influence of the level in pole vaulting practice on the rotator cuff
Transcription
influence of the level in pole vaulting practice on the rotator cuff
INFLUENCE OF THE LEVEL IN POLE VAULTING PRACTICE ON THE ROTATOR CUFF STRENGTH: A COMPARISON BETWEEN NOVICE AND EXPERT POLE VAULTERS Frère J., Tourny-Chollet C. Centre d’Etude des Transformations des Activités Physiques et Sportives – EA 3832, Université de Rouen (France) Introduction Intensive practice of an overhead activity causes musculoskeletal alterations, particularly on the shoulder, with specific strength balances of the rotator cuff. Pole vaulting is composed of 8 phases: Run-up; Plant; Take-off; Swing; Rockback; Pull; Turn and Push. During the plant, the vaulter conducts the low point of the pole into the planting box with an abduction movement of the dominant arm (corresponding to the dominant shoulder). As the pole is planted into the bottom of the box, the vaulter’s arms and torso are deflected backward (Linthorne N.P., 2000) before rotating around the shoulder. At the takeoff phase, the dominant upper arm is extended directly above the vaulter’s head, consequently, the External Rotator (ER) develops a concentric strength. The rude shock between the pole and the box causes a hyperflexion of the shoulder, as the consequence the Internal Rotator (IR) develop a large eccentric strength. The IR prevents the dislocation by limiting this hyperflexion of the shoulder (Bradley J.P. et Tibone J.E., 1991). The aim of this preliminary study is to compare the bilateral strength of the IR and ER muscles in expert and novice pole vaulters to assess the possible alterations related to the intensive practice of pole vaulting. Materials & Methods Fourteen subjects (6 experts and 8 novices) were volunteers to participate in this study. All subjects were asymptomatic and free from musculoskeletal shoulder injuries before and after the tests. Two evaluation tests were performed: (1) each athlete had to perform 3 vaults at the level of their respective personal best performances (475 ± 59,5cm vs. 290 ± 37,4cm for experts and novices, respectively). The trials were recorded by two video cameras operating at 50 fields.s-1 (Panasonic®), recording the movement from the last stride to approximately the maximum pole bend position. Marks placed on the ground and on the pole vaulters were used to ensure the reproducibility of the measures. Figure 1 : Angle of humeral elevation The articular measurement corresponded to the angle of humeral relative to the thorax of elevation relative to the thorax (Figure 1) of the dominant the dominant shoulder shoulder during the vault; (2) To measure the maximal concentric (Con) and eccentric (Ecc) strength of the IR and ER of both shoulders, an isokinetic dynamometer Biodex® is used. The subjects were in the seated 90° abducted test position in the scapular plane (forward flexion of 30°) at 90°.s-1, and the range of motion was 0° (horizontal) to 90°. Consequently, it is possible to calculate the conventional ratios (ER Con strength divided by IR Con strength) of both shoulders. This ratio represents the muscular balance of the joint. A multiple correlation analysis was used to establish the link between the movement and the measured muscular strengths relative to the performance. Results & Discussion Results The measured angles of humeral elevation relative to the thorax, in the sagittal plan, were significantly (p<0.05) higher for the experts (181,6° ± 9,6) than for the novices (168,6° ± 10), when at toe off. The conventional ratios (Figure 2A) and the eccentric strengths of the IR (Figure 2B) were significantly different between both shoulders, only for the expert pole vaulters. Finally, the angle of humeral elevation relative to the thorax was correlated with the level of performance (r= 0,63 p<0,05), and it was correlated with the eccentric strengths of the IR (r= 0,70) for the experts group. Figure 2: (A) Ratio ER Con/IR Con; (B) Eccentric strength of the IR. Grey: dominant shoulder; White: non dominant shoulder The results of this preliminary study concerning the bilateral differences of the conventional ratios and of the eccentric strength of the IR are in agreement with the literature (Shklar A. et Dvir Z., 1995; Wang H.