Candidate plants to help soil pest control in Conservation Agriculture

Transcription

Candidate plants to help soil pest control in Conservation Agriculture
Candidate plants to help soil pest control in Conservation Agriculture: potential effects of 21 species used as
cover crops in Madagascar
Naudin K1, Quaranta B2, Husson O3, Randriamanantsoa R4, Rabary B4, Rafarasoa LS5, Michellon R3, Fernandes P6, Ratnadass A6
1
CIRAD, UPR Systèmes de Culture Annuels, 34398 Montpellier, France ; [email protected]
2
ISTOM, 95094 Cergy Pontoise, France
3
CIRAD, UPR Couvert permanent, 34398 Montpellier, France
4
FOFIFA, 110 Antsirabe, Madagascar
5
Université d‘Antananarivo, 101 Antananarivo, Madagascar
6
CIRAD, UPR HortSys, 34398 Montpellier, France
Keywords: upland rice, cropping systems, nematode
Introduction
Cover crops are one of the pillars of conservation agriculture (CA). Used in association or rotation with the main crops, they contribute to
insure functions such as : reduced runoff, erosion, and weed pressure; soil structure and fertility improvement; forage production [32].
Alongside these beneficial effects, cover crops may also contribute to crop pest and disease control [27]. In Madagascar 21 cover crop
species are used in upland rice based CA cropping systems (Table 1). These cover crops were selected mainly according to their capacity to
fulfil the functions cited above. The reduction of pest impact was not considered, although pests such as ―white grubs‖ and ―black beetles‖
(Col., Scarabaeidae) are major constraints in conventional and CA upland cropping systems in the Madagascan highlands [26, 28]. A
literature review was therefore conducted to assess the potential use of these 21 cover crops to reduce the impact of pests on cropping
systems.
Materials and Methods
The review analysed 38 scientific sources from the ScienceDirect®database and CIRAD library. The mechanisms of action of the plants
were reported following the typology of effects proposed by Ratnadass et al [27], namely: (A) temporal pest/pathogen cycle disruption via
non-host effects; (B) resource concentration/dilution and spatial disruption of pest dynamics/pathogen epidemics; (C) pest deterrence or
repellence; (D) pest stimulation or attraction; (E) below-ground allelopathic effects; (F) stimulation of soil pest-pathogen antagonists; (G)
crop physiological resistance via improved nutrition; (H) effects via provision of alternative food to natural enemies of crop pests; (I)
effects via provision of refuges/shelters for predators due to vegetative structural/architectural characteristics; (J) effects via microclimate
alteration; (K) physical barrier effects.
Results and Discussion
Only one article reports effects of a plant on a black beetle: Trifolium repens on Heteronychus arator [17]. Some articles report effects on
various insects [4, 8, 9, 11, 14-16, 19, 21 , 30, 36] while most of the references document effects of plants on nematodes (Table 1). It was
therefore concluded that in view of the high endemism in Madagascar and the lack of references on the potential effects of plants on pests
in the Malagasy context, these effects should be tested locally. The selection of plants can focus on plants reported elsewhere as the most
effective against nematodes, which may be indicative of the production of biocide molecules with a broader spectrum. Very few studies
have been conducted on nematodes in Madagascar[37]. Studies require specific knowledge and thus, the effects of plants on nematodes are
largely underestimated when evaluating the cropping systems. Thus, much remains to be done to precisely assess the effects of cover crops
on soil macrofauna in general, and more specifically on pests. Such work is needed for better design and evaluation of new CA cropping
systems. Up to now, the effects of cover crops on pests have been underestimated as compared to more visible effects such as weeds and
erosion control [32], and the ability of cover crops to reduce pest incidence is still underused.
References
1. Asmus GL, Inomoto MM, Cargnin RA, 2008. Tropical Plant Pathology, 33, 85-89.
2. Barrett B, Mercer C, Woodfield D, 2005. Euphytica, 143, 85-92.
3. Blanchart E, Villenave C, Viallatoux A, Barthes B, Girardin C, Azontonde A, Feller C, 2006. European Journal of Soil Biology, 42,
S136-S144.
4. Bugg R, 1991.Cover crops and control of arthropod pests of agriculture, in Cover Crops for Clean Water. , W.L. Hargrove, Editor.
1991, Soil and Water Conservation Society. Pest control, . 157-163.
