sciences de la nature ALGÈBRE LINÉAIRE ET

Transcription

sciences de la nature ALGÈBRE LINÉAIRE ET
Professeur au Cégep de Lévis-Lauzon
depuis 1973, André Ross est titulaire d’un
baccalauréat en pédagogie de l’Université
Laval, d’un baccalauréat en mathématiques
L’ouvrage contient 10 laboratoires à réaliser avec le logiciel de calcul symbolique
Maple et 6 laboratoires à réaliser avec le
tableur Excel.
Laboratoires Maple
Opérations matricielles sous Maple
Systèmes d’équations linéaires
Déterminant et matrice inverse
Vecteurs engendrés
et indépendance linéaire
Nombres complexes
Produits de vecteurs
Plans dans R3
(équations cartésiennes)
Plans dans R3
(équations paramétriques)
Droites dans R3
Surfaces de l’espace
de l’Université du Québec à Trois-Rivières
et d’une maîtrise en mathématiques de
l’Université de Sherbrooke. Il est l’auteur
de plus de 15 livres consacrés aux mathématiques, tous parus aux éditions
Le Griffon d’argile.
Laboratoires Excel
Opérations matricielles sous Excel
Systèmes d’équations linéaires
Déterminant et système
d’équations
Déterminant et produit
de matrices
Matrice inverse
Matrice inverse et circuit
électrique
Applications
Chaînes de Markov, point
invariant, équations chimiques,
débits dans un réseau, analyse
de circuits électriques,
cryptographie, vecteurs et
forces, travail, moment, etc.
Membre du Groupe Modulo
ISBN 2-89443-199-6
www.griffondargile.com
sciences de la nature
ALGÈBRE LINÉAIRE
ET GÉOMÉTRIE VECTORIELLE
L’ouvrage a été expérimenté en classe par plusieurs enseignants. De plus, le texte, les exemples et les exercices ont été
validés par une imposante équipe de réviseurs compétents.
André Ross
Applications en
SOMMAIRE
Matrices
Systèmes d’équations linéaires
Méthode de Gauss-Jordan
et applications
Déterminant et méthode
de Cramer
Matrice inverse et applications
Vecteurs géométriques
Combinaisons linéaires de vecteurs
géométriques
Vecteurs algébriques
Combinaisons linéaires de vecteurs
algébriques
Espaces vectoriels
et transformations linéaires
Nombres complexes
Produits de vecteurs
La droite dans R2
Le plan dans R3
La droite et les surfaces dans R3
Exercices de synthèse
Réponses
ALGÈBRE LINÉAIRE
ET GÉOMÉTRIE VECTORIELLE
sciences de la nature
André Ross
Outre les illustrations abondantes, l’approche visuelle novatrice, les mises en situation et les multiples applications font
que l’élève comprend mieux les aspects les plus abstraits de la
matière et favorisent le transfert de connaissances. Les exercices sont nombreux, pertinents et en cohérence avec les
objectifs du cours. Des exercices de synthèse permettent de
vérifier la compréhension de l’ensemble des notions présentées.
Applications en
L’ouvrage permettra au lecteur d’apprendre à appliquer les
méthodes de l’algèbre linéaire et de la géométrie vectorielle
à la résolution de problèmes. L’organisation de la matière,
les exemples, les applications, les exercices ainsi que les
laboratoires sont adaptés à la clientèle du programme de
sciences de la nature.
Avec laboratoires Maple et Excel
Table des sujets
Optimisation XI
T
Table des sujets
1
CHAPITRE 1
MATRICES
1.0
1.1
1.2
1.3
1.4
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MATRICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Opérations sur les matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Propriétés de l’addition et de l amultiplication par un scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrices particulières . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
James Joseph Sylvester (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MULTIPLICATION DE MATRICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation (suite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Propriétés de la multiplication des matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Propriétés associées à la transposition des matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation (suite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiplication de matrices carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur Cayley (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
1
3
3
4
7
7
9
9
11
11
13
13
13
15
16
17
19
20
21
CHAPITRE 2
SYSTÈMES D’ÉQUATIONS LINÉAIRES
2.0
2.1
2.2
2.3
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SYSTÈMES D’ÉQUATIONS LINÉAIRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Résolution de systèmes d’équations linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Systèmes de deux équations à deux inconnues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Systèmes de trois équations à trois inconnues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Systèmes d’équations linéaires et matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Méthode de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problème de production et matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transformation d’équations matricielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Carl Friedrich Gauss (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MÉTHODE DE GAUSS-JORDAN ET APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Méthode de Gauss-Jordan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chaînes de Markov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation (suite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recherche du point invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Andreï Andreïevich Markov (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
25
25
25
28
29
29
33
34
36
36
40
40
40
41
43
44
45
XI
XII
2.4
Table des sujets
Équations chimiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Débits dans un réseau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyse de circuits . . . . . . . XII
. . . . Chapitre
. . . . . . .11
..................................................
