Les hétérostructures GaN/(Ga,Al)N
Transcription
Les hétérostructures GaN/(Ga,Al)N
Chapitre V : Les hétérostructures GaN/(Ga,Al)N 142 Chapitre V : Les hétérostructures GaN/(Ga,Al)N Après s’être intéressé au cours des deux derniers chapitres à des études sur couches épaisses nous nous focalisons maintenant sur l’étude d’hétérostructures GaN/AlGaN. Les hétérostructures à base de puits quantiques sont les constituant de base de la majeure partie des dispositifs optoélectroniques actuels. L’intérêt principal de ce type de structure est le confinement des porteurs dans le puits quantique suivant la direction de croissance. Ce confinement discrétise les niveaux énergétiques accessibles aux porteurs, et l’écartement entre les niveaux confinés déterminera l’énergie des transitions inter-bandes et inter-sous bande de l’hétérostructure. L’énergie des niveaux confinés dans le puits, dépend de différents paramètres des matériaux barrière et puits : l’offset de bande, l’épaisseur et le dopage des différentes couches. Nous avons mentionné au cours du chapitre I l’existence dans les nitrures en phase hexagonale d’une forte polarisation interne issue de la superposition de la polarisation piézoélectrique et de la polarisation spontanée. Cette polarisation va également avoir un effet majeur sur les niveaux confinés dans les puits quantiques en phase hexagonale. Le début de ce chapitre sera consacré à l’étude des propriétés optiques des hétérostructures GaN/AlGaN et GaN/AlN en phase hexagonale au moyen de mesures de PL, PR et EPL. Nous déterminerons pour les deux types de structures les valeurs des champs électriques présents à l’intérieur des puits. Connaissant cette polarisation nous confrontons les mesures d’ EPL destinées à l’observation de niveaux excités avec les calculs de niveaux réalisés sur les structures en présence d’un champ électrique. Pour terminer, nous proposons une hétérostructure à base de puits quantiques en phase cubique (permettant de s’affranchir des inconvénients liés à la polarisation) susceptible d’atteindre les longueurs d’onde employées dans le domaine des télécommunications optiques. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 143 V.1 Hétérostructures GaN/AlGaN en phase hexagonale La structure des échantillons réalisés au GES que nous avons étudiés est décrite au § II.2.2.1. Nous présentons au cours des prochains paragraphes les propriétés optiques de ces structures obtenues par PL, PR et EPL. Nous discuterons ensuite des valeurs de champ électrique déterminées par ces deux méthodes décrites précédemment. V.1.1 Photoluminescence V.1.1.1 Spectres de PL à basse température Sur la Figure V 1 (A) sont représentés les spectres de PL normalisés, obtenus à basse température sur les différents puits. On observe sur chaque échantillon un pic principal d’autant plus bas en énergie que l’épaisseur du puits est grande. Nous reviendrons sur cette évolution au prochain paragraphe. Les spectres présentent une nature multi-pics. Nous détaillons la nature des différents pics sur la Figure V 1 (B) où est représenté le spectre de PL en échelle logarithmique obtenu à 8K sur l’échantillon 56 dont l’épaisseur du puits quantique est de 13 Å (voir tableau II.4). Des mesures de PR et EPL complémentaires ont permis l’attribution de chacun des pics. Le pic de plus haute énergie (A) est attribué à la luminescence bord de bande de la barrière dont la concentration est 16.5% en aluminium en accord avec la littérature [Steude,1999] . Le pic principal du spectre est quant à lui attribué à la recombinaison E1H1 dans le puits quantique en négligeant le Stokes shift de la transition qui sera déterminé par EPL dans la suite. Sur cet échantillon on observe donc un effet de confinement quantique qui se manifeste par une énergie d’émission du puits supérieure à celle du matériau GaN massif. Les deux pics suivants notés respectivement 1-LO et 2-LO sont attribués aux répliques phonon de la transition E1H1, ceci est accord avec l’énergie du phonon optique dont la valeur est proche de 90 meV dans les nitrures [Song,1998]. Le pic noté X correspond à la transition excitonique couramment rapportée dans GaN hexagonal. A ce pic est associée sa réplique phonon notée X-LO à 90 meV d’écart. Le pic suivant noté D-A correspond à une recombinaison donneur-accepteur accompagnée de sa réplique phonon notée DA-LO. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 55 Å 65 Å 42 Å 21 Å 34 Å 13 Å gap GaN hexagonal 0.6 0.4 0.2 0.0 (A) E1H1 10 0.8 3.2 X 7 Intensité (AU) Intensité normalisée (UA) 1.0 144 DA-LO X-LO 6 10 1-LO A D-A 5 10 2-LO 4 10 3.4 3.6 Energie (eV) 3.8 2.8 3.0 (B) 3.2 3.4 3.6 3.8 Energie (eV) Figure V 1: (A) Spectres de photoluminescence mesurés à 8 K sur les hétérostructures GaN/AlGaN (échantillons voir tableau II.4) (B) Spectre de PL à 8K en échelle logarithmique du puits d’épaisseur 13 Å (échantillon 56). V.1.1.2 Détermination du champ piézoélectrique dans les puits Nous avons déterminé sur l’ensemble de cette série d’échantillons, l’énergie de la transition fondamentale obtenue à 8K, nous avons ensuite tracé sur la Figure V 2 son évolution en fonction de l’épaisseur du puits quantique. On remarque sur la figure que l’énergie de cette transition est supérieure à l’énergie de gap de GaN massif pour des épaisseurs inférieures à 35 Å en accord avec l’effet de confinement dans le puits. En revanche cette énergie se situe en dessous du gap de GaN pour une épaisseur inférieure ou égale à 35 Å, ce qui est une parfaite illustration de l’effet Stark quantique confiné. A partir de ces données expérimentales nous avons cherché à déterminer la valeur du champ dans le puits quantique. Nous avons donc ajusté l’évolution de la transition E1H1 en résolvant l’équation de Schrödinger en présence d’un champ électrique (voir § V.1.2.1). Les calculs ont été réalisés en considérant les deux concentrations en aluminium (12% ou 16.5%) suivant l’échantillon considéré. Sur la Figure V 2 la courbe en pointillés représente l’évolution de l’énergie de transition E1H1 pour une concentration en Al de 12% dans la barrière en présence d’un champ électrique dans le puits de 600 kV/cm. Les mêmes calculs obtenus pour une concentration en Al de 16.5% dans la barrière en présence d’un champ dans le puits de 600,700,750 et 800 kV/cm sont représentés par les lignes continues sur la figure. Nous avons considéré tout au long des calculs une répartition de la différence d’énergie de 4.0 Chapitre V : Les hétérostructures GaN/(Ga,Al)N 145 gap de 70% sur la bande de conduction [Su Huai,1996] entre le puits et la barrière. La précision sur la détermination du champ électrique F est limitée par la connaissance des masses effectives des trous dans GaN et dans l’alliage AlGaN. Les paramètres de calculs sont reportés dans le Tableau V 1. Les résultats expérimentaux reportés sur la Figure V 2 correspondent à un champ électrique interne compris entre 600 et 800 kV/cm à l’intérieur des puits. Nous Energie transition E1H1 (eV) discuterons de ces valeurs au cours du prochain paragraphe. 