M ∈ R1 ) uuuuuuur uuuuuuur uuuuuur (c) D e t e r m i n e t h e a c c e l e r a t i o n s : a R ( M ) , a R 1 ( M ) , ac ( M ) uuuuuuuuuuuuur a R 0 ( M ∈ R1 ) , (d) (i) For what conditions is the relative motion of M the central acceleration of center O? (ii) For what conditions other than the previous, is the absolute motion of M is also the central acceleration of center O? (e) Assume three true propositions: - r= a = Cte - The relative motion of M is not central acceleration of center O - The absolute motion of M is central acceleration of center O. • • Find ψ and θ as a function of q only. African Virtual University 156 Correction of Activity 4 exercises Exercise 1 In the local reference (u, t, k) the components of the frictional force are : (0 ; f cos a ; f sin a ) Components of velocity, derived from the vector position with respect to time : (-r sinq q ' ; r cosq q ' ; hq ' ) Or in the local reference (u, t, k) : (0, rq ' ; hq ' ) tan a = hq ' / (rq ') = h / r. Work of the frictional force : Elementary displacement : dx = -r sinθ dθ ; dy = r cosθ dθ ; dz = h dθ ; friction (-f cosα sinθ ; f cosα cosθ ; f sinα) scalar products between friction vectors and displacement : -f r cosα sin²θ dθ + f r cosα cos²θ + f h sinα dθ . To obtain the work on the displacement of B to A, integrate between 4π and 0, a and r are constants While noticing that sin²q = ½(1-cos(2q)) and that cos²q = ½(1+cos(2q)) W = -4π f [r cosα + h sinα]. Work of weight of B in A : Elementary work during elementary displacement hdq : dW = mghdθ To obtain the work on the displacement of B to A, integrate between 4π and 0 W = 4π mgh . African Virtual University 157 The work of the normal reaction is zero ( perpendicular force to displacement) velocity in A : Write the kinetic energy theorem between B and A : (in B the velocity is zero) ½mv²A = 4π mgh -4π f [r cosα + h sinα]. v²A =8π [gh - f /m[r cosα + h sinα]]. This is possible when friction is not important : mgh>4π f [r cosα + h sinα]. Exercise 2 Kinetic energy theorem : From B to D : perpendicular to the velocity does not work. The working weight is resistant (upward) and is WP= - mgH The kinetic energy in D is zero (stop) ; the kinetic energy in B is : ½mv² ( v : velocity in B) The change in kinetic energy is equal to the sum of the work of forces applied to the solid: 0 -½mv² = -mgH v²= 2gH = 2*9,8 * 3 = 58,8 ; v = 7,7 m/s. From A to B : les forces R et P perpendiculaires à la velocity, ne travaillent pas. Le travail de la force F vaut WF=F AB. The kinetic energy at A is zero (stop); kinetic energy at B is ½ mv ² (v: velocity African Virtual University 158 in B) The change in kinetic energy is equal to the sum of the work of forces applied to the solid: ½mv² -0= F AB F= mv²/(2AB) = 5*7,7² / 8 = 36,7 N. velocity from (S) to C : From B to C : R, perpendicular to the velocity does not work. The working weight is resistant (up) and is: WP= - mgh The kinetic energy in C is ½ mv ² C; kinetic energy at B is ½ mv ² (v: velocity in B) The change in kinetic energy is equal to the sum of the work of forces applied to the solid : ½mv²C -½mv² = -mgh v²C = v² -2gh = 58,8 -2*9,8*1,5 =29,4 ; vC = 5,4 m/s. The expression of this velocity vC indicates that it only depends on the velocity at B and the altitude h, whatever the direction of travel. or we can apply the theorem of kinetic energy between the two passages of solid M located on the arc BD going and returning: R does not work and the work of the weight is zero (at the same point the altitude difference is zero). So the kinetic energy, the value of the velocity does not change the outward and return journeys. Action R of the support at point C : Write Newton’s second law on an axis normal to the path and headed toward O : R is inward pointing to O and its value is: R= m[v²C/OC + g cosq] cos q = (OB-h) / OB = (10 -1,5) / 10 = 0,85 ; q = 31,8°. R= 5(29,4/10+9,8 * 0,85)= 56,3 N. At point D the solid can not be in equilibrium: the vector sum of forces is not African Virtual University 159 zero. Duration of the journeys AB and BA: AB : write Newton’s second law : F=ma such that a = F/m = constane ; initial zero velocity : AB=½at² = ½F/mt² and t² = 2AB m/F = 8*5/36,7 =117,4 ; t = 1,1 s. BA : pseudo-isolated solid, thus uniform rectilinear motion . AB = vt t = AB/v = 4/7,7=0,52 s. Friction is no longer neglected. The value of friction f is constant. The solid stops on its return along B. Express and calculate f and F : kinetic energy theorem : From D to B : R, perpendicular to the velocity does not work. The work of weight is downhill and is : WP= mgH The work of f (resistance) is : Wf= -f *length of the arc of the circle DB = -f OC q (q in radians ) cos q = (OB-H) / OB = (10 -3) / 10 = 0,7 ; q = 0,795 rad. The kinetic energy is zero in D (stop); kinetic energy at B is zero (stop) The change in kinetic energy is equal to the sum of the work of forces applied to the solid: 0-0= mgH - f *OCq where f = mgH /(OC q) = 5*9,8*3/(10*0,795)= 18,5 N. On the entire trip: R, perpendicular to the velocity does not work. The weight does not work (identical elevation at the departure A and arrival B) The work of f (resistance) is : Wf= -f (AB+2OC q ) ; the work of F is WF=F AB The kinetic energy of A is zero ( stop) ; the kinetic energy in B is zero (stop) African Virtual University 160 0-0 = -f (AB+2OC q ) + F AB and F= f (AB+2OC q ) /AB = 18,5(4+20*0,795) / 4 = 92 N. Compare the outward and return: - The values of the velocity at any point of the arc BD apply the theorem of kinetic energy between the two passages of solid M located on the arc BD outward and then return: R does not work and the work of the weight is zero (at the same point the altitude difference is zero). The work of friction is negative, thus the velocity decreases: the return velocity is smaller than the outward velocity. - Travel time BC and CB: The velocity is lower on the return journey, so the length of return is greater than the outward. ________________________________________ The solid stops while returning on the arc when the vector sum of forces is zero. The angle q 1 is then: cos q 1 = (OB-h ') / OB = (10-0,5) / 10 = 0.95; q 1 = 0.318 rad. On the descent the work of weight is active. The driving force is mg sin q 1 = 5 * 9.8 * 0.312 = 15.3 N, a value insufficient to overcome friction (18.5 N). However the driving force at D is: mg sin q = 5 * 9.8 * 0.714 = 35 N a value sufficient to overcome the friction: the moving object does not remain at D. Exercise 3 The system studied is the solid S. The reference is a laboratory, supposed as Galilean. Applying the theorem of the center of inertia, the only force exerted on S is the spring tension. with w02= k/m funtion solution to the differential equation : x(t) = A cos (ω0 t + ϕ) African Virtual University 161 at t=0 : A =Acosϕ where cosϕ = 1 and ϕ = 0 x'(t) = -Aω0sin(ω0 t) at t=0 x’(0) = 0 x(t) = A cos (ω0 t ). Plan of phases: x’(t) = -Aω0sin((ω0 t) soit x’² =A²ω²0sin²(ω0 t)--> sin²(ω0 t) = x’² /(A²ω²0) x² = A² cos²(ω0 t)-->cos²(ω0 t) =x² / A² or cos²(ω0 t) +sin²(ω0 t) =1 path whose equation is given above is, in terms of phases, an ellipse of semimajor axis A and semi minor axis Aω0. Energy : The tension derives from a potential energy, there exists a function such that Ep: the origin of the elastic potential energy is chosen at the equilibrium position (G in O). In the absence of friction there is conservation of mechanical energy. E =½mv² +½kx² Derived with respect to time ( the derivative of u² being 2 uu’) ½ m 2 v v’ + ½ k 2 x x’ = 0 with v’ = x” at x’ = v simplifying with v, we find : m x” + k x=0 African Virtual University 162 Exercise 4 The physical system has a single degree of freedom. Write the conservation of mechanical energy and then derive: we obtain a differential equation of second order of the form x ‘= f (x, x’). This equation admits a unique solution for given initial conditions. Develop Ep (x) near the equilibrium position x0: Ep(x) = Ep(x0) + (x-x0) (dEp / dx) x0 + ½(x-x0)² (d²Ep / dx²) x0 + ... F = - dEp / dx x0 is an equilibrium position if F(x0) =0 and (dEp / dx) x0 = 0 derive Ep(x) to study the stability of equilibrium : F= - dEp/dx =-dEp / dx) x0- (x-x0) (d²Ep / dx²) x0= - (x-x0) (d²Ep / dx²) x0 if the second derivative is positive, then F is of opposite sign to x-x0; the material point is subjected to a force that brings it to its equilibrium position x0. The equilibrium is called “stable”. However, if the second derivative is negative, it tends to point away from the position of equilibrium and the equilibrium is called “unstable”. Potential energy : Ep(x)= ½ kDl²= ½k[ (l²+x²)½-l0]² The derivative with respect to x : dEp/dx= kx[1- l0(l²+x²)-½ ] si l >l0, the only equilibrium position is x=0 si l <l0, there are three equilibrium positions : x=0; x = (l0²-l²)½; x = -(l0²-l²)½ the shape of Ep is represented below: African Virtual University 163 Stability of equilibrium : for x=0 : d²Ep/dx = k(1- l0/l) so if l>l0 the equilibrium is stable. If l<l0 the equilibrium is unstable. for x = (l0²-l²)½ ou x = -(l0²-l²)½ , d²Ep/dx =k((1- l²0/l²) positive; the equilibrium positions are stable. Near the stable equilibrium positions, we have a harmonic oscillator. The theorem of center of inertia is written : R (action of the support) The solutions of this differential equation depend on the sign of the discriminant of the associated characteristic equation: ∆ = l ²-4km ∆ <0 low friction, pseudo-periodic regime ∆ = 0, the critical regime ∆> 0, aperiodic regime African Virtual University 164 the viscous friction force is not strictly proportional to the velocity. The braking force by Foucault current is proportional to the velocity. l <0: The oscillator receives energy. The amplitude of oscillations increases. Exercise 5 The system studied is the pendulum, a laboratory frame assumed Galilean. The forces acting on the system are the weight and response of the axis. The moment of the response of the axis with respect to O is zero. The moment of the weight relative to O is GL-mg sin q. Applying the theorem of angular momentum relative to a fixed axis: q jd ² / dt ² =-sin q mgOG. if the angle is small: sin q is near q rad. Jq" + mgOG q =0 q" + mgOG / J q =0 it is the differential equation of a harmonic oscillator of angular frequency [mg OG / J]½. For a simple pendulum, J= ml² and the pulsation is w0² = g / l. African Virtual University 165 Exercise 6 Laboratory reference supposed Galilean The molecular interaction force is conservative and derives from the potential E(r) Fm(r) = -dE / dr = -2Aa exp(-a(r-r0)) (1-exp(-a(r-r0))). There is an equilibrium when the force is zero, meaning when r = r0. r0 represents the average distance between two atoms forming the molecule. Is the equilibrium stable ? -2Aa exp(-a(r-r0)) is negative. if r>r0, -a(r-r0)<0 and (1-exp(-a(r-r0))) is positive : Fm attractive. if r<r0, -a(r-r0)>0 and (1-exp(-a(r-r0))) is negative : Fm repulsive. Fm is a force towards the equilibrium position : this is stable. Does the potential energy pass by an extremum ? We derive the potential energy : dE / dr = 2Aa exp(-a(r-r0)) (1-exp(-a(r-r0))) this derivative is zero for :1-exp(-a(r-r0))=0 and r = r0 The potential energy passes by a minimum for r= r0, which corresponds to stable equilibrium. Dissociation energy work done by an outside operator for separating the two atoms constituting the molecule dWop = -Fm dr A represents the dissociation energy of the molecule. African Virtual University 166 The nuclear interaction forces are conservative and are derived from a potential energy. Fn (r) = -dE / dr distances between the molecules are about 10-10m; distances in the nucleus are approximately 10-15m. In the short and medium range, nuclear forces are attractive, intense when the nucleons are close. The molecular forces are attractive or repulsive. Exercise 7 We choose a reference system linked to a spherical body. The force depends only on the variable r. This force derives from a potential energy if there is a function E such that f(r) = - dE/dr. or dE = -f(r) dr : it suffices to research a primitive of f(r) E=-K/r + Cte When the distance r becomes very large, the force and potential energy no longer exist, the constant is set equal to zero as r tends to infinity. African Virtual University 167 The velocity has a constant standard: the movement is uniform The kinetic energy is : Ec =½mv²=K/(2r). The mechanical energy is the sum of the kinetic and potential energy: E= -K/r+K/(2r) =-½ K/r Logarithmic derivation of the expression of energy dE/E = dr /r = -10-4. Logarithmic derivation of the expression of velocity : 2 dv/v = -dr/r dv/v = -½ dr/r = + 0,5 10-4 the velocity increases. pulingl the particle attraction of the spherical body amounts to provide energy until its total energy becomes zero. Energy from the operator : Eop = ½K/r0 Kinetic energy needed ½mv² =½K/r0 where v²= K/(mr0) Exercise 8 power : z-x = t-2 -3t = -2-2t ; 2z²-x = 2(t-2)²-3t = 2t²-11t + 8 Force vector (25t²/3 ; -2-2t ; 2t²-11t + 8 ) Velocity vector : derived from the position vector with respect to time ( 3 ; 4t ; 1) Power: scalar product of force vector and velocity vector P= 12,5 *2t² + (-2-2t)*4t + 2t²-11t + 8 P= 19t² -19t +8 power passes through an extreme value (minimum or maximum) when its derivative with respect to time is zero and 38t-19 =0 where t= 0,5 s à t < 0,5 s, the derivative is negative, thus the power diminishes, and passes by a minimum at t=0,5 s and diminishes for t>0,5 s. African Virtual University 168 Position of the particle at t=0,5 s : x= 3*0,5 = 1,5 ; y= 2*0,5² = 0,5 ; z= 0,5-2 = -1,5. Work between t = 0 and t = 2s : if the transfer takes place along a line segment AB, the work is equal to: Cooridnates of A ( initial position at t=0) : (0 ; 0 ; -2) Coordinates of B (final position at t=2) : (6 ; 8 ; 0) Displacement vector : (6 ; 8 ; 2 ) Force vector (25t²/3 ; -2-2t ; 2t²-11t + 8 ) work = scalar product of the displacement vector with the force vector : 50 t²+8(-2-2t)+2*(2t²-11t + 8 ) = 50 t2-38 t at t= 2 s, this work is equal to : 140 J work depends on the path followed, the two work values are different between t=0 et t=2 s. The force is not conservative. African Virtual University 169 Exercise 9 Spring stiffness : Weight of the vehicle : 600*10 = 6000 N Height : h=0,3 m Stiffness k= 6000 / 0,3 = 2 104 N/m. Period : the upper end of the spring is subject to vehicle weight and spring tension. the fundamental relationship of dynamics can be written: mz”= mg -k(l-l0) the origin is chosen at the equilibrium position : l = lequi+ z k(l-l0 )= k(lequi-l0 + z ) = mg + kz thus : mz»= -kz or z» + k/m z =0. solutions of this differential equation are of the form z = A cos (0t + w j) and the movement is sinusoidal of pulsation w0 = square root (k / m) = (2 104 / 600) 0,5 = 5,77 rad /s. the period is : T0= 2p / w0 =6,28 /5,77 = 1,088 s. with 4 passengers the pulsation becomes : (2 104 / 900) 0,5 = 4,714 rad /s. and period : 1,33 s. critical regime damping: the differential equation above is written as : z» -b/m z’ + k/m z =0 characteristic equation : r² -b/m r + ω0 ² =0 discriminant :∆ =(b/m)²-4ω0 ² ; critical regime ∆=0 where b²= 4km and b=2 square root (20000*600)= 6928 kg /s. African Virtual University 170 Pseudoperiodic damping regime : ∆ =(b/m)²-4ω0 ² = 4[(b/(2m))²-4ω0 ² ] the discriminant of the characteristic equation is negative if m is equal to 900kg instead of 600kg the movement is sinusoidal damping of pseudo pulsation w such that : ω² = ω0 ² -(b/(2m))² = 4,714²-(6928/1800)² =22,22-14,81 = 7,41 ω = 2,72 rad/s and the pseudo period T ' is 6,28/2,72 = 2,3 s Exercise 10 (i) Compared to the Galilean reference system linked to the stem, the fundamental relationship of dynamics can be written : (i) Compared to the Galilean reference system linked to the stem, the fundamental relationship of dynamics can be written : ur ur ur ur mΓ = T + mg + R (I) uuuur r ur r OM = r er ⇒ Γ = r&&er ur r r T = −kxer = −k(r − l o )er rr mg.er = mgcosθ o ur r R .er = 0 ( frictionless) African Virtual University 171 The