POESII program (V_04/01/2015)
Transcription
POESII program (V_04/01/2015)
POESIIprogram(V_04/01/2015) Inblue:optiontochoose S1‐UE1(80h):Fundamentalsinoptics&:TutorialsFrédéricZolla/PatrickFerrand(6ects) S1‐UE2(40h):Lightemission,Laserssources:M.Houssin(3ects) S1‐UE3(30h):Imagingandsystemsinoptics:HuguesGiovannini(3ects) S1‐UE4(50h):Laboratorypractice:FrankWagner(3ects) S1‐UE5(60h):PersonalProjects:Jean‐YvesNatoli/HuguesGiovannini(6ects) S1‐UE6(60h):PhysicsforphotonicspartI:MartinaKnoop(6ects) S1‐UE7(24h):Language:PatrickFournier(3ects) S2‐UE1(30h):Signalandimagesanalysis:Jean‐MarcThemlin(3ects) S2‐UE2(30h):GuidedOptics/opticsinTelecommunications:GillesRenversez(3ects) S2‐UE3(30h):PhysicsforphotonicspartII:MartinaKnoop(3ects) S2‐UE4(30h):BasisinoptoelectronicsComponents‐SC:Jean‐YvesNatoli(3ects) S2‐UE5(30h):ElectronSpectroscopy:ThierryAngot(3ects) S2‐UE6(30h):PhotonSpectroscopy:SophieBrasselet/PhilippeAmram(3ects) S2‐UE7(30h):NumericalmethodsandsoftwareTools:GérardTayeb(3ects) S2‐UE8(30h):Laboratoryprojectandpracticework:PhilippeAmram(3ects) S2‐UE9(24h):Language:PatrickFournier S2‐Training:2months(6ects) S3‐UE0(20h):Tutorials:PatrickFerrand S3‐UE1(16h):Nonlinearoptics:HassanAkhouayri(3ects) S3‐UE2(24h):AdvancedelectromagneticsGérardTayeb/FrédéricZola(3ects) S3‐UE3(36h):Lasersources&applications/matterinteractionN.Sanner/J.YNatoli(3ects) S3‐UE4(36h):Opticalcomponentsandoptoelectronics:J.Lumeau(3ects) S3‐UE5(24h):Photonicsforbiomedicalapplications:J.Duboisset/A.Dasilva(3ects) S3‐UE6(24h):Advancedmethodsforopticalinstrumentation:PhilippeAmram(3ects) S3‐UE7(28h):Nanophotonics:StefanEnoch(3ects) S3‐UE8(32h):NumericalmethodsforElectromagnetic:G.Renversez(3ects) S3‐UE9(36h):Instrumentationforastronomyfromgroundtospace:P.Amram(3ects) S3‐UE10(30h):ExperimentalprojectsA:PhilippeAmram/LaureSiozade(3ects) S3‐UE11(30h):ExperimentalprojectsB:PhilippeAmram/LaureSiozade(3ects) S3‐UE12(24h):Language:PatrickFournier(3ects) S3‐UE13(20h):AnalysisonResearchTopicorTechnologicalIntelligence(3ects) S4Thesis(30ects) S4‐UE1:SpringSchool(1week) S4‐UE2:Traininginlaboratoryorcompagny(4to6month): DETAILS S1‐UE0:Tutorials: ‐ 40heuresconsacréesauxtutorials(miseàniveaufaiteparP.Ferrand) S1‐UE1:Fundamentalsinoptics: ‐ 20heuresconsacréesàl'électromagnétisme(F.Zolla/A.Nicolet) ‐ 20heuresauxmaths. S1‐UE2:Lightemission,Laserssources:N.Sanner/M.Houssin/A.Sentenac Objectives: The purpose of this course is to present several processes responsible for lightemissionandtoproposeacharacterizationoftheemittedlightrelevantforimaging intermsofcoherenceandnoise.Alargepartofthelecturesisdevotedtolasersources,the fundamentalconceptstheylieonandthepropertiesoflightemittedbylasers. Afteranintroductionpointingtherelevanceofcoherenceforcharacterizinglightsources, the course is split in four parts where coherence is a permanent issue which serves as a guide. Prerequisites:thefundamentalsintroducedincourseIaresufficientprerequisitesto allowthestudentstofollowthiscourse. I.Lightemission–(A.Sentenac) In this part, we focus on several processes responsible for light emission with some practicalexamples.Theseprocessescanbegatheredinthreegroupsconcerning 1.thermalemission, This part presents the thermal radiation and its main characteristics as well as recent progressmadeinthecomprehensionofsucharadiation.Wefirstintroducethethermal radiationinaclassicalwayusingtheconceptsofspecificintensity,thePlanckfunction and the Kirchhoff laws. Then, we use the stochastic electrodynamic frameworks to describemoreindetailsthemicroscopicbehaviourofthethermalelectromagneticfield. Weevaluatetheradiationoftemperatureinducedrandomcurrentsthataregenerated inside the material. This microscopic approach allows linking the thermal radiation phenomenontothatofluminescence. 2.luminescenceandspontaneousemission, The microscopic processes of production of light by individual emitters (atoms and molecules)orsemi‐conductors(LED)aredescribed.Thedynamicsandtimefluctuations oftheemittedlightarerelatedtothesemicroscopicprocesses.Itgivestheopportunity to introduce the concept of non‐classical light by studying emission by single emitters likesingleatomsormolecules. 3.stimulatedemission, This part presents the Einstein theory for matter‐light interaction and introduces the fundamentalconceptsattheoriginoflightamplificationandlasersources. II.Laseramplifiersandoscillators–(M.Houssin) 1.Absorptionandgain Studyofthecompetitionbetweenthethreemainmechanisms(absorption,spontaneous and stimulated emission) leads to understand why the population inversion is a mandatoryconditionforlightamplification. 2.Relevantspectroscopicsystems Differentspectroscopicsystemsaredescribedandtheirrespectiveinterestsintermsof efficiency,pumping,andpopulationinversionarediscussed. 3.Thresholdforlaseroscillationinacavity The threshold for laser oscillation is explicitly presented, and we explain why the extracted intensity necessarily reaches a saturation in continuous pumping regime. Efficiencyandoutputpowerarealsoconsidered. III.Spectral,spatialandtemporalpropertiesoflaseremittedlight–(N.Sanner) Thispartisdevotedtothespecificpropertiesoflaserbeams. 