RP115L181D-E2 Datasheet
Transcription
RP115L181D-E2 Datasheet
RP115x SERIES Low On Resistance/ Low Voltage 1ch 500mA/ 1.0A Alternative LDO NO. EA-274-150708 OUTLINE The RP115x Series are CMOS-based positive voltage regulators featuring 500mA/ 1.0A that provide high ripple rejection, low dropout voltage, high output voltage accuracy, and low supply current. Internally, the RP115x Series consist of a voltage reference unit, an error amplifier, a resistor-net for output voltage setting, a current limit circuit, a thermal shutdown circuit, and a reverse current protection circuit. The RP115x Series uses CMOS process for achieving low supply current, low On Resistance for low dropout voltage (TYP. 0.195V (DFN1216-8, IOUT=1.0A, VSET=1.2V)) and CE function for long battery life. Excellent ripple rejection, input transient response, and load transient response make this series ideal for the power sources of mobile communication equipments. The RP115x Series are available in the DFN1216-8 package for space saving and the SOT-89-5 (Output current: 1.0A fixed) package for higher power applications. The RP115L Series (DFN1216-8 package) can choose the output current limit between 1.0A or 500mA by alternating the LCON pin between “H” or “L”. The RP115H Series (SOT-89-5 package) can output only 1.0A since it does not include the LCON pin. FEATURES • • • • • • • • • • • • • • • • *1 Supply Current ········································ TYP. 110μA Supply Current (Standby Mode) ·················· TYP. 0.5μA Dropout Voltage ······································ TYP. 0.195V (DFN1216-8: IOUT=1.0A, VSET=1.2 V) TYP. 0.235V (SOT-89-5: IOUT=1.0A, VSET=1.2 V) Ripple Rejection ······································ TYP. 80dB (f=1kHz, VSET ≤ 1.8V) TYP. 75dB (f=1kHz, VSET > 1.8V) Output Voltage Accuracy ··························· ±1.0% (VSET ≥ 1.75V) Output Voltage Temperature Coefficient ········ TYP. ±30ppm/ ºC (VSET ≥ 1.75V) Line Regulation ······································· TYP. 0.02%/V Package ················································ DFN1216-8, SOT-89-5 Output Voltage Range······························· 0.7V to 4.3V*1 (0.1V increments) Built-in Short Current Limit Circuit ················ TYP. 60mA (DFN1216-8: LCON = "L") Built-in Peak Current Limit Built-in Thermal Shutdown Circuit ················ Thermal Shutdown Temperature: 165ºC Built-in Constant Slope Circuit for Start-up Built-in Inrush Current Suppression Circuit ···· TYP. 300mA (DFN1216-8: LCON="L") Reverse Current Protection Recommended Ceramic Capacitors ············· 1.0µF or more For the voltages in 0.05V increments, please refer to SELECTION GUIDE. APPLICATIONS • • • • Power source for portable communication equipments. Power source for electrical appliances such as cameras, VCRs and camcorders. Power source for battery-powered equipments. Local power source for home appliances, printers, scanners, office equipment machines. 1 RP115x NO. EA-274-150708 BLOCK DIAGRAMS RP115Lxx1B VDD RP115Lxx1D VOUT - VDD - VFB + Vref VOUT Current Limit Thermal Shutdown Current Limit Thermal Shutdown Reverce Ditector Reverce Ditector GND CE GND CE LCON LCON RP115Hxx1B VDD RP115Hxx1D VOUT Vref VDD VOUT - VFB + Vref Current Limit Thermal Shutdown Reverce Detector GND CE Note: The RP115H does not include the LCON pin. The output current limit is fixed at 1A. 2 VFB + Current Limit Thermal Shutdown Reverce Detector CE VFB + Vref GND RP115x NO. EA-274-150708 SELECTION GUIDE The output voltage, the auto-discharge function*2, and the package type for the ICs are user-selectable. Product Name RP115Lxx1∗(y)-E2 RP115Hxx1∗(y)-T1-FE Package Quantity per Reel Pb Free Halogen Free DFN1216-8 5,000 pcs