3.9 600 kV/cm 3.8 3.7 3.6 Energie gap GaN 8K 3.5 3.4 3.3 600 kV/cm 700 kV/cm 750 kV/cm 800 kV/cm 3.2 3.1 0 10 20 30 40 50 60 70 80 90 Epaisseur du puits (Å) Figure V 2: Evolution théorique de l’énergie de la transition E1H1 à basse température (8K) en fonction de l’épaisseur du puits pour plusieurs valeurs du champs électrique (lignes pleines 12% Al, ligne pointillée 16% Al). Les cercles représentent les résultats expérimentaux dans les échantillons à 12% d’Al dans la barrière, les étoiles ceux à 16% d’Al.[Fanget,2003] GaN AlGaN 12 % 16.5 3.75 3.88 Valeur de gap (8K,eV) 3.26 Masse effective electron 0.22 [Drechsler,1995] 0.22 Masse effective trous 1[Vurgaftman,2001] 1 Constante diélectrique 8.5 8.5 Tableau V 1 : Paramètres utilisés pour les calculs de structure de bande et de niveaux confinés dans nos hétérostructures GaN/AlGaN hexagonales. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 146 V.1.2 Photoréflectivité V.1.2.1 Spectre de PR à température ambiante Nous détaillons sur la Figure V 3 le spectre réalisé sur l’échantillon 49 (voir Tableau II.4) constitué d’un puits de 42 Å entouré de barrières dont la concentration d’aluminium est de 12%. Sur ce spectre on distingue deux régions, la première située entre 3.3eV et 3.6 eV et la seconde entre 3.6eV et 3.9eV. Le système d’oscillations compris dans la première région est attribué à la recombinaison associée à la transition E1H1 (légérement inférieur au gap de GaN) et à la transition excitonique dans la couche épaisse de GaN (transition présente à environ 3.42 eV à température ambiante). Le second système autour de 3.7 eV est attribué à la recombinaison bord de bande de la barrière Al12Ga88N. Au dessus de cette valeur on distingue un système d’oscillations amorties que l’on attribue à l’effet Franz-Keldysh (voir § II.3.2.2) dans la barrière. -3 3.0x10 GaN AlGaN -3 2.0x10 -3 PR 1.0x10 0.0 -3 -1.0x10 OFK -3 -2.0x10 (B) 3.0 3.2 3.4 3.6 3.8 4.0 Energie (eV) Figure V 3: Spectre de PR obtenu sur l’échantillon 49 (épaisseur du puits de 42 Å, concentration de 12% en Al dans la barrière), présence de OFK. V.1.2.2 Mesure du champ électrique dans la barrière Afin de déduire des oscillations de Franz-Keldysh la valeur du champ électrique dans la barrière AlGaN, nous appliquons le formalisme décrit dans le paragraphe II.3.2.2. Pour cela, nous traçons (Figure V 4) l’évolution de la quantité 4 3π (E m - E g ) 3 2 , où Em est l’énergie du m ième extremum et Eg le gap du matériau (ici la barrière), en fonction de l’indice Chapitre V : Les hétérostructures GaN/(Ga,Al)N 147 m des extremums des OFK du spectre de photoréflectivité pour l’échantillon 49 (voir Figure V 3). En appliquant les Equations II.4 et II.5 décrites au chapitre II nous déterminons la valeur du champ électrique présent dans la barrière. Cette valeur est de 120 kV/cm dans la couche d’AlGaN. -2 4.5x10 -2 (4/3 π)(Em-Eg) 3/2 4.0x10 -2 3.5x10 -2 3.0x10 -2 2.5x10 -2 2.0x10 -2 1.5x10 -2 1.0x10 -3 5.0x10 1 2 3 4 Indice m Figure V 4 : Analyse des OFK présentes sur le spectre de PR de l’échantillon 49 (voir Figure V 3 ). Evolution de la quantité 4 3π (E m - Eg ) 3 2 en fonction de l’indice m pour déterminer la valeur du champ électrique dans la barrière d’AlGaN. V.1.2.3 Détermination de la valeur du champ électrique dans les puits En fonction de l’état de contrainte d’une couche : compression ou tension, l’orientation de la polarisation piézoélectrique change (voir § I.I.3.3). Des mesures de diffraction X réalisées sur les structures GaN/AlGaN ont montré que les barrières AlGaN sont totalement contraintes sur la couche de GaN [Briot,2001]. Le paramètre de maille d’AlGaN étant inférieur à celui de GaN, les barrières sont donc en tension. Le puits de GaN est, quant à lui, relaxé sur la barrière. Ainsi la polarisation dans les barrières sera une superposition de la polarisation spontanée et de la polarisation piézoélectrique. La polarisation dans le puits, sera, elle d’origine uniquement spontanée. D’après la Figure I.8 les polarisations spontanée et piézoélectrique sont donc orientées toutes deux dans le sens substrat-surface, produisant ainsi un champ électrique lui aussi orienté dans le même sens. Nous avons retracé le schéma de bande à la Figure V 5 en tenant compte de l’influence du substrat. Dans les structures, la barrière inférieure est déposée sur une couche de GaN épaisse (≈1 µm), il va donc exister à Chapitre V : Les hétérostructures GaN/(Ga,Al)N 148 l’interface entre ces deux couches une différence de polarisation. Ainsi la bande de conduction de la couche épaisse de GaN proche de l’interface ne sera pas "plate" mais courbée sur une certaine épaisseur. La courbure de bande de la couche de GaN "compensera" alors une partie de l’inclinaison des bandes de sens opposé induite par les barrières (voir Figure V 5). A partir de ce raisonnement nous déterminerons le champ électrique dans la puits à partir de celui mesuré dans la barrière supérieure en ne considérant donc que l’épaisseur d’une seule barrière d’AlGaN. & FB & FB & FP & FGaN GaN GaN EF AlGaN AlGaN surface Figure V 5 : Schéma de la structure de bande des hétérostructures GaN/AlGaN en tenant compte des orientations de polarisations dues aux contraintes & & LB qui fournit à partir d’un champ électrique LP Nous utilisons donc l’équation I.12 : FP = −FB de 120 kV/cm dans la barrière d’AlGaN un champ de 850 kV/cm dans le puits quantique de l’échantillon 49. Cette valeur est donc en parfait accord avec celle déterminée par l’ajustement de l’évolution de la transition E1H1 en fonction du champ électrique présent dans le puits (FP ≈ 800kV/cm voir Figure V 3). Ainsi nos résultats confirment ceux de Wetzel et al.[Wetzel,2001] qui rapportent les seules mesures, à notre connaissance, du champ électrique dans une hétérostructure GaN/AlGaN à partir d’OFK dans la barrière d’alliage. On peut donc conclure que notre hypothèse concernant la présence d’un champ électrique à l’intérieur de la couche tampon de GaN compensant l’effet du champ présent dans la barrière est vérifiée. