POESII program (V_04/01/2015)

Transcription

POESII program (V_04/01/2015)
POESIIprogram(V_04/01/2015)

































Inblue:optiontochoose
S1‐UE1(80h):Fundamentalsinoptics&:TutorialsFrédéricZolla/PatrickFerrand(6ects)
S1‐UE2(40h):Lightemission,Laserssources:M.Houssin(3ects)
S1‐UE3(30h):Imagingandsystemsinoptics:HuguesGiovannini(3ects)
S1‐UE4(50h):Laboratorypractice:FrankWagner(3ects)
S1‐UE5(60h):PersonalProjects:Jean‐YvesNatoli/HuguesGiovannini(6ects)
S1‐UE6(60h):PhysicsforphotonicspartI:MartinaKnoop(6ects)
S1‐UE7(24h):Language:PatrickFournier(3ects)
S2‐UE1(30h):Signalandimagesanalysis:Jean‐MarcThemlin(3ects)
S2‐UE2(30h):GuidedOptics/opticsinTelecommunications:GillesRenversez(3ects)
S2‐UE3(30h):PhysicsforphotonicspartII:MartinaKnoop(3ects)
S2‐UE4(30h):BasisinoptoelectronicsComponents‐SC:Jean‐YvesNatoli(3ects)
S2‐UE5(30h):ElectronSpectroscopy:ThierryAngot(3ects)
S2‐UE6(30h):PhotonSpectroscopy:SophieBrasselet/PhilippeAmram(3ects)
S2‐UE7(30h):NumericalmethodsandsoftwareTools:GérardTayeb(3ects)
S2‐UE8(30h):Laboratoryprojectandpracticework:PhilippeAmram(3ects)
S2‐UE9(24h):Language:PatrickFournier
S2‐Training:2months(6ects)
S3‐UE0(20h):Tutorials:PatrickFerrand
S3‐UE1(16h):Nonlinearoptics:HassanAkhouayri(3ects)
S3‐UE2(24h):AdvancedelectromagneticsGérardTayeb/FrédéricZola(3ects)
S3‐UE3(36h):Lasersources&applications/matterinteractionN.Sanner/J.YNatoli(3ects)
S3‐UE4(36h):Opticalcomponentsandoptoelectronics:J.Lumeau(3ects)
S3‐UE5(24h):Photonicsforbiomedicalapplications:J.Duboisset/A.Dasilva(3ects)
S3‐UE6(24h):Advancedmethodsforopticalinstrumentation:PhilippeAmram(3ects)
S3‐UE7(28h):Nanophotonics:StefanEnoch(3ects)
S3‐UE8(32h):NumericalmethodsforElectromagnetic:G.Renversez(3ects)
S3‐UE9(36h):Instrumentationforastronomyfromgroundtospace:P.Amram(3ects)
S3‐UE10(30h):ExperimentalprojectsA:PhilippeAmram/LaureSiozade(3ects)
S3‐UE11(30h):ExperimentalprojectsB:PhilippeAmram/LaureSiozade(3ects)
S3‐UE12(24h):Language:PatrickFournier(3ects)
S3‐UE13(20h):AnalysisonResearchTopicorTechnologicalIntelligence(3ects)
S4Thesis(30ects)
S4‐UE1:SpringSchool(1week)
S4‐UE2:Traininginlaboratoryorcompagny(4to6month):
DETAILS
S1‐UE0:Tutorials:
‐ 40heuresconsacréesauxtutorials(miseàniveaufaiteparP.Ferrand)
S1‐UE1:Fundamentalsinoptics:
‐ 20heuresconsacréesàl'électromagnétisme(F.Zolla/A.Nicolet)
‐ 20heuresauxmaths.
S1‐UE2:Lightemission,Laserssources:N.Sanner/M.Houssin/A.Sentenac
Objectives: The purpose of this course is to present several processes responsible for
lightemissionandtoproposeacharacterizationoftheemittedlightrelevantforimaging
intermsofcoherenceandnoise.Alargepartofthelecturesisdevotedtolasersources,the
fundamentalconceptstheylieonandthepropertiesoflightemittedbylasers.
Afteranintroductionpointingtherelevanceofcoherenceforcharacterizinglightsources,
the course is split in four parts where coherence is a permanent issue which serves as a
guide.
Prerequisites:thefundamentalsintroducedincourseIaresufficientprerequisitesto
allowthestudentstofollowthiscourse.
I.Lightemission–(A.Sentenac)
In this part, we focus on several processes responsible for light emission with some
practicalexamples.Theseprocessescanbegatheredinthreegroupsconcerning
1.thermalemission,
This part presents the thermal radiation and its main characteristics as well as recent
progressmadeinthecomprehensionofsucharadiation.Wefirstintroducethethermal
radiationinaclassicalwayusingtheconceptsofspecificintensity,thePlanckfunction
and the Kirchhoff laws. Then, we use the stochastic electrodynamic frameworks to
describemoreindetailsthemicroscopicbehaviourofthethermalelectromagneticfield.
Weevaluatetheradiationoftemperatureinducedrandomcurrentsthataregenerated
inside the material. This microscopic approach allows linking the thermal radiation
phenomenontothatofluminescence.
2.luminescenceandspontaneousemission,
The microscopic processes of production of light by individual emitters (atoms and
molecules)orsemi‐conductors(LED)aredescribed.Thedynamicsandtimefluctuations
oftheemittedlightarerelatedtothesemicroscopicprocesses.Itgivestheopportunity
to introduce the concept of non‐classical light by studying emission by single emitters
likesingleatomsormolecules.
3.stimulatedemission,
This part presents the Einstein theory for matter‐light interaction and introduces the
fundamentalconceptsattheoriginoflightamplificationandlasersources.
II.Laseramplifiersandoscillators–(M.Houssin)
1.Absorptionandgain
Studyofthecompetitionbetweenthethreemainmechanisms(absorption,spontaneous
and stimulated emission) leads to understand why the population inversion is a
mandatoryconditionforlightamplification.
2.Relevantspectroscopicsystems
Differentspectroscopicsystemsaredescribedandtheirrespectiveinterestsintermsof
efficiency,pumping,andpopulationinversionarediscussed.
3.Thresholdforlaseroscillationinacavity
The threshold for laser oscillation is explicitly presented, and we explain why the
extracted intensity necessarily reaches a saturation in continuous pumping regime.
