ESSAI DE TRACTION
Transcription
ESSAI DE TRACTION
fipmeca ESSAI DE TRACTION J. Michel BAES Max BOURCART Christian LAGOUTTE MAI 2004 fipmeca PST, 1 chemin Desvallières 92410 Ville d’Avray Tél secrétariat : 01 47 09 70 20 Contact : [email protected] Essai de traction SOMMAIRE 1. OBJECTIF............................................................................................................................ 3 2. PRESENTATION DE LA MANIPULATION .................................................................. 3 2.1. LA MACHINE DE TRACTION ............................................................................................... 3 2.2. DEFINITION ET DIMENSIONNEMENT DE L’EPROUVETTE .................................................... 4 2.3. LA COURBE OBTENUE ....................................................................................................... 5 3. DEPOUILLEMENT DE LA COURBE ............................................................................. 6 3.1. IDENTIFICATION DES CARACTERISTIQUES MECANIQUES DE L’EPROUVETTE ...................... 6 3.2. DETERMINATION DU MODULE D’YOUNG .......................................................................... 7 3.3. DIAGRAMME RATIONNEL ................................................................................................. 8 3.3.1. Relevé des mesures................................................................................................... 8 3.3.2. Détermination des coefficients d’écrouissage et de résistance (K et n) .................. 9 4. CONCLUSION................................................................................................................... 10 ANNEXE ................................................................................................................................. 11 2/11 Essai de traction 1. OBJECTIF Réalisation d’un essai de traction statique sur éprouvette métallique et tracé de la courbe Effort / Déformation. Nous dépouillerons ensuite la courbe afin de déterminer les valeurs classiques (Re, Rm, A%, E, …). Enfin, nous établirons la courbe rationnelle pour en déterminer la loi de comportement expérimentale (σ = f(ε)). 2. PRESENTATION DE LA MANIPULATION L’essai a été réalisé par le technicien du laboratoire le 29/04/04. 2.1. La machine de traction Utilisation d’une machine électromécanique à enregistrement électronique : - le déplacement de la traverse se déroule à vitesse constante (2mm/mn dans notre cas) - la force appliquée est mesurée à l’aide d’un capteur à jauges extensométriques - l’allongement de l’éprouvette est mesuré par un extensomètre à jauges Machine de traction uni-axiale 3/11 Essai de traction 2.2. Définition et dimensionnement de l’éprouvette L’essai est réalisé sur une éprouvette « plate » en acier de section rectangulaire (1.02 mm x 8.10 mm) S0 F L0 L0 : longueur utile initiale de l'éprouvette S0 : section initiale de l'éprouvette L: longueur utile de l’éprouvette (fonction de l’effort exercé) F: force appliquée à l’extrémité de l’éprouvette S0 = 8,26 mm2 On en déduit alors l’allongement relatif e(%): e (%) = L − L 0 *100 L0 4/11 Essai de traction 2.3. La courbe obtenue La courbe tracée lors de l’essai est de la forme : F(N)= f(e(%)) F(N) B Fm A FeH FeL C D E O e(%) Différentes zones de la courbe obtenue : - O à A : zone de déformation élastique (réversible) - A à E : palier de plasticité (présence d’un acier doux dans notre cas) - E à B : zone de déformation plastique répartie - B à C : zone de déformation plastique non répartie. Il y a striction de l’éprouvette jusqu’à la rupture (en C) 5/11 Essai de traction 3. DEPOUILLEMENT DE LA COURBE Certains paramètres sont directement relevés sur la courbe de traction, d’autres sont déduits de ces premiers. La courbe de traction se trouve en annexe. 