Two Secure Anonymous Proxy-based Data

Transcription

Two Secure Anonymous Proxy-based Data
Two Secure Anonymous Proxy-based
Data Storages *
Olivier Blazy1
Xavier Bultel2
Pascal Lafourcade2
Université de Limoges, Xlim, Limoges, France
Clermont Université Auvergne, LIMOS, Clermont-Ferrand, France
July 29, 2016
SECRYPT 2016, Lisbon
*
This research was conducted with the support of the “Digital Trust” Chair
from the University of Auvergne Foundation.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
1 / 20 C
Proxy Re-Encryption (PRE)
Alice (pka , ska )
Bob (pkb , skb )
Proxy
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
2 / 20 C
Proxy Re-Encryption (PRE)
Alice (pka , ska )
Bob (pkb , skb )
Proxy
re-key rkb→a
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
2 / 20 C
Proxy Re-Encryption (PRE)
Alice (pka , ska )
(rkb→a )
Bob Offline
Proxy
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
2 / 20 C
Proxy Re-Encryption (PRE)
Alice (pka , ska )
(rkb→a )
c
Bob Offline
Proxy
c = Epkb (m)
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
2 / 20 C
Proxy Re-Encryption (PRE)
Alice (pka , ska )
(rkb→a )
c
c0
c = Epkb (m)
Bob Offline
Proxy
c 0 = RErkb→a (c)
= Epka (m)
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
2 / 20 C
Proxy Re-Encryption (PRE)
Alice (pka , ska )
(rkb→a )
c
c0
c = Epkb (m)
m = Dska (c 0 )
Bob Offline
Proxy
c 0 = RErkb→a (c)
= Epka (m)
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
2 / 20 C
Proxy Re-Encryption (PRE)
Alice (pka , ska )
(rkb→a )
c
c0
c = Epkb (m)
m = Dska (c 0 )
Bob Offline
Proxy
c 0 = RErkb→a (c)
= Epka (m)
P learns nothing about m (IND-CPA).
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
2 / 20 C
PRE History
Blaze et al. (1998) First definition of PRE.
Ivan et al. (2003) Formal treatment.
Ateniese et al. (2006) Unidirectional PRE.
Canetti et al. (2007) CCA security.
Libert et al. (2007) Unidirectional + CCA.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
3 / 20 C
PRE History
Blaze et al. (1998) First definition of PRE.
Ivan et al. (2003) Formal treatment.
Ateniese et al. (2006) Unidirectional PRE.
New application: encrypted storage management.
Canetti et al. (2007) CCA security.
Libert et al. (2007) Unidirectional + CCA.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
3 / 20 C
PRE based storage
Owner (pko , sko )
User (pku , sku )
Proxy
Encrypted
storage
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
4 / 20 C
PRE based storage
Owner (pko , sko )
re-key rko→u
User (pku , sku )
Proxy
Encrypted
storage
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
4 / 20 C
PRE based storage
Owner Offline
User (pku , sku )
rko→u
Proxy
Encrypted
storage
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
4 / 20 C
PRE based storage
Owner Offline
User (pku , sku )
file c ?
rko→u
Proxy
file c ?
Encrypted
storage
Check user rights
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
4 / 20 C
PRE based storage
Owner Offline
User (pku , sku )
c 0 = Epku (m)
m = Dsku (c 0 )
rko→u
Proxy
c = Epko (m)
Encrypted
storage
c 0 = RErko→u (c)
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
4 / 20 C
PRE based storage
Owner Offline
User (pku , sku )
c 0 = Epku (m)
m = Dsku (c 0 )
Semi-trust proxy:
-No info about m
-P knows U id.
-P knows U rights
-P knows c
rko→u
Proxy
c = Epko (m)
Encrypted
storage
c 0 = RErko→u (c)
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
4 / 20 C
PRE based storage
Owner Offline
Semi-trust proxy:
-No info about m
-P knows U id.
-P knows U rights
-P knows c
Goal: more privacy!
User (pku , sku )
c 0 = Epku (m)
m = Dsku (c 0 )
rko→u
Proxy
c = Epko (m)
Encrypted
storage
c 0 = RErko→u (c)
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
4 / 20 C
PRE & anonymity?
Ateniese et al. (2009) Anonymous re-encryption key.
Shao et al. (2012) Anonymity for recipient message.
Zheng et al. (2014) Anonymous re-encryption key + CCA.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
5 / 20 C
PRE & anonymity?
Ateniese et al. (2009) Anonymous re-encryption key.
Shao et al. (2012) Anonymity for recipient message.
Zheng et al. (2014) Anonymous re-encryption key + CCA.