Efficiencyandoutputpowerarealsoconsidered.
III.Spectral,spatialandtemporalpropertiesoflaseremittedlight–(N.Sanner)
Thispartisdevotedtothespecificpropertiesoflaserbeams.
1‐Cavitystabilityandbeamdistribution
Criteria for resonator stability are presented, in relation with transverse modes. Light
emittedbylaserswithopticalcavityisbetterdescribedbygaussianmodes.Opticswith
these modes and their focusing properties (obeying rules which can diverge from
geometricoptics)areintroduced.
2‐Beamshapingofgaussianmodes
Forimagingapplications,gaussianbeamareoftenrequiredtobespatiallyshaped(e.g.
top‐hatdistribution).Techniquesbasedonspatialphasemanipulationarepresented.
3‐Pulsedlasersources
Twodifferentwaystofavourstimulatedemissionarestudied:Q‐switching(stimulated
emission only when there is a large number of atoms in the upper level) and mode‐
locking(photonsintheopticalcavityarecondensedintoa“packet”or“pulse”thatwill
bounce back and forth between the mirrors). The case of ultrashort pulses is also
studied,andfrequencycombsareintroducedastheachievementoffrequencycontrolof
a pulsed laser which allows precise comparison and measurement of optical
frequencies.
IV.Backtocoherence–(M.Houssin)
In connection with lab courses where coherence properties of sources are observed,a
way to quantify this coherence is proposed. Several active processes are introduced
whichmodifythespatialandspectralcoherenceoftheconsideredsources.
1‐Spatialcoherenceandfiltering,
Here,selectionofthespatialfrequenciesorpropagationwavevectorsispresentedasa
tooltoincreasecoherencepropertiesofsource,tothedetrimentofintensity.
2‐Frequencycoherenceandfiltering,
Asoppositiontotheprevioussection,hereselectionoffrequenciesandwavevectorsis
reachedthroughfeedbackandconstructiveinterferencesbyanopticalcavity.
S1‐UE3:Imagingandsystemsinoptics:H.Giovannini
1. Diffraction,scattering,linkwiththedefinitionofanimage.
2. Diffraction in electromagnetics. Treatment with a volume integral approach. Link
withHuygens‐Fresnelprinciple.ReminderFresnel,Fraunhoferdiffraction.
3. Linkbetweenthediffractedfieldandthepermittivityprofile(shape,refractiveindex)
ofanobject.
4. Near‐field,far‐field.
5. Consequenceofthespatialfilteringontheresolution.Opticaltransferfunction,point
spreadfunction.
6. Simple case of the Born approximation. Correspondence between the directions of
illumination/collectionandtheaccessibleinformation.Diffractionlimit.
7. Caseofthetomographicdiffraction(holographic)imaging.
8. Thelens,themirror.Magnification.Defects.CommentsonFourieroptics.
9. Coherentvsincoherentimaging.
10. Fieldofview.
11. Different practical cases: microscope (air, immersion, fluorescence, confocal),
telescope,humaneye,binoculars…
12. Comments on the consequences of noise. Comments on the resolution of inverse
problems.
S1‐UE4:Laboratorypractice:F.Wagner(VoirtableauEXCELcomplet)
 Geometricaloptics
 RaytracingwithOslo(illistrationdesabbérations)
 Fourieroptics
 Polarization
 Monochromator
 Michelsoninterferometer
 Spectroscopy
 Photodetectors
 Energybands
 Holography
S1‐UE5:PersonalProjects:J.YNatoli/H.Giovannini
Exampleofprojectschosenin2014‐2015
No.
Project Title
Advisor
Students
1
Numerical Study of laser damage in a nonlinear
Akhouayri
1. Adapa Bharath Reddy - India
crystal
4
Observing the Universe from Space and from the
2. Nguyen Ho Nhu Y - Vietnam
G. Cuby
Ground
1. Jiayi Long - China
2. Anfu Zhang - China
3. Chao Yang – China
6
Raman Spectroscopy of Diamond nanoCrystals
Julien Duboisset
1. Philipda Luangprasert - Thailand
2. Lopamudra Roy - India
3. Sandipan Maiti – India
7
Controlling emission with Metamaterials
Redha
1. Md Mahbub Alam - Bangladesh
Abdeddaim
2. Md Shofiqul Islam Khan - Bangladesh
3. Charaf Abdedaim – Algeria
8
How to measure an optical frequency with the
Marie Houssin
best precision?
1. Ashish Thatavarthy – India
2. Ivan Alexis Sanchez Salazar
Chavarria - Mexico
9
Development of a pyramid wavefront sensor
K. El Hadi
(PWFS)
1. Tatyana Vuyets – Russia
2. Marina Postnikova - Russia
3. Leidy Marcela Giraldo Castano –
Colombia
10
Study of stress induced deformation in optical
Thomas Begou
coatings deposited by rf-magnetron sputtering
11
Plasmonic eigenmodes in graphene nanotriangles
1. Doha Abdelrahman - Egypt
2. Mohamed Ismail – Egypt
André Nicolet
1. Jayadev Vijayan - India
2. Josep Cabedo Bru - Spain
3. Chiara Decaroli – Italy
12
Light propagation and imaging in diffusive media
Anne Sentenac
1. Charles Henri Andrieu - France
2. Tudor Olariu – Romania
13
15
High dynamic imaging for exoplanet
J.-F. Sauvage
1. Ting Xiao - China
characterisation: study of instrumental vibration
2. Ying Zhang - China
in a segmented telescope
3. Fadi Salti – Syria
Development of an automatic tracking system for
dry mass follow-up of live cells
Julien Savatier
1. Carlos Reyes - Mexico
2. Rastko Pajkovic - Montenegro
3. Di Zhang – China
S1‐UE6:PhysicsforphotonicspartI:MartinaKnoop
AtomicPhysics(30h)
1. Mass,sizeandchargeoftheatomandtheelectron
2. Basics of quantum mechanics. Light quanta. Emission and Absorption. Duality
wave‐particle.Uncertaintyrelation.