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 149 Pour conclure sur ce point nous retiendrons que la méthode basée sur l’analyse des oscillations de Franz-Keldysh permet d’obtenir la valeur du champ électrique dans un puits quantique à partir du champ mesuré dans la barrière à condition de faire les bonnes hypothèses sur la structure de bande de l’ensemble de l’hétérostructure. V.1.2.4 Discussion sur la valeur du champ électrique dans le puits La littérature actuelle présente de nombreux rapports de champ électrique dans les hétérostructures GaN/AlGaN. Il est souvent difficile de comparer ces valeurs car le champ dans le puits quantique dépend de plusieurs paramètres : concentration d’aluminium dans la barrière, épaisseur de la barrière [Leroux,1999]. Il est également difficile de séparer la contribution de la polarisation d’origine piézoélectrique de celle d’origine spontanée, Simon et al.[Simon,2000] ont mis en évidence la présence de la polarisation spontanée en observant dans leurs structures des valeurs de champ électrique supérieures à celles attendues pour une simple contribution de l’effet piézoélectrique . Sur la Figure V 6 (extraite de [Simon,2000]) sont & reportées les valeurs de ∆ P obtenues sur des structures à base de puits quantiques semblables ε .ε 0 & aux nôtres. Nous reportons sur la figure notre valeur de ∆ P égale à 9.7 mV/Å : valeur ε .ε 0 obtenue sur l’échantillon 49 à partir de la valeur du champ dans le puits en appliquant l’Equation I.11. La valeur de notre mesure se trouve donc largement supérieure à ce que prédisent les calculs ne tenant compte que de l’effet piézoélectrique. Nous confirmons ainsi l’importance de la contribution de la polarisation spontanée à la polarisation totale dans nos structures. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 150 & Figure V 6: Comparaison entre différents résultats expérimentaux de ∆ P et les valeurs ε .ε 0 théoriques calculées en ne considérant (i) que l’effet piézoélectrique à partir des coefficients de Martin et al.[Martin,1996] (ligne pointillés courts) (ii) avec les coefficients de Bernardini et al. [Bernardini,1997] et (iii) en considérant cette fois la superposition de l’effet piézoélectrique et la polarisation spontanée (ligne continue). Les résultats expérimentaux sont issus : QRV résultats, .[Simon,2000] , ¨[Grandjean,1999] V.1.3 Excitation de photoluminescence Connaissant la valeur du champ électrique dans les puits quantiques ainsi que dans les barrières nous pouvons déduire l’allure de la structure de bande de l’hétérostructure. A partir de ces données nous avons étudié les niveaux quantifiés dans nos échantillons. Afin de mettre en évidence expérimentalement des niveaux excités à l’intérieur des puits GaN, nous avons procédé à des mesures d’excitation de photoluminescence sur nos échantillons. Un spectre d’EPL obtenu à basse température (8K) sur l’échantillon 49 est comparé sur la Figure V 7 au spectre de PL obtenu sur la même structure toujours à 8K. La détection est fixée pour la mesure d’EPL à 3.19 eV, à cette énergie le spectre de PL présente un pic (1) que l’on attribue à la réplique phonon 2-LO de la transition fondamentale du puits (2). Ainsi nous pouvons affirmer que la mesure d’EPL sonde les propriétés d’absorption du puits et non celles associées à la couche tampon de GaN dont la luminescence principale est la transition excitonique référencée par le pic (3). Le pic de luminescence noté (4) sur la Figure V 7 est attribué à la barrière d’AlGaN. Nous avons choisi une longueur d’onde de détection sur la Chapitre V : Les hétérostructures GaN/(Ga,Al)N 151 réplique phonon 2-LO du pic principal de façon à faciliter l’observation du seuil d’absorption fondamentale. Le spectre d’EPL enregistré n’a pas l’allure classiquement attendue (cf Figure II.12) du fait d’un manque de résolution spectrale en détection dans notre système. En effet, le spectre est superposé à une remontée du signal correspondant au début du recouvrement entre la détection et l’excitation. Néanmoins, on repère assez nettement deux transitions sur ce spectre, correspondant à des seuils d’absorption dans le puits : (A) niveau fondamental, (B) premier niveau excité dans le puits, et on distingue également un niveau excité supplémentaire noté (C). Une valeur de Stoke shift d’environ 35 meV est déduite de ces mesures. (1) (3) (4) (2) PL 49 8K Stoke shift Détection PLE (A) (B) (C) PLE 49 à 8K 3.0 3.2 3.4 3.6 3.8 Energie (eV) Figure V 7 : Spectre de photoluminescence (échelle logarithmique) obtenu sur l’échantillon 49 (puits d’épaisseur 42 Å) comparé au spectre d’EPL réalisé à la même température en plaçant la détection à 3.19 eV. Afin de confirmer l’attribution de ces transitions, nous avons calculé les valeurs des énergies de confinement des porteurs dans le puits quantique pour l’échantillon 49 à partir de la valeur des champs électriques déterminés précédemment dans le puits (850 kV/cm) et dans les barrières (120 kV/cm). La structure de bande de l’échantillon 49 ainsi que les énergies de Chapitre V : Les hétérostructures GaN/(Ga,Al)N 152 transitions entre niveaux excités sont reportées sur la Figure V 8. Le calcul est réalisé en considérant un ∆Ec = 70%.∆EG soit ∆Ec = 0.196 eV pour une concentration en aluminium de 12%. Les valeurs des masses effectives des porteurs employées pour le calcul sont celles déjà présentées dans le Tableau V 1. Les calculs fournissent 6 niveaux confinés pour les électrons et les trous dans cette structure. On remarque que la structure ne présente qu’un seul niveau entièrement confiné dans le puits GaN pour les deux types de porteurs, les niveaux excités "débordent" à l’intérieur de la barrière en raison de l’inclinaison de la structure de bande. De ce fait l’écart énergétique entre les niveaux tend à diminuer en raison d’une augmentation de la largeur apparente du puits. Structure de bande de l'échantillon 49 Energie (eV) 0,5 E6 . . E1 0,0 H6 . . H1 Transitions E1H1=3.390 ev E2H2=3.540 ev E3H3=3.609 ev E4H4=3.665 ev E5H5=3.715 eV E6H6=3.762 eV -3,5 0 100 200 300 400 500 600 700 800 Epaisseur (Å) Figure V 8: Structure de bande de l’échantillon 49 avec pour un champ électrique dans la barrière de 120 kV/cm et de 850 kV/cm dans le puits. Les niveaux confinés des porteurs ainsi que les énergies des différentes transitions sont représentés. En ce qui concerne l’énergie des transitions permises, on remarque que la valeur fournie par le calcul pour la transition fondamentale (E1H1 : 3.390 eV) correspond relativement bien à la transition (A≈ 3.410 eV) observée sur le spectre de EPL (voir Figure V 7). La différence d’environ 20 meV entre les deux peut être expliquée par l’incertitude sur la valeur des champs électriques dans la structure utilisée pour le