→ Only partial anonymity.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
5 / 20 C
Our idea
Owner (pkgi , skgi )
User
Encrypted
storage
Proxy
member of the group i
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner (pkgi , skgi )
proxy key K
Member key MSKi
User
Encrypted
storage
Proxy
member of the group i
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner Offline
K
Proxy
User (MSKi )
Encrypted
storage
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner Offline
K
Proxy
User (MSKi )
file c ?
Encrypted
storage
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner Offline
K
Proxy
User (MSKi )
c = Epkgi (m)
Encrypted
storage
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner Offline
K
Proxy
User (MSKi )
c = Epkgi (m)
Encrypted
storage
User knows
MSKi and c
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner Offline
K
User (MSKi )
Encrypted
storage
Proxy
Randomization with r
MSK0i and c 0
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner Offline
K
Proxy
User (MSKi )
MSK0i , c 0
Encrypted
storage
Randomization with r
MSK0i and c 0
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner Offline
User (MSKi )
K
Proxy
c 00 = REK ,MSK0i (c 0 )
c 00
Encrypted
storage
Randomization with r
MSK0i and c 0
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner Offline
User (MSKi )
K
Proxy
c 00 = REK ,MSK0i (c 0 )
Encrypted
storage
c 00
m = Dr (c 00 )
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our idea
Owner Offline
K
User (MSKi )
Encrypted
storage
????
MSK0i and c 0
Semi-trust proxy:
-No info about m
-No info about U id.
-No info about i
-No info about c
m = Dr (c 00 )
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
6 / 20 C
Our contribution
Two schemes:
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
7 / 20 C
Our contribution
Two schemes:
DRAS: Direct revocation mechanism: The owner can
revoke anybody anytime.
Pay-per-download model.
Weak anonymity.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
7 / 20 C
Our contribution
Two schemes:
DRAS: Direct revocation mechanism: The owner can
revoke anybody anytime.
Pay-per-download model.
Weak anonymity.
IRAS: Indirect revocation mechanism: the owner can
revoke users periodically.
Monthly-fee model.
Full anonymity.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
7 / 20 C
1
introduction
2
DRAS
3
IRAS
4
Conclusion
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
8 / 20 C
DRAS
P-Gen(P): generate proxy keys (PKP, SKP).
G-Gen(P): generate group key (PKGj , SKGj ).
Join(SKGj , WL, Ui ): generate a group member key MSKji .
Encrypt(PKGj , m): encrypt m for group j.
Revoke(MSKji , BL): revoke a user.
Open(VIEW, WL): desanonymize a transaction.
ProxyDec(Ui , P): decryption protocol between a user and the
proxy.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,
Auvergne,
2016 LIMOS,
9 / 20 C
DRAS
Keys construction:
Proxy keys (PKP, SKP) for an encryption scheme.
Group key (PKG, SKG) = (g γ , γ).
Member key MSK = (t, EncPKP ( γt )).
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
10 / 20 C
DRAS
Keys construction:
Proxy keys (PKP, SKP) for an encryption scheme.
Group key (PKG, SKG) = (g γ , γ).
Member key MSK = (t, EncPKP ( γt )).
The encryption algorithm is an ElGamal variant:
Keys Secret sk = x, public pk = g x .
Encryption Pick r and compute (C1 , C2 ) = (pkr , g r · m).
2
Decryption Compute m = C1/sk
C1
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
10 / 20 C
DRAS: Decryption protocol
C = (C1 , C2 ) = (g r ·γ , g r · m)
MSK = (MSK1 , MSK2 ) = (t, EncPKP ( γt ))
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
11 / 20 C
DRAS: Decryption protocol
C = (C1 , C2 ) = (g r ·γ , g r · m)
MSK = (MSK1 , MSK2 ) = (t, EncPKP ( γt ))
(PKP; MSK; C)
s ← Z∗p ; B = (C1 )s
$
(SKP; BL)
B,MSK2
−−−−−−−−→
If MSK2 ∈ BL then abort;
else w = DecSKP (MSK2 )
C2
D (1/s·t)
g r ·m
D
←−−−−−−−−
m=
=
1
g s·r ·t· s·t
=
Output m
t
D = (B)w = (C1s ) γ = g s·r ·t
g r ·m
gr
Output VIEW = MSK2 .