1‐Cavitystabilityandbeamdistribution Criteria for resonator stability are presented, in relation with transverse modes. Light emittedbylaserswithopticalcavityisbetterdescribedbygaussianmodes.Opticswith these modes and their focusing properties (obeying rules which can diverge from geometricoptics)areintroduced. 2‐Beamshapingofgaussianmodes Forimagingapplications,gaussianbeamareoftenrequiredtobespatiallyshaped(e.g. top‐hatdistribution).Techniquesbasedonspatialphasemanipulationarepresented. 3‐Pulsedlasersources Twodifferentwaystofavourstimulatedemissionarestudied:Q‐switching(stimulated emission only when there is a large number of atoms in the upper level) and mode‐ locking(photonsintheopticalcavityarecondensedintoa“packet”or“pulse”thatwill bounce back and forth between the mirrors). The case of ultrashort pulses is also studied,andfrequencycombsareintroducedastheachievementoffrequencycontrolof a pulsed laser which allows precise comparison and measurement of optical frequencies. IV.Backtocoherence–(M.Houssin) In connection with lab courses where coherence properties of sources are observed,a way to quantify this coherence is proposed. Several active processes are introduced whichmodifythespatialandspectralcoherenceoftheconsideredsources. 1‐Spatialcoherenceandfiltering, Here,selectionofthespatialfrequenciesorpropagationwavevectorsispresentedasa tooltoincreasecoherencepropertiesofsource,tothedetrimentofintensity. 2‐Frequencycoherenceandfiltering, Asoppositiontotheprevioussection,hereselectionoffrequenciesandwavevectorsis reachedthroughfeedbackandconstructiveinterferencesbyanopticalcavity. S1‐UE3:Imagingandsystemsinoptics:H.Giovannini 1. Diffraction,scattering,linkwiththedefinitionofanimage. 2. Diffraction in electromagnetics. Treatment with a volume integral approach. Link withHuygens‐Fresnelprinciple.ReminderFresnel,Fraunhoferdiffraction. 3. Linkbetweenthediffractedfieldandthepermittivityprofile(shape,refractiveindex) ofanobject. 4. Near‐field,far‐field. 5. Consequenceofthespatialfilteringontheresolution.Opticaltransferfunction,point spreadfunction. 6. Simple case of the Born approximation. Correspondence between the directions of illumination/collectionandtheaccessibleinformation.Diffractionlimit. 7. Caseofthetomographicdiffraction(holographic)imaging. 8. Thelens,themirror.Magnification.Defects.CommentsonFourieroptics. 9. Coherentvsincoherentimaging. 10. Fieldofview. 11. Different practical cases: microscope (air, immersion, fluorescence, confocal), telescope,humaneye,binoculars… 12. Comments on the consequences of noise. Comments on the resolution of inverse problems. S1‐UE4:Laboratorypractice:F.Wagner(VoirtableauEXCELcomplet) Geometricaloptics RaytracingwithOslo(illistrationdesabbérations) Fourieroptics Polarization Monochromator Michelsoninterferometer Spectroscopy Photodetectors Energybands Holography S1‐UE5:PersonalProjects:J.YNatoli/H.Giovannini Exampleofprojectschosenin2014‐2015 No. Project Title Advisor Students 1 Numerical Study of laser damage in a nonlinear Akhouayri 1. Adapa Bharath Reddy - India crystal 4 Observing the Universe from Space and from the 2. Nguyen Ho Nhu Y - Vietnam G. Cuby Ground 1. Jiayi Long - China 2. Anfu Zhang - China 3. Chao Yang – China 6 Raman Spectroscopy of Diamond nanoCrystals Julien Duboisset 1. Philipda Luangprasert - Thailand 2. Lopamudra Roy - India 3. Sandipan Maiti – India 7 Controlling emission with Metamaterials Redha 1. Md Mahbub Alam - Bangladesh Abdeddaim 2. Md Shofiqul Islam Khan - Bangladesh 3. Charaf Abdedaim – Algeria 8 How to measure an optical frequency with the Marie Houssin best precision? 1. Ashish Thatavarthy – India 2. Ivan Alexis Sanchez Salazar Chavarria - Mexico 9 Development of a pyramid wavefront sensor K. El Hadi (PWFS) 1. Tatyana Vuyets – Russia 2. Marina Postnikova - Russia 3. Leidy Marcela Giraldo Castano – Colombia 10 Study of stress induced deformation in optical Thomas Begou coatings deposited by rf-magnetron sputtering 11 Plasmonic eigenmodes in graphene nanotriangles 1. Doha Abdelrahman - Egypt 2. Mohamed Ismail – Egypt André Nicolet 1. Jayadev Vijayan - India 2. Josep Cabedo Bru - Spain 3. Chiara Decaroli – Italy 12 Light propagation and imaging in diffusive media Anne Sentenac 1. Charles Henri Andrieu - France 2. Tudor Olariu – Romania 13 15 High dynamic imaging for exoplanet J.-F. Sauvage 1. Ting Xiao - China characterisation: study of instrumental vibration 2. Ying Zhang - China in a segmented telescope 3. Fadi Salti – Syria Development of an automatic tracking system for dry mass follow-up of live cells Julien Savatier 1. Carlos Reyes - Mexico 2. Rastko Pajkovic - Montenegro 3. Di Zhang – China S1‐UE6:PhysicsforphotonicspartI:MartinaKnoop AtomicPhysics(30h) 1. Mass,sizeandchargeoftheatomandtheelectron 2. Basics of quantum mechanics. Light quanta. Emission and Absorption. Duality wave‐particle.Uncertaintyrelation. 3. TheatompictureofBohr,RutherfordandSommerfeld(anditslimits). 4. Thehydrogenatom.Central‐fieldapproximation.Spin‐orbitcoupling. 5. LinebroadeningandAtomsinexternalfields. 6. Interactionsofatomswithlight.SpectroscopyandHigh‐resolutionspectroscopy 7. Lasercooling.Traps.Atomicclocks. Statisticalphysics(30h) 1. Quantum states. Fundamental assumption. Closed system. Equal probabilities. Microcanonicalensemble. 