calcul. Effectivement cette valeur est déterminée comme nous l’avons vu au § V.1.1.2 à partir de l’évolution du pic de photoluminescence en négligeant comme nous l’avons mentionné le Stokes shift lié à cette Chapitre V : Les hétérostructures GaN/(Ga,Al)N 153 transition. Le manque de précision sur la connaissance des masses effectives des trous engendre également une incertitude dans le calcul. De la même façon la transition notée (B ≈ 3.550 eV) sur la Figure V 7 correspond à la transition E2H2 pour laquelle les calculs fournissent une énergie de transition de 3.540 eV. En ce qui concerne l’oscillation notée (C ≈ 3.650 eV) elle pourrait correspondre à la transition E4H4 (calcul 3.665 eV), cependant il convient d’être prudent pour l’attribution de ce pic qui reste relativement faible. La difficulté rencontrée pour observer par absorption les transitions entre niveaux excités prédits par le calcul, peut être expliquée par la diminution de la force d’oscillateur des transitions en raison de la séparation spatiale des porteurs. Malgré cela il semble acquis que notre structure présente au moins deux niveaux : un niveau fondamental noté (A) et un niveau excité noté (B) clairement identifiés par la mesure d’EPL. L’écart énergétique entre les deux niveaux E1 et E2 a pour valeur 0.106 meV, cet écart conduirait à une transition inter-sous-bande de 11.7 µm de longueur d’onde. Pour diminuer la longueur d’onde il faut soit utiliser des niveaux excités d’ordre supérieur (E3…) soit augmenter le confinement des porteurs en augmentant par exemple la hauteur de barrière de l’hétérostructure. Dans cette optique nous présentons une étude des puits quantiques GaN dans AlN. V.2 Les hétérostructures GaN/AlN Très peu de résultats concernant des puits GaN/AlN sont rapportés à ce jour dans la littérature en raison de la difficulté rencontrée pour épitaxier une couche de GaN parfaitement bidimensionnelle sur AlN. Le premier résultat de photoluminescence obtenu sur une structure à base de multi-puits quantique GaN/AlN (épaisseur du puits comprise entre 26 Å et 30 Å) est présenté par Nam et al. [Nam,2001] d’hétérostructures ont ensuite suivi . Deux rapports de croissance du même type [Keller,2001],[Ohba,2001] , Ohba et al. présentent la luminescence de puits dont l’épaisseur est comprise entre 8 Å et 30 Å. Comme nous l’avons présenté dans le chapitre II nous avons pu disposer grâce au savoir faire de l’équipe du CEA/DRFMC de 9 puits de GaN dans AlN (voir Figure II.5). Ces échantillons très précieux représentent comme nous le montrons au prochain paragraphe l’état de l’art dans le domaine en terme de qualité optique. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 154 V.2.1 Etude de photoluminescence des hétérostructures GaN/AlN Sur la Figure V 9 sont reportés les spectres de photoluminescence réalisés à 8K sur les différents échantillons GaN/AlN dont l’épaisseur de puits varie de 7 Å à 26 Å. On remarque que certains spectres présentent une nature multi-pics. Ces différents pics sont attribués à effet de modulation du pic par un système d’interférences de type Fabry-Pérot. Des calculs ont montré que l’écart énergétique entre les différents pics correspond à ce que l’on attend pour des interférences de la lumière dans une couche d’AlN de 1.5µm d’épaisseur. Le pic principal : attribué à la transition fondamentale E1H1 dans le puits, a été ajusté au moyen d’une gaussienne, de façon à déterminer précisément la position du maximum. L’évolution de ce maximum en fonction de l’épaisseur du puits est reportée sur la Figure V 10. spectre de PL à 8K puits G aN /AlN 1 7Å 4.5 0 (A) Energie de transition (eV) 10Å Intensité P l (U A ) -1 14Å -2 17Å -3 21Å 4.0 3.5 3.0 (B) 2.5 2.0 -4 5 10 15 20 25 Epaisseur du puits (Å) 25Å -5 26Å -6 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Energie (eV) Figure V 9: (A) Spectres de photoluminescence réalisés à 8 K sur des puits de GaN dans AlN pour une épaisseur de puits variant de 7 Å à 26 Å. (B) Evolution du pic de PL en fonction de l’épaisseur du puits. 30 Chapitre V : Les hétérostructures GaN/(Ga,Al)N 155 De la même façon que ce que nous avons présenté au § V.1.1.1, on observe un fort décalage vers les basses énergies de la transition principale du puits lorsque l’épaisseur augmente. On retrouve donc une manifestation de l’effet Stark quantique confiné. Il est important de souligner l’amplitude de cet effet : une variation d’épaisseur du puits de seulement 20 Å (environ 8 mono-couches) permet de balayer le spectre dans une gamme de 2 eV incluant la région du visible. Notons également que nous n’avons pas mesuré d’émission de photoluminescence des puits d’épaisseur 34 Å et 44 Å. L’origine de cette extinction de photoluminescence est actuellement en court d’analyse. Des observations récentes laisseraient penser qu’une relaxation plastique des puits à partir d’une épaisseur supérieure à une dizaine de mono-couche pourrait être à l’origine de cette perte de luminescence. V.2.2 Détermination du champ piézoélectrique dans les puits De la même façon que pour les hétérostructures GaN/AlGaN nous avons déterminé la valeur du champ électrique à l’intérieur du puits quantique à partir de calculs en ajustant l’évolution de la transition E1H1 en fonction de l’épaisseur avec, pour seule variable, la valeur du champ électrique dans le puits. Il convient de souligner qu’à ce stade de l’étude nous ne connaissons pas la valeur du champ électrique dans les barrières, les calculs ont donc été réalisés en considérant un champ électrique nul dans ces dernières. Ce choix ne modifie pas en première approximation les énergies de confinement des niveaux dans la structure dans la mesure où ceux-ci sont totalement confinés dans le puits (offset de bande >> au cas des hétérostructures GaN/AlGaN précédentes). Dans le cas des hétérostructures GaN/AlN, le puits GaN est fortement contraint sur la couche d’AlN. Comme nous l’avons mentionné au chapitre I, l’énergie de gap varie avec la contrainte du matériau. Afin de tenir compte de cette variation nous avons calculé l’énergie de gap de GaN contraint sur AlN. La déformation ε xx issue de la contrainte biaxiale dans la couche de GaN peut s’écrire sous la forme : ε xx = ε yy = ( aσ − a 0 ) a0 Equation V 1 où aσ et a0 sont les paramètres de maille de GaN respectivement contraint et non contraint. aσ aura donc pour valeur dans notre cas la valeur du paramètre de maille d’AlN relaxé. Les calculs fournissent d’après les valeurs de paramètres de maille présentées dans le Tableau I.1 Chapitre V : Les hétérostructures GaN/(Ga,Al)N une valeur de déformation de 2.4%. Gil et al [Gil,1995] 156 ont montré que la variation de l’énergie de gap est égale à -60 meV/(% de déformation). Nous en déduisons que GaN contraint sur AlN présente une énergie de gap de 3.645 eV à basse température. De façon analogue à ce que nous avons employé pour les hétérostructures GaN/AlGaN, nous utilisons la répartition de l’offset de bande suivante : ∆Ec =70%.