projection following the stem (I) gives : m&& r = −k(r − l o ) + mgcosθ o Equilibrium position re / (1) &r& = 0 ⇒ −k(re − l o ) + mgcosθ o = 0 (2) mgcosθ + lo k ⇒ re = (3) (1) − (2) ⇒ m&& r = −k(r − l o ) + mgcosθ o + k(re − l o ) − mgcosθ o ⇒ m&& r = −k(r − re ) ⇒ R&& = r&& We have : mR&& = −kR ⇔ R&& + ω o2 R = 0 (4) Where : ω o2 = k 2π ⇒ To = = 0,44 s m ωo (5) b) friction is due to air resistance, therefore, the viscous friction force that opposes movement of the pendulum is proportional to the velocity: ur f = −α R& (6) Alors : α k mR&& = −kR − α R& ⇒ R&& + R& + x = 0 m m Where α 1 k = et ω o2 = m τe m ⇒ R&& + R& + ω o2 R = 0 τe (7) African Virtual University 172 The resolution involves the characteristic equation: R = est ⇒ R& = sest et R&& = s2 est s 1 ⇒ s2 + + ω o2 = 0 ⇒ s = 2 − 4ω o2 τe τe In the case of weakly damped oscillations, was: s<0⇒ So : s=− 1 − 4ω o2 < 0 ⇒ 1 < 4ω o2τ e2 ⇒ 2ω oτ e > 1 2 τe ∆ 1 ± j 2τ e 2 où ∆ = ω a = ∆ = 4ω o2 − (8) 1 1 = ω o2 (4 − 2 2 ) 2 τe ω oτ e ∆ 1 12 = ω o (1 − ) 2 4ω o2τ e ωa = ⇒∆=− 1 ± jω a 2τ e (− ⇒ R = C 1e − R=e 1 2τ e t 1 2 + jω a ) t (C 1e jω a t ⇒ R = R m exp(− (− + C2e 1 2 − jω a ) t − jω a t + C2e ) t )cos(ω a t + φ), 2τ e ω a = ω o (1 − 1 ) 4ω o2τ e African Virtual University 173 Exponential decrease of elongations : R t O Figure – 1 : the shape of the curve in the case of an oscillatory damped pseudo 2π 1 − 12 - pulse and period Ta = = To (1 − ) ωa 4ω o2τ e2 If at t=0, we have R=0 and R`=vo & = vo = R m (−ω a sinφ − x(0) = 0 = R m cosφ and x(0) We have 1 cosφ) 2τ e t 1 R& = R m exp(− )[−ω a sin(ω a t + φ) − cos(ω a t + φ)] 2τ 2τ e e However φ= Thus π 2 et Rm = − vo ω a ⇒ R = vo exp(− t )sinω t a ωa 2τ e Logarithmic decrement δ At Α(t) = R m exp(− t ) the pseudo – sinusoid is at a maximum at times t C 2τ e cos(ω a t + φ) = ±1 = cos(kπ ) ⇒ tC = kπ − φ kTa φTa = − ωa 2 2π African Virtual University 174 Α(tC ) = Α(k) = R m exp[− ⇒ Α(k) = R m exp( (kTa / 2) − (φTa / 2π ) 2τ e φTa kT )exp( a ) 4πτ e 4τ e The logarithmic decrement of the movement is the quantity : ⇒δ = Ta 2τ e The logarithmic decrement characterizes the decay of elongation in each period due to depreciation of the oscillatory motion. It is deduced by measuring the number therefore stretching moments separated by n periods: ⎛ R ⎞ 1 x(t) 1 1 = exp(nδ ) ⇒ δ = [Logx(t) − Log[x(t + nT a )] i.e : Log ⎜ o ⎟ = Log3 x(t + nT a ) n n ⎝ R S o ⎠ 50 2π ⎧ = 0, 44 s ⎪T a ≈ T o = ωo ⎨ ⎪δ = 0, 022 T T ⎩ Et δ = a ⇒ τ e = a 2τ e 2δ So τ e = 10 s : duration of relaxation. As energy is the duration after which the amplitude is represented by 1 exp( ) ≈ 1,5 . Since the amplitude is zero after several values of τ e , we need 2 for τ e to characterise the life of damped oscillations. This is why we call it the duration of relaxation of energy. African Virtual University 175 Quality factor : It is a dimensionless number Q that characterizes the damping of an oscillator. It is defined by Q = ω oτ e Here, Q = ω oτ e = (thus linked to the duration of the relaxation). τe 10 = = 22,7 To 0,44 (ii) ) In a rotating reference (linked to the stem) ; We have E C = 1 2 1 m&r ; E P P = mgz = mgr cosθ o ; E P E = k(r − l o )2 2 2 Centrifugal potential energy : During the rotational movement, the point M is subjected to the centrifugal ur ur ur ur ur uuur force of inertia : F = −mΓ e ; où Γ e = ΩΛ(ΩΛOA) À ur uur r r uuur uuur uuur uuur r uuur r uuur r uuu R = cst Γ e = Ω2 ez Λ (ez ΛOA) and OA = OH + HA; ez Λ OA = e12 z ΛOH + ez ΛHA 4 4 3 =0 ur r Ω = −Ωez African Virtual University 176 ur ur ur ur uuur uuur uuur uuur 1 dW (F ie ) = F ie .d A = F ie .d(HA) = mΩ2 HA.d(HA) = d[ mΩ2 (HA)2 ] 2 ur ur ur ur uuur uuur uuur uuur 1 ⇒ W (F ie ) = F ie .d A = F ie .d(HA) = mΩ2 HA.d(HA) = d[ mΩ2 (HA)2 ] 2 ur uuur ur 1 2 2 te ⇒ W (F ie ) = mΩ (HA) + C ⇒ E P = −W (F ie ) 2 uuur 1 ⇒ E P = − mΩ2 (HA)2 + C te et C te = 0 ⇒ H = A C 2 uuur 1 1 ⇒ E P = − mΩ2 (HA)2 = − mΩ2 r 2 sin 2 θ o C 2 2 b) the oscillator system – ground isolated, the reference rotates ⇒ E R ( A) = C te = E C ( A) + E P P + E P e + E P C R 1 1 1 m&r 2 + mgr cosθ o + k2(r − l o )2 − mΩ2 r 2 sin 2 θ o = E R ( A) = C te 2 2 2 By describing with respect to t , we have : 1 1 1 m&r&& r + mg&r cosθ o + k(r − l o ).&r − mΩ2 r r& sin 2 θ o = 0 2 2 2 2 ⇒ m&& r + mgcosθ o + k(r − l o ) − mΩ (sinθ o ).r = 0 ⇒ k k − Ω2 sin 2 )r = l o − gcosθ o m m k ⇒ r&& + (ω o2 − Ω2 sin 2 )r = l o − gcosθ o m ⇒ r&& + ( African Virtual University 177 c) Equilibrium position : ω o l o − gcosθ o lo − 2 Ω = C ⇒ Ω e= te ω o 2 − Ω2 sin 2 θ o = gcosθ o ω o2 2 ⎛ Ω⎞ 1 − ⎜ ⎟ sin 2 θ o ⎝ ωo ⎠ And the pulsation of the oscillating movement is : ω 0ʹ = ω o2 − Ω2 sin 2 θ o = 0,19s ⇒ Toʹ = To 2π = ≈ 1s ω oʹ 0,436 Exercise 11 1°) RFD ur ur ur ur mΓ = T 1 + T 2 + mg ⇒ m&& x = −k1 (x − l1 ) − k2 (x − l 2 ) + mg The two springs have the same extension x African Virtual University 178 Pulsation ω o2 = k1 + k2 k = ; où k = k1 + k2 m m 2°) ur ur ur ur ⎧T 1 + T 2 + mg = mΓ ur ur r ⎪⎪ ur ⎨T o1 + T o 2 + mg = 0 r ⎪ ur ur T 1 +T 2 = 0 ⎩⎪ −k1 (x1 − l o1 ) − k2 (x2 − l o 2 ) + mg = m&& x −k1 (x1e − l o1 ) − k2 (x2 e − l o 2 ) + mg = 0 −k1 (x1 − x1e ) − k2 (x2 − x2 e ) = m&& x x = x1 + x2 African Virtual University 179 2 ur r r r r & z = r&er + c ez ⇒ v2 = r& 2 + c V R ( M ) = r&er + rθe r r2 dv2 2 d dt ( r& ) = ( r& 2 ) dr dt dr d 2 1 &r . = 2&& ( r& ) = 2r&& r dr r& 1 d 2 c2 (v ) = (&& r − 3) 2 dr r Rotating reference : uuuur r OM = xe x r ur r ⎧⎪ R = (O, x o , y , z o ) o o r ur r ⎨ ⎪⎩ R = (O, x, y, z o ) African Virtual University 180 x = −k2 (x − xI − l ) + mg ⎪⎧ m&& ⎨ ⎪⎩0 = k2 (x − xI − l ) − k1 (xI − l ) 0 = k2 x − k2 l − k2 xI − k1 xI + k1l ⇒ xI = k2 x + k1l − k2 l k1 + k2 m&& x = −k2 (x − l − k2 x + k1l − k2 l ) + mg k1 + k2 m&& x = −k2 (x − l ) + k2 xI + mg m&& x = −k2 (x − l ) + mg + m&& x= (k22 − k1 k2 − k1 2 )x (k2 k1 + k22 + k1 k2 − k2 )l + + mg k1 + k2 k1 + k2 m&& x=− 0=− k2 (k x + k1l − k2 l ) k1 + k2 2 k1 k2 2k k x + 1 2 l + mg k1 + k2 k1 + k2 k1 k2 k1 + k2 ⇒ m&& x+ xe + k1 k2 k1 + k2 2k1 k2 k1 + k2 l + mg (x − xe ) = 0 X = x − xe ⇒ mX&& + kX = 0 où k = k1 k2 1 1 1 ⇔ = + k1 + k2 k k1 k2 African Virtual University 181 Exercise 12 1- Preliminary study of the spring a) Check that the coefficient of stiffness of the spring is equal to k = 20,0 N.m - 1. Figure 1 Galilean reference : the solid Earth. System studied : the solid attached to the free end of the spring. The equilibrium condition is : + m = (1) +k = By projecting on Oz : m k=m -k =0 / k = (0,200 x 10) / 0,100 = 2 / 0,100 k = 20 N / m (2) African Virtual University 182 b) the uni N is equivalent to kg . m / s 2. Thus : k = 20 N / m = 20 kg . m / s 2 m = 20 kg / s 2 = 20 kg . s - 2 - The coefficient of the spring stiffness is expressed in kg / s 2. - the quantity m / k is expressed in kg / kg . s - 2 and in s2. - the quantity is expressed in s. 2- Study of an elastic oscillator a) differential equation of movement. Figure 2 Galilean reference : the solid Earth. Studied system : the solid attached to the free end of the spring. Applied forces : the soli dis subjected to three forces : The weight The force (the action of the Earth on the solid). exerted by the spring on the solid as =k =-k (3) . the force exerted by the support on the solid (it is perpendicular to the surfaces in contact since friction is neglected) - Let us apply Newton’s second law (theorem of the center of inertia): In a Galilean reference frame, the sum of external forces applied to a solid is the product of the mass of the solid by the acceleration of its center of inertia : African Virtual University 183 Here, we write : + + =m (4) with =-k Where, by projecting on the unit vector and, by consequence, Fx = - k x : 0+0-kx=m m +kx=0 The equation (5) is the differential equation of movement of the soli It is a differential equation of second order with constant coefficients. - Verify that, if we correctly choose To, the function (6) is the solution of the differential equation: (5) (6) with respect to time : Derive (7) Derive (7) with respect to time : (8) - Forming : (9) - this expression (9) will be zero, according to condition : (11) = 0 (10), with the African Virtual University 184 (6) is the solution to the differential equation of movemen the condition: (11) - Calculate the numerical value of the period T0 = 2 p g = 0,200 kg and k = 20 N / m with m = 200 T0 = 0,628 s (12) b) Study of a particular case Initital conditions : at t = 0 s, we have x (o) = - 0,15 m and v (0) = 0 m/s - transfer these values into the expressions of the position and the velocity : x = X M cos (w0 t + j) (6) and (9) Thus, at t = 0 s : - 0,15 = X M cos (ϕ) 0 = - (2 π / To) X M sin (ϕ) And : X M = - 0,15 / cos (ϕ) 0 = - sin (ϕ) There appears to be 2 solutions : ϕ1 = 0 (modulo 2 π)with X1M = - 0,15 m ϕ2 = π (modulo 2 π)with X2 M = 0,15 m However, these solutions are in fact equal, since cos cos (a + π) = - cos (a) : x1 = - 0,15 cos (10 t) = 0,15 cos (10 t + π) = x2 we retain : The position x of the center of inertia G of the solid is, at each instant, given by : x = 0,15 cos (10 t + π) (13) African Virtual University 185 by deriving x with respect to time, we obtain the velocity of the solid in rectilinear translation : v = - 1,5 sin (10 t + π) (14) the velocity thus varies between - 1,5 m/s and + 1,5 m/s which is the maximum value. Remark : by deriving with respect to time, we obtain the acceleration of the solid. a = - 15 cos (10 t + π) c) Energetic study of the undamped oscillator. - Recall that x = X M cos (10 t + π ) (13)andt v = - 10 X M sin ( 10 t + π ) (14) - The solid-spring system has, in the Galilean terrestrial reference, mechanical energy: Em = EP + EC = Em = k x2 + m v2 k Xm2 cos2 (10 t + p) + m (- 10)2 Xm2 sin2 (10 t + p) But 100 = k / m (4) Em = k Xm2 cos2 (10 t + π) + m k/m Xm2 sin2 (10 t + π) Em = k Xm2 [ cos2 (10 t + π) + sin2 (10 t + π) ] We know that [ cos2 (10 t + π) + sin2 (10 t + π) ] = 1 Finally : Em = k Xm2 (13) This energy remains constant as time elapses (note that we have neglected any friction). With k = 20 N/m et Xm = - 0,15 m, we obtain : Em = 0,225 J (14) - We have seen that in the absence of friction, the mechanical energy of the African Virtual University 186 spring-solid system remained constant. In passing through x = 0 the potential energy of spring mum. Thus : k x2 is zero, thus the kinetic energy of the system is a maxi- m v2max = 0,225 and 0,1 v2max = 0,225 v2max = 2,25 m2 / s2 The velocity v varies between extreme values - 1.5 m / s and +1.5 m / s which is maximum value already found in question 2-b. Exercise 13 A – Study of free oscillations A-1 Comment on the shape of the curve and specify the type of oscillations observed. The amplitude of oscillations is constant. The oscillations, free and undamped, are periodic. A-2 Graphically determine the oscillation period T0 of mass m hanging spring. The duration of two oscillations is around 0.63 s. The natural period T0 of free, undamped oscillations is: T0 = 0,315 s A-3 Comparison with the theoretical value . African Virtual University 187 This gives m = 100 g = 0,100 kg and k = 40 N / m. We obtain : T0 = 0,314 s The calculation confirms the value obtained experimentally. We retain : T0 = 0,32 s A-4 We add to the extremity E of the stem a horizontal disc of negligible volume and mass. Frictional forces are now involved. The mass of the disk and hence its weight is negligible. The buoyant force exerted by water on the disc is also negligible, since its volume is negligible. However, the oscillator is now damped by viscous friction. In the presence of moderate friction (small hard surface, placed in a low viscosity liquid like water, salt) the amplitude of oscillations gradually decreases (pseudo-periodic regime). The pseudo period T1 is close to the natural period T0. Let us draw the shape of the curve obtained after a new acquisition: B – Study of forced oscillations B-1 The engine fitted to the eccentric is the exciter. The system (spring + mass) is the resonator. It requires that the excitation frequency f of the resonator frequency f0 = 1 / T0. B-2 The curve giving the variation of the amplitude xmax of the oscillations of the resonator as a function of frequency f which is imposed by the exciter, is called resonance curve. African Virtual University 188 f (Hz) 1,5 2,0 2,5 2,8 3,1 3,2 3,3 3,6 4,0 4,5 xmax (cm) 0,4 0,6 1,0 1,5 2,1 2,3 2,0 1,5 1,0 0,7 For a frequency of excitation fR = 3.2 Hz we observe that the amplitude of oscillations of the resonator is maximized. This is the phenomenon of amplitude resonance. It occurs for a frequency of excitatory fR = 3.2 Hz near the frequency f0 = 1 / T0 = 3.18 Hz of the resonator. B-3 If we used a solution S ‘over the viscous friction force increase, the resonance becomes blurred. There would be more resonance if the damping became very important. African Virtual University 189 C – Suspension of a moving object C-1 For a velocity VR, the vehicle undergoes large amplitude oscillations that dangerously diminish its handling. Let us explain this phenomenon. The suspension of a moving object is comparable to a mechanical system oscillating at a frequency f0. It acts as a resonator, however, it is damped. With each bump (exciter), the system receives a nearly vertical stimulus. If these pulses are periodic and if the frequency f is close to f0, thus the oscillations of the car, though muted, can achieve a large amplitude. The “handling” of the car may be compromised. C-2 Express the velocity VR as a function of f0 and L. This phenomenon occurs if the time between two passes over a hump, and L / VR is equal to the natural period T0 = 1 / f 0 of the oscillating mechanical system: L / VR = 1/ f0 VR = L . f0 With f0 = 5,0 Hz et L = 80 cm = 0,80 m, we calculate : VR = L . f0 = 0,80 5,0 = 4,0 m / s = 14400 m / h VR = 14,4 km / h Exercise 14 1- Preliminary study of the spring a) Check that the coefficient of stiffness of the spring is equal to k = 20,0 N.m -1 . Figure 1 African Virtual University 190 Galilean reference : the solid Earth. System studied : the solid attached to the free end of the spring. The equilibrium condition is : + m = (1) +k = By projecting on Oz : m -k k=m =0 / k = (0,200 x 10) / 0,100 = 2 / 0,100 k = 20 N / m (2) b) the uni N is equivalent to kg . m / s 2. Thus : k = 20 N / m = 20 kg . m / s 2 m = 20 kg / s 2 = 20 kg . s - 2 - The coefficient of the spring stiffness is expressed in kg / s 2. - the quantity m / k is expressed in kg / kg . s - 2 and in s2. - the quantity is expressed in s. 2- Study of an elastic oscillator a) differential equation of movement. Figure 2 African Virtual University 191 Galilean reference : the solid Earth. Studied system : the solid attached to the free end of the spring. Applied forces : the solid disc is subjected to three forces : The weight The force (the action of the Earth on the solid). exerted by the spring on the solid as =k =-k (3) . the force exerted by the support on the solid (it is perpendicular to the surfaces in contact since friction is neglected) - Let us apply Newton’s second law (theorem of the center of inertia): In a Galilean reference frame, the sum of external forces applied to a solid is the product of the mass of the solid by the acceleration of its center of inertia : Here, we write : + + =m (4) with =-k Where, by projecting on the unit vector and, by consequence, Fx = - k x : 0+0-kx=m m +kx=0 The equation (5) is the differential equation of movement of the soli It is a differential equation of second order with constant coefficients. - Verify that, if we correctly choose To, the function (6) is the solution of the differential equation: Derive Derive (5) (6) with respect to time : (7) (7) with respect to time : (8) African Virtual University 192 - Forming : - this expression (9) will be zero, according to tion : (9) = 0 (10), with the condi- (11) (6) is the solution to the differential = 0 (5), with the condition: equation of movement (11) - Calculate the numerical value of the period T0 = 2 p 0,200 kg and k = 20 N / m with m = 200 g = T0 = 0,628 s (12) b) Study of a particular case Initital