2. Systemsinthermalcontact.Temperatureandentropy.Canonicalensemble. 3. Systemsindiffusioncontact.Chemicalpotential.Grandcanonicalensemble. 4. Fermi‐Dirac'sdistribution.Fermions.Metals. 5. Bose‐Einstein's distribution. Bosons. Bose‐condensation. Photons, Planck's distribution. 6. Boltzmann'sdistribution.Idealclassicalgas. S2‐UE1: Signal and images analysis :Jean‐Marc Themlin, Stéphane Grimaldi, Laurent Nony This lecture will briefly develop the essential tools commonly used to describe continuous‐time ( analog ) and discrete‐time signals, images and noise, mostly from a deterministicwaveformpointofview.Continuous‐timewaveformswillberepresented by direct mathematical expressions or by the use of orthogonal series representations such as the Fourier series. Properties of these waveforms, such as their DC value, root‐mean‐square (RMS) value, energy and power, magnitude and phase spectrum ( throughtheFouriertransform),powerspectraldensity,andbandwidth,willbebriefly recalledorestablished.Systemsareusedtomanipulatethesewaveforms,usingvarious operations like the scalar product, convolution and correlation. In addition, effects of linearfilteringwillbebrieflystudied. Most of these tools can be extended to images, considered as 2D signals dependingontwospacecoordinates(x,y),whichcanalsobedescribedinthefrequency domainbyaspectrumdependingonaspatialfrequency.Thesamplingtheoremviewed as a special orthogonal series expansion allows representing an analog signal by a limited number of samples acquired above the Nyquist frequency. The spectrum of a given waveform ( discrete‐time or analog ) can be conveniently calculated using the discrete Fourier transform (DFT), one of the main tools of the so‐called “digital signal processing” domain (DSP). Across the lecture, actual systems used in signal storage, transmission and modulation, multiplexing, video signal coding, lossy signal compression(principleofJPEGstandard)willbeexplained. Wewanttoactivelyengagethestudentasearlyaspossibleintheactualdesignof practicalsignalsandsystems.ThroughseveralhandsonlaboratoriesbasedonMatLab( or its open source equivalent FreeMat ), the students will develop useful and realistic “expert systems” and implement their own solutions, e.g. in signal estimation and identification. Attheendofthislecture,thestudentsshouldhavelearnedasignificantamount of signals and systems concepts, tools and theory, have developed an awareness of a number of problems/tasks that signals and systems engineering addresses, and be capable of resolving some signals and systems problems using MatLab, a widespread toolusedinR&Dworldwide. S2‐UE2:GuidedOptics/opticsinTelecommunications:G.Renversez This lecture is shared with the first year of the Master of Physics (called «Laser et OptiqueAvancée»).Itcontains15hoflecturesand15hofsupervisedpraticalworks. 1.Generalintroduction 2.Slabwaveguide ‐Introduction ‐Maxwellequationsandotherneededequations ‐TE/TMsplitting ‐Propagationequations ‐DispersionequationfortheTEcase ‐Generalpropertiesofmodes ‐Symmetricslabcase ‐Sometechnologicalissues 3.Signalpropagationinawaveguide ‐Extentofasignal ‐Evolutionofasignalduringthepropagation ‐Applications 4.Opticalfiber ‐Introduction ‐Technologicalissues ‐Generalequationsofpropagation ‐Opticalfibermodels ‐Formsforthemodes ‐Detailstudyofstepindexfibers:azimutalandradialdependencies ‐Guidedmodesinstepindexfibers ‐Cut‐offfrequencies ‐Weak‐guidanceapproximation ‐Recentresultsinfibertechnologyandtheirapplications S2‐UE3:PhysicsforphotonicspartII:M.Knoop Condensedmatterphysics(30h) 1.Introductiontothepropertiesofsolids.Crystalstructuresandbondinginmaterials. Beyondthecrystallinestate:softmatter(polymers,membranes,liquidcrystals). 2.Momentum‐spaceanalysisanddiffractionprobes. 3.Latticedynamics,phonontheoryandmeasurements,thermalproperties. 4.Electronicstructuretheory,classicalandquantum;free,nearly‐free,andtight‐binding limits. 5.Electrondynamicsandbasictransportproperties;quantumoscillations. 6.Propertiesandapplicationsofsemiconductors. 7.Reduced‐dimensionalsystems. 8.Magnetism.Superconductivity. 9.Opticalpropertiesofsolids. S2‐UE4:Basisinsemiconductorsandoptoelectronics(J.YNatoli) ‐Part1 1.Elementsofsemiconductorsphysics ‐ Semiconductor (bonds in SC/Crystal property/Commonly used SC/Pauli exclusion principle) ‐ EnergyBandDescriptionofsemiconductor ‐ EffectoftemperatureonSC ‐ IntrinsicandExtrinsicSC ‐ N‐typeandP‐TypeSC ‐ ChargeonN/P‐TypeSC.MajorityandMinoritycarriers ‐ PNJunction:Property,polarizedJunction ‐ Organicssemiconductors 2.BasicSCComponents ‐ PNDiode/BipolarTransistor/MOSetCMOSTransistor 3.Electroluminescenceandphotoreception OpticalpropertiesinSC(directandindirectGap,emissionnetratioofphoton) 3.1‐Photoreceptor:(photoelectric,photovoltaicandphotoconductivityeffects) ‐ Photodiodeandsolarcell ‐ Phototransistor ‐ Optocoupler ‐ Photomultiplier ‐ Photo‐resistor ‐ ImagesensorsCCDandCMOS ‐ Problematicofnoise 3.2Photoemitter(Spontaneousandstimulatedemission) ‐ LED ‐ LEDlight ‐ OLEDs ‐ LaserLED 4.ElementsoffabricationofSCcomponents ‐Part2(ThomasDurt,NicolasSandeau) PartofS2‐UE4forthisyear