∆EG et ∆Ev =30%.∆EG . Tous les autres paramètres utilisés pour les calculs sont reportés dans le Tableau V 2. GaN (contraint) AlN Valeur de gap (8K,eV) 3.645 6.2 Masse effective électron 0.22 [Drechsler,1995] 0.3 Masse effective trous 1[Vurgaftman,2001] 1 Constante diélectrique 8.5 8.5 Tableau V 2 : Paramètres utilisés pour les calculs de structure de bande et de niveaux confinés dans nos hétérostrucutres GaN/AlN héxagonales. Les énergies de transitions calculées à partir de ces paramètres pour plusieurs valeurs de champ électrique dans le puits sont présentées sur la Figure V 10. Il ressort de cette étude que les puits présentent un champ électrique interne compris entre 12 et 10 MV/cm. Notons que le désaccord apparent entre les énergies de transitions calculées et celles mesurées pour les faibles épaisseurs de puits (7 et 10 Å) peut être expliqué par l’incertitude sur la mesure de l’épaisseur du puits. En effet une incertitude d’une seule mono-couche (2.5 Å) engendre dans cette région du graphe une forte variation de l’énergie d’émission. A notre connaissance ces valeurs de champ électrique sont les plus élevées rapportées à ce jour dans des hétérostructures GaN/AlN. Elles sont en bon accord avec les calculs de Bernardini et al. [Bernardini,1997] qui prédisent une valeur de 10 MV/cm dans ce type de puits. Nous confirmons à nouveau ce que nous avons observé pour les hétérostructures AlGaN, à savoir la mise en évidence de la contribution de la polarisation spontanée pour expliquer une valeur de champ électrique aussi élevée. Nos échantillons présentent donc un effet Stark quantique confiné semblable à ce que prévoit la théorie contrairement aux observations de Nam et al. [Nam,2001] et Chapitre V : Les hétérostructures GaN/(Ga,Al)N 157 Ohba et al. [Ohba,2001], qui ne mesurent pas d’effet Stark. Le comportement optique de nos puits confirme donc leur excellente qualité. Résultats expérimentaux champ électrique 10 MV/cm champ électrique 11 MV/cm champ électrique 12 MV/cm Energie de transition (eV) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 5 10 15 20 25 30 35 Epaisseur du puits (Å) Figure V 10: Evolution de la transition principale dans un puits GaN dans AlN en fonction de son épaisseur. Ajustement de cette évolution à partir de calculs réalisés pour des valeurs de champ électrique de 10,11 et 12 MV/cm V.2.3 Calcul des niveaux excités dans les hétérostructures GaN/AlN en phase hexagonale A partir de calculs utilisant les mêmes paramètres que ceux présentés dans le paragraphe précédent nous avons calculé les énergies de confinement des niveaux excités dans les puits pour les électrons et les trous. Les calculs montrent qu’un puits de GaN dans AlN à l’intérieur duquel règne un champ électrique de 10 MV/cm, ne présente un deuxième niveau excité dans la bande de conduction qu’à partir d’une épaisseur de 18 Å. L’écart énergétique entre les deux niveaux électroniques est alors d’environ 0.965 eV, ce qui devrait conduire à une transition inter-sous-bande de longueur d’onde 1.28 µm (longueur d’onde intéressante en terme de télécommunication optique). En revanche aucun niveau excité n’apparaît dans la bande de valence pour des épaisseurs correspondant à nos échantillons. La transition E2H1 n’étant pas observable par absorption pour des raisons de règle de sélection, Chapitre V : Les hétérostructures GaN/(Ga,Al)N 158 le niveau E2 ne sera accessible qu’au moyen de mesures d’absorption inter-sous-bande. Avec le même type de calculs réalisés cette fois en présence d’un champ électrique de 12MV/cm dans le puits, la bande de conduction ne présente qu’un seul niveau quantique pour toute épaisseur. V.2.4 Conclusion Au cours des derniers paragraphes nous avons présenté des études optiques sur deux types d’hétérostructure dans le système GaN/(GaN,Al)N. Il s’est avéré que nous avons mesuré dans les deux systèmes des champs internes d’origine piézoélectrique et spontanée relativement importants. Nous avons montré l’importance de ces champs sur les niveaux confinés dans les puits en raison de l’effet Stark quantique confiné. Malgré la publication récente dans la littérature de plusieurs travaux présentant de l’absorption inter-sous-bande dans les systèmes GaN/Alx Ga1-x N [Gmachl,2001],[Kishino,2002] et même tout récemment dans des multi-puits quantiques GaN/AlN [Lizuka,2002], l’énergie de transition inter-sous-bande reste donc relativement compliquée à maîtriser dans la phase hexagonale en raison de cette polarisation. Il faut également noter une augmentation du temps de relaxation des porteurs lorsque le champ dans le puits augmente, ce qui va limiter les performances des dispositifs à inter-sousbande. L’effet de polarisation étant amplifié à mesure que la concentration en aluminium dans l’hétérostructure augmente, il va réduire l’intérêt du fort offset de bande attendu entre GaN et AlN. Afin de remédier à ce problème, nous proposons une autre alternative à savoir la réalisation d’hétérostructures en phase cubique ne présentant pas de polarisation interne. V.3 Conception d’une structure GaN/AlGaN en phase cubique Afin de concevoir la structure cubique, nous avons utilisé un programme basé sur la résolution de l’équation de Schrödinger couplée à l’équation de Poisson de façon autoconsistante, ceci afin de tenir compte des charges électriques libres issues du dopage. En effet l’absorption inter-sous-bande à partir du niveau fondamental du puits n’est possible que si ce niveau est peuplé, c’est à dire s’il existe un certain niveau de dopage. Le programme utilisé (développé par G.Snider : http://www.nd.edu/~gsnider/) est basé sur la méthode des différences finies suivant une direction. De plus amples informations concernant la méthode de calcul ainsi que la détermination des concentrations en porteurs libres sont disponibles au Chapitre V : Les hétérostructures GaN/(Ga,Al)N 159 sein des références suivantes : [Snider,1990] et [Tan,1990]. Tous les calculs réalisés à l’aide de ce logiciel ont été effectués en considérant une température de 300K et en imposant une condition de bandes plates aux limites de la structure. V.3.1 La transition inter-sous-bande E1E2 Du point de vue de la mécanique quantique la transition inter-sous-bande E1E2 ne peut avoir lieu dans un puits