conditions : at t = 0 s, we have x (o) = - 0,15 m and v (0) = 0 m/s - transfer these values into the expressions of the position and the velocity : x = X M cos (w0 t + j) (6) and (9) Thus, at t = 0 s : - 0,15 = X M cos (ϕ) 0 = - (2 π / To) X M sin (ϕ) And : X M = - 0,15 / cos (ϕ) African Virtual University 193 0 = - sin (ϕ) There appears to be 2 solutions : ϕ1 = 0 (modulo 2 π) with X1M = - 0,15 m ϕ2 = π (modulo 2 π) with X2 M = 0,15 m However, these solutions are in fact equal, since cos (a + π) = - cos (a) : x1 = - 0,15 cos (10 t) = 0,15 cos (10 t + π) = x2 we retain : The position x of the center of inertia G of the solid is, at each instant, given by : x = 0,15 cos (10 t + π) (13) by deriving x with respect to time, we obtain the velocity of the solid in rectilinear translation : v = - 1,5 sin (10 t + π) (14) the velocity thus varies between - 1,5 m/s and + 1,5 m/s which is the maximum value. Remark : by deriving with respect to time, we obtain the acceleration of the solid. a = - 15 cos (10 t + π) c) Energetic study of the undamped oscillator. - Recall that x = X M cos (10 t + π ) (13) andt v = - 10 X M sin ( 10 t + π ) (14) - The solid-spring system has, in the Galilean terrestrial reference, mechanical energy: Em = EP + EC = Em = k x2 + m v2 k Xm2 cos2 (10 t + π) + m (- 10)2 Xm2 sin2 (10 t + π) But 100 = k / m (4) Em = k Xm2 cos2 (10 t + π) + m k/m Xm2 sin2 (10 t + π) Em = k Xm2 [ cos2 (10 t + π) + sin2 (10 t + π) ] African Virtual University 194 We know that[ cos2 (10 t + π) + sin2 (10 t + π) ] = 1 Finally : Em = k Xm2 (13) This energy remains constant as time elapses (note that we have neglected any friction). With k = 20 N/m et Xm = - 0,15 m, we obtain : Em = 0,225 J (14) - We have seen that in the absence of friction, the mechanical energy of the spring-solid system remained constant. In passing through x = 0 the potential energy of spring mum. Thus : k x2 is zero, thus the kinetic energy of the system is a maxi- m v2max = 0,225 and 0,1 v2max = 0,225 v2max = 2,25 m2 / s2 The velocity v varies between extreme values - 1.5 m / s and +1.5 m / s which is maximum value already found in question 2-b. Exercise 15 1- Establish the differential equation of movement of the solid. Use the figure below : African Virtual University 195 Galilean reference : the solid Earth. Associated orthonormal reference : O, System studied : the solid of mass m. The solid disc subjected to 4 forces : - : weight (due to gravity) - : normal action of the stem on the moving object - : action of the spring - : friction of the fluid on the moving object Apply Newton`s second law ( lesson 11) : In a Galilean reference frame, the sum of external forces applied to a solid is equal to the product of the mass m of the solid by the acceleration of its center of inertia : Here, the law is written : + + + Note that + =m =K -K (1) =-K -h =m (2) and that m +h : =m + K x = 0 (4) + (h / m) +A (3) (1 bis) Project (1 bis) on the axis of the unit vector 0+0-Kx-h =-h + (K / m) x = 0 (5) + (K / m) x = 0 (6) with : A = h / m (7) (A is the damping coefficient). Equation (5) is the differential equation of movment of the solid of mass m. It is a second order differential equation with constant coefficients. In this equation (5) figure the term A force = - h . which corresponds to the frictional African Virtual University 196 2- Nature of the movement of the solid body. If A could be zero, then the movement would be periodic. Since there is friction, the movement cannot be periodic. If A is weak, then the movement of the solid is pseudo-periodic. If A is strong, the movement of the soli dis aperiodic. Remark There is a damping called «critical» that ensures a return to the position of equilibrium faster than aperiodic or pseudo-periodic. 3- Study the mechanical energy Em of the system (spring + solid). a) The mechanical energy of the system (spring + solid) is : Em = Epotentiel of the spring + Ekinetic of the mass Em = k x2 + m v2 = ( k x2 + m ) (8) b) Let us establish the relationship between the derivative of the mechanical energy versus time and power of the friction force. Drive Em with respect to time : d Em / dt = k x. +m Use the relation m . +h (10) d Em / dt = ( - h =(kx+m ) (9) + K x = 0 (4) ) = fx vx = . = P (power developed from friction). African Virtual University 197 c) Comment on this relationshio in terms of energy transfer Power developed from friction is P = d Em / dt = - h tive. , which is always nega- The system (spring and solid) loses mechanical energy. This energy is transformed to heat. 4- Graphical representation. a) Determine the initial conditions imposed on the oscillator At time t = 0 s, the graph given by the computer can show u (o) = 0 V. We deduce that at the same time the solid mass m passes through the point O of an abscissa of zero. What is its velocity V (o)? We know that the velocity is Vx = dx / dt. Its value is given by the coefficient of the tangent to the curve giving x in terms of t. The graph gives du / dt = - 6.6 V / s at time t = 0 s (check after drawing the tangent at the origin). The scale is such that 1 volt corresponds to 1 cm, it follows that Vx (0) = - 6.6 cm / s = - 0.066 m / s. At time t = 0 s, we have : - initial abscissa x(0) = 0 m - initial velocity V(0) = - 0,066 m/s (11) b) Calculate the pseudo-period T. The graph shows that 5 oscillations last 10 s. Thus : 5 T = 10 African Virtual University 198 The pseudo period is T = 2,0 s (12) c) The mechanical energy of the system is Em = k x2 + m v2 At each extremum i, the velocity is zero. The mechanical energy is : (Em) i = k x2i = 5 x2i (13) (Em) i / (Em) i + 1 is quasi constant. d) Determine the work and frictional force and 4th negative extremum. between the passages of the 1st Passing by the 1st negative extremum, the mechanical energy is : Em1 = 0,0054 J (14) Passing by the 4th negative extremum, the mechanical energy is : Em4 = 0,00018 J (15) In the presence of friction, the mechanical energy of the solid-spring system varies. Here, it decreases. It turns gradually into heat energy which heats the system and its surroundings. The variation of the mechanical energy of the solid-spring system is equal to the work of the frictional force : Em4 - Em1 = W14 ( W14 ( ) ) = Em4 - Em1 = 0,00018 - 0,0054 (16) African Virtual University 199 W14 ( ) = - 0,0052 J = - 5,2 x 10 - 3 J (17) The work of the friction force is negative because it is resistant work. Note: Sometimes, a friction force provides a positive working engine. This is the case, for example, when a treadmill turns on, carrying an object. The work of the frictional force exerted by the belt on the bag is positive. Exercise 16 c R uur uur ur u (O , e x , e y, e z ) R ' (O a) uuur VR uuuuuur et OM ur u ur u ur u , e r , e θ, e z ) ur u ur u = r .e r + z .e z uuuuuuur • ur u Ω R '/ R = θ e z uuuur uuur ( M )= VR' ( M ) + VR ( M ∈R ' ) = d dt/ R r ( r.e + • ur • ur uuur u • ur u u VR (M) = r e r + z e z + r θ eθ r • r ) + θ z.e z r ∧ ( r.e + R '/ R r r z.e z ) African Virtual University 200 ur ur Γ a (M) = Γ R ' (M) b) ur Γ R (M) = d dt/ R 2°) ( + ur ur Γ e(M) + Γ c(M) r r r • r • r • r r + • r ) + •• ∧( + )+ ∧( + ) r .e r z .e z θ R '/ R.e z r.e r z.e z 2.θ .e z r .e r z .e z r r r ur u • + ∧ [ e ∧ ( r.e + z.e .e z r z (θ)2 z • uur eθ ey r F1 uur er r F2 r θ uur ex r mg ⎡ 2mrθ ⎤ ⎢ ⎥ F1 = ⎢ mr ⎥ ⎢ 0 ⎥ ⎣ ⎦ uur à ur P a) uur F 2 = ml r ur e z ∧ V R (M) r r r = − mg e y = − mg ( sin θe r + cosθeθ ) ur P ur +F + 1 ur ur = m F2 Γ R (M) )] African Virtual University 201 • •• • • − mg sin θ + 2mrθ − mlr θ = m[ r − r (θ)2 ] • •• (1) •• − mg cosθ + mr + ml r = m[ 2 r θ + r θ ] • •• • • ⎧ 2 ⎪⎪− g sin θ + 2rθ − lr θ = r − r (θ) ⇒⎨ • •• •• ⎪ ⎪⎩− g cosθ + r + l r = 2 r θ + r θ ur ur u (2) (3) (4) ur u b) dEc (M) = dW(P ) + dW(F1 ) + dW(F2 ) ur uuuur ur u uuur ur u uuur 1 2 d[ m V R (M)]= d(P.OM ) + F1.V R (M).dt + F2 .V R (M).dt 14 4244 3 2 0 •r ur u uuur r r •r F1.V R (M) = (2mrθe r + mreθ )(r e r + r θ eθ ) • • = 2m r rθ + mr 2 θ = d(mr 2θ) ur uuuur P.OM = − mgr sin θ • • 1 d [ m( r 2 + r 2 θ2 ) ]= d ( mr 2θ − mgr sin θ) 2 • 2 • 2 2 ⇒ r + r θ = 2r 2θ − 2gr sin θ + cte (5) (cte = cons tan te) African Virtual University 202 The relation (5) is the first integral of energy 3) ur ur u ur uuur P + F1 + L = m Γ R (M) ur ur u où L = Le r • ⎧ L ⎪⎪ 2aθ − g sin θ + = − a θ2 m ⇒⎨ •• ⎪ ⎪⎩ a − g cosθ = a θ (6) (7) •• (7) ⇒ a θ + g cosθ = a (8) (8) : Is the dynamic differential equation of M ur ur u ur dEc (M) = dW(P ) + dW(F1 ) + dW(L) 123 0 • 2 2 ⇒ a θ = 2a 2θ − 2ga sin θ + cte (9) à t = 0 ⇒ θ = 0 ,et la relation (9) nousdonne : cte = 0 • 2 ⇒ a θ = 2aθ − 2g sin θ (10) (6) et (10) ⇒ L = ( − 2aθ + 2g sin θ )m + mg sin θ − 2maθ African Virtual University 203 b) ⇒ L = 3mg sin θ − 4maθ (11) 4) d uur uuur ur L = M o ( ∑ F) dt / Ro o • ur uur uuuur uuur ur u u où L o = OM ∧ m VR (M) = a e r ∧ ma θ eθ • ur uur u L o = ma 2 θ e z uuur ur uuuur ur ur u ur M o ( ∑ F) = OM ∧ ( P + F1 + L ) ur u ur u ur u ur u ur u ur u = a e r ∧ [Le r + 2maθe r + maeθ − mg sin θe r − mg cosθeθ ] ur u ur u = a e r ∧ [maθ − mg cosθ]eθ ur u = ma(a − g cosθ)e z •• ur u ur u ⇒ ma 2 θ e z = ma(a − g cosθ)e z •• ⇒ a θ + g cosθ = a Exercise 17 (8) African Virtual University 204 uur uur ur u ( , , , R O e x e y e z) ur u ur u ur u ( , , , R ' O e r e θ e φ) uur uur uur ur u ur u ur u ur u (φ,ez ) ( , , , ) ⎯ ⎯⎯ → ( , , , R O ex e y ez R 1 O eρ eφ e z) uuuuuuuur Ω R1 / R R 1(O uur ur u ur u ur u ur u ur u ur u (θ,eφ ) , e ρ, e φ, e z ) ⎯⎯⎯→ R '(O , e r , e θ, e φ) uuuuuuuur Ω R '/ R1 uuuuuuur • ur • u ur u ur u = φ e z = φ(cosθe r − sin θe θ ) • ur u = θeφ uuuuuuuur uuuuuuur • ur u • ur u Ω R '/ R = Ω R '/ R1 + Ω R1/ R = θ e φ + φ e z uuuuuuur Ω R '/ R • ur u • ur u ur u = θ e φ + φ(cosθe r − sin θe θ ) (1) ) By composition de movement a) vector velocity uuur uuur uuur VR (M) = VR ' (M) + VR (M ∈R ') ur u uuuuuur uuuur d = (re ) + Ω R '/ R ∧ OM dt / R ' r •r • r • r r r = r e r + r θ(eφ ∧ e r ) − r φ sin θ(eθ ∧ e r ) •r •r • uuur r VR (M) = r e r + r θ eθ + r φ sin θeφ African Virtual University 205 b) acceleration vector uuur uuur uur uur Γ R (M) = Γ R ' (M) + Γ c (M) + Γ e (M) uuur Γ R ' (M) = •• ur u d uuur VR ' (M) = r e r dt / R ' uur uuuuuur uuur Γ c (M) = 2Ω R '/ R ∧ VR ' (M) • • r • • r r r r r = 2 r[θ(eφ ∧ e r ) + φ cosθ(e r ∧ e r ) − φ sin θ(eθ ∧ e r ) ••r •• r = 2 r θ eθ + 2 r φ sin θeφ uur Γe(M) = uuuur uuuuuur uuuuuur uuuur d uuuuuur (Ω R '/ R ) ∧ OM + Ω R '/ R ∧ (Ω R '/ R ∧ OM ) dt / R •• ur •• •• u ur u ur u ur u uuuuuur uuuuuur uuuur = θ eφ ∧ re r +[− φ sin θ − φ θ cosθ] (eθ ∧ e r ) + Ω R '/ R ∧ (Ω R '/ R ∧ OM ) • φ cosθ • • rθ 2 • 2 −r φ sin θ − r θ 0 • uuuuuur uuuuuur uuuur avec Ω R '/ R ∧ (Ω R '/ R ∧ OM ) = − φ sin θ ∧ θ • 2 • 2 = −r φ sin θcosθ • r φ sin θ •• r θ φ cosθ The vectors are expressed in the reference R’ where • • ur • •• •• •• uur u ur u ur u 2 2 2 Γe(M) = − r(φ sin θ + θ )e r + r( θ − φ2 sin θcosθ)eθ + r[φ sin θ + 2φ θ cosθ]eφ • • ⎛ ⎞ •• ⎜ ⎟ r − r(φ2 sin 2 θ + θ2 ) ⎜ ⎟ • •• •• uuur ⎜ ⎟ ⇒ Γ R (M) = ⎜ r( θ − φ2 sin θcosθ) + 2 r θ ⎟ ⎜ •• ⎟ •• •• ⎜ r[φ sin θ + 2φ θ cosθ] + 2 r φ sin θ⎟ ⎜ ⎟ ⎝ ⎠ Components of the acceleration vector in the reference R’ African Virtual University 206 By direct calculation Velocity vector uuur VR (M) = uuuuuur uuuur d uuuur (OM ) + Ω R '/ R ∧ OM dt / R ' •r • r • • r r r r r = r e r + r θ(eφ ∧ e r ) + r φ cosθ(e r ∧ e r ) − r φ sin θ(eθ ∧ e r ) •r •r • uuur r VR (M) = r e r + r θ eθ + r φ sin θeφ Acceleration vector uuur Γ R (M) = uuuuuur uuur d uuur d uuur VR (M) = VR (M) + Ω R '/ R ∧ VR (M) dt / R dt / R ' • r = d dt / R ' • • r • rθ + − φ sin θ ∧ r φ sin θ θ • • φ cosθ • • rθ • r φ sin θ • • ⎛ ⎞ •• ⎜ ⎟ r − r(φ2 sin 2 θ + θ2 ) ⎜ ⎟ • •• •• uuur ⎜ ⎟ ⇒ Γ R (M) = ⎜ r( θ − φ2 sin θcosθ) + 2 r θ ⎟ ⎜ •• ⎟ •• •• ⎜ r[φ sin θ + 2φ θ cosθ] + 2 r φ sin θ⎟ ⎜ ⎟ ⎝ ⎠ African Virtual University 207 2) ur ur u uuuur ur u L = Le r OM = ae r ur r ur u r r P = mg = − mge z = − mg ( cosθe r − sin θeθ ) ur uuuur uuur uuuur r r F = − kAM = − k(AO + OM ) = − k ( ae z + ae r ) ur r r F = − k a[(1 + cosθ)e r − sin θeθ ] a) ur ur ur uuur L + P + F = mΓ R (M) • ⎧ ⎪ L − mg cosθ − k a(1 + cosθ) = − ma θ2 ⇒⎨ •• ⎪ mg sin θ + ka sin θ = ma θ ⎩ •• ⎛g k⎞ (2) ⇒ θ = ⎜ + ⎟ sin θ ⎝ a m⎠ (1) (2) (3) Equation (3) is the dynamic differential equation of movement expression of L African Virtual University 208 • 2 (1) ⇒ L = (ka + mg)cosθ + k a − ma θ (4) b) kinetic energy theorem uuur r ur dE c (M) = dW(mg) + dW(F) + dW(L) 1 a2 • 2 2 Ec (M) = m V R (m) = m (θ) 2 r 2 ur uuuur W(mg ) = mg .OM = − mga cosθ ur ur uuur dW(L) = L.dM = 0 ur ur uuur dW( F) = F.VR (M).dt •r • r r r = − k a[(1 + cosθ)e r − sin θeθ ].[a θ eθ + a φ sin θeφ ].dt • = ka 2 sin θθ dt = ka 2 sin θdθ = d(−ka 2 cosθ) d[m a2 • 2 (θ) ] = d[−(ka 2 + mga )cosθ] 2 a2 • 2 ⇒ m (θ) = − (ka 2 + mga )cosθ + cte 2 • à t = 0⇒ θ = 0 et θ = 0 ⇒ cte = ka 2 + mga ⇒m a2 • 2 (θ) = (ka 2 + mga )(1 − cosθ ) 2 Where the first energy integral is : • ma 2 (θ)2 = 2 (ka 2 + mga )(1 − cosθ ) (4) and (5) expression of L (5) ⇒ L = (ka + mg)cosθ + k a − 2(ka + mg)(1 − cosθ ) L = k a + (ka + mg)(3cosθ − 2) (6) African Virtual University 209 Differential equation of movement • •• • (5) ⇒ ma.2.θ θ = 2(ka + mg)(sin θ)θ • •• et θ ≠ 0 ⇒ θ = ka + mg sin θ ma We find equation (3) c) at point C, we have θ= π 2 et • v= uuur v c = a θc et (5)⇒ ⇒ vc = • V R (M) = a θ 2 [(ka 2 + mga)(1 − cosθ)] ma 2 ka 2 + mga m and L = ka + (ka + mg)(−2) = − 2mg − ka ur ur u L = − (ka + 2mg)e r d) L = 0 alors (6)⇒3cosθ − 2 = − 1 ka cosθ = (2 − ) 3 ka + mg ka ka + mg African Virtual University 210 1 ka (2 − ) ≤1 3 ka + mg 2ka − ka + 2mg − 3≤ ( ) ≤3 ka + mg ka + 2mg − 3≤ ( ) ≤3 ka + mg ka + 2mg ≤3 ka + mg L = 0 existe ⇔ − 1≤ d 'où ka + 2mg ≤3(ka + mg) 2ka + mg ≥0 toujours vraie 1 1 1 ka = mg ⇒ cosθ = (2 − ) = 3 2 2 ⇒θ = ± π ⇒ 3 θ= π 3 African Virtual University 211 Exercise 18 uur uur ur u u ) ⎫⎪ R 0 ( O, uxuor , uyuor ,zur R 0 ( O, xro , ryour u,z oo ) ⎫⎬⎪ u ) ⎬⎪ R1 ( O, xr , yr ,zur R1 ( O, x , y,z oo ) ⎭⎪⎭ r r ur ur ) R ( O, xr , vr ,w R ( O, x , v ,w ) R est un repère de R Rr isun a projection uuuu rrepère de est uOM uuur = ρvr OM = ρv }} uuuuuuuur • ur u • z uuuuuuuur = ψ ur u Ω 1 / R0 = ψ z o ΩR R /R o 1 0 uuuuuur • r uuuuuur = θ• xr Ω / R1 ΩR R / R1 = θ x projection projection 1°) uuur d uuuur d r •r a) VR (M) = OM = ρv = ρ v dt / R dt / R uuuur b) VR (M) = 1 d dt / R 1 uuuur d uuuur uuuuuur uuuur OM = OM + Ω R / R ∧ OM 1 dt / R r •r r = ρ v + θ x ∧ ρv •r • ur = ρ v + ρθ w • 2°) African Virtual University 212 c) uuuur VR (M) = o uuuur d uuuur uuuuuur uuuur OM = OM + Ω R / Ro ∧ OM dt / R d dt / R o r •r • r r = ρ v + (θ x ∧ ψ z ) ∧ ρv •r • ur • r = ρ v + ρθ w + ρψ sin θ(−x ) • • ur r •r = − ρψ sin θ x + ρ v + ρθ w • uuuur uuuuuur uuuur uuuuuur uuuuuur uuuur VR (M ∈R) = Ω R / Ro ∧ OM = (Ω R / Ro + Ω R / R ) ∧ OM o uuuuuur uuuur uuuuuur uuuur 1 = Ω R / Ro ∧ OM + Ω R / R ∧ OM uuuur uuuu1r = VR (M ∈R) + VR (M ∈R1 ) 1 o 3°) •• r uuur d uuur a) Γ R (M) = VR (M) = ρ v dt / R uuuur b) Γ R (M) = 1 d dt / R 1 uuuur uuuuuur uuuur d uuuur VR (M) = VR (M) + Ω R / R ∧ VR (M) 1 1 1 1 dt / R • ur •r •r • ur d •r = ( ρ v + ρθ w ) + θ x ∧ ( ρ v + ρθ w ) dt / R • r •• r •• •• ur • • ur uuuur Γ R (M) = ρ v + (ρ θ + ρ θ ) w + θ ρ w − ρθ2 v 1 • r •• •• •• ur uuuur 2 Γ R (M) = ( ρ − ρθ ) v + (2ρ θ + ρ θ ) w 1 African Virtual University 213 c) • ur uur uuuuuuur uuuur u • r • • ur Γ c (M) = 2Ω R1/ Ro ∧ VR (M) = 2 ψ z o ∧ (ρ v + ρ θ w ) 1 • • r r = −2 ψ ρ cosθx + 2 ψ ρθ sin θx • r • • uur Γ c (M) = 2 ψ x (ρθ sin θ − ρ cosθ ) • • uuuur uuuuuuur uuuur d uuuuuuur uuuur uuuuuuur Γ R (M ∈R1 ) = ( Ω R1/ Ro ) ∧ OM = Ω R1/ Ro ) ∧ (Ω R1/ Ro ∧ OM ) o dt / R o •• ur u • ur r • ur u u r = ψ z o ∧ ρv + ψ z o ∧ (ψ z o ∧ ρv ) • ur •• r u r = − ψ ρcosθx − ρ ψ 2 z o ∧ cosθx • r r = − ψ ρcosθx − ρ ψ 2 cosθy •• • •• uuuur r r ur Γ R (M ∈R1 ) = − ψ ρcosθx − ρ ψ 2 cosθ(cosθv − sin w ) o • • •• uuuur r r ur 2 2 Γ R (M ∈R1 ) = − ψ ρcosθx − ρ ψ cos θv + ρ ψ 2 cosθsin θw o 4°) a) •• •• • uuuur uuuur r d Γ R (M) ∧ OM = 0 ⇒ ρ θ + 2ρ θ = 0 = ( ρ2 θ) 1 dt • ⇒ ρ2 θ = cte b) uuuur uuuur r Γ R (M) ∧ OM = 0 o (1) (2) uuuur uuuur uur uur Γ R (M) = Γ R (M) + Γ c (M) + Γ e (M) o 1 African Virtual University 214 •• • • • −ρψ cosθ + 2 ψ (ρθ sin θ − ρ cosθ ) • 2 • 2 •• 2 −ρψ cos θ + ρ − ρθ = • 2 •• •• −ρψ cosθsin θ + ρ θ + 2ρ θ Relative components of the reference R •• • • • • ⎧ ⎪ρ( − ψ cosθ + 2 ψ θ sin θ) − 2ρ ψ cosθ = 0 (2) ⇒ ⎨ • •• •• ⎪ 2 5°) ρ(ψ cosθsin θ + θ ) + 2ρ θ = 0 ⎩ • (3) (4) •• ρ=a ⇒ρ= ρ =0 •• • • (3) ⇒ − ψ cosθ + 2 ψ θ sin θ = 0 • 2 (5) •• (4) ⇒ ψ cosθsin θ + θ = 0 (5) ≡ • d • (ψ cos2 θ) = 0 ⇒ ψ cos2 θ = c1 dt • ⇒ 2 c sin θ = 0 θ+ 1 cos3 θ • •• (7) 2 c1 2 ⇒ ψ = •• (6) cos4 θ (8) 2 •• c sin θ dθ = 0 ⇔ θ dθ + 1 cos3 θ • • • • et θ θ dt = θ d θ ⇒θ d θ − 2 c1d(cosθ) = 0 cos3 θ African Virtual University 215 • 1 d( θ2 − 2 • 2 ⇒θ + • 2 ⇒ θ 2 c1 cos −2 −2 θ • 2 1 c1 ) = 0 ) = d(θ2 + 2 cos2 θ 2 c1 cos2 θ = c2 2 = c2 − c1 cos2 θ (9) Learning activities The students must do all the exercises. They are organized in groups for collaborative work. Each group completes the proposed exercises and designates a leader of the group who will report for each group. The professor gives a deadline for each exercise, at which time each group will send an attached file of their reports to the professor of the course. Teacher’s guide The professor will correct the group reports, and will place the corrections in a workspace accessible to students. The corrections are accompanied by adequate feedback. The scores for each group are assigned to group members and will count for 20% of the final evaluation of the module African Virtual University 216 Optional evaluation of educational nature Activity title : Forms of activity evaluation Time of learning 4 hours Specific learning objectives Being able to: • Name two forms of assessment • Recognize the evaluation moments • Identify the roles of evaluation Appropriate reading DIOUF, S. (2004). L’évaluation des apprentissages. Sénégal. Faculté des Sciences et Technologies de l’Education et de la Formation (FASTEF). Université Cheikh Anta DIOP (UCAD) de Dakar Justification for the appropriate reading The text on the assessment of learning gives readers information on the issue of assessment, evaluation forms and their role in correcting the issues objectively including the short questions, different types of feedback, etc. . Activity summary This activity serves to identify forms of assessment from the time of evaluation, and to clarify the roles of assessment and evaluation times. Evaluation A newly assigned teacher in a school receives their schedule. In the classroom and immediately after the presentations, there is a written test lasting one hour (1 hour). The following week, they begin their classes and after two sessions of the mechanics of one and two dimensions, there must be a test on this part of the course. African Virtual University 217 1) In what form of assessment can we have the first written test? 2) In what form of assessment can we have the second written test? 3) At what time do we have the summative evaluation? 4) What role does each of the first two evaluations play? Learning activities The students must do all the exercises. They are organized in groups for collaborative work. Each group completes the proposed exercises and designates a leader of the group who will report for each group. The professor gives a deadline for each exercise, at which time each group will send an attached file of their reports to the professor of the course. Key answers 1) The first written evaluation should be before the learning. It is a preliminary diagnostic evaluation . 2) The second evaluation will be written during the learning. It is a formal evaluation. 3) The summative evaluation should be at the end of the learning. 4) Role of the diagnostic evaluation : identify strengths and weaknesses in students so that they will know what they have to review. 5) The predictive evaluation should give an indication of chances of success or failure of the students. The formal evaluation is to help students improve their knowledge as they are learning. Self-evaluation This assessment allows students to be aware of the importance of the moments of evaluation and the role they can play. This will allow them to be better equipped and prepare accordingly. Teacher’s Guide This evaluation is optional. It is not mandatory. Only those ones who want will complete it. The professor will correct their productions, but the grades will not be taken into account in the final assessment. African Virtual University 218 XV. Synthesis of the module The MODULE « mechanics 1 » includes prerequisites, objectives, general learning and specific learning objectives. It is divided into four units of learning. Each unit is accompanied by readings comprised of links and resources that are valuable aids to the students Unit 1 Unit 1 includes: - - Four required readings, Twenty questions and exrcices. This will facilitate the reception of knowledge for the student. We started learning the international system of units (SI), based on seven basic units. Then we continued by physical measurements, measurement errors and uncertainties. For conclusion, we discussed the particular vector operations of addition and subtraction of vectors. Unit 2 Unit 2 includes: - Three required readings, - Completion of a course that examines the movements of free fall - And a series of nine exercises. In most cases, we seek the kinematic characteristics of a moving object: trajectory, velocity, acceleration, time equations .... For complete knowledge of students, we worked on different systems coordinates (spherical coordinates, cylindrical ...). Unit 3 Unit 3 includes - - - Three required readings, Completion of a course dealing with the reaction supports, the forces of solid-solid friction and the study of the deformation of a spring. A series of eight exercises based on the application of zero torsor African Virtual University 219 Unit 4 : Unit 4 includes: - - - Three required readings related to the derivation of vector dynamics, points in a Galilean and non-Galilean reference, work and oscillators. Additional courses formed by small exercises treating physical phenomena seen in everyday life Eighteen exercises and problems solved. African Virtual University 220 XVI. Summative evaluation - An instant velocity vector has the hollowing components : Vx , Vy, Vz ; its normal is equal to : V = Vx +Vy+Vz V = Vx + Vy + Vz V = Vx2 + Vy2+Vz2 V = V(M) = Vx2 + Vy2 + Vz2 Circle the correct answer - A moving object M is on a horizontal route. Its position M at instants t1, t2, t3 has abscissas of: X1 = 2t +20 ; y1 = 4t X2 = 2t ; y2 = 4t X3 = 2t – 4 ; y3 = 8- 4t - - - - Uniform rectilinear motion Uniformly accelerated rectilinear motion Uniformly decelerated rectilinear motion Rectilinear sinusoidal motion Circle the correct answer. 3. Complete the following sentences : a. A movement is helical if and only if its trajectory is given by …. . b. A helical movement is uniform if its angular velocity is….. 4. The moment of a vector with respect to an axis is a vector when the moment of a vector with respect to a point is a scalar. a. True b. False Circle the correct answer African Virtual University 221 5. The moment of a vector with respect to an axis is a vector when the moment of a vector with respect to a point is a scalar. a. True b. False 6. A solid mass m in equilibrium on a smooth horizontal plane is subjected to: a. b. c. d. e. its weight only the reaction of the plane only the reaction of the plane acting in the opposite direction, and its weight the reaction of the plane acting in the same direction, and its weight neither its weight or the reaction of the plane 7. The equilibrium of a body is more stable when: a. b. c. d. its weight is large its weight is small its center of gravity is low its center of gravity is high 8. Match the following two columns Forces at a distance 2. Frictional forces Contact forces 3. Electrostatic forces 4. Electromagnetic forces 5. Weight of a body 9. A force is said to be conservative if its work : a. depends on the path followed b. is independent of the path followed 10. Match the following two columns : 1. Pure oscillation 2. Damped oscillation 3. Forced oscillation a. b. c. d. energy input exchange of energy energy dissipation conservation of energy African Virtual University 222 11. When a solid is in equilibrium, the resultant forces applied to the solid is zero. This condition is: a. necessary b. sufficient Choose the correct answer 12. Two forces can turn a solid. True or False 13. Equilibrium of a solid placed on an inclined plane is possible if : a. rough b. smooth Check the correct answer. 14. Complete the following sentence : The mechanical energy is conserved when, occasionally, the only forces working derive from ______energy. 15. An advantage to having conservation of mechanical energy is : a. a first degree integral b. a second degree equation 16. For a solid body, which of the following physical quantities varies with altitude ? a. its mass b. its weight 17. Is the moment of a force, with respect to a point, a vector because it results from a product of type: a. vectorial of two vectors b. scalar of two vectors 18. The moment of a force with respect to a segment is a scalar. a. True b. False African Virtual University 223 19. A body left at the top of the vertical mast of a boat that is animated by a rectilinear uniform motion compared to a terrestrial reference, falls at the foot of the mast. Why? 20. So that kinetic energy is always non-negative, why can the mechanical energy of a system be negative? 21. A stationary magnetic field does not increase the norm of the velocity of a charged particle. Why is it so widely used in particle accelerators ? 22. Why is the mechanical energy of a system not conserved in all cases ? 23. When the balance of forces acting on a vehicle or a person walking along a horizontal path, one is led to conclude that it is the force of friction which allows the movement. Is this paradoxical? Why? African Virtual University 224 Answers Keys 1. a. Think carefully before answering b. Have you thought about the units of velocity vector before your choice? c. The unit velocity in the International System (SI) is not the (m / s) 2 d. Good answer. It must indeed be the square root of the sum of the squares of the coordinates. 2. a. Very good. Indeed the velocity is constant, the motion is rectilinear uniform. b. Did you calculate the velocity of the moving object before choosing? c. Reread the question and see if the velocity depends on time. d. For sinusoidal motion, the horizontal axis is a sinusoidal function of time (x = Asin (wt + Φ)), which is not the case here. 3. a. by a propeller. Good answer, you have learned your lesson b. is constant. Good answer, your lesson is learned 4. a. Carefully reread the question b. Good answer, you do well to distinguish the two moments 5. a. Good answer, indeed the moment of a vector with respect to an axis is a scalar, not a vector b. Reread the question before answering. 6. a. Attention, there should be more than a force for equilibrium of a solid on a plane. b. Only one force cannot maintain a solid in equilibrium on a plane. c. Very good. You see it is the principle of action and reaction. d. A body can be in equilibrium on a plane under the action of two forces having the same direction and same orientation. e. Every body in equilibrium on a plane is submitted to at least two forces African Virtual University 225 7 a. Attention. a stable equilibrium does not depend solely on body weight b. Think again, a stable equilibrium can not depend solely on force. c. Very good, actually more the center of gravity of a body is, the more the equilibrium is stable. d. Reread the question and you can tell that between two people of the same weight and size , which is most stable if they are standing. 8.1b ; 1c ; 1d ; 2a 9 a. Have you really learned your lesson before replying? b. Bravo. You have learned your lesson. The work of a conservative force is actually independent of the path. 10. 1d ; 2c ; 3a. Bravo. 11 a. Very good, it is necessary, however it does not suffice by itself b. Incorrect, it does not suffice by itself 12. True. Good answer, you know the applications of groups of forces 13. a. Bravo. If the slope is rough, there is a coefficient of friction generated by a frictional force that keeps the solid equilibrium. b. A solid on an inclined plane has drag and can not therefore remain in equilibrium on a smooth surface. 14. Potential energy. Bravo. African Virtual University 226 15. a. Very good. In fact, the advantage is to have a first integral that the solution is easier than the equations from the fundamental principle of dynamics, which are of second order. b. The equations of the second level are not easy to solve and are thus a disadvantage 16. a. Attention, the mass of a body does not vary b. Bravo. The weight of a body varies with altitude. 17. a. Good answer. The moment of a vector from a point is actually a vector. b. Attention, you are confusing it with the moment of a vector with respect to a segment 18. a. Good answer. This is indeed the moment of a vector with respect to a line which is a scalar. b. Proofread well and think before responding. 19. The reference R ʹ linked to the boat is also Galilean. With respect to R ʹ , the laws of mechanics and thus those of free fall are written in the same way as in R . Very good, you are mastering your course. 20. The energies Ek and EP are defined at a close constant additive. Conventionallyt, Ek = 0 for the body of an immovable object, so that EP = 0 for bodies infinitely far from each other. It results that EP is negative if the interaction is positive ; thus En can be negative, contrary to Ek . Very good answer, 21. The magnetic field can bring in, through its properties of deviation, any charged particle in a region where there is an electric field, which can only increase the norm of the velocity of the particle. Very good answer. 22. The mechanical energy is not conserved in the general case, because of external and internal forces that do not derive a potential energy; thus this is not a conservative quantity. In contrast, the total energy, total kinetic energy of the macroscopic potential energy of external forces and of the internal energy, is conservative: it is a statement of the first law of thermodynamics. Very good. 23. To advance, we must rely on the ground. The friction force is an essential intermediary. Very good. Without the frictional forces we would be unable to walk properly. African Virtual University 227 XVII. References Readings MAGER, R,F. (1975). Comment définir les objectifs pédagogiques. Bordas. Paris RATIARISON, A. (2006). Grandeurs physiques – Mesures-incertitudesOpérations vectorielles. Madagascar. Université d’Antananarivo. Cours inédit. CAZIN, M. (1972). Mécanique générale et industriielle Tome 1- Gauthier villarsPEREZ–MASSON J.-P. (1997) Mécanique Fondement et applications Paul, A.T.(1995). Physics for Scientists and Engineers – Worth Publishers – New York, NY 1003 The Free High School Sciences : A Textbook for High School Students Studing physics – FHSSt Authors- December 9, 2005 from http://savannah.nongnu. org/projects/fhsst (consulte le 15 sptembre 2006) ANSERMET, J.P. ( 2004-2005). La mécanique rationnelle – Formation de base des Sciences et des ingénieurs. Institut de Physique des nanostructures- Ecole Polytechnique Fédérale de Lausanne – PHB – Ecublens, 1015 Lausanne. DIOUF, S. (2004). L’évaluation des apprentissages. UCAD de Dakar. FASTEF(ex ENS). Cours inédit DE KETELE, J. M. (1986). L’évaluation : approche descriptive ou prescriptive ? De Boeck Université DE LANDSHEERE , G (1984). Evaluation continue et examens. Précis de docimologie. Editions Labor. Education 2000. DAWOUD. M. (1995). Elaboration d’un examen de rendement scolaire. Techniques et procédures. Editions Nouvelles. ODILE, et VESLIN, J. (1992). Corriger des copies. Evaluer for former. DEPOVER , C et al .