1 THE COSINE INTEGRAL By Tom Irvine Email:
Transcription
1 THE COSINE INTEGRAL By Tom Irvine Email:
THE COSINE INTEGRAL By Tom Irvine Email: [email protected] June 18, 2005 ________________________________________________________________________ f(x) = (1/x) cos x 10 8 f(x) 6 4 2 0 -2 0 1 2 3 4 5 6 7 8 9 10 x Figure 1. Integrate the following function. b 1 ∫a x (1) cos x dx 1 The cosine function can be expanded in the following series. cos x = ∞ 2k k x ( − 1 ) ∑ (2k )! k =0 (2) By substitution, b1 ∫a x cos x dx = 2k b1 ∞ k x dx − ( 1 ) ∑ ∫a x (2k )! k =0 (3) x 2k −1 b1 b ∞ k ∫a x cos x dx = ∫a ∑ (−1) (2k )! dx k =0 (4) b ∞ x 2k b 1 k ∫a x cos x dx = ln x + ∑ (−1) (2k ) (2k ) ! k =1 a b 1 cos x dx a x ∫ (5) ∞ b 2k = + ln b + ∑ (−1)k (2k ) (2k ) ! k =1 ∞ a 2k − ln a + ∑ (−1)k ( 2 k ) ( 2 k ) ! k =1 (6) 2 b 1 cos x dx a x ∫ ∞ b 2k − a 2k b k = ln + ∑ (−1) (2k ) (2k ) ! a k =1 (7) b 1 cos x dx a x ∫ ∞ 2k 2k b 1 kb −a = ln + − ( 1 ) ∑ (k ) (2k ) ! a 2 k =1 (8) Note that each integration limit must be greater than zero due to the natural log term. For numerical computation, equation (8) is practical only if b < 10. Furthermore, the cosine integral is defined in some references as ∞ 1 cos u du x u Ci( x ) = − ∫ The asymptotic expansion of this function is given in Appendix A. 3 (9) APPENDIX A An asymptotic solution is given in this section. The result is useful if x >> 1. ∞ 1 cos u du x u Ci( x ) = − ∫ (A-1) Integrate by parts. ∞ 1 ∞ 1 Ci( x ) = − ∫ d sin u + ∫ sin u d x u x u ∞ 1 ∞ 1 Ci( x ) = − ∫ d sin u − ∫ sin u du x u x u2 ∞ 1 Ci( x ) = − sin u u x − 1 sin x − x Ci( x ) = ∞ 1 sin u du 2 ∫x u (A-2) (A-3) (A-4) ∞ 1 sin u du 2 (A-5) 1 1 ∞ d cos u − ∫ cos u d 2 x u u2 (A-6) ∫x u Integrate by parts again. ∞ Ci( x ) = 1 sin x + x ∫x Ci( x ) = 1 sin x + x 1 Ci( x ) = u2 ∞ cos u x 1 1 sin x − cos x x x2 4 ∞ 1 cos u du x u3 (A-7) ∞ 1 cos u du x u3 (A-8) +2 ∫ +2 ∫ Integrate by parts again. Ci( x ) = 1 1 cos x sin x − x x2 Ci( x ) = 1 1 cos x sin x − x x2 Ci( x ) = 1 ∞ 1 ∞ + 2 ∫ d sin u du − 2 ∫ sin u d 3 x u x u3 + 2 u3 ∞ sin u x ∞ 1 sin u du x u4 +6 ∫ ∞ 1 1 1 2 sin x − cos x − sin x + 6 ∫ sin u du x u4 x x2 x3 (A-9) (A-10) (A-11) Integrate by parts again. Ci( x ) = 1 ∞ 1 ∞ 2 1 1 sin x − 6 ∫ d cos u + 6∫ cos u d cos x − sin x − 2 3 4 x u x x x x u4 (A-12) ∞ Ci( x ) = 1 ∞ 1 2 1 1 sin x − 6 cos u + 6∫ cos u d cos x − sin x − x x u4 x3 x2 u4 x (A-13) Ci( x ) = ∞ 1 1 1 2 6 sin x − cos x − sin x + cos x − 24 ∫ cos u du 2 3 4 x x u5 x x x (A-14) 5 Ci( x ) = 1 2 6 1 sin x − cos x − sin x + cos x + R x x2 x3 x4 (A-15) R is the remainder. ∞ 1 cos u du x u5 R = −24 ∫ (A-16) The solution may be restated as Ci( x ) = 1 1! 2! 3! sin x − cos x − sin x + cos x + R x x2 x3 x4 (A-15) R is the remainder. ∞ 1 cos u du x u5 R = − 4! ∫ (A-16) 6