-K. et Cochrane T., 2001). These ratios are not pathological, but demonstrate the expert pole vaulters’ specificity. Moreover, the correlation between the angle of humeral elevation, the level of performance and the eccentric strength of the IR represents the importance of this muscular balance, for both pattern of contraction (Con & Ecc) in the practice of pole vaulting. These results call for a complementary study, which aim will be to orientate the training program relative to the influence of pole vaulting practice on the shoulder joint. This complementary study will contribute to optimizing performance and to prevent injuries such as glenohumeral instability or dislocation. Consequently, training programs must allow this transformation and not change this specificity related to a high level of overhead activity. References Bradley (J.P.) et Tibone (J.E.) - Electromyographic analysis of muscle action about the shoulder. Clinics In Sports Medicine, 1991, vol.1, n°4, pp.789-805. Linthorne (N.P.) - Energy loss in the pole vault take-off and the advantage of the flexible pole. Sports Engineering, 2000, vol.3, pp.205-218. Shklar (A.) et Dvir (Z.) - Isokinetic strength relationships in shoulder muscles. Clinical Biomechanics, 1995, vol.10, n°7, pp.369-373. Wang (H.-K.) et Cochrane (T.) - Mobility impairment, muscle imbalance, muscle weakness, scapular asymmetry and shoulder injury in elite volleyball athletes. The Journal of Sports Medicine and Physical Fitness, 2001, vol.41, pp.403-410. Paru dans : 4th international sport sciences days : 2006 conference proceedings / entretiens de l'INSEP, November 28-November 30 . - Paris : INSEP, 2006. pp. 141-142 INFLUENCE DU NIVEAU DE PRATIQUE DU SAUT A LA PERCHE SUR LES FORCES MUSCULAIRES DE LA COIFFE DES ROTATEURS: COMPARAISON ENTRE DES PERCHISTES DEBUTANTS ET EXPERTS. Frère J. & Tourny-Chollet C. Centre d’Étude des Transformations des Activités Physiques et Sportives EA 3832 ; Université de Rouen INTRODUCTION Au saut à la perche, les Rotateurs Internes (RI) et Externes (RE) sont sollicités dans les deux modes de contraction (Concentrique (Con) et Excentrique (Exc)) entre le planté de perche (PP) et la flexion maximale de la perche (MBP) (Figure 1ce). L’épaule dominante du perchiste y effectue une hyperflexion suivie d’une extension 1, les RI ayant pour rôle de limiter cette hyperflexion de l’épaule 2. L’objectif de cette étude est de comparer les forces bilatérales des muscles RI et RE de perchistes experts avec celles de perchistes débutants pour évaluer les éventuelles transformations liées à la pratique intensive du saut à la perche. MATERIELS & METHODES Quatorze sujets (6 experts et 8 débutants) ont dû effectuer 3 sauts à la perche, en franchissant une hauteur de barre relative à leur niveau respectif (475 ± 59,5 cm vs 290 ± 37,4 cm, respectivement). Les sauts ont été filmés par 2 caméras numériques 50 Hz (Panasonic), de la pose du dernier appui jusqu’à MBP (Figure 1be) afin de mesurer l’angle d’élévation thoracohuméral. Un dynamomètre isocinétique Biodex est utilisé afin de mesurer les forces Con et Exc des RI et RE. Les tests sont effectués en position assise le bras à 90° d’abduction dans le plan de la scapula à 90°s-1, de 0 à 90°. Le test t de Student a été utilisé pour comparer les forces musculaires, alors qu’une analyse de corrélation multiple a été effectuée pour faire le lien entre les forces mesurées et les angles thoraco-huméraux filmés. Le seuil de significativité est fixé à 5%. RESULTATS Figure 1: Décomposition du saut à la perche et dispositif de mesure de l’angle thoraco-huméral. Les angles thoracohuméraux mesurés chez les experts (181,6° 9,6) sont significativement supérieurs (p<0,05) à ceux mesurés chez les débutants (168,6° 10) lorsque le perchiste quitte le sol (Figure 1d). L’angle d’élévation est corrélé au niveau de performance (r= 0,63, p<0,05) et chez les experts cet angle est corrélé aux forces excentriques des RI (r= 0,70). Figure 2 : (A) Ratio RE Con/ RI Con ; (B) Forces Exc des RI. En gris, les mesures provenant des épaules dominantes ; en blanc, les mesures provenant des épaules non dominantes. DISCUSSION & CONCLUSION Les forces musculaires isocinétiques mesurées (ratio et forces) sont en accord avec la littérature scientifique 3,4. La différence significative chez les experts, entre le ratio dominant et le non dominant, évoque une spécialisation des muscles de la coiffe des rotateurs du côté dominant (Figure 2). Ce ratio dominant n’est pas pathologique mais est le reflet de cette spécialisation liée à la pratique du saut à la perche à haut niveau. La corrélation entre l’angle d’élévation humérale du côté dominant et le niveau de performance ainsi que les forces Exc des RI montre l’importance du rôle des ces muscles dans l’exécution d’un saut. Pour cela, les programmes d’entraînement doivent tenir compte de ces adaptations sans chercher à changer cette spécificité. 1. Linthorne (N.P.) - Sports Engineering, 2000, vol.3, pp.205-218. 2. Bradley (J.P.) et Tibone (J.E.) - Clinics In Sports Medicine, 1991, vol.1, n°4, pp.789-805. 3. Shklar (A.) et Dvir (Z.) - Clinical Biomechanics, 1995, vol.10, n°7, pp.369-373. 4. Wang (H.-K.) et Cochrane (T.) - The Journal of Sports Medicine and Physical Fitness, 2001, vol.41, pp.403410.