(1994) La conception des logiciels éducatifs (Title provisoire). Inédit African Virtual University 228 Links and resources 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. http://www.bipm.fr/fr/si/si_brochure/chapter1/1-2.html http://www.cegep-ste-foy.qc.ca/freesite/index.php?id=3113 http://www.ulb.ac.be/cours/psycho/content/cognum/calcul.html ABC SITE http://www.hazelwood.k12.mo.us/grichert/sciweb/applets.htlm. http://www.infoline.ru/g23/5495/Physics/English/waves.htlm http://www.infoline.ru/g23/5495/index.htlm http://jas.eng.buffalo.edu http://lectureonline.cl.msu.edu/∼mmp/kap5/work/work.htlm http://www.glenkrook.k12.il.us/gbsci/phys/Class/1DKin/U1L5a.htlm http://www.glenkrook.k12.il.us/gbsci/phys/Class/1DKin/U1L5b.htlm http://www.glenkrook.k12.il.us/gbsci/phys/Class/1DKin/U1L5c.htlm http://www.glenkrook.k12.il.us/gbsci/phys/Class/1DKin/U1L5d.htlm http://www.glenkrook.k12.il.us/gbsci/phys/Class/1DKin/U1L5e.htlm http://www.glenkrook.k12.il.us/gbsci/phys/Class/1DKin/U1L5c.htlm http://www.glenkrook.k12.il.us/gbsci/phys/Class/1DKin/U1L5d.htlm http://www.hazelwood.k12.mo.su/∼grischert/explore/dswmedia/freefall.htlm http://www.google.ca/search?client=firefox_a&rls=org.mozilla%3AenUS%Aofficial-&hl=en&q=c3%A9equilibre+d%27un+solide+sur+plan &meta http://www.chimix.com/an5/prem5/hotp5/force1htlm http://fr.wikipedia.org/wiki/statique-du-solide http://e.m.c.2.fr_chute-libre.htm http://e.m.c.2.free.fr\pj00wd3l.html http://www.bipm.fr/fr/si/si_brochure/chapter1/1-2.html http://www.cegep-ste-foy.qc.ca/freesite/index.php?id=3113 http://www.ulb.ac.be/cours/psycho/content/cognum/calcul.html http://www.hazelwood.k12.mo.us/grichert/sciweb/applets.htlm. http://www.infoline.ru/g23/5495/Physics/English/waves.htlm http://www.infoline.ru/g23/5495/index.htlm http://jas.eng.buffalo.edu http://lectureonline.cl.msu.edu/∼mmp/kap5/work/work.htlm http://www.glenkrook.k12.il.us/gbsci/phys/Class/1DKin/U1L5a.htlm http://formation.edu-psud.fr/pcsm/physique/outils_nancy/apprendre/Chapitre2/ titre1res.htm 33. http://formation.edu-psud.fr/pcsm/physique/outils_nancy/apprendre/Chapitre3/ partie3 / titre1res.htm African Virtual University 229 34. http://msch2.microsoft.com/fr-fr/library/system.windows.forms.paddings.op_addition.aspx 35. http://msch2.microsoft.com/fr-fr/library/system.windows.forms.paddings. op_methods.aspx 36. http://mathexel.site.voila.fr/index.htlm 37. http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/chien_ j.html 38. http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/4mouche_ j.html 39. http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/lissajou_j.html 40. http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/hyp_ep _j.html 41. http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/plttrn _j.html 42. http://www.sciences.univ-nantes.fr/physique/perso/corticol/bibliohtml/pndhgs_j.html 43. 44. 45. 46. 47. 48. 49. 50. 51. http://electronics.free.fr/school/article.phys3?id_article=9#5 http://www.chez.com/Mecanique/cinematipts.htm http://www.chez.com/Mecanique/dynamiqu.htm http://www.chez.com/Mecanique/energeti.htm http://www.sciences.univ-nantes.fr/physique/perso/gtulloue/aquadiff. html http://www.n-vandewiele.com/TDMeca2.pdf http://www.ens-lyon.fr/Infosciences/Climats/Dynam-atmo/Cours-Coriolis http://www.ucd.ma/fs/modules/meca1/um1./modules3/cin2.htm http://perso.orange.fr/rmchs/physique_05/cours_physique/cours_ mecach5_cinematique.pdf http://www.keepschool.com/cours-fiche-les_systèmes_oscillants http://www.logitheque.com/fiche.asp?I=18755 52. 53. 54. http://www.univ-lemans.fr/enseignements/physique/01/statique.htm 55. http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/prlong. htm 56. http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/prlong. html 57. http://www.sciences.univ-nantes.fr/ physique/perso/cortial/bibliohtm/froflu. html African Virtual University 230 XVIII. Grades and results of student’s evaluation Name of Excel file : Evaluation - Students Mechanics 1 Professor : Adolphe RATIARISON Student evaluation spreadsheet Academic year Mechanics 1: Professor: Last Name RATIARISON Adolphe First Name A.1 /20 0 A.2 /20 0 A.3 /20 0 A.4 /20 0 Summ. Eval. /20 0 Total /100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Average /20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Result Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad Bad African Virtual University 231 XIX. Author of the module Pr Adolphe RATIARISON Département de Physique Faculté des Sciences Université d’Antananarivo, Madagascar Tel 261 32 04 266 58 :E_mail : [email protected] Thesis professor in states of physics, Adolphe RATIARISON teaches : - - - In first cycle, general mechanics I et II, In second cycle, heat transfer and turbulent boundary layer In third cycle, atmospheric physics, physical oceanography His research in centered on : - - - - - - The prediction of trajectories of tropical cyclones The prediction of rain and no rain Forecasting hail Siltation of harbors and estuaries Hydrology Medical Imaging African Virtual University 232 XX. Files structure Name of module (in a WORD file) : Kinematics of a point Equilibrium of solids on a plane Physics quantities-meausurements- Uncertainties- Vector operations References-Dynamics of a material point-Work- Power, energy, oscillators Name of other files (WORD, PDF, PPT, etc.) of the module Evaluation of activities MÉCANIQUE Lectures Obligatoires Source: Wikipedia.org 1 Table des matières Mouvement de rotation .............................................................................................................................. 5 Définition ................................................................................................................................................ 5 Cinématique dans l'espace ................................................................................................................ 8 Dynamique et énergétique ..................................................................................................................... 9 Centre instantané de rotation .................................................................................................................. 10 Définition .............................................................................................................................................. 10 Exemple des danseuses de cancan ...................................................................................................... 11 Justification .......................................................................................................................................... 11 Utilisation du CIR dans un problème de cinématique plane ........................................................... 13 Orbite ......................................................................................................................................................... 14 Éléments orbitaux ................................................................................................................................ 14 Périodes ................................................................................................................................................. 17 Relations entre les anomalies et les rayons ........................................................................................ 17 Barycentre (physique) .............................................................................................................................. 18 Historique ............................................................................................................................................. 18 Développement mathématique ............................................................................................................ 19 Développements physiques .................................................................................................................. 20 Centre d'inertie ................................................................................................................................ 21 Centre de gravité .............................................................................................................................. 21 Méthode graphique .......................................................................................................................... 22 Astronomie ............................................................................................................................................ 22 Localisation du centre de gravité d'une plaque à deux dimensions ................................................ 23 Système masse-ressort .............................................................................................................................. 23 Oscillations rectilignes d'une masse soumise à l'action d'un ressort ............................................... 23 Amélioration ......................................................................................................................................... 25 Autre amélioration ............................................................................................................................... 25 Moment de force (mécanique) ................................................................................................................. 25 Translation d'une force ....................................................................................................................... 26 Moment par rapport à un point ...................................................................................................... 26 Moment par rapport à un axe ......................................................................................................... 28 Couple de forces ............................................................................................................................... 29 2 Théorème de Varignon .................................................................................................................... 30 En dynamique ....................................................................................................................................... 30 Moment d'inertie....................................................................................................................................... 31 Approche empirique ............................................................................................................................ 31 Détermination du moment d'inertie ................................................................................................... 31 Moments d'inertie particuliers ........................................................................................................... 32 La boule ............................................................................................................................................. 32 La barre ............................................................................................................................................ 33 Le cylindre plein ............................................................................................................................... 33 Le cylindre creux .............................................................................................................................. 33 Théorème de transport (ou Théorème d'Huygens ou Théorème de Steiner) ................................. 34 Énergie cinétique....................................................................................................................................... 34 Historique ............................................................................................................................................. 34 Conventions .......................................................................................................................................... 34 Définitions ............................................................................................................................................. 35 Cas d'un point matériel ................................................................................................................... 35 Cas d'un système de points .............................................................................................................. 35 Unité ...................................................................................................................................................... 36 Théorème de König .............................................................................................................................. 36 Enoncé ............................................................................................................................................... 36 Application à un solide .................................................................................................................... 36 En mécanique relativiste ..................................................................................................................... 37 Théorème de l’énergie cinétique ......................................................................................................... 38 Énoncé ............................................................................................................................................... 38 Démonstration .................................................................................................................................. 39 Théorème de la puissance cinétique ................................................................................................... 39 L’énergie thermique en tant qu’énergie cinétique ............................................................................ 40 Énergie mécanique .................................................................................................................................... 40 ]Expression ........................................................................................................................................... 40 Solide ponctuel ................................................................................................................................. 40 Solide étendu non déformable ......................................................................................................... 41 Solide déformable ............................................................................................................................. 41 3 Théorème de l'énergie mécanique ...................................................................................................... 41 Conservation ......................................................................................................................................... 