Introduction to Quantum Optics with Applications to Quantum Information Theory Firstpart(4h): ‐blackbodyradiation,Planck’squantizationrule. ‐computationofthelifetimeofanexcitedstate‐Fermigoldenrule ‐Einstein’scoefficients These 4 hours provide a survey of quantum optics, from Planck to QED, including Rayleigh‐Jeans and others; usually these concepts are scattered and not presented synthetically. Secondpart(4h): ‐Introductiontothequantumeraser(plusrelatedconceptssuchasentanglement,Bell inequalities,quantumdecoherenceandsoon),theapproachfollowedhereosofthePBR type (problem resolution), and is based on a Mach‐zehnder type experimental demonstration involving entanglement between photonic path and photonic polarisation(incollaborationwithNicholasSandeau). Thirdpart(4h): ‐ no signaling and no cloning theorems, quantum teleportation and quantum cryptographywithpolarisedphotons. S2‐UE5:SPECTROSCOPY,theinteractionofradiationwithmatterT.Angot Elastic&Inelasticscattering 0. Surface Crystallography, 2D Bravais lattices, solid state physics and surface physics. Probing the crystallographic properties (diffraction, electron microscopy and scanning tunnelingmicroscopy) 1. Scattering by surfaces : kinematic theory. Elementary approach: Bragg law and reciprocalspaces,3det2d.Elasticscatteringand(slightly)inelasticscattering,selection rules. Applications: High Resolution Electron Energy Loss Spectroscopy, Raman spectroscopy,Heatomscattering,neutronscattering. 2. Classical dielectric theory. Elementary excitations in solids (surface phonons, plasmons,excitons). Absorptionandemissionspectroscopies 1.Classicalelectromagneticradiation:scattering,absorptionandemission.Synchrotron radiation. 2. Photoemission (core level and valence band), inverse photoemission. X‐ray absorptionspectroscopy.Infraredspectroscopy,UV‐Visibleabsorption.Sum‐Frequency Generation spectroscopy. Photoelectron diffraction. Auger electron spectroscopy, Fluorescence. S2‐UE6:NumericalmethodsandsoftwareTools:GérardTayeb TheobjectiveistolearnhowtouseMATLAB,whichisoneofthemostpopularscientific software environments, in order to model, study and represent some problems linked withphotonics. Thecoursewillbepresentedintheformofmixedlecturesandlaboratorysessions. Theproposedsummaryofthiscoursewillbe: MATLABenvironment: Arrays,operators Functions Graphs,2Dand3Dplots Conditionaltests Minimizationandoptimisation Studyofsomeproblemslinkedwithphotonics: Studyofamultilayerstack.Optimizationofananti‐reflectivestack. Colorrendering.Transformationofaspectraldensityintoacolor. Diffraction Electromagnetic scattering by one cylinder. Optical theorem, reciprocity. Resonances.Whisperinggallerymodes.Focusingproperties S2‐UE7: Laboratory project and practice work : (Voir tableau EXCEL) F. Wagner, P.Amram ProjetLASER: Projet1.Autocorrélationoptique: Mesuredelalargeurspectraled’unlaser (GaetanHagel&JofrePedregosaGutierrez) Ce projet expérimental consiste à mettre au point un montage expérimental permettantd’observerlebattementdefréquenceentredeuxpartiesd’unemême radiation laser décalées temporellement par le passage dans une fibre optique d’undesdeuxbras.Leslongueursdefibreoptiqueparcourues(10m,150mou 10km)permettentdemettreàjourlelienunissantlalongueurdecohérenceet lesfluctuationsinstantanéesdefréquence. Pour son utilisation dans POESII ce projet nécessite l’acquisition de matériel: fibreoptique(@1,5 m,delongueurs10m,150met10km),systèmed’injection de fibre et éléments d’optique afférant: miroirs, objectif, lame d’onde, cube séparateur);unephotodioderapide(bandepassante>120MHz)etunanalyseur de spectre RF . Ce projet existait dans IOL mais en utilisant du matériel de laboratoire. Projet2.LaserHe‐Ne–Montageoscillateur(AlexandreEscarguel) Projet3.LaserNd:YAG(res.,Q‐switch) Projet4.UsinageLASER(excimer) Projet5.Etuded'unediodelaser‐seuil,température,feedback(BenoîtEpinat– 4heures) Projet6.Interférométrieholographique(AlexandreEscarguel) Projet«Logiciels» Projet1.Acquisitiondedonnées–Labview‐(JofrePedregosaGutierrez) Projet2.InitiationaulogicielZeemax(SandrinePascal–9heures) Projet3.Traitementdusignaletdel’imageparordinateur(R.Redon) Projet4.Moindrescarrés,minimisationdefonction,méthodedeMontéCarlo,... Projet5.Logicield’élémentsfinis:e.g.Nastran,I‐DEAS,FEMAP,… Projet«Télécom» Projet1.Modulationacoustoetelectro‐optique(LudovicEscoubas) Projet2.Télécommunicationoptique(LudovicEscoubas) Projets«composantoptiques» Projet1.Photodiodeamplifiée(BenoitEpinatetDidierFerrand) caractérisation,amplificateur,câblage,montage Projets«Ingénieriedessystèmes» ‐Spécificationsd’uneproblématiquescientifiqueoutechnique ‐Analysefonctionnelleetétudesystème ‐Managementdeprojet ‐Assuranceproduit,risquetechniques,sûretédefonctionnement S3‐UE1:NonLinearoptics:H.Akhouayri` Prerequiste:Linearelectromagneticoptics Outline: 1.Aclassicalmodelofnonlinearmediumresponses. 2.Classicalandsemi‐classicalresults,nonlinearsusceptibilitiesandsymmetries. Nonlinearpolarization,Propagationequationinnonlinearmedia. 3.TreeWaveMixing:Secondharmonicgeneration,phasematching,parametric amplification(OPA,OPO),opticalrectification(THzgeneration). 