3. TheatompictureofBohr,RutherfordandSommerfeld(anditslimits).
4. Thehydrogenatom.Central‐fieldapproximation.Spin‐orbitcoupling.
5. LinebroadeningandAtomsinexternalfields.
6. Interactionsofatomswithlight.SpectroscopyandHigh‐resolutionspectroscopy
7. Lasercooling.Traps.Atomicclocks.
Statisticalphysics(30h)
1. Quantum states. Fundamental assumption. Closed system. Equal probabilities.
Microcanonicalensemble.
2. Systemsinthermalcontact.Temperatureandentropy.Canonicalensemble.
3. Systemsindiffusioncontact.Chemicalpotential.Grandcanonicalensemble.
4. Fermi‐Dirac'sdistribution.Fermions.Metals.
5. Bose‐Einstein's distribution. Bosons. Bose‐condensation. Photons, Planck's
distribution.
6. Boltzmann'sdistribution.Idealclassicalgas.
S2‐UE1: Signal and images analysis :Jean‐Marc Themlin, Stéphane Grimaldi, Laurent
Nony
This lecture will briefly develop the essential tools commonly used to describe
continuous‐time ( analog ) and discrete‐time signals, images and noise, mostly from a
deterministicwaveformpointofview.Continuous‐timewaveformswillberepresented
by direct mathematical expressions or by the use of orthogonal series representations
such as the Fourier series. Properties of these waveforms, such as their DC value,
root‐mean‐square (RMS) value, energy and power, magnitude and phase spectrum (
throughtheFouriertransform),powerspectraldensity,andbandwidth,willbebriefly
recalledorestablished.Systemsareusedtomanipulatethesewaveforms,usingvarious
operations like the scalar product, convolution and correlation. In addition, effects of
linearfilteringwillbebrieflystudied.
Most of these tools can be extended to images, considered as 2D signals
dependingontwospacecoordinates(x,y),whichcanalsobedescribedinthefrequency
domainbyaspectrumdependingonaspatialfrequency.Thesamplingtheoremviewed
as a special orthogonal series expansion allows representing an analog signal by a
limited number of samples acquired above the Nyquist frequency. The spectrum of a
given waveform ( discrete‐time or analog ) can be conveniently calculated using the
discrete Fourier transform (DFT), one of the main tools of the so‐called “digital signal
processing” domain (DSP). Across the lecture, actual systems used in signal storage,
transmission and modulation, multiplexing, video signal coding, lossy signal
compression(principleofJPEGstandard)willbeexplained.
Wewanttoactivelyengagethestudentasearlyaspossibleintheactualdesignof
practicalsignalsandsystems.ThroughseveralhandsonlaboratoriesbasedonMatLab(
or its open source equivalent FreeMat ), the students will develop useful and realistic
“expert systems” and implement their own solutions, e.g. in signal estimation and
identification.
Attheendofthislecture,thestudentsshouldhavelearnedasignificantamount
of signals and systems concepts, tools and theory, have developed an awareness of a
number of problems/tasks that signals and systems engineering addresses, and be
capable of resolving some signals and systems problems using MatLab, a widespread
toolusedinR&Dworldwide.
S2‐UE2:GuidedOptics/opticsinTelecommunications:G.Renversez
This lecture is shared with the first year of the Master of Physics (called «Laser et
OptiqueAvancée»).Itcontains15hoflecturesand15hofsupervisedpraticalworks.
1.Generalintroduction
2.Slabwaveguide
‐Introduction
‐Maxwellequationsandotherneededequations
‐TE/TMsplitting
‐Propagationequations
‐DispersionequationfortheTEcase
‐Generalpropertiesofmodes
‐Symmetricslabcase
‐Sometechnologicalissues
3.Signalpropagationinawaveguide
‐Extentofasignal
‐Evolutionofasignalduringthepropagation
‐Applications
4.Opticalfiber
‐Introduction
‐Technologicalissues
‐Generalequationsofpropagation
‐Opticalfibermodels
‐Formsforthemodes
‐Detailstudyofstepindexfibers:azimutalandradialdependencies
‐Guidedmodesinstepindexfibers
‐Cut‐offfrequencies
‐Weak‐guidanceapproximation
‐Recentresultsinfibertechnologyandtheirapplications
S2‐UE3:PhysicsforphotonicspartII:M.Knoop
Condensedmatterphysics(30h)
1.Introductiontothepropertiesofsolids.Crystalstructuresandbondinginmaterials.
Beyondthecrystallinestate:softmatter(polymers,membranes,liquidcrystals).
2.Momentum‐spaceanalysisanddiffractionprobes.
3.Latticedynamics,phonontheoryandmeasurements,thermalproperties.
4.Electronicstructuretheory,classicalandquantum;free,nearly‐free,andtight‐binding
limits.
5.Electrondynamicsandbasictransportproperties;quantumoscillations.
6.Propertiesandapplicationsofsemiconductors.
7.Reduced‐dimensionalsystems.
8.Magnetism.Superconductivity.
9.Opticalpropertiesofsolids.
S2‐UE4:Basisinsemiconductorsandoptoelectronics(J.YNatoli)
‐Part1
1.Elementsofsemiconductorsphysics
‐ Semiconductor (bonds in SC/Crystal property/Commonly used SC/Pauli exclusion
principle)
‐ EnergyBandDescriptionofsemiconductor
‐ EffectoftemperatureonSC
‐ IntrinsicandExtrinsicSC
‐ N‐typeandP‐TypeSC
‐ ChargeonN/P‐TypeSC.MajorityandMinoritycarriers
‐ PNJunction:Property,polarizedJunction
‐ Organicssemiconductors
2.BasicSCComponents
‐ PNDiode/BipolarTransistor/MOSetCMOSTransistor
3.Electroluminescenceandphotoreception
OpticalpropertiesinSC(directandindirectGap,emissionnetratioofphoton)
3.1‐Photoreceptor:(photoelectric,photovoltaicandphotoconductivityeffects)
‐ Photodiodeandsolarcell
‐ Phototransistor
‐ Optocoupler
‐ Photomultiplier
‐ Photo‐resistor
‐ ImagesensorsCCDandCMOS
‐ Problematicofnoise
3.2Photoemitter(Spontaneousandstimulatedemission)
‐ LED
‐ LEDlight
‐ OLEDs
‐ LaserLED
4.ElementsoffabricationofSCcomponents
‐Part2(ThomasDurt,NicolasSandeau)
PartofS2‐UE4forthisyear
Introduction to Quantum Optics with Applications to Quantum Information
Theory
Firstpart(4h):
‐blackbodyradiation,Planck’squantizationrule.