42 4 Mouvement de rotation Sphère en rotation autour d'un de ses diamètres La rotation est l'un des deux mouvements simples fondamentaux des solides, avec la translation rectiligne. En génie mécanique, il correspond au mouvement d'une pièce en liaison pivot par rapport à une autre. La notion de mouvement circulaire est une notion de cinématique du point : on décrit la position d'un point dans le plan. La rotation est une notion de cinématique du solide : on décrit l'orientation d'un solide dans l'espace. L'étude du mouvement de rotation est la base de la méthode du centre instantané de rotation (CIR). Définition [] Un solide est en rotation si la trajectoire de tous ses points sont des cercles dont le centre est une une même droite ; cette droite est appelée « axe de rotation », et habituellement notée Δ. En cinématique dans le plan, les trajectoires des points sont des cercles concentriques, le centre commun de ces cercle est appelé « centre de rotation » et habituellement noté O. Définitions [] Définition de l'orientation et de la vitesse angulaire 5 L'orientation du solide est repérée par un angle habituellement noté θ (voir Angles d'Euler). En cinématique plane, cet angle peut être défini comme l'angle entre une direction de référence passant par O, en général l'axe (Ox), et une droite passant par O et par un point A donné du solide distinct de O. La vitesse de rotation ω est définie par . l'accélération angulaire α est définie par soit également . À l'instar du mouvement de translation et du mouvement circulaire, on distingue le mouvement de rotation uniforme et le mouvement de rotation uniformément varié. Mouvement de rotation uniforme [] Dans le cas du mouvement de rotation uniforme, on a une accélération angulaire nulle α=0 donc la vitesse de rotation est constante ω = ω0 et l'angle croît de manière linéaire θ = θ0 + ω0×t où θ0 est l'orientation à l'instant initial. Ce mouvement idéal est en général utilisé pour décrire la partie centrale d'un mouvement (vitesse angulaire stable). Mouvement de rotation uniformément varié [] Dans le cas du mouvement de rotation uniforme, on a une accélération angulaire constante 6 α = α0 donc la vitesse de rotation varie de manière uniforme ω = ω0 + α0×t où ω0 est la vitesse à l'instant initial, et l'angle croît de manière quadratique θ = θ0 + ω0×t + 1/2×α0×t2 où θ0 est l'orientation à l'instant initial. Ce mouvement idéal est en général utilisé pour décrire le début et la fin d'un mouvement (mise en route ou arrêt). Mouvement des points [] Triangle des vitesses dans le cas d'une barre en rotation Triangle des vitesses dans le de points situés sur des axes différents Chaque point M de l'objet a une trajectoire circulaire, donc décrit un cercle de centre O et de rayon R = OM. Le vecteur vitesse instantané est tangent au cercle, donc perpendiculaire au rayon [OM]. Sa norme vaut v = ω×R. 7 Les équations horaires du point dans le cas des mouvements uniforme est décrit dans l'article Mouvement circulaire uniforme. Dans le cas général, elles sont décrites dans l'article Mouvement circulaire non uniforme. Graphiquement, si l'on considère les vecteurs vitesse des points appartenant à une même droite passant par O, leurs extrémités sont sur une droite passant par O (en raison de la proportionnalité en R) ; la figure ainsi formée est appelée « triangle des vitesses ». Cela permet une résolution graphique de problèmes cinématiques : si l'on connaît la vitesse d'un point du solide — par exemple point en contact avec un actionneur (extrémité de tige d'un vérin, dent d'engrenage), on peut déterminer le vecteur vitesse de tous les points du solide : leur direction est perpendiculaire au rayon en ce point ; la norme de la vitesse de tous les points situés sur un même cercle de centre O est identique ; si l'on « rabat » les points sur une même droite passant par O, les vecteurs forment le triangle des vitesse. Par « rabattre le point B sur la droite », on entend trouver le point B' de la droite situé sur le même cercle de centre O. Cinématique dans l'espace [] Position et vecteur vitesse de rotation Dans le cas de la cinématique dans l'espace, on prend un axe de référence normal à l'axe de rotation et le coupant en O, et un point A du solide situé dans le plan normal à l'axe de rotation et passant par O. Le vecteur vitesse de rotation est le vecteur ayant pour direction l'axe de rotation ; dont le sens est déterminé par la règle conventionnelle d'orientation : règle de la main droite, sens de vissage ; dont la norme est la dérivée de la position par rapport au temps. 8 Le vecteur accélération angulaire est la dérivée vectorielle de : Si O est un point de l'axe de rotation et A un point quelconque du solide, le vecteur vitesse A est obtenu par en . Le vecteur vitesse angulaire est la résultante du torseur cinématique. Le vecteur vitesse en A est le moment de ce torseur en ce point de réduction. Dynamique et énergétique [] On peut appliquer la dynamique du point à chaque élément de matière du solide. En intégrant sur la totalité du solide, on trouve les résultats suivants : l'inertie en rotation, ou inertie à la rotation, par rapport à l'axe Δ est exprimée par le moment d'inertie JΔ ; l'accélération angulaire est reliée aux couples extérieurs Cext et aux moments des forces extérieures par rapport à l'axe par le principe fondamental de la dynamique : ou, sous forme vectorielle . Article détaillé : Dynamique de rotation. Par ailleurs, l'énergie cinétique en rotation Ec s'exprime par et le théorème de l'énergie cinétique énonce que la variation de l'énergie cinétique est égale à la somme des travaux des couples et moments internes et externes. Le travail d'un couple C constant entre deux positions θ1 et θ2 s'écrit Wθ1→θ2(C) = C⋅(θ2 - θ1), le paramètre (θ2 - θ1) étant l'amplitude du mouvement. Si le couple varie, on définit alors le travail élémentaire pour une petite rotation d'un angle dθ 9 dWC = C⋅dθ et . La puissance P du couple se définit par PC = C⋅ω. Sous forme vectorielle, la puissance devient . Centre instantané de rotation Le centre instantané de rotation (CIR) est un terme utilisé en mécanique classique et plus particulièrement en cinématique pour désigner le point autour duquel tourne un solide à un instant donné par rapport à un repère de référence. Définition [] À l'instant t, I est le centre instantané de rotation du solide S dans le repère R défini par les axes Ox et Oy. 10 Lorsqu'un solide isolé au sens mécanique du terme, se déplace suivant une trajectoire comprise dans un plan, le CIR se définit comme le point où le vecteur vitesse est nul. Le CIR se situe sur la perpendiculaire à chaque vecteur vitesse du solide isolé passant par le point d'application de ce dernier. Lorsque le solide isolé se déplace uniquement en translation dans un plan, le CIR est projeté à l'infini. Le torseur cinématique réduit au CIR est : Exemple des danseuses de cancan [] Danseuses de French cancan vues de haut L'illustration représente des danseuses de cancan vues de dessus. Si on considère que l'ensemble des cinq danseuses est un solide isolé au sens mécanique du terme, on peut dire que le centre instantané de rotation est la danseuse centrale, puisqu'elle n'a pas de vitesse relative contrairement à ses compagnes qui ont une vitesse proportionnelle à leur éloignement du centre. Justification [] 11 Sur un court instant, le mouvement d'une bielle (bas) dans un système manivelle-bielle-piston est équivalent à une rotation autour du CIR (haut) Considérons une pièce ayant un mouvement plan quelconque, par exemple le mouvement d'une bielle. Si l'on prend une photographie, on a un flou en raison du mouvement : les points « filent », et les segments de droite générés par les points sont une image des vecteurs vitesse. Si la bielle était en rotation autour de son CIR, on obtiendrait une photo semblable, avec le même flou. Sur un très court instant — le temps de pose de la photographie —, les deux mouvements sont équivalents. De manière plus rigoureuse : le torseur cinématique d'un solide en mouvement plan dans le plan (Oxy ) réduit à un point quelconque A s'écrit : c'est un glisseur puisque et sont orthogonaux. Il existe donc un point B tel que . d'après la propriété d'équiprojectivité, on a . 12 Si l'on note (X, Y, 0) les composantes de , on a alors si ωz n'est pas nul, alors le point B existe et est unique ; il est appelé centre instantané de rotation. Utilisation du CIR dans un problème de cinématique plane [] Considérons un mouvement plan qui n'est pas une mouvement de translation. Durant un court instant, tout se passe comme si le solide était en mouvement de rotation autour de son CIR. On peut alors appliquer les relations établies dans le cas des mouvements de rotation, et en particulier la notion de triangle des vitesses. Cela permet de déterminer le vecteur vitesse en un point quelconque du solide, à condition de connaître : le vecteur vitesse en un point ; la position du CIR. La méthode est une alternative à la méthode de l'équiprojectivité. Application à une voiture dans un virage Prenons l'exemple d'une voiture en virage, dont on connaît la direction, le sens, le point d'application et l'intensité (5 m/s) du vecteur vitesse de la roue avant. On connaît également la direction, le point d'application et le sens de la roue arrière. Les points A et B sont les centres des roues et respectivement les points d'application de leur vecteur vitesse. L'objectif est de déterminer l'intensité du vecteur vitesse de la roue arrière. Résolution graphique grâce au CIR : 13 1. 2. 3. 4. On choisit une échelle des vitesses, par exemple 10 mm pour 1 m/s ; On place le vecteur vitesse de la roue avant au point A ; On trace (en rouge) la direction du vecteur vitesse de la roue arrière au point B ; Le CIR se situe sur une droite passant par le point d'application des vecteurs vitesse et perpendiculaire à ces derniers : on trace donc les traits verts, et on déduit le CIR ; 5. On mesure le segment [CIR B] et on reporte la mesure sur le segment [CIR A] trait bleu ; 6. On trace une droite passant par le CIR et par l'extrémité du vecteur vitesse associé au point A ; 7. On trace un segment perpendiculaire à [CIR A] passant par le mesure reportée sur [CIR A] et coupant le segment passant par CIR et par l'extrémité de ; 8. On mesure ce dernier segment et en fonction de l'échelle on trouve l'intensité du vecteur vitesse . Orbite Orbite circulaire de deux corps de masse différentes autour de leur barycentre (croix rouge). En mécanique céleste, une orbite est la trajectoire que décrit dans l'espace un corps autour d'un autre corps sous l'effet de la gravitation. L'exemple classique est celui du système solaire où la Terre, les autres planètes, les astéroïdes et les comètes sont en orbite autour du Soleil. De même, des planètes possèdent des satellites naturels en orbite. De nos jours, beaucoup de satellites artificiels sont en orbite autour de la Terre. Les trois lois de Kepler permettent de déterminer par le calcul le mouvement orbital. Éléments orbitaux [] 14 Orbite elliptique Une orbite elliptique peut se définir dans l'espace selon six paramètres permettant de calculer très précisément la trajectoire complète. Deux de ces paramètres (excentricité et demi-grand axe) définissent la trajectoire dans un plan, trois autres (inclinaison, longitude du nœud ascendant et argument du péricentre) définissent l'orientation du plan dans l'espace et le dernier (instant de passage au péricentre) définit la position de l'objet. Voici la description plus détaillée de ces paramètres : Demi-grand axe a : la moitié de la distance qui sépare le péricentre de l'apocentre (le plus grand diamètre de l'ellipse). Ce paramètre définit la taille absolue de l'orbite. Il n'a de sens en réalité que dans le cas d'une trajectoire elliptique ou circulaire (le demi-grand-axe est infini dans le cas d'une parabole ou d'une hyperbole) Excentricité e : une ellipse est le lieu des points dont la somme des distances à deux points fixes, les foyers (S et S' sur le diagramme), est constante. L'excentricité mesure le décalage des foyers par rapport au centre de l'ellipse (C sur le diagramme); c'est le rapport de la distance centre-foyer au demi-grand-axe. Le type de trajectoire dépend de l'excentricité : o e = 0 : trajectoire circulaire o 0 < e < 1 : trajectoire elliptique o e = 1 : trajectoire parabolique o e > 1 : trajectoire hyperbolique 15 Inclinaison i : l'inclinaison (entre 0 et 180 degrés) est l'angle que fait le plan orbital avec un plan de référence. Ce dernier étant en général le plan de l'écliptique dans le cas d'orbites planétaires (plan contenant la trajectoire de la Terre; en noir dans la figure 1). L'inclinaison est l'angle orange dans la figure 1. Longitude du nœud ascendant ☊ : il s'agit de l'angle entre la direction du point vernal et la ligne des nœuds, dans le plan de l'écliptique. La direction du point vernal (en noir dans la figure 1) est la droite contenant le Soleil et le point vernal (point de repère astronomique correspondant à la position du Soleil au moment de l'équinoxe du printemps). La ligne des nœuds (en vert dans la figure 1) est la droite à laquelle appartiennent les nœuds ascendant (le point de l'orbite où l'objet passe du côté nord de l'écliptique) et descendant (le point de l'orbite où l'objet passe du côté sud de l'écliptique). Argument du périhélie ω: il s'agit de l'angle formé par la ligne des nœuds et la direction du périhélie (la droite à laquelle appartiennent le Soleil et le périhélie de la trajectoire de l'objet), dans le plan orbital. Il est en bleu dans la figure 1. La longitude du périhélie est la somme de la longitude du nœud ascendant et de l'argument du périhélie. Instant τ de passage au périhélie : La position de l'objet sur son orbite à un instant donné est nécessaire pour pouvoir la prédire pour tout autre instant. Il y a deux façons de donner ce paramètre. La première consiste à spécifier l'instant du passage au périhélie. La 16 seconde consiste à spécifier l'anomalie moyenne M (en rouge dans la figure 1) de l'objet pour un instant conventionnel (l'époque de l'orbite). L'anomalie moyenne n'est pas un angle physique, mais spécifie la fraction de la surface de l'orbite balayée par la ligne joignant le foyer à l'objet depuis son dernier passage au périhélie, exprimée sous forme angulaire. Par exemple, si la ligne joignant le foyer à l'objet a parcouru le quart de la surface de l'orbite, l'anomalie moyenne est ° = 90°. La longitude moyenne de l'objet est la somme de la longitude du périhélie et de l'anomalie moyenne. Périodes [] Lorsqu'on parle de la période d'un objet, il s'agit en général de sa période sidérale, mais il y a plusieurs périodes possibles : Période sidérale : Temps qui s'écoule entre deux passages de l'objet devant une étoile distante. C'est la période « absolue » au sens newtonien du terme. Période anomalistique : temps qui s'écoule entre deux passages de l'objet à son périastre. Selon que ce dernier est en précession ou en récession, cette période sera plus courte ou longue que la sidérale. Période draconitique : temps qui s'écoule entre deux passages de l'objet à son nœud ascendant ou descendant. Elle dépendra donc des précessions des deux plans impliqués (l'orbite de l'objet et le plan de référence, généralement l'écliptique). Période tropique : temps qui s'écoule entre deux passages de l'objet à l'ascension droite zéro. À cause de la précession des équinoxes, cette période est légèrement et systématiquement plus courte que la sidérale. Période synodique : temps qui s'écoule entre deux moments où l'objet prend le même aspect (conjonction, quadrature, opposition, etc.). Par exemple, la période synodique de Mars est le temps séparant deux oppositions de Mars par rapport à la Terre; comme les deux planètes sont en mouvement, leur vitesses angulaires relatives se soustraient, et la période synodique de Mars s'avère être 779,964 d (1,135 années martiennes). Relations entre les anomalies et les rayons [] Dans ce qui suit, e est l'excentricité, T l'anomalie vraie, E l'anomalie excentrique et M l'anomalie moyenne. Le rayon r de l'ellipse (mesuré depuis un foyer) est donné par : Les relations suivantes existent entre les anomalies : 17 ou encore Une application fréquente consiste à trouver E à partir de M. Il suffit alors d'itérer l'expression : Si on utilise une valeur initiale E0 = π, la convergence est garantie, et est toujours très rapide (dix chiffres significatifs en quatre itérations). Barycentre (physique) En physique et en mécanique, le barycentre (ou centre de masse) d’un solide est le centre des poids. La notion est également utilisée en astronomie En mécanique du solide, on parle spécifiquement de moment : moment d'inertie, moment cinétique. Historique [] Le barycentre de barus (poids) et centre est initialement le centre des poids. C'est donc une notion physique et mécanique. Le premier à avoir étudié le barycentre en tant que centre des poids (ce qu'on appelle de nos jours le centre de gravité) est le mathématicien et physicien Archimède. Il est un des premiers à comprendre et expliciter le principe des moments, le principe des leviers et le principe du barycentre. Il écrit dans son traité Sur le centre de gravité de surface plane: « Tout corps pesant a un centre de gravité bien défini en lequel tout le poids du corps peut être considéré comme concentré. » Son principe des moments et des leviers lui permet de construire assez simplement le barycentre O de deux points de masses m1 et m2 différentes. 