PROBLEMS
Transcription
PROBLEMS
174 PROBLEMS Problem proposals and solutions should be sent to Bruce Shawyer, Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada. A1C 5S7. Proposals should be accompanied by a solution, together with references and other insights which are likely to be of help to the editor. When a proposal is submitted without a solution, the proposer must include sucient information on why a solution is likely. An asterisk (?) after a number indicates that a problem was proposed without a solution. In particular, original problems are solicited. However, other interesting problems may also be acceptable provided that they are not too well known, and references are given as to their provenance. Ordinarily, if the originator of a problem can be located, it should not be submitted without the originator's permission. To facilitate their consideration, please send your proposals and solutions on signed and separate standard 8 12 "11" or A4 sheets of paper. These may be typewritten or neatly hand-written, and should be mailed to the Editor-in-Chief, to arrive no later than 1 November 2002. They may also be sent by email to [email protected]. (It would be appreciated if email proposals and solutions were written in LATEX). Graphics les should be in epic format, or encapsulated postscript. Solutions received after the above date will also be considered if there is sucient time before the date of publication. Please note that we do not accept submissions sent by FAX. Each problem is given in English and French, the ocial languages of Canada. In issues 1, 3, 5 and 7, English will precede French, and in issues 2, 4, 6 and 8, French will precede English. In the solutions section, the problem will be given in the language of the primary featured solution. 2704. Proposed by Mihaly Bencze, Brasov, Romania. Correction. Prove that 0 1 2 + r 2 + 4Rr 1 @ X p s A 0, R ; 2r 2(b2 + c2 ) ; a2 ; 12 R cyclic where a, b and c are the sides of a triangle, and R, r and s are the circumradius, the inradius and the semi-perimeter of the triangle, respectively. ................................................................. Montrer que R ; 2r 1 12 0 1 2 + r 2 + 4Rr X p s @ A 2(b2 + c2 ) ; a2 ; R cyclique 0, ou a, b et c sont les c^otes d'un triangle, et R, r et s sont respectivement le rayon du cercle circonscrit, le rayon du cercle inscrit et le demi-perimetre du triangle. 175 2724?. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. Let a, b, c be the sides of a triangle and ha , hb , hc , respectively, the corresponding altitudes. Prove that the maximum range of validity of the inequality p3 at + bt + ct 1=t ht + ht + ht 1=t a b c , 3 2 3 ln 4 where t 6= 0 is ; ln 4 < t < ln 4 ; ln 3 ln 4 ; ln 3 . ................................................................. Soit a, b, c les c^otes d'un triangle et ha , hb , respectivement, les hauteurs correspondantes. Montrer que le domaine de validite maximal de l'inegalite p3 at + bt + ct 1=t ht + ht + ht 1=t a b c , 3 2 3 ln 4 . ou t 6= 0 est ; ln 4 < t < ln 4 ; ln 3 ln 4 ; ln 3 2725. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. n P For k 1, let Sk (n) = (2j ; 1)k be the sum of the kth powers of j =1 the rst n odd numbers. 1. Show that the sequence fS3 (n), n 1g contains innitely many squares. 2.? Prove that this sequence contains only nitely many squares of other exponents k. ................................................................. n P Pour k 1, soit Sk (n) = (2j ; 1)k la somme des k-iemes puisj =1 sances des n premiers nombres impairs. 1. Montrer que la suite fS3 (n), n 1g contient une innite de carres. 