‐computationofthelifetimeofanexcitedstate‐Fermigoldenrule
‐Einstein’scoefficients
These 4 hours provide a survey of quantum optics, from Planck to QED, including
Rayleigh‐Jeans and others; usually these concepts are scattered and not presented
synthetically.
Secondpart(4h):
‐Introductiontothequantumeraser(plusrelatedconceptssuchasentanglement,Bell
inequalities,quantumdecoherenceandsoon),theapproachfollowedhereosofthePBR
type (problem resolution), and is based on a Mach‐zehnder type experimental
demonstration involving entanglement between photonic path and photonic
polarisation(incollaborationwithNicholasSandeau).
Thirdpart(4h):
‐ no signaling and no cloning theorems, quantum teleportation and quantum
cryptographywithpolarisedphotons.
S2‐UE5:SPECTROSCOPY,theinteractionofradiationwithmatterT.Angot
Elastic&Inelasticscattering
0. Surface Crystallography, 2D Bravais lattices, solid state physics and surface physics.
Probing the crystallographic properties (diffraction, electron microscopy and scanning
tunnelingmicroscopy)
1. Scattering by surfaces : kinematic theory. Elementary approach: Bragg law and
reciprocalspaces,3det2d.Elasticscatteringand(slightly)inelasticscattering,selection
rules. Applications: High Resolution Electron Energy Loss Spectroscopy, Raman
spectroscopy,Heatomscattering,neutronscattering.
2. Classical dielectric theory. Elementary excitations in solids (surface phonons,
plasmons,excitons).
Absorptionandemissionspectroscopies
1.Classicalelectromagneticradiation:scattering,absorptionandemission.Synchrotron
radiation.
2. Photoemission (core level and valence band), inverse photoemission. X‐ray
absorptionspectroscopy.Infraredspectroscopy,UV‐Visibleabsorption.Sum‐Frequency
Generation spectroscopy. Photoelectron diffraction. Auger electron spectroscopy,
Fluorescence.
S2‐UE6:NumericalmethodsandsoftwareTools:GérardTayeb
TheobjectiveistolearnhowtouseMATLAB,whichisoneofthemostpopularscientific
software environments, in order to model, study and represent some problems linked
withphotonics.
Thecoursewillbepresentedintheformofmixedlecturesandlaboratorysessions.
Theproposedsummaryofthiscoursewillbe:
MATLABenvironment:
 Arrays,operators
 Functions
 Graphs,2Dand3Dplots
 Conditionaltests
 Minimizationandoptimisation
Studyofsomeproblemslinkedwithphotonics:
 Studyofamultilayerstack.Optimizationofananti‐reflectivestack.
 Colorrendering.Transformationofaspectraldensityintoacolor.
 Diffraction
 Electromagnetic scattering by one cylinder. Optical theorem, reciprocity.
Resonances.Whisperinggallerymodes.Focusingproperties
S2‐UE7: Laboratory project and practice work : (Voir tableau EXCEL) F. Wagner,
P.Amram
ProjetLASER:
 Projet1.Autocorrélationoptique:
Mesuredelalargeurspectraled’unlaser
(GaetanHagel&JofrePedregosaGutierrez)
Ce projet expérimental consiste à mettre au point un montage expérimental
permettantd’observerlebattementdefréquenceentredeuxpartiesd’unemême
radiation laser décalées temporellement par le passage dans une fibre optique
d’undesdeuxbras.Leslongueursdefibreoptiqueparcourues(10m,150mou
10km)permettentdemettreàjourlelienunissantlalongueurdecohérenceet
lesfluctuationsinstantanéesdefréquence.
Pour son utilisation dans POESII ce projet nécessite l’acquisition de matériel:
fibreoptique(@1,5 m,delongueurs10m,150met10km),systèmed’injection
de fibre et éléments d’optique afférant: miroirs, objectif, lame d’onde, cube
séparateur);unephotodioderapide(bandepassante>120MHz)etunanalyseur
de spectre RF . Ce projet existait dans IOL mais en utilisant du matériel de
laboratoire.
 Projet2.LaserHe‐Ne–Montageoscillateur(AlexandreEscarguel)
 Projet3.LaserNd:YAG(res.,Q‐switch)
 Projet4.UsinageLASER(excimer)
 Projet5.Etuded'unediodelaser‐seuil,température,feedback(BenoîtEpinat–
4heures)
 Projet6.Interférométrieholographique(AlexandreEscarguel)
Projet«Logiciels»
 Projet1.Acquisitiondedonnées–Labview‐(JofrePedregosaGutierrez)
 Projet2.InitiationaulogicielZeemax(SandrinePascal–9heures)
 Projet3.Traitementdusignaletdel’imageparordinateur(R.Redon)
 Projet4.Moindrescarrés,minimisationdefonction,méthodedeMontéCarlo,...
 Projet5.Logicield’élémentsfinis:e.g.Nastran,I‐DEAS,FEMAP,…
Projet«Télécom»
 Projet1.Modulationacoustoetelectro‐optique(LudovicEscoubas)
 Projet2.Télécommunicationoptique(LudovicEscoubas)
Projets«composantoptiques»
 Projet1.Photodiodeamplifiée(BenoitEpinatetDidierFerrand)
caractérisation,amplificateur,câblage,montage
Projets«Ingénieriedessystèmes»
‐Spécificationsd’uneproblématiquescientifiqueoutechnique
‐Analysefonctionnelleetétudesystème
‐Managementdeprojet
‐Assuranceproduit,risquetechniques,sûretédefonctionnement
S3‐UE1:NonLinearoptics:H.Akhouayri`
Prerequiste:Linearelectromagneticoptics
Outline:
1.Aclassicalmodelofnonlinearmediumresponses.
2.Classicalandsemi‐classicalresults,nonlinearsusceptibilitiesandsymmetries.
Nonlinearpolarization,Propagationequationinnonlinearmedia.
3.TreeWaveMixing:Secondharmonicgeneration,phasematching,parametric
amplification(OPA,OPO),opticalrectification(THzgeneration).
4.Fourwavemixing:KerrEffect,SPM,Solitonpropagation,StimulatedRaman
effect,PhaseConjugation,Continuumgeneration.