4.Fourwavemixing:KerrEffect,SPM,Solitonpropagation,StimulatedRaman effect,PhaseConjugation,Continuumgeneration. S3‐UE2:AdvancedelectromagneticsGérardTayeb/FrédéricZolla Part1 4Basicsinwavepacketsinhomogeneousmedia:Self‐generatedwaves 4.1Preliminaryremarks 4.2Fromconstitutiverelationstodispersionequation 4.3Polarizationofelectromagneticwaves 4.3.1Generalconsiderations 4.3.2Someusefulproperties 4.3.3Linearandcircularpolarization 4.4Notionsofspatialwavepackets 4.4.1Towardsa2D–problem 4.4.2Packetsofcylindricalwaves 4.4.3Packetsofplanewaves 5Stratifiedmedia 5.1Introduction 5.2DecouplinginTEandTMwavesofanarbitrarypolarizedincidentplanewave 5.3Reflectionandtransmissionofaplanewaveataplaneinterface 5.3.1TEcase 5.3.2TMcase 5.4Energyconsiderations–Coefficientsofreflectionandtransmissioninenergy 5.5Reflectionandtransmissionofaplanewavebyaslab 5.5.1Complexcoefficientsofreflectionandtransmission 5.5.2Afirstapproachoflenses 6FromFresneltoFraunhofer 6.1Introduction 6.2Fresneltransform 6.2.1Packetsofplanewaves:asecondapproach 6.2.2Fresnelapproximation 6.3PropertiesoftheFresneltransform 6.3.1TheFresneltransformisanoperatorofconvolution 6.3.2FresnelvsFourier 6.4AfirstapproachofFraunhoferoptics:Fresnelat“infinite”distance 6.4.1AsecondapproachofFraunhoferoptics:Fresnelopticsinusingaconvergent thinlens Part2 InthesecondpartofUE2weillustratetheproblemofthescatteringofelectromagnetic fields in the simple case of the diffraction by a cylinder. Some classical methods of resolution are explained (modal decomposition, integral method, fictitious sources method). We highlight some basic concepts such as reciprocity or concepts related to energy,suchastheopticaltheorem.Anumericalimplementationofthesolutionwillbe conducted,withapplicationtothestudyoftheresonancesofthestructure. S3‐UE3:Lasersourcesandapplications/matterinteraction(36h) (N.Sanner,J.Y.Natoli,F.Wagner) Part1:Advancedlasersources(~9h) ‐ Shortandultrashortlasersources:Startingfromtheknowledgeacquiredwith S1‐UE2,thethoroughpresentationofbothconceptsandtechnicalissuesfor generatingshortandultrashortpulsedlasersourcewillbepresented. ‐ Beammanipulation:Howtohandle,propagate,andevenshapealaserbeamand or/alaserpulse? Part2:Opticalpropertiesofsolids(~6h) (tobeadapted,dependingonthecontentofS1‐UE6“Physicsforphotonics) Thebasisoflaser‐matterinteraction ‐ Opticalcoefficients ‐ ‐ ‐ andthecomplexrefractiveindex Thedielectricfunction DrudeandLorentzmodels Nonlinearproperties(complementarywithS3‐UE1:“Nonlinearoptics) Part3:Laser‐matterinteractioninpulsedregime(~9h) ‐ Physicalmechanismsandtimescales ‐ Fromabsorptiontoablation ‐ Specificitiesofinteraction:nanosecondtofemtosecondregime Part4:Examplesofapplications(~12h) Laser=atoolfor… ‐ Analysis:nonlinearmicroscopy,pump‐probe,LIBS… ‐ Materialmodification/cleaning/structuration/processing/surgery… ‐ Highintensitiesapplications/facilities:LMJ/NIF,FEL,X‐rays,protontherapy… +labpracticesand/orlabdemos(InstitutFresnel+LP3) S3‐UE4:Opticalcomponentsandoptoelectronics: F.Wagner/G.Demésy/J.Lumeau Attention:compilationsanscoordination. Topic1:Thin‐FilmOpticalFilters(12hours) ‐ ‐ ‐ ‐ Introductiontothin‐filmopticalfilters,Fresnelcoefficientsandmatrixformalism Presentationofopticalfunctionsandstacksdesign Experimentaldemonstrationofthin‐filmopticalfiltersfabricationand spectroscopiccharacterization Refractiveindexdeterminationandreverseengineering Topic2:Crystal‐basedopticalcomponents(12hours) ‐ Opticsinanisotropicmedia:uniaxialandbiaxialbirefringence,howtofindthe polarizationsandrefractiveindicescorrespondingtoagivenpropagation direction ‐ Waveplates ‐ Polarizers ‐ Electro‐opticmodulators ‐ Acousto‐opticmodulators ‐ ?Focusingproblemsinbirefringentmedia? Topic3:LED/OLEDbasedlightninganddisplays(12hours) ‐ Prerequisites/Introduction Solidstatephysics Spontaneousemission Dopedsemiconductors InorganicLightEmissionDiodes RadiometricaspectsofLED‐emittedlight ‐ OrganicLightEmissionDiodes Chemicalsynthesisoforganicsemiconductors Lightgeneration Carriertransport ‐ OLEDmatrixdisplays Historyandbasicprinciplesofdisplaydevicesfamilies OLEDactivematrix Openingremarks:sensorsanddisplays A.Composantsoptiques(enfonctiondecequiestfaitailleurs,enparticulierenS1‐UE1) a. Fibresoptiques 1. Propagationdanslafibre‐Fibresmultimodesetmonomodes‐Diamètredemode 2. Longueurd'ondedecoupure–Atténuation‐Pertespareffetdecourbureetmicro‐ courbures 3. Dispersion chromatique, intermodale et de polarisation ‐ Rôle des microlentilles d'entrée 4. Présentationdecomposants.Exempledespectrographeàfibres. b‐Polarisation ‐ Polariseurs,milieubiréfringents,lamecristalline,… B.Detectors 1. Photondetector(quantumdetector) Photoconductive,photovoltaic,photoelectromagnetic,photoemissiveeffects Electrontubeandsemiconductordevices(CCD,CMOS) Theoreticallimitofperformances(sensitivity,efficiency,noise) 2. Introductiontothermaldetector Bolometers,thermocouples,thermopiles,pyroelectrics Theoreticallimitofperformances(sensitivity,efficiency,noise) 3. Introductiontoheterodynedetection S3‐UE5:Photonicsforbiomedicalapplications:J.Duboisset/A.Dasilva/G.Georges 1‐ Opticalimaginginbiologicalmedia(julienDuboisset) 1a.Fromsinglemoleculestocellscale:fluorescenceandsuper‐resolution techniques ‐Fluorescenceandsinglemolecule ‐Fluorescencemicroscopytechniques(confocalscanning,widefield,TIRF) ‐super‐resolutionbelowthediffractionlimit. 