2.? Montrer que cette suite ne contient qu'un nombre ni de carres d'autres exposants k. 2726. Proposed by Armend Shabini, University of Prishtina, Prishtina, Kosovo, Serbia. Given the nite sequence of real numbers, fak g, 1 k 2n, where the terms satisfy a2k ; a2k;1 = d , 1 k n , and a2k+1 = q , 1 k n ; 1 , prove that, when q 6= 1, a2k 176 2n X ak = 2qa2n ; 2qa1;;1nd(1 + q) , k=1 n! 2 n;2 1 ; q . (b) a2n = a1 q n + d (a) and 1;q ................................................................. On donne la suite nie de nombres reels fak g, 1 k 2n, satisfaisant a2k ; a2k;1 = d , 1 k n , et Montrer que si q 6= 1, 2n X (a) ak = 2qa2n ; 2qa1;;1nd(1 + q) , k=1 n! 2 n;2 1 ; q n (b) a2n = a1 q + d . a2k+1 = q , 1 k n ; 1: a2k et 1;q 2727. Proposed by Armend Shabini, University of Prishtina, Prishtina, Kosovo, Serbia. Given the nite sequence of real numbers, fak g, 1 k n, where the terms satisfy ak ; ak;1 = ak;1 ; ak;2 + d , k > 2 , d 2 R , n nd a closed form expression for P ak . k=1 nX ;1 2k + 2 Use this to nd the value of . k=0 2k ................................................................. On donne la suite nie de nombres reels fak g, 1 k n, satisfaisant ak ; ak;1 = ak;1 ; ak;2 + d , k > 2 , d 2 R: Trouver une expression explicite pour n P ak . k=1 X 2k + 2 Utiliser le resultat pour trouver la valeur de 2k . k=0 n;1 177 2728. Proposed by Eckard Specht, Otto-von-Guericke University, Magdeburg, Germany. The distance between two well-known points in 4ABC is bc p a + b + c 2(cos A + 1): What are the points ? ................................................................. La distance de deux points bien connus dans un triangle ABC est bc p a + b + c 2(cos A + 1): Quels sont ces points ? 2729. Proposed by Vaclav Kone c ny, Ferris State University, Big Rapids, MI, USA. Let Z (n) denote the number of trailing zeros of n!, where n 2 N. (a) Prove that Z (n) < 1 . n 4 1 Z (n) (b) ? Prove or disprove that nlim !1 n = 4 . ................................................................. Soit Z (n) le nombre de zeros apparaissant en queue de n!, ou n 2 N. (a) Montrer que Z (n) < 1 . n 4 Z (n) 1 (b) ? Montrer si oui on non, nlim !1 n = 4 . USA. 2730. Proposed by Peter Y. Woo, Biola University, La Mirada, CA, Let AM(x1 ; x2 ; : : : ; xn ) and GM(x1 ; x2 ; : : : ; xn ) denote the arithmetic mean and the geometric mean of the real numbers x1 , x2 , : : : , xn , respectively. Given positive real numbers a1 , a2 , : : : , an , b1 , b2 , : : : , bn , prove that (a) GM(a1 + b1 ; a2 + b2 ; : : : ; an + bn ) GM(a1; a2 ; : : : ; an) + GM(b1 ; b2 ; : : : ; bn ). For each real number t 0, dene f (t) = GM(t + b1 ; t + b2 ; : : : ; t + bn ) ; t. (b) Prove that f (t) is a monotonic increasing function of t, and that lim f (t) = AM(b1 ; b2 ; : : : ; bn ) . t!1 178 Soit AM(x1 ; x2 ; : : : ; xn ) et GM(x1 ; x2 ; : : : ; xn ) la moyenne arithmetique, respectivement la moyenne geometrique des nombres reels x1 , x2 , : : : , xn . Etant donne des nombres reels positifs a1, a2, : : : , an, b1 , b2 , : : : , bn , montrer que (a) GM(a1 + b1 ; a2 + b2 ; : : : ; an + bn ) GM(a1; a2 ; : : : ; an) + GM(b1 ; b2 ; : : : ; bn ). Pour tout nombre reel t 0, soit f (t) = GM(t + b1 ; t + b2 ; : : : ; t + bn ) ; t. (b) Montrer que f (t) est une fonction monotone croissante de t, et que lim f (t) = AM(b1 ; b2 ; : : : ; bn ) . t!1 2731. Proposed by Juan-Bosco Romero Marquez, Universidad de Valladolid, Valladolid, Spain. Let C be a conic with foci F1 , F2 , and directrices D1 , D2 , respectively. Given any point M on the conic, draw the line passing through M , perpendicular to the directrices, intersecting D1 , D2 , at M1 , M2 , respectively. Let R be the point of intersection of the lines M1 F1 and M2 F2 . Prove that (a) F1 R is independent of the choice of M ; M1 R (b) the normal to the conic at M passes through R. ................................................................. Soit C une conique de foyers F1 , F2 et de directrices D1 , D2 , respectivement. Par un point donne quelconque M sur la conique, on dessine la perpendiculaire aux directrices, et soit M1 , M2 les points d'intersection respectifs. Si R est le point d'intersection des droites M1 F1 et M2 F2 , montrer que (a) F1 R est independant du choix de M ; M1 R (b) la normale a la conique en M passe par R. 2732. Proposed by Mihaly Bencze, Brasov, Romania. Let ABC be a triangle with sides a, b, c, medians ma , mb , mc , altitudes ha , hb , hc, and area . Prove that m m m p 2 2 2 a + b + c 4 3 max h a , h b , h c . a b c ................................................................. Soit ABC un triangle de c^otes a, b, c, de medianes ma , mb , mc , de hauteurs ha , hb , hc , et d'aire . Montrer que m m m p 2 2 2 a + b + c 4 3 max a , b , c . ha hb hc 179 2733?. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta. It is a known result that if O is the circumcentre of 4A1A2 A3 , and if O1 , O2 , O3, are the circumcentres of 4OA2A3 , 4OA3A1 , 4OA1A2 , respectively, then the lines A1 O1 , A2 O2 and A3 O3 are concurrent. Does the corresponding result hold for simplexes ? That is, if O is the circumcentre of a simplex A0 A1 : : : An and Ok is the circumcentre of the simplex determined by O and the face opposite Ak , are the lines Ok Ak , k = 0, 1, : : : , n, concurrent ? ................................................................. On conna^t le resultat armant que si O est le centre du cercle circonscrit du triangle A1 A2 A3 , et si respectivement O1 , O2 , O3 sont les centres des cercles circonscrits aux triangles OA2 A3 , OA3 A1 et OA1 A2 , alors les droites A1 O1 , A2 O2 et A3 O3 sont concourantes. Le resultat ci-dessus reste-t-il valable pour des simplexes ? En d'autres termes, si O est le centre de la sphere circonscrite au simplexe A0 A1 : : : An et si Ok est le centre de la sphere circonscrite au simplexe determine par O et la face opposee Ak , est-ce que les droites Ok Ak , k = 0, 1, : : : , n sont concourantes ? 2734. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta. Prove that (bc)2n+3 + (ca)2n+3 + (ab)2n+3 (abc)n+2 (an + bn + cn ) , where a, b, c, are non-negative reals, and n is a non-negative integer. ................................................................. Montrer que (bc)2n+3 + (ca)2n+3 + (ab)2n+3 (abc)n+2 (an + bn + cn ) , ou a, b, c sont des reels non negatifs et n un entier non negatif. 2735?. Proposed by Richard I. Hess, Rancho Palos Verdes, CA, USA. Given three Pythagorean triangles with the same hypotenuse, is it possible that the area of one triangle is equal to the sum of the areas of the other two triangles ? ................................................................. Etant donne trois triangles pythagoriciens ayant la m^eme hypotenuse, est-il possible que l'aire de l'un des triangles soit e gale a la somme des aires des deux autres ? 180 2736. Proposed by Juan-Bosco Romero Marquez, Universidad de Valladolid, Valladolid, Spain. Let ABCD be a convex quadrilateral. From points A and B , draw lines parallel to sides BC and AD, respectively, giving points G and F on CD, respectively. Let P and Q be the points of the intersection of the diagonals of the trapezoids ABFD and ABCG, respectively. Prove that PQ k CD. ................................................................. Soit ABCD un quadrilatere convexe. Des sommets A et B , on trace des paralleles aux c^otes BC et AD, determinant respectivement des points G et F sur CD. Soit P et Q les points d'intersection des diagonales des trapezes ABFD et ABCG, respectivement. Montrer que PQ et CD sont paralleles. 2737. Proposed by Lyubomir Lyubenov, teacher, and Ivan Slavov, student, Foreign Language High School \Romain Rolland", Stara Zagora, Bulgaria. Find all solutions of the equation xn ; 2nxn;1 + 2n(n ; 1)xn;2 + axn;3 + bxn;4 + + c = 0 , given that there are n real roots. ................................................................. Trouver toutes les solutions de l'equation n x ; 2nxn;1 + 2n(n ; 1)xn;2 + axn;3 + bxn;4 + + c = 0 , sachant qu'il y a n racines reelles. 2738. Proposed by Sefket Arslanagic, University of Sarajevo, Sarajevo, Bosnia and Herzegovina. Let x, y and z be positive real numbers satisfying x2 + y2 + z2 = 1. Prove that x + y + z 3p3 . 1 ; x2 1 ; y2 1 ; z2 2 ................................................................. Soit x, y et z des nombres reels positifs satisfaisant x2 + y2 + z2 = 1. Montrer que x + y + z 3p3 . 1 ; x2 1 ; y2 1 ; z2 2