S3‐UE2:AdvancedelectromagneticsGérardTayeb/FrédéricZolla
Part1
4Basicsinwavepacketsinhomogeneousmedia:Self‐generatedwaves
4.1Preliminaryremarks
4.2Fromconstitutiverelationstodispersionequation
4.3Polarizationofelectromagneticwaves
4.3.1Generalconsiderations
4.3.2Someusefulproperties
4.3.3Linearandcircularpolarization
4.4Notionsofspatialwavepackets
4.4.1Towardsa2D–problem
4.4.2Packetsofcylindricalwaves
4.4.3Packetsofplanewaves
5Stratifiedmedia
5.1Introduction
5.2DecouplinginTEandTMwavesofanarbitrarypolarizedincidentplanewave
5.3Reflectionandtransmissionofaplanewaveataplaneinterface
5.3.1TEcase
5.3.2TMcase
5.4Energyconsiderations–Coefficientsofreflectionandtransmissioninenergy
5.5Reflectionandtransmissionofaplanewavebyaslab
5.5.1Complexcoefficientsofreflectionandtransmission
5.5.2Afirstapproachoflenses
6FromFresneltoFraunhofer
6.1Introduction
6.2Fresneltransform
6.2.1Packetsofplanewaves:asecondapproach
6.2.2Fresnelapproximation
6.3PropertiesoftheFresneltransform
6.3.1TheFresneltransformisanoperatorofconvolution
6.3.2FresnelvsFourier
6.4AfirstapproachofFraunhoferoptics:Fresnelat“infinite”distance
6.4.1AsecondapproachofFraunhoferoptics:Fresnelopticsinusingaconvergent
thinlens
Part2
InthesecondpartofUE2weillustratetheproblemofthescatteringofelectromagnetic
fields in the simple case of the diffraction by a cylinder. Some classical methods of
resolution are explained (modal decomposition, integral method, fictitious sources
method). We highlight some basic concepts such as reciprocity or concepts related to
energy,suchastheopticaltheorem.Anumericalimplementationofthesolutionwillbe
conducted,withapplicationtothestudyoftheresonancesofthestructure.
S3‐UE3:Lasersourcesandapplications/matterinteraction(36h)
(N.Sanner,J.Y.Natoli,F.Wagner)
Part1:Advancedlasersources(~9h)
‐ Shortandultrashortlasersources:Startingfromtheknowledgeacquiredwith
S1‐UE2,thethoroughpresentationofbothconceptsandtechnicalissuesfor
generatingshortandultrashortpulsedlasersourcewillbepresented.
‐ Beammanipulation:Howtohandle,propagate,andevenshapealaserbeamand
or/alaserpulse?
Part2:Opticalpropertiesofsolids(~6h)
(tobeadapted,dependingonthecontentofS1‐UE6“Physicsforphotonics)
Thebasisoflaser‐matterinteraction
‐ Opticalcoefficients
‐
‐
‐
andthecomplexrefractiveindex
Thedielectricfunction
DrudeandLorentzmodels
Nonlinearproperties(complementarywithS3‐UE1:“Nonlinearoptics)
Part3:Laser‐matterinteractioninpulsedregime(~9h)
‐ Physicalmechanismsandtimescales
‐ Fromabsorptiontoablation
‐ Specificitiesofinteraction:nanosecondtofemtosecondregime
Part4:Examplesofapplications(~12h)
Laser=atoolfor…
‐ Analysis:nonlinearmicroscopy,pump‐probe,LIBS…
‐ Materialmodification/cleaning/structuration/processing/surgery…
‐ Highintensitiesapplications/facilities:LMJ/NIF,FEL,X‐rays,protontherapy…
+labpracticesand/orlabdemos(InstitutFresnel+LP3)
S3‐UE4:Opticalcomponentsandoptoelectronics:
F.Wagner/G.Demésy/J.Lumeau
Attention:compilationsanscoordination.
Topic1:Thin‐FilmOpticalFilters(12hours)
‐
‐
‐
‐
Introductiontothin‐filmopticalfilters,Fresnelcoefficientsandmatrixformalism
Presentationofopticalfunctionsandstacksdesign
Experimentaldemonstrationofthin‐filmopticalfiltersfabricationand
spectroscopiccharacterization
Refractiveindexdeterminationandreverseengineering
Topic2:Crystal‐basedopticalcomponents(12hours)
‐ Opticsinanisotropicmedia:uniaxialandbiaxialbirefringence,howtofindthe
polarizationsandrefractiveindicescorrespondingtoagivenpropagation
direction
‐ Waveplates
‐ Polarizers
‐ Electro‐opticmodulators
‐ Acousto‐opticmodulators
‐ ?Focusingproblemsinbirefringentmedia?
Topic3:LED/OLEDbasedlightninganddisplays(12hours)
‐ Prerequisites/Introduction
 Solidstatephysics
 Spontaneousemission
 Dopedsemiconductors
 InorganicLightEmissionDiodes
 RadiometricaspectsofLED‐emittedlight
‐ OrganicLightEmissionDiodes
 Chemicalsynthesisoforganicsemiconductors
 Lightgeneration
 Carriertransport
‐ OLEDmatrixdisplays
 Historyandbasicprinciplesofdisplaydevicesfamilies
 OLEDactivematrix
 Openingremarks:sensorsanddisplays
A.Composantsoptiques(enfonctiondecequiestfaitailleurs,enparticulierenS1‐UE1)
a. Fibresoptiques
1. Propagationdanslafibre‐Fibresmultimodesetmonomodes‐Diamètredemode
2. Longueurd'ondedecoupure–Atténuation‐Pertespareffetdecourbureetmicro‐
courbures
3. Dispersion chromatique, intermodale et de polarisation ‐ Rôle des microlentilles
d'entrée
4. Présentationdecomposants.Exempledespectrographeàfibres.
b‐Polarisation
‐ Polariseurs,milieubiréfringents,lamecristalline,…
B.Detectors
1. Photondetector(quantumdetector)
Photoconductive,photovoltaic,photoelectromagnetic,photoemissiveeffects
Electrontubeandsemiconductordevices(CCD,CMOS)
Theoreticallimitofperformances(sensitivity,efficiency,noise)
2. Introductiontothermaldetector
Bolometers,thermocouples,thermopiles,pyroelectrics
Theoreticallimitofperformances(sensitivity,efficiency,noise)
3. Introductiontoheterodynedetection
S3‐UE5:Photonicsforbiomedicalapplications:J.Duboisset/A.Dasilva/G.Georges
1‐ Opticalimaginginbiologicalmedia(julienDuboisset)
1a.Fromsinglemoleculestocellscale:fluorescenceandsuper‐resolution
techniques
‐Fluorescenceandsinglemolecule
‐Fluorescencemicroscopytechniques(confocalscanning,widefield,TIRF)
‐super‐resolutionbelowthediffractionlimit.