5. Crow WT, Weingartner DP, Dickson DW, McSorley R, 2001. J. Nematol., 33, 285-288.
6. Cuadra R, Cruz X, Fajardo JL, 2000. Nematropica, 30, 241-246.
7. Dias-Arieira CR, Ferraz S, Freitas LG, Mizobutsi EH, 2003. Acta Sci., 25, 473-477.
8. Dixon G, 2007.Vegetable brassicas and related crucifers. Crop production Science in Horticulture Series. 2007, Cambridge: CABI.
9. Dregseth RJ, Boetel MA, Schroeder AJ, Carlson RB, Armstrong JS, 2003. J. Econ. Entomol., 96, 1426-1432.
10.
El Moneim A, Bellar M, 1993. Nematol. medit., 21, 67-70.
11.
Jamjanya T, Quisenberry S, 1988. J. Econ. Entomol., 81, 697-704.
12.
Johnson AW, Burton GW, Wilson JP, Golden AM, 1995. J. Nematol., 27, 457-464.
13.
Jones JR, Lawrence KS, Lawrence GW, 2006. Nematropica, 36, 53-66.
14.
Khan Z, Amudavi D, Pickett J, 2008. North America Magazine. , 20-21.
15.
Khan Z, Pickett J, Wadhams L, Muyekho F, 2001. Insect Sci. Appl, 21, 375-380.
16.
Khan ZR, Pickett JA, van den Berg J, Wadhams LJ, Woodcock CM, 2000. Pest Manage. Sci., 56, 957-962.
17.
King P, Mercer C, Meekings J, 1981. Entomol. Exp. Appl., 29, 109-116.
18.
Kokalis-burelle N, Rodriguez-Kaban R, 2006.Allelochemicals as biopesticides for management of plant-parasitic nematodes.
Allelochemicals: biological control of plant pathogens and diseases. 2006: Springer. 15-29.
19.
LaPointe SL, 2003. Fla. Entomol., 86, 80-85.
20.
Luc M, Sikora R, Bridge J, 2005.Plant parasitic nematodes in subtropical and tropical agriculture. 2005: CABI.
21.
Mangan F, Degregorio R, Schonbeck M, Herbert S, Guillard K, Hazzard R, Sideman E, Litchfield G, 1995. J. Sustainable Agric., 5,
15-36.
22.
McSorley R, 1999. J. Nematol., 31, 619-623.
23.
Mercer CF, Hussain SW, Moore KK, 2004. J. Nematol., 36, 499-504.
5th World Congress of Conservation Agriculture incorporating 3rd Farming Systems Design Conference, September 2011 Brisbane,
Australia www.wcca2011.org
411
24.
Mosjidis J, Rodríguez-Kábana R, Owsley C, 1993. Nematropica, 23, 35-39.
25.
Quénéhervé P, Topart P, Martiny B, 1998. Nematropica, 28, 19-30.
26.
Randriamanantsoa R, Aberlenc H, Ralisoa O, Ratnadass A, Vercambre B. Zoosystema, 32.
27.
Ratnadass A, Fernandes P, Avelino J, Habib R, 2010. Agr. Sust. Dev., in press.
28.
Ratnadass A, Randriamanantsoa R, Rabearisoa MY, Rajaonera TE, Rafamatanantsoa E, Isautier C, 2006.Dynastid white grubs as
rainfed rice pests of agrosystem engineers in Madagascar, in International Rice Research Congress. 2006: New Delhi.
29.
Regnault-Roger C, Philogène B, Vincent C, 2002.Biopesticides d'origine végétale, ed. T.e. documentation. 2002, Paris: Lavoisier.
337.
30.
Riis L, Bellotti AC, Arias B, 2005. Fla. Entomol., 88, 1-10.
31.
Rodriguez-Kabana R, Kloepper J, Robertson D, Wells L, 1992. Nematropica, 22, 75-79.
32.
Séguy L, Husson O, Charpentier H, Bouzinac S, Michellon R, Chabanne A, Boulakia S, Tivet F, Naudin K, Enjalric F, Ramaroson
I, Rakotondramanana, 2009.Principes et fonctionnement des écosystèmes cultivés en semis direct sur couverture végétale, in Manuel du
semis direct à Madagascar, Vol I. Chap. 1., GSDM and CIRAD, Editors. 2009: Antananarivo. 32.
33.
Sharma SB, Jain KC, Lingaraju S, 2000. Ann. Appl. Biol., 136, 247-252.
34.
Sharma SB, Remanandan P, McDonald D, 1993. J. Nematol., 25, 824-829.
35.
Skovgard H, Pats P, 1997. Agric. Ecosyst. Environ., 62, 13-19.
36.