1b.Fromcellstotissuesandinvivoimaging ‐Depthpenetrationinbiologicaltissues. ‐Goingdeeperwithadaptiveoptics. ‐labelfreetechniques:coherentnonlinearprocesses(secondharmonic generation,thirdharmonicgeneration,CoherentRamanscattering) 2- Diffuseopticaltechniques(AnabelaDasilva) ‐Modellinglightpropagationthroughbiologicaltissues ‐weaklydiffusingtissue:OCT,polarizationgatingimaging,Specklescontrast imaging ‐Probingtissueindepth:ImagingtechniquesbasedonDiffuseOptical SpectroscopyandTomography S3‐UE6:Advancedmethodsforopticalinstrumentation:P.Amram 1. Conceptionoptiqueavancée aberrations : chromatisme, ab sphérique, astigmatisme/courbure, distorsion, coma,Zernike calcul de puissance au foyer d’un système optique et limites de détection en fonctiondesperformancesoptiques. optimisationdesmatériaux:choixdesmatériaux,traitementdesurfacesoptiques optimisation des surfaces: surfaces particulières (dioptres, miroirs), systèmes optiquesclassiques(oculaire,microscope,lunette,télescope,…) Démonstrationdelogicield’optimisation(e.g.Zemax) 2. Photométrie/radiométrie Définitionsetrelationsentregrandeurs Grandeursénergétiques(flux,éclairements,intensité,luminance,…) Grandeurslumineuses,photoniques,spectrales,… ThéorèmedeClausius. Calculdel’éclairement 3. Spectrographiedispersive Réseaux,réseauxHolographiques.Littrowandnon‐Littrowgratings.Slit‐limited resolving power. Blazed grating. GRISM. Echelle gratings. Cross dispersed echelles.VolumePhaseHolographicgratings.Superblazedgrating 4. Interférométrie Interférences,cohérencespatialeettemporelle Interféromètres et application (contrôle de surface optique, dispersion, filtres interférentiels,…) Interférométriemulti‐ouvertures 5. Métrologie,télémétrie,profilométrie,gyrométrie Task,errorbudget,coverage,test,cross‐checks,anomalies S3‐UE7:Nanophotonics:S.Enoch Nanophotonicsisthestudyofthelightinteractionswithobjectsatthenanometerscale. Wewillintroducethefieldofnanophotonicsandtheundelyingmotivations. A‐Plasmonicsandnanoantennas. Inthispartofthecourse,wewillstudyhowlightcanresonantlyinteractwithphotonic nanostructures.Theexcitationofelectromagneticresonancesinphotonic nanostructuresleadstoimportantenhancementsofelectromagneticfieldintensities andstronglymodifytheiropticalproperties;withimportantapplicationsrangingfrom biosensingtosolarenergy. 1.Surfaceplasmonpolaritonsonflatandstructuredmetallicfilms Fresnelcoefficient,Brewsterincidence,existenceofpolesandzeros. Excitationwithplanewaves Applications 2.SurfaceplasmonsandMieresonancesinmetallicnanoparticles Effectivepolarizabilityofasphericalparticle,existenceofpolesandzeros Scatteringandextinctioncross‐sections Modificationofthespontaneousemission Applications B‐Periodicmedia–Photoniccrystals 1.Introduction:Maxwelloperatorspectrum 2.Photoniccrystalmodes Directandreciprocallattices DirectandinverseWanniertransforms Blochmodes Dispersionrelationandgroupvelocity Methods(FiniteElementsFEM,PlanewavePWM) 3.The1Dscalarcasethoroughly 4.Examples:PCsinNature,Microstructuredopticalfibers,awordabouthomogeization C‐Metamaterialsandtransformationoptics. Metamaterialsandtransfomationopticshavebeenrecentbreakthroughinphotonics. Transformationopticsisbasedoncoordinatestransformationsandallowstobendlight atwill.Whilemetamaterialsrefertocompositematerialsthatpossesoneorseveral propertiesthatcannotbefoundinnature.Thecombinationofbothconstitutesahighly topicalfieldsinnaophotonics. 1.Metamaterials.Conceptsandexamplesofmetamaterials(neadzeroopticalindex, doublenegativemetamaterial,hyperbolicmetamaterial...) 2.Transfomationoptics.Basicprinciples,example:perfectlensesandexternalcloaking, Invisibility.. S3–UE8–«NumericalMethodsinElectrodynamics»(G.Renversez) PartI:Directmethodsincomputationalphotonics:Sometheoreticalresultsand test examples(18h) Thislecturewillcontainbothnumericaldemonstrationrealizedbytheteacherand training classesforthestudentsusingdedicatedsoftwares (Gmsh/GetDPforthe FiniteElementMethods,MeepfortheFD‐ TD,andMPBforthePlane WaveMethod) 1. Introduction:motivations,possibleclassificationsofthemethods,brief historical survey,generalremarksonhighperformance computing(0,5h) 2. Operatorpointofview,symmetrypropertiesinelectrodynamicsand theirusein numericalmodelling(1,5h) 3. FiniteElementMethodandintroductiontoGmsh/GetDPsoftwares(5h+2hde TP) ‐BasicprincipleswithonedimensionalcaseandtheHelmholtz equation:analyticalresultsversusnumericalones ‐FewwordsontheGalerkinmethodandtheboundaryconditions ‐Domaindiscretizationandinterpolatingfunctions ‐FromclassicalMaxwellequationstotheirweakformulation ‐Eigenvalueproblemsintheharmonicregime(modalanalysis): examplesfromGuidedOpticslecture(slab,opticalfiber) ‐Surveyofmoreadvancedtopics :outgoingwaveconditionand perfect matchinglayers,periodicity,vectorfieldand3Dcase,… 4. FD‐TDandintroductionto Meepsoftware(3h+1,5hdeTP) ‐Yeecell ‐Courant–Friedrichs–Lewy(CFL)conditionappliedtoFD‐TD ‐Principleofequivalenceanditspracticalusetoimplementsources ‐Materialdispersion ‐Simpleexamples:comparisonbetweentime‐domainandmodal approaches,thirdharmonicgenerationinsimplewaveguide 5. PlaneWaveMethodandintroductiontoMPBsoftware(3h+1,5h) ‐Harmonicregimeandeigenvalueproblem ‐PeriodicstructuresandFloquet‐Blochtheorem ‐Generalplanewavemethod(EandHmethods) ‐Knowextension:supercellmethod ‐SimpleexampleswithMPB: dispersioncurvesandband diagramfor 1Dcaseand2Dcase,bandgap,supercelltechnicand defect PartII:Electromagneticinversescatteringproblem(10h) 1. 