1b.Fromcellstotissuesandinvivoimaging
‐Depthpenetrationinbiologicaltissues.
‐Goingdeeperwithadaptiveoptics.
‐labelfreetechniques:coherentnonlinearprocesses(secondharmonic
generation,thirdharmonicgeneration,CoherentRamanscattering)
2- Diffuseopticaltechniques(AnabelaDasilva)
‐Modellinglightpropagationthroughbiologicaltissues
‐weaklydiffusingtissue:OCT,polarizationgatingimaging,Specklescontrast
imaging
‐Probingtissueindepth:ImagingtechniquesbasedonDiffuseOptical
SpectroscopyandTomography
S3‐UE6:Advancedmethodsforopticalinstrumentation:P.Amram
1. Conceptionoptiqueavancée
aberrations : chromatisme, ab sphérique, astigmatisme/courbure, distorsion,
coma,Zernike
calcul de puissance au foyer d’un système optique et limites de détection en
fonctiondesperformancesoptiques.
optimisationdesmatériaux:choixdesmatériaux,traitementdesurfacesoptiques
optimisation des surfaces: surfaces particulières (dioptres, miroirs), systèmes
optiquesclassiques(oculaire,microscope,lunette,télescope,…)
Démonstrationdelogicield’optimisation(e.g.Zemax)
2. Photométrie/radiométrie
Définitionsetrelationsentregrandeurs
Grandeursénergétiques(flux,éclairements,intensité,luminance,…)
Grandeurslumineuses,photoniques,spectrales,…
ThéorèmedeClausius.
Calculdel’éclairement
3. Spectrographiedispersive
Réseaux,réseauxHolographiques.Littrowandnon‐Littrowgratings.Slit‐limited
resolving power. Blazed grating. GRISM. Echelle gratings. Cross dispersed
echelles.VolumePhaseHolographicgratings.Superblazedgrating
4. Interférométrie
Interférences,cohérencespatialeettemporelle
Interféromètres et application (contrôle de surface optique, dispersion, filtres
interférentiels,…)
Interférométriemulti‐ouvertures
5. Métrologie,télémétrie,profilométrie,gyrométrie
Task,errorbudget,coverage,test,cross‐checks,anomalies
S3‐UE7:Nanophotonics:S.Enoch
Nanophotonicsisthestudyofthelightinteractionswithobjectsatthenanometerscale.
Wewillintroducethefieldofnanophotonicsandtheundelyingmotivations.
A‐Plasmonicsandnanoantennas.
Inthispartofthecourse,wewillstudyhowlightcanresonantlyinteractwithphotonic
nanostructures.Theexcitationofelectromagneticresonancesinphotonic
nanostructuresleadstoimportantenhancementsofelectromagneticfieldintensities
andstronglymodifytheiropticalproperties;withimportantapplicationsrangingfrom
biosensingtosolarenergy.
1.Surfaceplasmonpolaritonsonflatandstructuredmetallicfilms
Fresnelcoefficient,Brewsterincidence,existenceofpolesandzeros.
Excitationwithplanewaves
Applications
2.SurfaceplasmonsandMieresonancesinmetallicnanoparticles
Effectivepolarizabilityofasphericalparticle,existenceofpolesandzeros
Scatteringandextinctioncross‐sections
Modificationofthespontaneousemission
Applications
B‐Periodicmedia–Photoniccrystals
1.Introduction:Maxwelloperatorspectrum
2.Photoniccrystalmodes
Directandreciprocallattices
DirectandinverseWanniertransforms
Blochmodes
Dispersionrelationandgroupvelocity
Methods(FiniteElementsFEM,PlanewavePWM)
3.The1Dscalarcasethoroughly
4.Examples:PCsinNature,Microstructuredopticalfibers,awordabouthomogeization
C‐Metamaterialsandtransformationoptics.
Metamaterialsandtransfomationopticshavebeenrecentbreakthroughinphotonics.
Transformationopticsisbasedoncoordinatestransformationsandallowstobendlight
atwill.Whilemetamaterialsrefertocompositematerialsthatpossesoneorseveral
propertiesthatcannotbefoundinnature.Thecombinationofbothconstitutesahighly
topicalfieldsinnaophotonics.
1.Metamaterials.Conceptsandexamplesofmetamaterials(neadzeroopticalindex,
doublenegativemetamaterial,hyperbolicmetamaterial...)
2.Transfomationoptics.Basicprinciples,example:perfectlensesandexternalcloaking,
Invisibility..
S3–UE8–«NumericalMethodsinElectrodynamics»(G.Renversez)
PartI:Directmethodsincomputationalphotonics:Sometheoreticalresultsand
test examples(18h)
Thislecturewillcontainbothnumericaldemonstrationrealizedbytheteacherand
training classesforthestudentsusingdedicatedsoftwares
(Gmsh/GetDPforthe FiniteElementMethods,MeepfortheFD‐
TD,andMPBforthePlane WaveMethod)
1.
Introduction:motivations,possibleclassificationsofthemethods,brief
historical survey,generalremarksonhighperformance
computing(0,5h)
2.
Operatorpointofview,symmetrypropertiesinelectrodynamicsand
theirusein numericalmodelling(1,5h)
3.
FiniteElementMethodandintroductiontoGmsh/GetDPsoftwares(5h+2hde
TP)
‐BasicprincipleswithonedimensionalcaseandtheHelmholtz
equation:analyticalresultsversusnumericalones
‐FewwordsontheGalerkinmethodandtheboundaryconditions
‐Domaindiscretizationandinterpolatingfunctions
‐FromclassicalMaxwellequationstotheirweakformulation
‐Eigenvalueproblemsintheharmonicregime(modalanalysis):
examplesfromGuidedOpticslecture(slab,opticalfiber)
‐Surveyofmoreadvancedtopics :outgoingwaveconditionand
perfect matchinglayers,periodicity,vectorfieldand3Dcase,…
4.