3.1. Identification des caractéristiques mécaniques de l’éprouvette Fm FeH FeL Charge maximale Charge à la limite supérieure d’écoulement Charge à la limite inférieure d’écoulement Dans notre cas, il y a un palier de plasticité. La valeur FeL remplace donc le Fe0,2% classique Rm ReH ReL Allgt Contrainte maximale à la rupture en traction Contrainte à la limite élastique après écrouissage Contrainte à limite élastique conventionnelle à 0,2 (Rp0,2) Allongement à la charge maximale Fm Fm 2690 N Rm 326 MPa FeH 1960 N ReH 237 MPa FeL 1900 N ReL 230 MPa Allgt maxi (%) = 11,8 % Avec : Rm = Fm 2690 = = 3 , 26 * 10 8 Pa S0 8 , 262 * 10 − 6 Re H = Fe H 1960 = = 2 , 37 * 10 8 Pa −6 S0 8 , 262 * 10 Re L = Fe L 1900 = S0 8 , 262 * 10 6/11 −6 = 2 , 30 * 10 8 Pa Essai de traction 3.2. Détermination du module d’Young Le module d’Young (E) peut directement être déduit de la courbe de traction. Il est proportionnel à la pente de la droite dans la zone élastique. On remarquera toutefois que cette valeur est, dans notre cas, difficilement exploitable en raison d’une pente très raide avec une imprécision sur la valeur de l’allongement. La courbe passant par le point de coordonnées (0,0), il nous suffit de lire les coordonnées d’un point avant la limite élastique. Pour ∆L/L0 = 0,0008, nous lisons : F = 1500 N, d’où : 1500 E = F * 1 = Fe * 1 = S ∆ L S 0 ∆ L 8 , 262 ∗10 L0 L0 −6 * 1 8 *10 −4 = 2 , 27 *10 11 Pa = 227 GPa Malgré l’imprécision de la mesure , nous obtenons une valeur proche de la valeur théorique d’un acier doux, soit 210 GPa. C’est cette dernière valeur qui sera retenue pour la suite des mesures. 7/11 Essai de traction 3.3. Diagramme rationnel A partir de l’enregistrement dans la zone de plasticité (entre E et B pour nous), nous allons établir le diagramme rationnel de la forme : σ = f(ε), soit la contrainte en fonction de la déformation. Ce diagramme nous permettra ensuite d’établir la loi de comportement plastique du matériau. 3.3.1. Relevé des mesures F (en N) 2150 2260 2350 2430 2490 2540 2580 2620 2650 2670 2680 2690 ∆L/L0 2,4 3,2 4 4,8 5,6 6,4 7,2 8 9 10 11 11,8 ε σ (en Pa) 2,66E+08 2,82E+08 2,96E+08 3,08E+08 3,18E+08 3,27E+08 3,35E+08 3,42E+08 3,50E+08 3,55E+08 3,60E+08 3,64E+08 Avec : 0,024 0,031 0,039 0,047 0,054 0,062 0,070 0,077 0,086 0,095 0,104 0,112 F ∆L * 1 + S0 L0 ∆L ε = Ln1 + L0 σ= S0 = 8,262*10-6 m2 Contrainte rationnelle (plasticité) 4,0E+08 3,5E+08 Sigma (Pa) 3,0E+08 2,5E+08 2,0E+08 1,5E+08 1,0E+08 5,0E+07 0,0E+00 0,00 0,02 0,04 0,06 0,08 Epsilon 0,10 n= 0,112 La portion parabolique (ci-dessus) des allongements répartis peut s’écrire sous la forme : σ = K (ε P )n avec εp déformation plastique : ε p =ε −ε e =ε −σ E 8/11 0,12 Essai de traction 3.3.2. Détermination des coefficients d’écrouissage et de résistance (K et n) Le paramètre n représente le coefficient d’écrouissage, il rend compte de la capacité du matériau à se déformer plastiquement. Le paramètre K représente le coefficient de résistance du matériau (exprimé en Mpa) σ = K (ε P )n ⇒ Ln ( σ ) = Ln ( K ) + nLn ( ε p ) Si l’on trace la courbe Ln(σ)=f(Ln(εp)), la droite obtenue nous donnera les paramètres n et K. Détermination du coefficient d'écrouissage et du coefficient de résistance. 19,75 19,70 19,65 y = 0,2003x + 20,163 2 R = 0,9979 Ln (Sigma) 19,60 19,55 19,50 19,45 19,40 19,35 -4,00 -3,50 -3,00 -2,50 Ln (Epsilon P) Equation de la droite obtenue : Ln(σ)=20,16 + 0,20*(Ln(εp) et : Ln(K) = 20,16 D’où : n = 0,20 K = 569 MPa Remarque : Le coefficient d’écrouissage peut-être directement lu sur la courbe σ = f(ε) ; n correspond alors à la déformation pour la charge maximale Fm. Sur cette courbe (§ 4), nous relevons n = 0.11 On peut constater une différence assez importante !!! 9/11 -2,00 Essai de traction 4. CONCLUSION On a pu appréhender lors de ce TP toutes les informations que peut nous apporter un essai de traction statique sur un matériau. Outre les limites élastique et plastique, l’allongement à rupture, nous pouvons également déduire : - le module d’Young - le coefficient d’écrouissage Cependant, il est nécessaire de prendre un certain nombre de précautions qui sont influant sur la qualité des essais mesurés. Par exemple : - qualité de découpe de l’éprouvette ajustement des jauges extensométriques vitesse de mise en charge (déplacement de la traverse de la machine de traction) alignement des mores de la machine de traction.(afin de tirer dans l’axe de l’éprouvette) réglage du traceur de courbe … 10/11 « Essai de traction » Annexe 1 ANNEXE Courbe de traction. 11/11