Analyse par les branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyse par les mailles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gustav Robert Kirchhoff (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Georg Simon Ohm (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
45
46
47
48
50
52
52
53
55
55
57
CHAPITRE 3
DÉTERMINANT ET MÉTHODE DE CRAMER
3.0
3.1
3.2
3.3
3.4
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DÉTERMINANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Déterminant d’ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Déterminant d’ordre n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Développement de Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrice des cofacteurs et matrice adjointe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pierre Simon de Laplace (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PROPRIÉTÉS DES DÉTERMINANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Énoncé et utilisation des propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calcul du déterminant à l’aide des propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Propriétés des déterminants et des opérations matricielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Méthode de Cramer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gabriel Cramer (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
59
61
61
62
63
64
66
67
67
69
69
73
74
75
77
77
79
79
80
CHAPITRE 4
MATRICE INVERSE
4.0
4.1
4.2
4.3
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
INVERSION DE MATRICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Méthode de Gauss-Jordan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrice inverse et système d’équations linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Théorèmes et propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Méthode de la matrice adjointe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrice inverse et matrice adjointe d’ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrice inverse et matrice adjointe d’ordre n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inversion et matrice nilpotente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrices et déterminants (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MATRICE INVERSE ET APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cryptographie (mise en situation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chaînes de Markov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrice inverse et point invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrice inverse et analyse de circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
81
83
83
83
84
86
88
88
89
90
91
91
93
93
94
94
96
Table des sujets
4.4
Colin MacLaurin (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Message codé (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tableau de conversion binaire (note) . . . . . . . . . . . . . . . . . . . . . . Optimisation
. . . . . . . . . . .XIII
.....................
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
98
99
99
100
104
104
105
CHAPITRE 5
VECTEURS GÉOMÉTRIQUES
5.0
5.1
5.2
5.3
5.4
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VECTEURS GÉOMÉTRIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteur géométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Opérations sur les vecteurs géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Propriétés des opérations sur les vecteurs géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parallélisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs et démonstration de propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lieu géométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HÉRON d’Alexandrie (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COMBINAISONS LINÉAIRES DE VECTEURS GÉOMÉTRIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dépendance linéaire et indépendance linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs colinéaires et dépendance linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs coplanaires et dépendance linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Base et repère d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Base et repère d’un plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Base et repère de l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs et forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polygone des forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Composantes d’un mouvement, note historique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Roberval et la tangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ISAAC NEWTON (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
107
109
109
111
114
115
116
118
120
121
124
124
124
126
127
128
129
132
134
134
137
137
138
138
142
143
144
CHAPITRE 6
VECTEURS ALGÉBRIQUES
6.0
6.1
6.2
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VECTEURS ALGÉBRIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs algébriques dans R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Opérations sur les vecteurs algébriques dans R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Propriétés des opérations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Localisation d’un vecteur géométrique dans R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs algébriques dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Module d’un vecteur algébrique dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs algébriques dans Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs et systèmes de coordonnées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Représentations d’un vecteur dans R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
René DESCARTES (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
145
147
147
148
150
151
153
154
156
158
158
162
163
XIII
XIV
Table des sujets
6.3
COMBINAISONS LINÉAIRES DE VECTEURS ALGÉBRIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Combinaison linéaire et vecteur engendré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
XIV Chapitre 11
Dépendance linéaire et indépendance
linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pierre de FERMAT (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4
7
167
167
170
173
174
175
175
176
CHAPITRE 7
ESPACES VECTORIELS
7.0
7.1
7.2
7.3
7.4
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STRUCTURE D’ESPACE VECTORIEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Espace vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sous-espace vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Base et dimension d’un espace vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sous-espaces vectoriels engendrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sous-espace engendré par un vecteur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sous-espace engendré par deux vecteurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sous-espace engendré par trois vecteurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description vectorielle de lieux géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description d’un parallélogramme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description d’un parallélépipède . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description d’un triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description d’une pyramide à base triangulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hermann GRASSMANN (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transformations linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Représentation par une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transformations particulières . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sous-epaces associés à une transformation linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Noyau d’une transformation linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Image d’une transformation linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algèbre des transformations linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transformation linéaire inversible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Giuseppe Peano (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE UTILISÉ DANS LE CHAPITRE 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
177
179
179
180
181
185
185
186
187
190
190
190
191
191
192
192
195
195
196
197
199
200
202
203
204
207
210
210
211
214
214
216
CHAPITRE 8
NOMBRES COMPLEXES
8.0
8.1
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NOMBRES COMPLEXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Opérations sur les nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Addition de nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiplication par un scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nombre conjugué . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
217
219
219
221
221
221
222
Table des sujets
8.2
8.3
8.4
Produit de nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quotient de nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Résolution d’équations dans C . . . . . . . . . . . . . . . . . . . . . . . . . . . .Optimisation
. . . . . . . . . . .XV
....................