FD‐TDandintroductionto Meepsoftware(3h+1,5hdeTP)
‐Yeecell
‐Courant–Friedrichs–Lewy(CFL)conditionappliedtoFD‐TD
‐Principleofequivalenceanditspracticalusetoimplementsources
‐Materialdispersion
‐Simpleexamples:comparisonbetweentime‐domainandmodal
approaches,thirdharmonicgenerationinsimplewaveguide
5.
PlaneWaveMethodandintroductiontoMPBsoftware(3h+1,5h)
‐Harmonicregimeandeigenvalueproblem
‐PeriodicstructuresandFloquet‐Blochtheorem
‐Generalplanewavemethod(EandHmethods)
‐Knowextension:supercellmethod
‐SimpleexampleswithMPB: dispersioncurvesandband
diagramfor 1Dcaseand2Dcase,bandgap,supercelltechnicand
defect
PartII:Electromagneticinversescatteringproblem(10h)
1.
2.
3.
4.
Introductionandstatementoftheelectromagneticinversescatteringproblem
DirectsolutionsundertheBornApproximation
Iterativesolutions:linearizedandnonlinearizedapproches
‐Newton‐Kantorovitchmethod
‐DistortedWaveBornmethod
‐AnalyticequivalencebetweenNKandDWB
‐GradientandModifiedgradientmethods
S3‐UE9:Instrumentationforastronomyfromgroundtospace:P.Amram
1. Astrophysique,télescopesetinstrumentsfocaux.
 L’astrophysique : une science observationnelle. Expression du besoin
scientifique.Contraintesobservationnellesettechniques.Réponseaubesoin.
 Messagers de l’information: photons, rayons cosmiques, neutrinos, ondes
gravitationnelles,…
 Lacollecteetladétectiondesphotons:desrayonsgammaaurayonnementradio.
Spécificitédestechniquesobservationnellesmultilongueursd’onde.
 Une introduction aux télescopes et détecteurs à différentes longueur d’onde:
radioetmicroonde;infra‐rouge,visibleetultraviolet;X‐rayetGamma.
 Description des familles de télescopes (Newton, Cassegrain, Schmidt, Schmidt‐
Cassegrain, Ritchey‐Chrétien, à miroir liquide, télescopes avec systèmes
d'optiqueadaptative,lunetteastronomique)
2. Spectro‐imagerie:spectroscope,spectrographesetspectromètres
 L’espacedesparamètresobservationnels.
Densité d’information spatiale, spectrale et temporelle. Cube de données et
détecteurs bidimensionnels. Adéquation entre les objectifs scientifiques et la
natureduspectroscope.Sélectiondel’information.
 Disperseurs. Disséqueur de spectres et de champs. Inversion champ‐pupille.
Analyse du trajet optique et de la conservation de l’étendue le long du trajet
optique:expressiondescontraintes.FiguresdeMeritt.
 Exempledespectroimageurs:
SpectroàtransforméedeFourrier
InterférométriedeFabry‐Perot.
Spectrographie mono‐objet et multi‐objet (Fibers, Slicers, MOS à fentes
programmables)
3. Optiqueactive&adaptative
 Effets de la turbulence atmosphérique. Description statistique. Scintillations.
Fonctionsdetransfertsassociées.Tavelures.
 Optiqueadaptative.Optiqueactive.Principesetdomainesd’utilisation.
 Techniquesd’optiqueactiveetréalisationdecomposantsoptiquesparélasticité.
 Analysedefrontd’onde.

Concept général (Courbure, Pyramide, etc.). Contrôle du front d’onde d’un
télescopeoud’uninstrument,supportageactifdemiroirs,dimensionnement
 Métrologieoptique,caractérisationdesurface.
 ExempledusenseurShack‐Hartmann.
 Problèmesdirectsetinverses.Reconstructiondufrontd’onde.Déconvolution.
 Application l’astronomie, les lasers, l’ophtalmologie, la télémétrie, les
synchrotrons
4. Introductionàl’environnementdessystèmesoptiques
Objectif: être capable de comprendre l'environnement mécanique, électronique,
informatique & thermique d’un système optique ainsi que des éléments de
traitementdusignaletd’ingénieriedessystèmes.
‐ Electronique,automatiqueetcontrôlecommande
Fonctions électroniques: amplification, filtrage, régulation, modulation,
conversionanalogique‐numérique,…
Composantsprogrammables
Automatiqueetcontrôlecommande:systèmesouvertsetbouclés,régulation,
poursuite,correcteurPID,filtredeKalman,...
‐ Traitementdusignal
Probabilités
Signaux: représentation spatiale, temporelle et fréquentielle; énergie et
puissance;échantillonnage,corrélation,convolution,…
‐ Opto‐mécanique:Mécaniqueetthermiquesdesstructures.
Traction,compression,flexion,élasticité,instabilitésstatiques,...
Calculélémentsfinis
Cryogénieetvide
Essaietqualificationopto‐mécanique(vibration)
‐ Ingénieriedessystèmes
Spécificationsd’uneproblématiquescientifiqueoutechnique
Analysefonctionnelleetétudesystème
Managementdeprojet
Assuranceproduit,risquetechniques,sûretédefonctionnement
S3‐UE10&11:ExperimentalprojectsA&B:P.Amram/L.Siozade
Projetexpérimental1:Constructiond’unspectro‐imageur
Réalisation sur un banc optique d’un spectro‐imageur à partir de ses composants :
optiques (lentille de champ, collimateur, caméra, réseaux, Perot‐fabry, trame de
microlentilles);électroniques(détecteuretcontrôleurduPerot‐fabry)etinformatique
(pourlepilotageduPerot‐fabryetl’acquisitiondesdonnées).
Il s’agit de coupler des disperseurs qui réalisent des dispersions linéaires (réseaux) et
circulaires (Perot‐fabry) et de qualifier les qualités « écologiques » du montage
(séparation de l’information spatiale et spectrale) et les qualités de la fonction de
transfertrésultante(échantillonnage).
L’étudiant analysera les fonctions de chacun des différents composants afin de les
assembler et mettra en évidence le principe de l’inversion champ/pupille et réalisera
une analyse spectrale à partir des cannelures obtenues par la combinaison (trame de
microlentilles,réseau,Perot‐fabry).
Projetexpérimental2.Coronographiestellaire
Objet:applicationdel’optiquedeFourierauxphénomènesdediffractionetaufiltrage
spatial,utilisantlacoronographiecommeexempled’application.