Spurthi G, 2009. J. Entomol. Res., 33, 89-92.
37.
Villenave C, Bodo R, Kichenin E, Djigal D, Blanchart E, 2010.Earthworms and Plant Residues Modify Nematodes in Tropical
Cropping Soils (Madagascar): A Mesocosm Experiment, in Applied and Environmental Soil Science. 2010, Hindawi. 7p.
38.
Wang KH, McSorley R, Gallaher RN, 2003. J. Nematol., 35, 294-301.
Table 1. Inventory of actions of 21cover crops used in Madagascar on crops pests, references from literature. Effective part of plant : R :
roots; S : shoot/stem; L : leaves; MD: missing data, i.e. unknown. Mechanisms : A, B, C, D, E, F ,G, H, J, K (see Materials and Methods)
Cover crop
Familly -Specie
Fabaceae
Arachis pintoï, A. repens
Cajanus cajan
Pest targeted
Type
Nematoda
Insecta
Insecta
Nematoda
Insecta
Crotalaria grahamiana, C. spectabilis, Nematoda
C. juncea
Desmodium uncinatum
Nematoda
Insecta
Mucuna pruriens
Nematoda
V. unguiculata
Vicia villosa
Stylosanthes guianensis
Trifolium semipilosum, T. repens
Graminae
Avena sativa
Nematoda
Insecta
Insecta
Nematoda
Nematoda
Nematoda
Insecta
Nematoda
Insecta
Acarina
Brachiaria ruziziensis, B. brizantha, B. Nematoda
humidicola.
Cynodon dactylon
Nematoda
Insecta
Eleusine coracana
Nematoda
Lolium multiflorum
Nematoda
Insecta
Brassicaceae
Raphanus sativus
Nematoda
Effective part of Mechanisms
the plant
References
Pratylenchus loosi, Meloidogyne incognita, Meloidogyne paranaensis,
Roylenchus reniformis
Diaprepes abbreviatus
Cyrtomenus bergi
M. incognita , Meloidogyne javanica, R. reniformis, Heterodera cajani,
Pratylenchus zeae, Pratylenchus sudanensis.
Spodoptera exigua
M. incognita, Meloidogyne arenaria, Meloidogyne javanica, R. reniformis,
Pratylenchus brachyurus, P. zeae, Pratylenchus. coffeae, Radopholus similis
Hoplolaiminae genera, Meloidogyne spp.
Busseola fusca, Chilo partellus
Belonolaimus longicaudatus, Paratrichodorus minor, Criconemella ssp.,
Scutellonema ssp., Heterodera glycines, Tylenchorhynchus claytoni, M.
incognita, M. javanica, P. brachyurus, Ditylenchus sp, Aphelenchoides sp,
Aphelenchus avena, Tylenchus sp , R. reniformis
M. incognita, M. javanica, M. arenaria
C. partellus, Chilo orichalcociliellus, Sesamia calamistis
Delia radicum, Plutella xylostella
M. arenaria, Meloidogyne artiellia
M. incognita, M. javanica, P. brachyurus
Meloidogyne trifoliophila
Heteronychus arator
MD
Unknown
[20]
S, L
S, L
R
K
A
A
MD
R, L
Unknown
A, E, F, G
[19]
[30]
[20 , 29, 33 ,
34 , 36]
[36]
[20, 22, 29, 38]
MD
S, L
R, L
Unknown
C, G,
E, F, J
[20]
[14-16]
[3 , 25]
R
S, L
S, L
R
R
R
R
A, E
A, G, K
Unknown
A
A
A
C
[22 , 29]
[35]
[8, 21 ]
[10, 24]
[20 , 29]
[2 , 23]
[17]
Meloidogyne spp.
Tetanops myopaeformis
Oligonychus punicae, Scirtothrips citri
M. incognita, M. javanica
R, S, L
S, L
S, L
MD
B
H, K
D
Unknown
[29]
[9]
[4]
[7 , 29]
M. incognita
Spodoptera frugiperda
R. reniformis
R. reniformis
L. phyllopus
MD
MD
R
MD
MD
A
Unknown
A
Unknown
Unknown
[12]
[11]
[1]
[13]
[4]
A, E
[5 , 6, 18 , 29 ,
31 ]
Name
Heterodera schachtii, M. incognita, Meloidogyne halpa, R. reniformis, R
Trichodorus sp., Pratylenchus sp.
5th World Congress of Conservation Agriculture incorporating 3rd Farming Systems Design Conference, September 2011 Brisbane,
Australia www.wcca2011.org
412