quantique "carré" dans lequel ne règne aucun champ électrique. Effectivement comme on peut le voir sur la Figure V 11 A, le recouvrement des fonctions d’onde du premier et du second niveau confiné dans la bande de conduction est nul dans ce cas. L’origine des transitions inter-sous-bande E1E2 observées dans les hétérostructures hexagonales est expliquée par la présence du champ électrique du à l’effet piézoélectrique dans le puits. Sous l’effet du champ électrique les fonctions d’onde se déplacent rendant ainsi leur recouvrement non nul (voir Figure V 11 B). Notons que l’absorption, directement reliée au recouvrement des deux fonctions, sera donc relativement faible pour la phase hexagonale. En ce qui concerne la phase cubique, phase ne présentant pas de polarisation interne, la transition E1E2 devrait donc être interdite. Dans la pratique on peut espérer, en dopant la structure, créer un champ interne dans le puits susceptible de lever partiellement cette interdiction. Cependant cette transition présentera pour les mêmes raisons une force d’oscillateur relativement faible. E2 E2 E1 (A) E1 (B) Figure V 11 : Illustration du recouvrement entre les fonctions d’onde du premier et du second niveau quantique (A) dans le cas d’un puits parfaitement carré, (B) dans le cas d’un puits présentant un champ électrique interne. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 160 Un autre problème se pose pour la phase cubique si on envisage, comme il est de notre souhait, l’obtention de transitions à 1.3 µm ou 1.55 µm pour les télécommunications optiques. Il s’agit de la valeur de l’offset de bande. A partir des mesures présentées au chapitre IV, la valeur du gap indirect d’AlN cubique a été mesurée égale à 4.8 eV. Nous ne tiendrons pas compte tout au long de nos calculs des effets de contrainte susceptibles de modifier les énergies de gap. Si on considère comme il a été fait jusqu’ici un offset de bande de conduction équivalent à 30 % de l’offset de gap alors ∆Ec ≈ 1.12 eV pour le couple GaN/AlN en phase cubique. Si on calcule à partir des paramètres reportés dans le Tableau V 3, les niveaux quantiques confinés dans un puits de GaN entouré de deux barrières d’AlN , avec un dopage résiduel de 1017 cm-3 dans les couches, en faisant varier l’épaisseur du puits, le puits ne présente qu’un seul niveau confiné pour une valeur inférieure à 12 Å. Le deuxième niveau n’apparaît qu’à partir de 12 Å, l’écart énergétique entre les deux niveaux, E1E2, est alors égal à 0.890 eV soit λ minimum = 1.39 µm. il est donc impossible d’obtenir la longueur d’onde 1.3µm avec ce système de matériau pour une transition E1E2. GaN (cubique) AlN (cubique) Valeur de gap (300K , eV) 3.2 4.8 Masse effective electron 0.15 0.3 Masse effective trous 1 1 15 15 8.5 8.5 Energie d’ionisation du donneur : Silicium (meV) Constante diélectrique Tableau V 3 : Paramètres utilisés pour les calculs de structure de bande et de niveaux confinés dans les hétérostrucutres cubiques. Les paramètres concernant les alliages AlGaN sont obtenus à partir de ceux des deux composés binaires par interpolation linéaire. Une autre approche peut permettre de lever cette limitation, elle consiste à utiliser une autre transition inter-sous-bande dans le puits. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 161 Energie transition E1E2 (eV) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 10 12 14 16 18 20 22 24 26 28 30 Epaisseur du puits (Å) Figure V 12 : Variation de la transition E1E2 calculée en fonction de l’épaisseur d’un puits GaN dans AlN avec les paramètres précisés dans le Tableau V 3 V.3.2 La transition Inter-sous-bande E1E3 Devant la difficulté à exploiter E1E2 pour l’inter-sous-bande, nous nous sommes intéressés à la transition E1E3 qui apparaît lorsqu’on augmente encore la largeur du puits. Les propriétés de la fonction d’onde du niveau E3, anti-symétrique, font que son recouvrement avec la fonction d’onde du niveau E1 est non nulle, ainsi la transition E1E3 est permise. L’écart énergétique entre E1 et E3 est relié comme nous l’avons mentionné à l’épaisseur du puits, mais aussi à la hauteur de barrière donc à la concentration en aluminium dans la barrière. Nous avons vu qu’il est nécessaire de peupler le niveau E1 et donc de doper la structure. Tous ces paramètres sont discutés au cours des prochains paragraphes pour aboutir finalement à la proposition de deux structures susceptibles de permettre une absorption à 1.3 µm et 1.5 µm. V.3.2.1 Le choix de la concentration en aluminium L’offset de bande entre GaN et AlN cubique (1.120 eV) fixe l’écart d’énergie maximum que l’on peut atteindre dans ce système de matériau. Sur la Figure V 13 est représenté un réseau de courbes montrant l’évolution de l’écart énergétique entre E1 et E3 en fonction de l’épaisseur du puits quantique pour plusieurs concentrations en aluminium. Les calculs ont été réalisés en considérant des barrières et un puits présentant un dopage résiduel de type n de 1017 cm-3. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 162 1.1 Energie transition E1E3 (eV) 100 % Al 1.3 µm 1.0 0.9 90 % Al 1.55 µm 0.8 80 % Al 0.7 70 % Al 0.6 0.5 22 23 24 25 26 27 28 29 30 Epaisseur du puits (Å) Figure V 13 : Evolution de l’écart d’énergie E1E3 dans un puits GaN/AlGaN cubique en fonction de l’épaisseur du puits pour plusieurs concentrations en aluminium dans les barrières. Les calculs montrent donc qu’il est possible d’atteindre nos objectifs pour des puits présentant une épaisseur proche de 25 Å. En revanche les concentrations en aluminium à employer (entre 80% et 100%) sont relativement élevées et peuvent apparaître comme un frein à la réalisation pratique de structures de qualité suffisante. Il convient cependant de rappeler que nous avons pu disposer de couches d’AlGaN cubiques présentant une bonne qualité en terme de luminescence pour des concentrations en aluminium aussi élevées que 70% (voir chapitre IV). Ceci permet d’espérer que des progrès rapides en croissance pourraient permettre d’atteindre des gammes de concentrations en aluminium proches de 100% dans la phase cubique. V.3.2.2 Dopage de la structure Deux possibilités sont envisageables pour réaliser le peuplement du niveau E1 par dopage : soit dans le puits, soit dans les barrières. Nous choisissons a priori plutôt la première possibilité en raison des difficultés prévisibles que représenterait le dopage d’un alliage à forte concentration en aluminium. A partir des calculs réalisés précédemment nous proposons une structure pour chacune des deux longueurs d’onde visées. A savoir pour une absorption à Chapitre V : Les hétérostructures GaN/(Ga,Al)N 163 1.3 µm : un puits de 23 Å entouré de barrières d’AlN et pour 1.55 µm un puits de 26 Å entouré d’alliage Al0.9Ga0.1N. Pour chacune des deux structures nous avons calculé la position du niveau de Fermi à 300 K par rapport au premier niveau confiné pour un dopage de type n de 1019 cm-3 dans le puits et un dopage résiduel n de 1017 cm-3 dans les barrières. Les résultats sont reportés dans le tableau de la Figure V 14, la position énergétique des différents niveaux est repérée par rapport au niveau de Fermi défini comme origine des énergies. Il ressort de ces calculs que le niveau E1 est légèrement en dessous du niveau de Fermi pour les deux structures, signifiant ainsi qu’il sera peuplé à 300K. Ces résultats valident donc notre choix pour les deux structures. 