‐Déterminationdel’expressionanalytiquedel’amplitudeduchampélectriquedansles
différentsplansducoronographe.Apartirdesimulationsnumériques,interprétationdu
sens physique des phénomènes observés dans le système optique en jouant avec la
natureetlediamètredumasquecoronographique.
‐ Travail sur banc optique pour la validation expérimentale de coronographe.
Acquisitiond’imagesdanslesdifférentsplansdusystèmeoptique.Analysedesdonnées
expérimentalesetcomparaisonaveclesrésultatsthéoriques.
Projet expérimental 3. Optique active et adaptative : caractérisation de la
turbulenceatmosphérique
Objet : formation et la caractérisation des erreurs de front d’onde introduites par
l’atmosphère.
Travail sur un banc optique avec un écran de phase en réflexion simulant le
comportementdelaturbulenceatmosphériqueenlaboratoire.
·Miseenplaced’unsystèmeoptique,afindemesurerlacartedephasedel’écranà
l’aided’unanalyseurdefrontd’onde.
· Estimation des coefficients des premières modes d’aberration en décomposant la
cartedephasesurlabasedespolynômesdeZernike.
· Caractérisation de la turbulence effectivement générée par l’écran de phase en
déterminant la densité spectrale de puissance ainsi que le paramètre de Fried et à
comparaisonauxvaleursobtenuesaveclesmodèlesthéoriques.
Projetexpérimental4:Essaietvibration
Systèmeoptiquesurpotvibrant.
Vibrations suivant 3 axes en sinus et aléatoire d’une maquette d’instrument AD :
Montage manip, essai, dépouillement résultats. Ce TP permettra de sensibiliser les
étudiantsauxessaisditsde«qualification»visàvisdelaphasedelancementpourun
instrument satellitaire. Entre autres, il mettra en relief les notions de « balayage en
fréquence»,de«modes»derésonancesd’unsystèmeouencorede«notching»
Projetexpérimental5:Etuded’uninterféromètre
Montage–ObservationautélescopeT80–
Analysedefranges
Mesuredudiamètred’uneétoile.
(HervéLeCoroller–4heures,ObservatoiredeHauteProvence)
Projetexpérimental6:Determiningopticalpropertiesofbiologicaltissues
(InstitutFresnel)
Thelabworkconsistsinapplyingtheintegralreflectancemethod,describedinthe
biophotoniccourse,fordeterminingtheabsorptionandreducedscatteringcoefficients
ofbiologicaltissues.Asapreliminarywork,thestudentswillhavetoreadapublication
onthesubject.Measurementswillbeperformedonphantomsthatismediamimicking
theopticalpropertiesofcommon tissues. The results will be exploited to provide the results. Projetexpérimental7:Three‐dimensionalimagingforbiomedicalapplications,
OpticalCoherenceTomographyandconfocalmicroscopy(InstitutFresnel)
Theaimofthislabworkistocompare2opticaltechniquesintheresolutionofdefector
structureintissues:theOpticalCoherenceTomographyandtheconfocalmicroscopy.
Measurementswillbeperformedonphantomsthatismediamimickingtheoptical
propertiesofcommontissues.
???Projetexpérimental8:LaserYAG(InstitutFresnel)
???Projetexpérimental9:MicrousinageparLaserFemto(LP3)
???Projetexpérimental10SpectrometrieLIBS(IF)
Projetexpérimental11Project:NumericalexperimentsinphotonicswiththeFinite
ElementMethod(GuillaumeDemésy,GillesRenversez)
Comprehensiveexamplesinseveralfieldsofphotonicsarestudiedinthisproject
throughseveralnumericalexperimentsbasedonthefiniteelementmethod.
‐Basic2Dexamplestocomputetheelectromagneticdiffractionpatternobtainedwith
simpleshapedobjectsusingplanewavesandalsogaussianbeams.
‐Kretschmann‐Raetherset‐upandplasmonexcitationin2D
‐Modalapproach(eigenvalueproblem)in1Dand2D:applicationstousualwaveguides
‐Metalcavitiesandqualityfactor
‐Periodicstructuresandboundaryconditions:applicationstophotoniccrystalandtheir
dispersionrelation
‐Diffractionbyfinitesizephotoniccrystals
‐Simple3Dexamples
???OptiqueNL
???Diffusion(surface/volume)
NProjetsexpérimentaux:Méthodesnumériques.Utilisationdecodes.
‐ Moindrescarrés,minimisationdefonction,méthodedeMontéCarlo,...
‐ Logicieldedesignoptique(e.g.Zemax)
‐ Logicield’élémentsfinis:e.g.Nastran,I‐DEAS,FEMAP,…
‐ Logicield’acquisitiondedonnées.
NProjetsexpérimentaux:Ingénieriedessystèmes
‐Spécificationsd’uneproblématiquescientifiqueoutechnique
‐Analysefonctionnelleetétudesystème
‐Managementdeprojet
‐Assuranceproduit,risquetechniques,sûretédefonctionnement
Projetssurlafutureplateformedel’ECM(JeanBittebierre)
Remarque:seulelapartiesurlasimulationnumériquepeutêtredétailléeactuellementcar
j'aidéjàunelicence;lesautresmanips(plateformephotoniqueECMsonthypothétiques:
ellesdépendentd'uncontratdeplanétat‐région==>jen'enmetsqueletitrepourl'instant
 Simulationofguidedopticsdevicesbyeigen‐modeexpansionandSmatrix
calculation.Thismethodhasseveraladvantages:rigorous,bi‐directional,fast
calculationtakingintoaccountthesymmetries.Theuseoftheergonomicpremium
suiteFimmwave/FimmpropofPhotonDesignallowstocalculatemodeswithvarious
solvers,andtosimulatevariousdevicesforasshortasateachingsession(couplers,
gratings,filters,tapers,yjunctions,bends,ringresonators...).
 Severalpracticalworksessionsareforecast,butdependonastateregion
contractplanunderconsideration.So,onlytheirtitlearelisteduntilnow:
o Fiberlaserandamplifier
o AdjustableHeNelaser
o Lasercharacterization(spectral,beam,etc..)
new Fimmwave/Fimmprop license ==> Complements for eigen‐mode expansion S
matrix calculation => faster calculation, new mode solvers, Kallistos optimisation tool,
otherdevicesbeingcalculable(plasmonicwaveguides,micro‐striplines,DFB,