18 Pour que la balance soit en équilibre, il faut que les moments et soient égaux. Si par exemple la masse m1 est 4 fois plus importante que la masse m2, il faudra que la longueur OA soit 4 fois plus petite que la longueur OB. Cette condition se traduit de nos jours par l'égalité vectorielle Il est le premier à avoir cherché des centres de gravité de surface comme des demi-disques, des paraboles. Il procède par approximations successives et a pu prouver que la recherche d'un centre de gravité utilise des méthodes analogues à celle du calcul d'aire. Son travail est prolongé par celui de Paul Guldin (1635/1640) dans son traité Centrobaryca et celui de Leibniz à qui l'on doit la fonction vectorielle de Leibniz. La notion de centre d'inertie G pour un système non solide est une notion dégagée par Christiaan Huygens (1654), lors de l'établissement de sa théorie des chocs : même s'il sait que P = P0, il n'est pas évident pour lui que G ira à vitesse constante. En particulier au moment de la percussion, où des forces quasi-infinies entrent en jeu, avec éventuellement bris de la cible, G n'en continue pas moins imperturbé son mouvement : cela paraît mirifique à Huygens, qui ne connaît pas encore le calcul différentiel. C'est alors qu'il énonce le principe de mécanique : « Le barycentre d'un système matériel se meut comme si toute la masse du système y était transportée, les forces extérieures du système agissant toutes sur ce barycentre. » On peut remarquer le glissement subtil entre barycentre, centre des poids (= centre de gravité) comme le voyait Archimède et barycentre, centre des masses (= centre d'inertie). Développement mathématique [] Article détaillé : barycentre (géométrie affine). Les mathématiques généralisent la construction d'Archimède du point d'équilibre de deux points affectés de deux masses positives progressivement à des ensembles plus complexes. Les coefficients peuvent être négatifs : Le barycentre des points A et B affectés des masses a et b (a + b non nul) est l'unique point G tel que . Les coordonnées de G sont alors 19 Le nombre de points peut passer à trois points, quatre points et se généraliser à n points. Si la somme des masses ai est non nulle, le barycentre du système que est le point G tel . Les coordonnées sont données par les formules, pour j variant de 1 à la dimension de l'espace C'est sous cette forme qu'il devient un outil puissant en géométrie affine. Le nombre de points peut même devenir infini, permettant de trouver le barycentre d'une courbe ou d'une surface. Si l'ensemble constitue un domaine D continu, à chaque point M du domaine on affecte une densité g(M) où g est une fonction continue (un champ scalaire). Le barycentre est alors le point G tel que dans l'espace ou dans le plan . Si les points M ont pour coordonnées (x1;x2,x3) la fonction de densité s'écrit g(x1,x2,x3) et les coordonnées de G s'écrivent Si l'on se ramène à une dimension, ou bien si l'on considère chaque coordonnée séparément, on retrouve la formule de la moyenne pondérée : Développements physiques [] 20 Centre d'inertie [] En mécanique, le centre d'inertie d'un corps correspond au barycentre des particules qui composent le corps en question ; chaque particule étant pondérée par sa masse propre. C'est donc le point par rapport auquel la masse est uniformément répartie. Dans le cas d'un corps continu , on emploie comme fonction de pondération la masse volumique ρ du corps. Dans ce cas, la position du centre d'inertie G est défini par la relation suivante (O étant un point quelconque de l'espace) : ou Le centre d'inertie ne dépend donc que de la masse volumique et de la forme du corps. C'est une caractéristique intrinsèque. Une propriété étonnante du centre d'inertie est que son mouvement est parfaitement déterminé par les lois du mouvement, quoi qu'il arrive à ses composants aussi longtemps que ceux-ci ne subissent pas eux-mêmes de force nouvelle. Ainsi par exemple si un obus éclate en vol, le centre d'inertie de ses fragments continue à suivre imperturbablement une parabole comme si de rien n'était (aux effets de résistance de l'air près) avant, pendant et après l'explosion. Attention : ceci ne s'applique évidemment pas à un obus balistique ou un astéroïde, précisément parce que la force sur chaque éclat d'obus varie. Centre de gravité [] Article détaillé : Centre de gravité. Le centre de gravité d'un corps correspond au barycentre des particules qui composent le corps en question ; chaque particule étant pondérée par son poids propre. La position du centre de gravité Gg est défini par la relation suivante ( gravité au point M): étant le champ de Le centre de gravité est fondamentalement lié au champ de gravité dans lequel le corps est plongé. Il n'existe pas forcément ! Très souvent en mécanique, la dimension des corps étant faible devant la rotondité de la terre, on considère un champ de gravité uniforme. Sous cette hypothèse, le centre de gravité et le centre d'inertie sont confondus. 21 Méthode graphique [] Dans le cas d'un assemblage composé de pièces dont on connaît la masse et le centre de gravité, on peut déterminer le centre de gravité de l'ensemble avec la méthode du dynamique et du funiculaire : 1. on détermine la résultante des différents poids avec un premier funiculaire, la pièce étant dans une position donnée ; 2. on effectue un second funiculaire en considérant les « poids horizontaux », ce qui revient à tourner la pièce d'un quart de tour. Astronomie [] Animation impliquant 2 corps de faible différence de masse. Le barycentre se trouve à l'extérieur du corps principal comme dans le cas du couple Pluton/Charon. On parle de barycentre en ce qui concerne le couple formé par un corps stellaire possédant un satellite. Le barycentre est le point autour duquel l'objet secondaire gravite. Si la plupart des couples connus possède leur barycentre à l'intérieur de l'objet principal, il existe des exceptions notables : Le cas du couple Pluton/Charon : la différence de masse entre ces deux corps est relativement faible, le barycentre se trouve donc à l'extérieur de Pluton. Pour certains astronomes, plutôt que de parler de planètes et de satellites, il conviendrait dans ce cas précis de retenir la notion de « planète double ». Plusieurs astéroïdes reproduisent le cas de figure ci-dessus. Le barycentre du couple Jupiter/Soleil se trouve à l'extérieur de ce dernier à environ un rayon solaire de distance. On retrouve aussi cette particularité chez certaines étoiles doubles 22 Localisation du centre de gravité d'une plaque à deux dimensions [] Cette méthode est utile lorsque l'on souhaite trouver le centre de gravité d'un objet plan dont la forme est complexe et dont on ne connait pas les dimensions exactes. Étape 2: Suspendre la plaque en un point proche d'un Étape 1: Une plaque de forme sommet et attendre la position arbitraire. d'équilibre. À l'aide d'un fil à plomb, tracer la verticale passant par ce point. Étape 3: Suspendre la plaque en un autre point et tracer une seconde verticale. Le centre de gravité est à l'intersection des deux droites. Système masse-ressort Un système masse-ressort est un système mécanique à un degré de liberté. Il est constitué par une masse accrochée à un ressort contrainte de se déplacer dans une seule direction. Son mouvement est dû à trois forces : une force de rappel FR, une force d'amortissement FA, une force extérieure FE. Le système masse-ressort est un sujet d'étude simple dans le cadre des oscillateurs harmoniques. Oscillations rectilignes d'une masse soumise à l'action d'un ressort [] Mouvement horizontal 23 Oscillation verticale On peut mettre en oscillation une masse soumise à l'action d'un ressort. Ces oscillations peuvent être, suivant les cas, des oscillations verticales ou des oscillations horizontales (en utilisant un dispositif permettant de minimiser les frottements sur le support). Dans les deux cas, les oscillations sont harmoniques : la fonction du temps [x(t)] de la position de la masse de part et d'autre de la position d'équilibre (statique) est une fonction sinus. Dans le cas de l'oscillateur vertical, l'effet de la pesanteur n'introduit qu'une translation de la position d'équilibre statique. La relation déduite de l'application du théorème du centre d'inertie peut s'écrire : , avec ω0 est appelée pulsation propre de l'oscillateur harmonique. Les solutions de l'équation différentielle sont de la forme oscillateur harmonique. , ce qui est caractéristique d'un La période est indépendante de l’amplitude (isochronisme des oscillations) : elle ne dépend que de l'inertie du système (masse m) et de la caractéristique de la force de rappel (constante de raideur k du ressort) : 24 Remarque : cet oscillateur est soumis à la conservation de l'énergie mécanique : celle-ci est de la forme En dérivant membre à membre l'équation par rapport au temps on retrouve l'équation différentielle précédente. Amélioration [] Ce qui précède est valable si la masse du ressort est négligeable par rapport à celle de la masse qui oscille. L'expérience montre que la période est plus proche de : où le tiers de la masse du ressort ; = la masse suspendue au ressort ; = la constante élastique ou raideur du ressort. Autre amélioration [] Ceci est de nouveau une approximation. Une étude complète se trouve dans les liens externes. Chercher : « Étude de la période d'oscillation d'un ressort ». On montre que la période correcte d'oscillation est : où est défini par la relation : = la masse du ressort ; = la masse suspendue au ressort ; = la constante élastique ou raideur du ressort. Une manière de calculer est d'itérer : en commençant par : Moment de force (mécanique) 25 Le moment de force est l'aptitude d'une force à faire tourner un système mécanique autour d'un point donné, qu'on nomme pivot. Translation d'une force [] Basculera, basculera pas ? Soit une planche en équilibre au bord d'un muret. Pour la déséquilibrer, on peut poser une charge sur la partie en porte-à-faux, au-dessus du vide. La capacité de cette charge à faire basculer la planche n'est pas la même suivant qu'elle est posée près du muret ou au bout de la planche. De même, on peut au même endroit, placer une charge plus lourde et constater une différence de bascule. Le « pouvoir de basculement » dépend donc de l'intensité de la force, mais également de la position relative du point d'application de la force, et du point de rotation réel ou virtuel considéré. On intègre ces trois composantes du problème par le modèle de moment d'une force, qui est l'aptitude d'une force à faire tourner un système mécanique autour d'un point donné, qu'on nommera pivot. Moment par rapport à un point [] 26 Définition vectorielle Expression vectorielle [] Le moment d'une force s'exerçant au point A par rapport au pivot P, est le pseudovecteur : . où désigne le produit vectoriel. Remarque sur la notation Il existe plusieurs variantes de notation des moments de force ; certaines (comme sur l'image ci-contre) comportent des parenthèses autour du vecteur, parfois autour de l'ensemble. D'autres ajoutent même à la notation l'élément agissant et l'élément subissant l'action. Une notation plus compacte consiste à nommer la force par la même lettre que celle désignant le point d'application, ce qui rend plus rapide l'identification des cas de nullité de moments. Ce pseudovecteur est à la fois orthogonal à et au bipoint et finalement normal au plan dans lequel se déroule la rotation que peut provoquer la force, et son sens donne le sens de rotation (la rotation est positive dans le plan orienté par ). Si d est la distance orthogonale du pivot P à la droite d'action, c’est-à-dire PH, alors sa norme vaut : . 27 La longueur d est appelée bras de levier. Dans le cas bidimensionnel, il est fréquent de considérer la norme du moment comme le moment lui-même, celui-ci ne comportant qu'une composante non nulle. Les composantes et la norme d'un moment de force sont exprimées en newton-mètre (Nm), dans le système international d'unités et leurs dimensions sont ML2T − 2. Cas de nullité du moment [] Puisqu'il s'agit ensuite d'établir la somme nulle des moments, on peut naturellement s'intéresser aux cas de nullité individuelle des moments de force ; de par les propriétés du produit vectoriel : la force est nulle ; le bipoint est . La force est donc appliquée en P. et sont colinéaires ; alors la droite d'action passe par P, ce qui inclut aussi le cas précédent. Formule de Varignon [] Lorsqu'on connaît le moment d'une force en un point, il est possible de le recalculer en n'importe quel point de l'espace. Cette opération est inévitable lorsqu'on manipule les torseurs d'actions mécaniques. Cela revient à poser une rallonge au levier AP. On montre alors la relation suivante : . On peut vérifier alors : . En réalité une force est modélisée par un vecteur (représentant la force) et son point d'application. Il est possible de représenter cette action mécanique par le couple de vecteurs force et moment en un point, qui sont les éléments de réduction du torseur d'action mécanique. La relation d'équilibre liée au principe fondamental de la statique devient une somme de torseurs ; en pratique, on effectuera parallèlement la somme des forces, et la somme des moments tous exprimés au même point, d'où l'intérêt de la formule de transport de moments. Moment par rapport à un axe [] Lorsqu'un solide est animé d'un mouvement de rotation effectif autour d'un axe (cas d'une roue guidée par un palier) il est intéressant de ne considérer que la part utile du moment d'une force. On définit le moment de la force par rapport à l'axe (Δ) par , 28 où est un vecteur unitaire de (Δ), P est un point quelconque de (Δ) et où les crochets dénotent le produit mixte. En résumé il s'agit de la composante suivant du moment de calculé en P. De ce fait il s'agit d'un nombre scalaire : « » est une opération de projection sur l'axe . Sur le plan mécanique, c'est la seule composante (dans le cas d'une liaison parfaite au pivot) susceptible de fournir (ou consommer) une puissance. Le « reste » du moment sera subi par le palier. Cette partie complémentaire intéressera le technologue qui prendra en compte ces valeurs pour le dimensionnement du palier. Le moment par rapport à l'axe est nul si le moment par rapport au point est nul (cas général précédent). la force est dans la direction de l'axe considéré. Couple de forces [] Si on considère deux forces opposées appliquée en A et appliquée en B, points distincts d'un même système, il est évident que leur somme est nulle. Qu'en est-il de la somme de leur moment en un point P de l'espace ? . On remarque que le résultat est indépendant du point de pivot P considéré. Cette quantité est appelée couple. Il n'est pas besoin de préciser le point de rotation. Les deux forces constituent alors un couple de forces. Outre les autres cas évidents, le couple est nul lorsque les deux forces ont la même droite d'action. Le couple augmente avec l'intensité commune des forces, mais aussi avec l'éloignement des points. Il est maximal lorsque et sont orthogonaux. Cas général [] En réalité le couple n'existe pas intrinsèquement. Il est toujours associé à un ensemble de forces s'annulant vectoriellement mais dont les moments s'ajoutent sans s'annuler. C'est par exemple le résultat de l'action du vent sur une éolienne, ou l'action des forces électromagnétiques sur l'induit d'un moteur électrique. On ne doit donc pas faire le raccourci « somme des moments = moment de la somme ». Cela n'est vrai que pour un ensemble de forces appliquées au même point. Cela montre enfin qu'une 29 action mécanique n'est pas représentable par un seul vecteur force. La considération du point d'application est primordiale. Théorème de Varignon [] Le moment en P de la résultante