1.2 Structure de bande pour absorption à 1.3 µm Structure Structure 1.3 µm 1.55 µm E1 (meV) -6 -10 E1 (meV) 391 313 E1 (meV) 921 774 E1E3 (meV) 927 784 Energie (eV) 1.0 E3 0.8 0.6 E2 0.4 0.2 0.0 EF E1 -0.2 150 200 Epaisseur (Å) Figure V 14 : Bande de conduction de la structure susceptible d’absorber à 1.3 µm (largeur de puits 23 Å, puits dopé n 1019 cm-3, barrières AlN résiduel n 1017 cm-3) ainsi que les niveaux quantiques confinés et fonctions d’onde associées. Le tableau présente la position énergétique des niveaux quantiques dans les deux structures par rapport au niveau de Fermi. Les deux structures que nous proposons (schématisées Figure V 15) sont basées sur des calculs que nous avons réalisés à partir de paramètres mesurés par nos soins sur les alliages AlGaN cubiques. A ce jour l’ensemble des paramètres n’est pas connu avec la plus grande des précisions en particulier l’offset de bande entre l’alliage et le binaire. La dispersion Chapitre V : Les hétérostructures GaN/(Ga,Al)N 164 rencontrée également dans la littérature au sujet des masse effectives des composés, ajoute une incertitude supplémentaire. Dans ces conditions nos calculs doivent être perçus comme un point de départ à une exploration plus précise de cette voie. Seule la caractérisation par FTIR d’échantillons composés d’empilements multi-puits (afin d’augmenter l’absorption) possédant les paramètres que nous proposons pourrait valider nos calculs. AlN cubique dopage n 1017 cm-3 Al0.90Ga0.10N cubique dopage n 1017 cm-3 Puits c-GaN 23 Å dopage n 1019 cm-3 AlN cubique dopage n 1017 cm-3 Structure 1.3 µm Puits c-GaN 26 Å dopage n 1019 cm-3 Al0.90Ga0.10N cubique dopage n 1017 cm-3 Structure 1.55 µm Figure V 15 : Schéma des structures à base de GaN et AlGaN en phase cubique susceptibles de fournir de l’absorption inter-sous-bande à 1.3 µm et 1.55 µm V.4 Conclusion Au cours de ce chapitre nous avons présenté une étude sur les hétérostructures GaN/AlGaN dans les deux phases cristallines. La première partie consacrée à la phase hexagonale, nous a permis de mettre en évidence la présence d’un champ électrique important dans le puits se traduisant par un fort effet Stark quantique confiné. La présence d’oscillations de Franz-Keldysh sur les spectres de photoréflectivité a confirmé la valeur du champ électrique dans les puits. Dans l’optique d’obtenir de l’absorption inter-sous-bande aux longueurs d’onde intéressant les télécommunications optiques, nous avons par mesures d’EPL, mis en évidence la présence d’au moins un niveau excité dans un puits de GaN entouré de barrières d’Al12Ga88N. Finalement après avoir mesuré une valeur de champ électrique aussi élevée que 10 MV/cm dans les puits hexagonaux GaN/AlN, nous concluons que l’absorption à 1.3 µm ou 1.55 µm sera très difficile à atteindre en présence d’un tel champ. Dans ces conditions nous proposons une structure en phase cubique comme Chapitre V : Les hétérostructures GaN/(Ga,Al)N 165 alternative à la phase hexagonale. La phase cubique ne présentant pas de champ électrique interne, la transition E1E2 employée dans la phase hexagonale pour obtenir de l’absorption, n’est pas permise pour des raisons de règles de sélection. Nous proposons donc une transition entre le niveau fondamental et l’état excité E3. Les calculs réalisés à partir des paramètres obtenus sur les alliages AlGaN cubiques dans le chapitre IV nous ont permis de confirmer la possibilité d’une telle réalisation. Nous concluons en présentant deux structures susceptibles de présenter de l’absorption inter-sous-bande à 1.3 µm et 1.55 µm. Chapitre V : Les hétérostructures GaN/(Ga,Al)N Bibliographie Chapitre V 166 Chapitre V : Les hétérostructures GaN/(Ga,Al)N 167 [Bernardini,1997] Bernardini, F., Fiorentini, V., and Venderbilt, d. Spontaneous Polarization and Piezoelectric Constants of III-V Nitrides Phys. Rev. B, 1997, vol.56, n°16, p. 10024- 10027. [Briot,2001] Briot, o., Ruffenach-Clur, S., Moret, M., and Aulombard, R., L. X-Ray Reciprocal mapping of strained GaN/AlGaN quantum wells Mat. Res. Soc. Symp. Proc., 2001, vol.639, Art. G6.40, p. 6 p. [Drechsler,1995] Drechsler, M., Hoffman, D.M., Meyer, B.K., Detchprohm, T., Amano, H., and Akasaki, I. Determination of the Conduction Band Electron Effective Mass in Hexagonal GaN Jpn. J. Appl. Phys. Part 2, 1995, vol.34, n°9B, p. 1178-1179. [Fanget,2003] Fanget, S., Bru-Chevallier, C., Briot, O., and Ruffenach, S. Piezoelectric Field Influence on GaN/AlGaN Qantum Well Optical Properties Phys. Stat. Solidi (a) a paraître, 2003, a paraître. [Gil,1995] Gil, B., Briot, O., and Aulombard, R.L. Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry Phys. Rev. B, 1995, vol.52, n°24, p. R17028-R17031. [Gmachl,2001] Gmachl, C., Ng, H.M., and Cho, A.Y. Intersubband absorption in degenerately doped GaN/AlxGa1-xN coupled double quantum wells Applied Physics Letters. Sep, 2001, vol.79, n°11, p. 1590-1592. [Grandjean,1999] Grandjean, N., Massies, J., and Leroux, M. Self-limitation of AlGaN/GaN quantum well energy by built-in polarization field Applied Physics Letters. Apr, 1999, vol.74, n°16, p. 2361-2363. [Keller,2001] Keller, S., Heikman, S., Ben Yaacov, I., Shen, L., DenBaars, S.P., and Mishra, U.K. Indium-surfactant-assisted growth of high-mobility AlN/GaN multilayer structures by metalorganic chemical vapor deposition Applied-Physics-Letters, 2001, vol.79, n°21, p. 3449-3451. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 168 [Kishino,2002] Kishino, K., Kikuchi, A., Tachibana, T., and Kanazawa, H. Shortest wavelength intersubband absorption at 1.07 µm In GaN/AlN Superlattices Grown by Rf-Molecular Beam Epitaxy Phys. Stat. Sol. A, 2002, vol.192, n°1, p. 124-128. [Leroux,1999] Leroux, M., Grandjean, N., Massies, J., Gil, B., Lefebvre, P., and Bigenwald, P. Barrier-width dependence of group-III nitrides quantum-well transition energies Physical Review B Condensed Matter. Jul, 1999, vol.60, n°3, p. 1496-1499. [Lizuka,2002] Lizuka, N., Kaneko, K., and Suzuki, N. Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy Appl. Phys. Lett., 2002, vol.81, n°10, p. 1803-1805. [Martin,1996] Martin, G., Botchkarev, A., Rockett, A., and Morkoc, H. Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by Xray photoemission spectroscopy Applied-Physics-Letters, 1996, vol.68, n°18, p. 2541-2543. [Nam,2001] Nam, K.B., Li, J., Kim, K.H., Lin, J.Y., and Jiang, H.X. Growth and deep ultraviolet picosecond time-resolved photoluminescence studies of AlN/GaN multiple quantum wells Applied-Physics-Letters, 2001, vol.78, n°23, p. 3690-3692. [Ohba,2001] Ohba, Y., Sato, R., and Kaneko, K. Two-dimensional growth of AlN and GaN on lattice-relaxed Al/sub 0.4/Ga/sub 0.6/N buffer layers prepared with high-temperature-grown AlN buffer on sapphire substrates and fabrication of multiple-quantum-well structures Japanese-Journal-of-Applied-Physics,-Part-2-(Letters), 2001, vol.40, n°12A, p. L1293-6. [Simon,2000] Simon, J., Langer, R., Barski, A., and Pelekanos, N.T. Spontaneous polarization effects in GaN/AlxGa1-xN quantum wells Physical Review B. Mar, 2000, vol.61, n°11, p. 7211-7214. [Snider,1990] Snider, G.L., Tan, I.H., and Hu, E.L. Electron states in mesa-etched one-dimensional quantum well wires Journal-of-Applied-Physics, 1990, vol.68, n°6, p. 2849-53. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 169 [Song,1998] Song, J.J. and shan, W., Electronic and optical properties of Gan-based quantum wells, in B. Gil Group III Nitride Semiconductors Compounds. Oxford: Clarendon Press, p.182 [Steude,1999] Steude, G., Christmann, T., Meyer, B.K., Goeldner, A., Hoffmann, A., Bertram, F., Christen, J., Amano, H., and Akasaki, I. Optical investigations of AlGaN on GaN epitaxial films MRS Internet Journal of Nitride Semiconductor Research, 1999, vol.4S1, n°Art. G3.26, p. 6 p. [Su Huai,1996] Su Huai, W. and Zunger, A. Valence band splittings and band offsets of AlN, GaN, and InN Applied-Physics-Letters, 1996, vol.69, n°18, p. 2719-21. [Tan,1990] Tan, I.H., Snider, G.L., Chang, L.D., and Hu, E.L. A self-consistent solution of Schrodinger-Poisson equations using a nonuniform mesh Journal-of-Applied-Physics, 1990, vol.68, n°8, p. 4071-6. [Vurgaftman,2001] Vurgaftman, I., Meyer, J.R., and Ram-Mohan, L.R. Band parameters for III-V compound semiconductors and their alloys J. Appl Phys., 2001, vol.89, n°11, p. 8815. [Wetzel,2001] Wetzel, C., Kasumi, M., Amano, H., and Akasaki, I. Absorption spectroscopy and band structure in polarized GaN/AlxGa1-xN quantum wells Physica Status Solidi A Applied Research. Jan, 2001, vol.183, n°1, p. 51-60. Chapitre V : Les hétérostructures GaN/(Ga,Al)N 170 Chapitre V : Les hétérostructures GaN/(Ga,Al)N ..................................................................142 V.1 Hétérostructures GaN/AlGaN en phase hexagonale....................................................143 V.1.1 Photoluminescence ...............................................................................................143 V.1.1.1 Spectres de PL à basse température...............................................................143 V.1.1.2 Détermination du champ piézoélectrique dans les puits................................144 V.1.2 Photoréflectivité....................................................................................................146 V.1.2.1 Spectre de PR à température ambiante ..........................................................146 V.1.2.2 Mesure du champ électrique dans la barrière ................................................146 V.1.2.3 Détermination de la valeur du champ électrique dans les puits.....................147 V.1.2.4 Discussion sur la valeur du champ électrique dans le puits...........................149 V.1.3 Excitation de photoluminescence .........................................................................150 V.2 Les hétérostructures GaN/AlN ....................................................................................153 V.2.1 Etude de photoluminescence des hétérostructures GaN/AlN ...............................154 V.2.2 Détermination du champ piézoélectrique dans les puits.......................................155 V.2.3 Calcul des niveaux excités dans les hétérostructures GaN/AlN en phase hexagonale ......................................................................................................................157 V.2.4 Conclusion ............................................................................................................158 V.3 Conception d’une structure GaN/AlGaN en phase cubique ........................................158 V.3.1 La transition inter-sous-bande E1E2 ....................................................................159 V.3.2 La transition Inter-sous-bande E1E3 ....................................................................161 V.3.2.1 Le choix de la concentration en aluminium...................................................161 V.3.2.2 Dopage de la structure ...................................................................................162 V.4 Conclusion ...................................................................................................................164 Bibliographie chapitre 166 Chapitre V : Les hétérostructures GaN/(Ga,Al)N 171 Chapitre V : Les hétérostructures GaN/(Ga,Al)N 142 V.1 Hétérostructures GaN/AlGaN en phase hexagonale V.1.1 Photoluminescence 143 143 V.1.1.1 Spectres de PL à basse température 143 V.1.1.2 Détermination du champ piézoélectrique dans les puits 144 V.1.2 Photoréflectivité 146 V.1.2.1 Spectre de PR à température ambiante 146 V.1.2.2 Mesure du champ électrique dans la barrière 146 V.1.2.3 Détermination de la valeur du champ électrique dans les puits 147 V.1.2.4 Discussion sur la valeur du champ électrique dans le puits 149 V.1.3 Excitation de photoluminescence V.2 Les hétérostructures GaN/AlN 150 153 V.2.1 Etude de photoluminescence des hétérostructures GaN/AlN 154 V.2.2 Détermination du champ piézoélectrique dans les puits 155 V.2.3 Calcul des niveaux excités dans les hétérostructures GaN/AlN en phase hexagonale 157 V.2.4 Conclusion 158 V.3 Conception d'une structure GaN/AlGaN en phase cubique 158 V.3.1 La transition inter-sous-bande E1E2 159 V.3.2 La transition Inter-sous-bande E1E3 161 V.3.2.1 Le choix de la concentration en aluminium 161 V.3.2.2 Dopage de la structure 162 V.4 Conclusion 164 Bibliographie chapitre V 166 Conclusion générale 170 Chapitre V : Les hétérostructures GaN/(Ga,Al)N 172