Nombres complexes (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MÉTAMORPHOSE DES NOMBRES COMPLEXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Forme trigonométrique des nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Égalité de nombres complexes sous forme trigonométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Forme polaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Puissance d’un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Théorème de Moivre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Racines d’un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Forme exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Abraham DE MOIVRE (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
223
224
225
226
227
228
228
230
230
232
233
234
235
236
237
238
239
240
CHAPITRE 9
PRODUITS DE VECTEURS
9.0
9.1
9.2
9.3
9.4
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRODUIT SCALAIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Produit scalaire de vecteurs algébriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mise en situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Définition du produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Produit scalaire de vecteurs géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Produit scalaire nul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interprétation géométrique du produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Projection orthogonale d’un vecteur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Produit scalaire et travail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jérôme CARDAN (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRODUIT VECTORIEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Produit vectoriel de vecteurs algébriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Propriétés du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Module du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sens du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÈGLE DU TIRE-BOUCHON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Produit vectoriel nul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interprétation géométrique du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Moment et composantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pierre VARIGNON (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Résultante de forces coplanaires non concourantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyse des forces dans un système en équilibre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Induction électromagnétique et courant alternatif (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
241
243
243
243
243
244
244
246
247
248
250
252
252
256
256
256
257
258
258
259
260
263
264
266
267
269
272
274
277
278
279
XV
XVI
Table des sujets
10
CHAPITRE 10
XVI Chapitre 11
LA DROITE DANS R 2
10.0 PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1 ÉQUATIONS DE DROITES DANS R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Équation cartésienne d’une droite dans R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteur normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Équations vectorielles et paramétriques d’une droite dans R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteur directeur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Équations symétriques de droites dans R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positions relatives de droites dans R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Droites parallèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Droites concourantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nicole ORESME (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 ANGLES ET DISTANCES DANS R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angle entre deux droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs normaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteurs directeurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Distance d’un point à une droite de R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Le point le plus rapproché . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Famille de droites et faisceau de droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Équations paramétriques d’un segment de droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jean Robert Argand (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
281
283
283
283
284
284
286
287
286
288
289
290
292
292
292
293
294
295
297
300
301
301
303
304
305
CHAPITRE 11
LE PLAN DANS R 3
11.0 PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1 ÉQUATIONS DE PLANS DANS R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Équation cartésienne d’un plan dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteur normal à un plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Représentations graphiques de plans de R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Équation vectorielle et équations paramétriques de plans dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vecteur directeur d’un plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Produit mixte de vecteurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calcul du produit mixte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interprétation géométrique du produit mixte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Emmy Nœther (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 INTERSECTIONS, ANGLES ET DISTANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positions relatives de plans dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calcul d’angles dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angle entre deux plans sécants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Distance d’un point à un plan dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Distance entre deux plans parallèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Le point le plus rapproché . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
307
309
309
309
310
311
311
315
315
316
318
318
321
321
323
323
324
325
325
327
329
329
330
Table des sujets
12
CHAPITRE 12
LA DROITE ET LES SURFACES DANS R 3
Optimisation XVII
12.0 PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.1 ÉQUATIONS DE DROITES DANS R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Équations de droites dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Un point et un vecteur directeur sont connus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Deux points sont connus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
La droite, intersection de plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positions relatives de droites dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positions relatives d’une droite et d’un plan dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Droite et plan parallèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Droite et plan concourants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sofya KOVALEVSKAYA (note historique) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.3 ANGLES, DISTANCES ET SURFACES DANS R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calcul d’angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angle entre une droite et un plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angle entre deux droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calcul de distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Distance d’un point à une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Le point d’une droite le plus près d’un point donné . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Distance entre deux droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Surfaces dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Surfaces comportant ant une génératrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Surfaces sans génératrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4 EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RÉSUMÉ DU CHAPITRE 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VOCABULAIRE EMPLOYÉ DANS LE CHAPITRE 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRÉPARATION À L’ÉVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
A1
331
333
333
333
335
336
337
339
340
340
342
342
345
345
345
346
346
346
347
349
351
352
355
357
359
360
361
CHAPITRE 13
EXERCICES DE SYNTHÈSE
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
363
365
ANNEXE 1
ACTIVITÉS DE LABORATOIRE, CHIFFRIER ÉLECTRONIQUE
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
La feuille d’Excel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 1 : Opérations matricielles sur Excel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 2 : Systèmes d’équations linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 3-A : Déterminant et système d’équations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 3-B : Déterminant et produit de matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 4-A : Matrice inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 4-B : Matrice inverse et circuit électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
373
374
375
378
381
382
384
385
XVII
XVIII
Table des sujets
A2
ANNEXE 2
XVIII Chapitre 11
ACTIVITÉS DE LABORATOIRE, LOGICIEL DE CALCUL SYMBOLIQUE
PRÉAMBULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
La feuille de Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 1 : Opérations matricielles sur Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 2 : Systèmes d’équations linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 3 : Déterminant et matrice inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 4 : Vecteurs engendrés et indépendance linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 5 : Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 6 : Produit de vecteurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 7 : Plans dans R3 (équations cartésiennes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 8 : Plans dans R3 (équations paramétriques) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 9 : Droites dans R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laboratoire 10 : Surfaces de l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
387
388
389
392
393
394
395
396
397
398
399
400
RÉPONSES AUX EXERCICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BIBLIOGRAPHIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
INDEX
..........................................................................