de plusieurs forces somme des moments en P de ces différentes forces : concourantes en A est égal à la , avec . En effet : En dynamique [] En mécanique dynamique, on peut montrer que le moment des forces est la dérivée du moment cinétique par rapport au temps : Ceci est l'équivalent du principe fondamental de la dynamique (deuxième loi de Newton) en rotation. On peut aussi montrer que si est le vecteur vitesse angulaire, c'est-à-dire le vecteur colinéaire à l'axe de rotation Δ, dont la norme est la vitesse angulaire et orienté de façon que l'orientation positive d'un plan normal correspond au sens de rotation, alors : où JΔ est le moment d'inertie du solide par rapport à l'axe de rotation Δ. 30 Moment d'inertie Lequel de ces mouvements est le plus difficile ? Le moment d'inertie quantifie la résistance d'un corps soumis à une mise en rotation (ou plus généralement à une accélération angulaire), et a pour grandeur physique [M.L²]. C'est l'analogue de la masse inertielle qui, elle, mesure la résistance d'un corps soumis à une accélération linéaire. Cette appellation est aussi utilisée en mécanique des matériaux pour déterminer la contrainte dans une poutre soumise à flexion. Il s'agit alors d'une notion physique différente, encore appelée moment quadratique, qui a pour grandeur physique [L4]. Approche empirique [] Lorsque l'on prend un balai en main au milieu du manche et qu'on le fait tourner comme sur la figure ci-contre. Il est plus aisé de le faire tourner autour de l'axe du manche (1), qu'autour de l'axe transversal indiqué (2). Cela est dû au fait que dans le deuxième cas, la matière constituant le balai se trouve plus éloignée de l'axe de rotation. Comme pour un solide en rotation, la vitesse linéaire d'un point croît en proportion avec cet éloignement, il est nécessaire de communiquer une plus grande énergie cinétique aux points éloignés. D'où la plus grande résistance du balai à tourner autour d'un axe transversal qu'autour de l'axe du manche. Détermination du moment d'inertie [] Soit un objet physique composé de plusieurs points solidaires i de masse mi. Cet objet tourne autour d'un axe Δ, à la vitesse angulaire ω. La distance de i à Δ est ri. 31 Le calcul de l'énergie cinétique de cet objet donne : On définit alors le moment d'inertie JΔ par rapport à l'axe Δ par : Par extension dans un solide considéré comme ensemble continu de points matériels x affectés d'une masse volumique ρ, le moment d'inertie s'écrit : où d(x,Δ) est la distance entre le point x et l'axe Δ ; dV est un volume élémentaire autour de x ; dm est la masse de ce volume élémentaire Cette définition peut également prendre une forme vectorielle : où O est un point sur l'axe Δ est un vecteur unitaire de l'axe Δ Il découle de la définition du moment d'inertie que plus la masse d'un solide est répartie loin de l'axe de rotation, plus son moment d'inertie est important. Ainsi, le patineur sur glace rapproche les bras de son corps lors d'une pirouette. Cela a pour effet de diminuer son moment d'inertie, ce qui, par conservation du moment cinétique, implique une plus grande vitesse de rotation. Moments d'inertie particuliers [] Pour les exemples suivants, nous considérerons des solides de densité uniforme ρ et de masse M. La boule [] 32 Pour une boule de rayon R et de centre O, les moments d'inertie au centre de la boule par rapport aux trois axes sont égaux : (avec ) La barre [] Dans le cas d'une barre de section négligeable et de longueur L, le moment d'inertie selon un axe perpendiculaire à la barre est, en son centre : (avec M = ρL) ρ est ici une densité linéique. Le cylindre plein [] Dans le cas d'un cylindre de rayon R et de hauteur h, le moment d'inertie selon l'axe du cylindre est : (avec M = ρπR2h) Le cylindre creux [] Dans le cas d'un cylindre creux de rayons intérieur R1 et extérieur R2, et de hauteur h, le moment d'inertie selon l'axe du cylindre est : (avec ) 33 Théorème de transport (ou Théorème d'Huygens ou Théorème de Steiner) [] Soit l'axe Δ passant par le centre de masse de l'objet, et un axe Δ' parallèle à Δ et distant de d. En calculant comme précédemment le moment d'inertie, on retrouve la relation établie par Christiaan Huygens connue sous le nom de théorème de transport[1] ou théorème de Huygens ou théorème de Steiner ou théorème des axes parallèles qui donne le moment d'inertie JΔ' en fonction de JΔ : À l'énergie cinétique de rotation propre d'un corps, s'ajoute celle de « translation » circulaire du centre de masse auquel on a affecté la masse totale du solide. Une conséquence immédiate du théorème de Huygens est qu'il est moins coûteux (en énergie) de faire tourner un corps autour d'un axe passant par le centre de masse. Énergie cinétique L'énergie cinétique est l’énergie que possède un corps du fait de son mouvement réel. L’énergie cinétique d’un corps est égale au travail nécessaire pour faire passer le dit corps du repos à son mouvement de translation ou de rotation. Historique [] Article détaillé : vis viva. Gottfried Leibniz, s'opposant ainsi à Descartes, qui estimait que la quantité de mouvement se conservait toujours, développa l'idée de la « force vive » (vis viva), à laquelle il attribuait la valeur mv2. La force vive est donc le double de l'énergie cinétique. « Il y a longtemps déjà que j’ai corrigé la doctrine de la conservation de la quantité de mouvement, et que j’ai posé à sa place quelque chose d’absolu, justement la chose qu’il faut, la force (vive) absolue… On peut prouver, par raison et par expérience, que c’est la force vive qui se conserve… » [1] Conventions [] L'énergie cinétique est généralement notée Ec ou Ek, l'indice c faisant référence au mot « cinétique » et l'indice k à son équivalent anglais, « kinetic ». 34 Définitions [] Ec formule de l'énergie cinétique selon la masse et la vitesse : où m est la masse, et v la vitesse. Exemple: 1/2 x 45 kg x (8.3 m/s)2 = 1550,025 joules Cas d'un point matériel [] Dans le domaine de validité de la mécanique newtonienne, la notion d'énergie cinétique peut être facilement mise en évidence pour un point matériel, corps considéré comme ponctuel de masse m constante. En effet, la relation fondamentale de la dynamique s'écrit : , avec somme des forces appliquées au point matériel de masse m (y compris les "forces d'inertie" dans le cas d'un référentiel non galiléen). En prenant le produit scalaire, membre à membre, par la vitesse , or du corps, il vient : , il vient ainsi : . On met en évidence dans le membre de gauche la quantité appelée énergie cinétique du point matériel, dont la variation est égale à la somme des puissances des forces appliquées au corps (théorème de l'énergie cinétique, forme "instantanée"). On peut obtenir une expression plus générale en considérant que l'on a donc , puisque infinitésimale de la quantité de mouvement du corps, . En introduisant la variation , il vient au final l'expression : . Cas d'un système de points [] 35 Dans le cas d'un corps que l'on ne peut considérer ponctuel, il est possible de l'assimiler à un système (d'une infinité) de points matériels Mi de masses mi avec corps. masse totale du L'énergie cinétique Ec du système de points peut être alors simplement définie comme la somme des énergies cinétiques associées aux points matériels constituant le système : , (1). Cette expression est générale et ne préjuge pas de la nature du système, déformable ou pas. Remarque : en considérant la limite des milieux continus on a étant un point courant du système (S). ,M Unité [] L'unité légale est le joule. Les calculs s'effectuent avec les masses en kg et les vitesses en . Théorème de König [] L'expression (1) n'est guère utilisable directement, bien que générale. Il est possible de la réécrire sous une autre forme, dont l'interprétation physique est plus aisée. Enoncé [] Ce théorème se démontre en faisant intervenir le référentiel barycentrique (R*) lié au centre d'inertie G du système, et en mouvement de translation par rapport au référentiel d'étude (R). Il s'écrit: . L'énergie cinétique d'un système est alors la somme de deux termes: l'énergie cinétique du centre de masse de (S) affectée de sa masse totale M, dans (R*), , et l'énergie cinétique propre du système . Application à un solide [] 36 Un solide est un système de points tels que les distances entre deux points quelconques de (S) sont constantes. Il s'agit d'une idéalisation d'un solide réel, considéré comme absolument rigide. Cas général : axe instantané de rotation [] Dans ce cas, le mouvement du solide peut être décomposé en un mouvement de son centre de masse G dans (R) et un mouvement de rotation autour d'un axe instantané (Δ) dans le référentiel barycentrique (R*). Plus précisément, pour un solide on peut écrire le champ des vitesses dans le référentiel barycentrique (R*) sous la forme , étant le vecteur rotation instantané du solide dans (R*) [ou (R), puisque les deux référentiels sont en translation]. Son énergie cinétique propre s'exprime alors , puisque au moment cinétique propre , moment cinétique du solide par rapport à G, égal (voir théorèmes de König). D'après le théorème de König, l’énergie cinétique totale d’un solide s'écrit donc ainsi: , que l'on peut considérer comme la somme d’une énergie cinétique "de translation" et d’une énergie cinétique de rotation , aussi appelée énergie cinétique angulaire. Cas de la rotation autour d'un axe fixe [] Si, de surcroît, il y a rotation autour d'un axe (Δ) fixe dans (R), le moment cinétique par rapport à G du solide s'écrit , où IΔ est le moment d'inertie du solide par rapport à l'axe de rotation (Δ). Son énergie cinétique de rotation se mettra ainsi sous la forme: . En mécanique relativiste [] Dans la théorie de la relativité d’Einstein (utilisée principalement pour les vitesses proches de la vitesse de la lumière, mais valable pour toutes vitesses), l’énergie cinétique est : 37 Ek = mc2(γ − 1) = γmc2 − mc2 Avec : ; (le facteur relativiste) Ek : l’énergie cinétique du corps (dans le référentiel considéré) ; v : la vitesse du corps (dans le référentiel considéré) ; m : sa masse au repos (dans son référentiel) ; c : la vitesse de la lumière dans le vide (dans TOUT référentiel) ; γmc2 : l’énergie totale du corps (dans le référentiel considéré) ; mc2 est l’énergie au repos (90 pétajoules par kilogramme) exprimée en unités conventionnelles. La théorie de la relativité affirme que l’énergie cinétique d’un objet (ayant une masse « au repos[2]» non nulle) tend vers l’infini quand sa vitesse s’approche de la vitesse de la lumière et que, par conséquent, il est impossible d’accélérer un objet jusqu’à cette vitesse. On peut montrer que le rapport de l’énergie cinétique relativiste sur l’énergie cinétique newtonienne tend vers 1 quand la vitesse v tend vers 0, i.e., Ce résultat peut être obtenu par un développement limité au premier ordre du rapport. Le terme de second ordre est 0,375 mv4/c4, c’est-à-dire que, pour une vitesse de 10 km/s il vaut 0,04 J/kg, et que, pour une vitesse de 100 km/s il vaut 40 J/kg, etc. Quand la gravité est faible et que l’objet se déplace à des vitesses très inférieures à la vitesse de la lumière (c’est le cas de la plupart des phénomènes observés sur Terre), la formule de la mécanique newtonienne est une excellente approximation de l’énergie cinétique relativiste. Théorème de l’énergie cinétique [] Ce théorème, valable uniquement dans le cadre de la mécanique newtonienne, permet de lier l’énergie cinétique d’un système au travail des forces auxquelles celui-ci est soumis. Énoncé [] 38 Dans un référentiel galiléen, pour un corps ponctuel de masse m constante parcourant un chemin reliant un point A à un point B, la variation d’énergie cinétique est égale à la somme W des travaux des forces extérieures et intérieures qui s’exercent sur le solide en question : où EkA et EkB sont respectivement l’énergie cinétique du solide aux points A et B. Démonstration [] D’après la 2e loi de Newton, l’accélération du centre de gravité est liée aux forces qui s’exercent sur le solide par la relation suivante : Pendant une durée dt, le solide se déplace de déduit le travail élémentaire des forces : où est la vitesse du solide. On en Si le solide parcourt un chemin d’un point A à un point B, alors le travail total s’obtient en faisant une intégrale le long du chemin : étant une différentielle totale, l’intégrale ne dépend pas du chemin suivi entre A et B et peut donc être obtenue explicitement : Théorème de la puissance cinétique [] Dans un référentiel galiléen, la puissance des forces s'appliquant au point M est égale à la dérivée par rapport au temps de l'énergie cinétique. 39 L’énergie thermique en tant qu’énergie cinétique [] L’énergie thermique est une forme d’énergie due à l’énergie cinétique totale des molécules et des atomes qui forment la matière. La relation entre la chaleur, la température et l’énergie cinétique des atomes et des molécules est l’objet de la mécanique statistique et de la thermodynamique. De nature quantique, l’énergie thermique se transforme en énergie électromagnétique par le phénomène de rayonnement du corps noir. La chaleur, qui représente un échange d’énergie thermique, est aussi analogue à un travail dans le sens où elle représente une variation de l’énergie interne du système. L’énergie représentée par la chaleur fait directement référence à l’énergie associée à l’agitation moléculaire. La conservation de la chaleur et de l’énergie mécanique est l’objet du premier principe de la thermodynamique. Énergie mécanique L'énergie mécanique est une quantité utilisée en mécanique classique pour désigner l'énergie d'un système emmagasinée sous forme d'énergie cinétique et d'énergie potentielle mécanique. C'est une quantité conservée en l'absence de frottement ou de choc et s'avère pour cela pratique à utiliser. L'énergie mécanique n'est pas un invariant galiléen et dépend donc du référentiel choisi. ]Expression [] L'énergie mécanique s'exprime généralement : Em = Ec + Ep où : Em est l'énergie mécanique Ec est l'énergie cinétique // formule: 1/2mv² (m: masse en kg, v2: vitesse en mètre par seconde au carré) exemple: 1/2 X 45 kg X (8,3 m/s)2 = 1550,025 J Ep est l'énergie potentielle ou l'énergie de position // formule de l'énergie potentielle de pesanteur : M x G x H (m : masse en kilogramme, g : accélération de la pesanteur sur Terre (9.8 newton par kg), H: différence d'altitude en mètre) exemple: 0,5 kg X 9,8 N/kg X 0,3 m = 1,47 Joules) Solide ponctuel [] 40 Pour un solide ponctuel M l'énergie potentielle mécanique est donnée par sa position et l'énergie cinétique par sa vitesse. On a donc où : m est la masse du solide v est la vitesse du centre de gravité ; V est le potentiel au niveau du point M Solide étendu non déformable [] Pour un solide indéformable non ponctuel, il convient d'ajouter l'énergie cinétique de rotation. L'énergie potentielle est donnée, dans le cas d'un potentiel gravitationnel, par la position du centre de gravité G. où, toutes notations égales par ailleurs J est le moment d'inertie du solide par rapport à son axe de rotation ; Ω est sa vitesse angulaire de rotation. V est le potentiel gravitationnel dans lequel se déplace la masse. Solide déformable [] Pour un solide déformable, interviennent des termes de déformation (tension, torsion, contraction) tant dans l'énergie cinétique que l'énergie potentielle mécanique. Théorème de l'énergie mécanique [] En dérivant l'expression de l'énergie mécanique on obtient : dEm = dEc + dEp Or d'après le Théorème de l'énergie cinétique, on a : dEc = δW(Fc) + δW(Fnc) avec δW(Fc) le travail des forces conservatives et δW(Fnc) le travail des forces non conservatives. et on a aussi : dEp = − δW(Fc). D'où le résultat : dEm = δW(Fnc) 41 On a ainsi le théorème de la puissance mécanique, la dérivée de l'énergie mécanique est égale à la puissance des forces non conservatives : Ainsi si toutes les forces sont conservatives, l'énergie mécanique se conserve. Conservation [] L'énergie mécanique d'un système soumis à des forces conservatives, c'est-à-dire dérivant d'un potentiel, est conservée. 42