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
11 / 20 C
DRAS: Decryption protocol
C = (C1 , C2 ) = (g r ·γ , g r · m)
MSK = (MSK1 , MSK2 ) = (t, EncPKP ( γt ))
(PKP; MSK; C)
s ← Z∗p ; B = (C1 )s
$
(SKP; BL)
B,MSK2 MSK2
−−−−−−−−→
If MSK2 ∈ BL then abort;
else w = DecSKP (MSK2 ) =
C2
D (1/s·t)
g r ·m
D
←−−−−−−−−
m=
=
1
g s·r ·t· s·t
=
t
γ
t
D = (B)w = (C1s ) γ = g s·r ·t
g r ·m
gr
Output m
Output VIEW = MSK2 .
Proxy links user who uses two times the same member key
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
11 / 20 C
1
introduction
2
DRAS
3
IRAS
4
Conclusion
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
12 / 20 C
ElGamal is malleable
C = (g r , g x·r .m)
C 0 = ((g r )s , (g x·r .m)s ) = (g (r ·s) , g (r ·s)·x · ms ).
Decryption: m0 = ms =
g (r ·s)·x ·(ms )
.
g (r ·s)
Difficult to link C and C 0 (Diffie-Hellman problem).
The message m is hidden.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
13 / 20 C
Indirect Revocation Anonymous Storage
O-Gen(P): generate owner (PKO, SKO).
P-Gen(P): generate proxy key pair (PKP, SKP).
G-Gen(P): generate group key pair (PKG, SKG).
Join(SKGj , SKO, PKP): generate a group member key MSK.
O-Update(SKO, PKO): update (PKO, SKO).
U-Update(MSKji , SKO): update MSK.
Encrypt(PKGj , m): encrypt a message m.
ProxyDec(Ui , P): decryption protocol between a user and the
proxy.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
14 / 20 C
(Simplified) IRAS parameters
Keys constructions:
P = (G1 , G2 , GT , g1 , g2 , e, PKE, S).
Proxy keys (PKP, SKP) = (g2p , p).
Group keys (PKG, SKG) = (g1γ , γ).
1/γ
Member key MSK = (g2p·s , g2s · g2 ).
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
15 / 20 C
(Simplified) IRAS parameters
Keys constructions:
P = (G1 , G2 , GT , g1 , g2 , e, PKE, S).
Proxy keys (PKP, SKP) = (g2p , p).
Group keys (PKG, SKG) = (g1γ , γ).
1/γ
Member key MSK = (g2p·s , g2s · g2 ).
The encryption algorithm is an ElGamal bilinear variant:
Keys Secret sk = x, public pk = g1x .
Encryption Pick r and compute (C1 , C2 ) = (pkr , e(g1 , g2 )r · m).
C2
Decryption Compute m = e(C ,g
)1/sk
1
2
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
15 / 20 C
(Simplified) Decryption protocol
C = (C1 , C2 ) = (g1r ·γ , e(g1 , g2 )r · m)
1
MSK = (MSK1 , MSK2 ) = (g2p·s , g2s · g2γ )
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
16 / 20 C
(Simplified) Decryption protocol
C = (C1 , C2 ) = (g1r ·γ , e(g1 , g2 )r · m)
1
MSK = (MSK1 , MSK2 ) = (g2p·s , g2s · g2γ )
(C; MSK)
$
α, β ← Z∗p
MSK0 = (MSKα1 , MSKα2 )
C10 = C1β
m=
C2
1
D α·β
(p)
C 0 ,MSK0
1
−−−−
−−−−→
=
e(g1 ,g2 )r ·m
e(g1 ,g2
r ·α·β
) α·β
D
←−−−−−−−−
D = e(g1r ·γ·β ,
MSK02
1/p
MSK0 1
)
= e(g1 , g2 )r ·α·β
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
16 / 20 C
Provable IRAS
Many tools to construct a provable scheme:
Proof of a signature on MSK from MSK0 .
Revocation: The owner updates his signing key, but does
not re-sign MSK.
Damgård-ElGamal (CCA1).
Smooth projective hash functions.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
17 / 20 C
1
introduction
2
DRAS
3
IRAS
4
Conclusion
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
18 / 20 C
DRAS
Direct revocation.
Simple and efficient scheme.
CPA secure.
Not fully anonymous.
IRAS
Indirect revocation.
Not efficient, use complex tools to be provably secure.
CPA secure.
Fully anonymous.
Future work
Increase and simplify IRAS.
Without Damgård-ElGamal and SPHF.
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
19 / 20 C
Thank you for your attention.
Questions?
Olivier Blazy, Xavier Bultel, Pascal Lafourcade
Two
(Université
Secure Anonymous
de Limoges,
Proxy-based
Xlim, Limoges,
DataFrance,
Storages
Clermont Université
July 29,Auvergne,
2016
LIMOS,
20 / 20 C