401
443
445
Professeur au Cégep de Lévis-Lauzon
depuis 1973, André Ross est titulaire d’un
baccalauréat en pédagogie de l’Université
Laval, d’un baccalauréat en mathématiques
L’ouvrage contient 10 laboratoires à réaliser avec le logiciel de calcul symbolique
Maple et 6 laboratoires à réaliser avec le
tableur Excel.
Laboratoires Maple
Opérations matricielles sous Maple
Systèmes d’équations linéaires
Déterminant et matrice inverse
Vecteurs engendrés
et indépendance linéaire
Nombres complexes
Produits de vecteurs
Plans dans R3
(équations cartésiennes)
Plans dans R3
(équations paramétriques)
Droites dans R3
Surfaces de l’espace
de l’Université du Québec à Trois-Rivières
et d’une maîtrise en mathématiques de
l’Université de Sherbrooke. Il est l’auteur
de plus de 15 livres consacrés aux mathématiques, tous parus aux éditions
Le Griffon d’argile.
Laboratoires Excel
Opérations matricielles sous Excel
Systèmes d’équations linéaires
Déterminant et système
d’équations
Déterminant et produit
de matrices
Matrice inverse
Matrice inverse et circuit
électrique
Applications
Chaînes de Markov, point
invariant, équations chimiques,
débits dans un réseau, analyse
de circuits électriques,
cryptographie, vecteurs et
forces, travail, moment, etc.
Membre du Groupe Modulo
ISBN 2-89443-199-6
www.griffondargile.com
sciences de la nature
ALGÈBRE LINÉAIRE
ET GÉOMÉTRIE VECTORIELLE
L’ouvrage a été expérimenté en classe par plusieurs enseignants. De plus, le texte, les exemples et les exercices ont été
validés par une imposante équipe de réviseurs compétents.
André Ross
Applications en
SOMMAIRE
Matrices
Systèmes d’équations linéaires
Méthode de Gauss-Jordan
et applications
Déterminant et méthode
de Cramer
Matrice inverse et applications
Vecteurs géométriques
Combinaisons linéaires de vecteurs
géométriques
Vecteurs algébriques
Combinaisons linéaires de vecteurs
algébriques
Espaces vectoriels
et transformations linéaires
Nombres complexes
Produits de vecteurs
La droite dans R2
Le plan dans R3
La droite et les surfaces dans R3
Exercices de synthèse
Réponses
ALGÈBRE LINÉAIRE
ET GÉOMÉTRIE VECTORIELLE
sciences de la nature
André Ross
Outre les illustrations abondantes, l’approche visuelle novatrice, les mises en situation et les multiples applications font
que l’élève comprend mieux les aspects les plus abstraits de la
matière et favorisent le transfert de connaissances. Les exercices sont nombreux, pertinents et en cohérence avec les
objectifs du cours. Des exercices de synthèse permettent de
vérifier la compréhension de l’ensemble des notions présentées.
Applications en
L’ouvrage permettra au lecteur d’apprendre à appliquer les
méthodes de l’algèbre linéaire et de la géométrie vectorielle
à la résolution de problèmes. L’organisation de la matière,
les exemples, les applications, les exercices ainsi que les
laboratoires sont adaptés à la clientèle du programme de
sciences de la nature.
Avec laboratoires Maple et Excel