2. 3. 4. Introductionandstatementoftheelectromagneticinversescatteringproblem DirectsolutionsundertheBornApproximation Iterativesolutions:linearizedandnonlinearizedapproches ‐Newton‐Kantorovitchmethod ‐DistortedWaveBornmethod ‐AnalyticequivalencebetweenNKandDWB ‐GradientandModifiedgradientmethods S3‐UE9:Instrumentationforastronomyfromgroundtospace:P.Amram 1. Astrophysique,télescopesetinstrumentsfocaux. L’astrophysique : une science observationnelle. Expression du besoin scientifique.Contraintesobservationnellesettechniques.Réponseaubesoin. Messagers de l’information: photons, rayons cosmiques, neutrinos, ondes gravitationnelles,… Lacollecteetladétectiondesphotons:desrayonsgammaaurayonnementradio. Spécificitédestechniquesobservationnellesmultilongueursd’onde. Une introduction aux télescopes et détecteurs à différentes longueur d’onde: radioetmicroonde;infra‐rouge,visibleetultraviolet;X‐rayetGamma. Description des familles de télescopes (Newton, Cassegrain, Schmidt, Schmidt‐ Cassegrain, Ritchey‐Chrétien, à miroir liquide, télescopes avec systèmes d'optiqueadaptative,lunetteastronomique) 2. Spectro‐imagerie:spectroscope,spectrographesetspectromètres L’espacedesparamètresobservationnels. Densité d’information spatiale, spectrale et temporelle. Cube de données et détecteurs bidimensionnels. Adéquation entre les objectifs scientifiques et la natureduspectroscope.Sélectiondel’information. Disperseurs. Disséqueur de spectres et de champs. Inversion champ‐pupille. Analyse du trajet optique et de la conservation de l’étendue le long du trajet optique:expressiondescontraintes.FiguresdeMeritt. Exempledespectroimageurs: SpectroàtransforméedeFourrier InterférométriedeFabry‐Perot. Spectrographie mono‐objet et multi‐objet (Fibers, Slicers, MOS à fentes programmables) 3. Optiqueactive&adaptative Effets de la turbulence atmosphérique. Description statistique. Scintillations. Fonctionsdetransfertsassociées.Tavelures. Optiqueadaptative.Optiqueactive.Principesetdomainesd’utilisation. Techniquesd’optiqueactiveetréalisationdecomposantsoptiquesparélasticité. Analysedefrontd’onde. Concept général (Courbure, Pyramide, etc.). Contrôle du front d’onde d’un télescopeoud’uninstrument,supportageactifdemiroirs,dimensionnement Métrologieoptique,caractérisationdesurface. ExempledusenseurShack‐Hartmann. Problèmesdirectsetinverses.Reconstructiondufrontd’onde.Déconvolution. Application l’astronomie, les lasers, l’ophtalmologie, la télémétrie, les synchrotrons 4. Introductionàl’environnementdessystèmesoptiques Objectif: être capable de comprendre l'environnement mécanique, électronique, informatique & thermique d’un système optique ainsi que des éléments de traitementdusignaletd’ingénieriedessystèmes. ‐ Electronique,automatiqueetcontrôlecommande Fonctions électroniques: amplification, filtrage, régulation, modulation, conversionanalogique‐numérique,… Composantsprogrammables Automatiqueetcontrôlecommande:systèmesouvertsetbouclés,régulation, poursuite,correcteurPID,filtredeKalman,... ‐ Traitementdusignal Probabilités Signaux: représentation spatiale, temporelle et fréquentielle; énergie et puissance;échantillonnage,corrélation,convolution,… ‐ Opto‐mécanique:Mécaniqueetthermiquesdesstructures. Traction,compression,flexion,élasticité,instabilitésstatiques,... Calculélémentsfinis Cryogénieetvide Essaietqualificationopto‐mécanique(vibration) ‐ Ingénieriedessystèmes Spécificationsd’uneproblématiquescientifiqueoutechnique Analysefonctionnelleetétudesystème Managementdeprojet Assuranceproduit,risquetechniques,sûretédefonctionnement S3‐UE10&11:ExperimentalprojectsA&B:P.Amram/L.Siozade Projetexpérimental1:Constructiond’unspectro‐imageur Réalisation sur un banc optique d’un spectro‐imageur à partir de ses composants : optiques (lentille de champ, collimateur, caméra, réseaux, Perot‐fabry, trame de microlentilles);électroniques(détecteuretcontrôleurduPerot‐fabry)etinformatique (pourlepilotageduPerot‐fabryetl’acquisitiondesdonnées). Il s’agit de coupler des disperseurs qui réalisent des dispersions linéaires (réseaux) et circulaires (Perot‐fabry) et de qualifier les qualités « écologiques » du montage (séparation de l’information spatiale et spectrale) et les qualités de la fonction de transfertrésultante(échantillonnage). L’étudiant analysera les fonctions de chacun des différents composants afin de les assembler et mettra en évidence le principe de l’inversion champ/pupille et réalisera une analyse spectrale à partir des cannelures obtenues par la combinaison (trame de microlentilles,réseau,Perot‐fabry). Projetexpérimental2.Coronographiestellaire Objet:applicationdel’optiquedeFourierauxphénomènesdediffractionetaufiltrage spatial,utilisantlacoronographiecommeexempled’application. ‐Déterminationdel’expressionanalytiquedel’amplitudeduchampélectriquedansles différentsplansducoronographe.Apartirdesimulationsnumériques,interprétationdu sens physique des phénomènes observés dans le système optique en jouant avec la natureetlediamètredumasquecoronographique. ‐ Travail sur banc optique pour la validation expérimentale de coronographe. Acquisitiond’imagesdanslesdifférentsplansdusystèmeoptique.Analysedesdonnées expérimentalesetcomparaisonaveclesrésultatsthéoriques. Projet expérimental 3. Optique active et adaptative : caractérisation de la turbulenceatmosphérique Objet : formation et la caractérisation des erreurs de front d’onde introduites par l’atmosphère. Travail sur un banc optique avec un écran de phase en réflexion simulant le comportementdelaturbulenceatmosphériqueenlaboratoire. ·Miseenplaced’unsystèmeoptique,afindemesurerlacartedephasedel’écranà l’aided’unanalyseurdefrontd’onde. · Estimation des coefficients des premières modes d’aberration en décomposant la cartedephasesurlabasedespolynômesdeZernike. · Caractérisation de la turbulence effectivement générée par l’écran de phase en déterminant la densité spectrale de puissance ainsi que le paramètre de Fried et à comparaisonauxvaleursobtenuesaveclesmodèlesthéoriques. Projetexpérimental4:Essaietvibration Systèmeoptiquesurpotvibrant. Vibrations suivant 3 axes en sinus et aléatoire d’une maquette d’instrument AD : Montage manip, essai, dépouillement résultats. Ce TP permettra de sensibiliser les étudiantsauxessaisditsde«qualification»visàvisdelaphasedelancementpourun instrument satellitaire. Entre autres, il mettra en relief les notions de « balayage en fréquence»,de«modes»derésonancesd’unsystèmeouencorede«notching» Projetexpérimental5:Etuded’uninterféromètre Montage–ObservationautélescopeT80– Analysedefranges Mesuredudiamètred’uneétoile. (HervéLeCoroller–4heures,ObservatoiredeHauteProvence) Projetexpérimental6:Determiningopticalpropertiesofbiologicaltissues (InstitutFresnel) Thelabworkconsistsinapplyingtheintegralreflectancemethod,describedinthe biophotoniccourse,fordeterminingtheabsorptionandreducedscatteringcoefficients ofbiologicaltissues.Asapreliminarywork,thestudentswillhavetoreadapublication onthesubject.Measurementswillbeperformedonphantomsthatismediamimicking theopticalpropertiesofcommon tissues. The results will be exploited to provide the results. Projetexpérimental7:Three‐dimensionalimagingforbiomedicalapplications, OpticalCoherenceTomographyandconfocalmicroscopy(InstitutFresnel) Theaimofthislabworkistocompare2opticaltechniquesintheresolutionofdefector structureintissues:theOpticalCoherenceTomographyandtheconfocalmicroscopy. Measurementswillbeperformedonphantomsthatismediamimickingtheoptical propertiesofcommontissues. ???Projetexpérimental8:LaserYAG(InstitutFresnel) ???Projetexpérimental9:MicrousinageparLaserFemto(LP3) ???Projetexpérimental10SpectrometrieLIBS(IF) Projetexpérimental11Project:NumericalexperimentsinphotonicswiththeFinite ElementMethod(GuillaumeDemésy,GillesRenversez) Comprehensiveexamplesinseveralfieldsofphotonicsarestudiedinthisproject throughseveralnumericalexperimentsbasedonthefiniteelementmethod. ‐Basic2Dexamplestocomputetheelectromagneticdiffractionpatternobtainedwith simpleshapedobjectsusingplanewavesandalsogaussianbeams. ‐Kretschmann‐Raetherset‐upandplasmonexcitationin2D ‐Modalapproach(eigenvalueproblem)in1Dand2D:applicationstousualwaveguides ‐Metalcavitiesandqualityfactor ‐Periodicstructuresandboundaryconditions:applicationstophotoniccrystalandtheir dispersionrelation ‐Diffractionbyfinitesizephotoniccrystals ‐Simple3Dexamples ???OptiqueNL ???Diffusion(surface/volume) NProjetsexpérimentaux:Méthodesnumériques.Utilisationdecodes. ‐ Moindrescarrés,minimisationdefonction,méthodedeMontéCarlo,... ‐ Logicieldedesignoptique(e.g.Zemax) ‐ Logicield’élémentsfinis:e.g.Nastran,I‐DEAS,FEMAP,… ‐ Logicield’acquisitiondedonnées. NProjetsexpérimentaux:Ingénieriedessystèmes ‐Spécificationsd’uneproblématiquescientifiqueoutechnique ‐Analysefonctionnelleetétudesystème ‐Managementdeprojet ‐Assuranceproduit,risquetechniques,sûretédefonctionnement Projetssurlafutureplateformedel’ECM(JeanBittebierre) Remarque:seulelapartiesurlasimulationnumériquepeutêtredétailléeactuellementcar j'aidéjàunelicence;lesautresmanips(plateformephotoniqueECMsonthypothétiques: ellesdépendentd'uncontratdeplanétat‐région==>jen'enmetsqueletitrepourl'instant Simulationofguidedopticsdevicesbyeigen‐modeexpansionandSmatrix calculation.Thismethodhasseveraladvantages:rigorous,bi‐directional,fast calculationtakingintoaccountthesymmetries.Theuseoftheergonomicpremium suiteFimmwave/FimmpropofPhotonDesignallowstocalculatemodeswithvarious solvers,andtosimulatevariousdevicesforasshortasateachingsession(couplers, gratings,filters,tapers,yjunctions,bends,ringresonators...). Severalpracticalworksessionsareforecast,butdependonastateregion contractplanunderconsideration.So,onlytheirtitlearelisteduntilnow: o Fiberlaserandamplifier o AdjustableHeNelaser o Lasercharacterization(spectral,beam,etc..) new Fimmwave/Fimmprop license ==> Complements for eigen‐mode expansion S matrix calculation => faster calculation, new mode solvers, Kallistos optimisation tool, otherdevicesbeingcalculable(plasmonicwaveguides,micro‐striplines,DFB,