Yes Yes SOT-89-5 1,000 pcs Yes Yes xx: Specify the output voltage (VSET) within the range of 0.7V (07) to 4.3V (43) in 0.1V steps. (y): If the output voltage includes the 3rd digit, indicate the digit of 0.01. (0.75V, 1,15V, 1.25V, 1.35V, 1.75V, 1.85V, 2.15V, 2.85V, 2.95V) Ex. If the output voltage is 0.75V, RP115x071∗5 1.15V, RP115x111∗5 1.25V, RP115x121∗5 1.35V, RP115x131∗5 1.75V, RP115x171∗5 1.85V, RP115x181∗5 2.15V, RP115x211∗5 2.85V, RP115x281∗5 2.95V, RP115x291∗5 ∗: Specify the version with auto-discharge function or without auto-discharge function. (B) without auto-discharge function (D) with auto-discharge function *2 Auto-discharge function quickly lowers the output voltage to 0V by releasing the electrical charge in the external capacitor when the chip enable signal is switched from the active mode to the standby mode. 3 RP115x NO. EA-274-150708 PIN CONFIGURATIONS DFN1216-8 Bottom View Top View 8 7 SOT-89-5 6 5 5 6 7 8 3 2 1 5 4 ∗3 1 2 3 4 4 1 2 3 PIN DESCRIPTION RP115L: DFN1216-8*3 Pin No Symbol Pin Description VOUT *4 Output Pin 2 VOUT *4 Output Pin 3 LCON 1 *4 Output Current Limit Alternate Pin (“H”=1A, “L”=500mA) 4 VFB Feedback Pin 5 GND Ground Pin 6 CE 7 8 Chip Enable Pin *5 Input Pin *5 Input Pin VDD VDD *3 The exposed tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the exposed tab be connected to the ground plane on the board or otherwise be left open. *4 The V OUT pins and the VFB pin must be wired together when mounting on the board. *5 The V DD pins must be wired together when mounting on the board. RP115H: SOT-89-5 Pin No *6 Pin Description 1 VFB Feedback Pin 2 GND Ground Pin 3 CE 4 VDD 5 *6 Symbol VOUT Chip Enable Pin *6 Input Pin Output Pin The VOUT pin and the VFB pin must be wired together when mounting on the board. Notes: Output Current Limit is fixed at 1A. 4 RP115x NO. EA-274-150708 ABSOLUTE MAXIMUM RATINGS Symbol Rating Unit 6.0 V VIN Input Voltage VCE Input Voltage (CE Pin) -0.3 to 6.0 V VLCON Input Voltage (LCON Pin) −0.3 to 6.0 V VOUT Output Voltage −0.3 to 6.0 V PD Ta Tstg *7 Item Power Dissipation (Standard Land Pattern)*7 DFN1216-8 625 SOT-89-5 900 mW Operating Temperature Range -40 to +85 ºC Storage Temperature Range -55 to +125 ºC For Power Dissipation and Standard Land Pattern, please refer to PACKAGE INFORMATION. ABSOLUTE MAXIMUM RATINGS Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured. RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS) All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. 5 RP115x NO. EA-274-150708 ELECTRICAL CHARACTERISTICS VIN=VSET*8+1.0V, IOUT=1mA, CIN=COUT=1.0μF, unless otherwise noted. The specifications in are guaranteed by design engineering at -40ºC ≤ Ta ≤ 85ºC. RP115x Symbol (Ta=25ºC) Item Conditions Ta=25°C VOUT Output Voltage -40°C≤Ta≤85°C ILIM Typ. Max. Unit VSET≥1.75V x0.99 x1.01 V VSET<1.75V -18 +18 mV VSET≥1.75V x0.985 x1.015 V VSET<1.75V Refer to Output Voltage LCON=”L” 500 mA LCON=”H”*9 1.0 A Output Current Limit VIN=VSET+0.5V ∆VOUT /∆IOUT Load Regulation VIN=VSET+0.5V 1mA≤IOUT≤500mA VIN=VSET+0.5V 1mA≤IOUT≤1.0A VDIF Dropout Voltage ISS Supply Current IOUT=0mA 110 160 μA Istandby Standby Current VCE=0V 0.5 3.0 μA ∆VOUT /∆VIN Line Regulation VSET+0.5V≤VIN≤5.25V (VIN≥1.4V) 0.02 0.10 %/V RR Ripple Rejection f=1kHz, Ripple 0.2Vp-p, VIN=VSET+1.0V, IOUT=30mA VIN Input Voltage*10 ∆VOUT /∆Ta LCON=”L” 20 1 LCON=”H”*9 Refer to Dropout Voltage VSET>1.8V 75 dB VSET≤1.8V 80 dB 1.4 ±30 VSET<1.75V ±100 LCON=”L” 60 ISC Short Current Limit VOUT=0V*11 ICE CE Pull-down Current 0.05 VCEH CE Input Voltage “H” 1.0 VCEL CE Input Voltage “L” VLCONH VLCONL TTSD TTSR 5.25 VSET≥1.75V -40°C≤Ta≤85°C LCON Pull-down Current (RP115L only) LCON Input Voltage “H” (RP115L only) LCON Input Voltage “L” (RP115L only) Thermal Shutdown Temeprature Thermal Shutdown Released Temperature mV 40 Output Voltage Temperature Coefficient ILCON 6 Min. LCON=”H” *9 ppm /ºC mA 110 0.05 0.3 V 0.6 μA V 0.3 0.4 V 0.6 µA V 1.0 0.4 V Junction Temperature 165 ºC Junction Temperature 110 ºC RP115x NO. EA-274-150708 Symbol IREV Item Conditions VSET≥1.75V VOUT=VSET+1.0V, 0≤VIN≤VOUT VSET<1.75V Reverse Current Detector Offset Voltage in VREV_DET*12 Reverse Current Protection Mode*13 Release Offset Voltage in VREV_REL*12 Reverse Current Protection Mode*14 en Typ. 7.5 10 VOUT≥0.7V, 0≤VIN≤5.25V 20 VOUT≥0.7V, 0≤VIN≤5.25V 30 VSET≥1.75V BW=10Hz to 100kHz Output Noise Min. VSET<1.75V RLOW Auto-discharge Nch Tr. ON Resistance (RP115xDxx1D only) VIN=4.0V, VCE=0V IRUSH Inrush Current Limit CC Mode*15 LCON=”L” LCON=”H”*9 Max. Unit µA mV 50 mV 17 x VSET 35 x VSET µVrms 60 Ω 300 500 mA All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25ºC) except Output Noise, Ripple Rejection, and Output Voltage Temperature Coefficient. *8 V SET=Set Output Voltage *9 RP115H: Same Electrical Characteristics as LCON=”H”. *10 The maximum input voltage listed under Electrical Characteristics is 5.25V. If for any reason the input voltage exceeds 5.25V, it has to be no more than 5.5V with 500 cumulative operating hours. *11 Short Current is the value when V OUT and GND are short-circuited after the device starts up. Inrush Current flows when the device starts up while VOUT and GND are short-circuited. *12 Guaranteed operating range of reverse current protection circuit is V OUT≥0.7V. When VIN=VOUT=0V, reverse current protection mode is constantly active. *13 V REV_DET=VIN−VOUT *14 V REV_REL=VIN−VOUT *15 For CC (Constant Current) Mode, please refer to Start-up Characteristics. Output Voltage Set Output Voltage VSET (V) Output Voltage VOUT (mV) TYP. MAX. 0.7 −33 +28 0.8 −35 +29 0.9 −37 +30 1.0 −39 +31 1.1 −41 +33 1.2 −43 +34 1.3 −45 +35 1.4 −47 +36 1.5 −49 +38 1.6 −51 +39 1.7 −53 +40 7 RP115x NO. EA-274-150708 Dropout Voltage RP115L: DFN1216-8 (Ta=25ºC) Dropout Voltage VDIF (V) Set Output Voltage VSET (V) IOUT=500mA IOUT=1000mA TYP. MAX. TYP. MAX. 0.7 ≤ VSET < 1.1 *16 *16 *16 *16 1.1 ≤ VSET < 1.2 *16 *16 *16 0.300 1.2 ≤ VSET < 1.3 *16 *16 0.195 0.275 1.3 ≤ VSET < 1.5 0.095 0.135 0.185 0.260 1.5 ≤ VSET < 1.75V 0.085 0.120 0.165 0.235 1.75V ≤ VSET < 2.6 0.075 0.110 0.150 0.215 2.6 ≤ VSET < 3.3 0.065 0.090 0.130 0.180 3.3 ≤ VSET ≤ 4.3 0.060 0.085 0.125 0.170 If the dropout voltage falls below the release offset value of reverse current protection mode (VREV_REL), the reverse current protection circuit may repeat the detection and release operations. Please refer to Reverse Current Protection Circuit. *16 Input voltage should be equal or more than the minimum operating voltage (1.4V). RP115H: SOT-89-5 Set Output Voltage VSET (V) (Ta=25ºC) Dropout Voltage VDIF (V) IOUT=1000mA TYP. MAX. 0.7 ≤ VSET < 1.1 *16 *16 1.1 ≤ VSET < 1.2 *16 0.350 1.2 ≤ VSET < 1.3 0.235 0.330 1.3 ≤ VSET < 1.5 0.225 0.320 1.5 ≤ VSET < 1.75V 0.205 0.295 1.75V ≤ VSET < 2.6 0.190 0.270 2.6 ≤ VSET < 3.3 0.170 0.240 3.3 ≤ VSET ≤ 4.3 0.165 0.225 If the dropout voltage falls below the release offset value of reverse current protection mode (VREV_REL), the reverse current protection circuit may repeat the detection and release operations. Please refer to Reverse Current Protection Circuit. *16 Input voltage should be equal or more than the minimum operating voltage (1.4V). 8 RP115x NO. EA-274-150708 TYPICAL APPLICATION VDD VIN VOUT VOUT*18 RP115x Series CIN LCON*17 VFB*18 COUT LCON Control CE GND CE Control External Parts Example CIN: Ceramic Capacitor, 1.0µF, muRata GRM155R61A105KE15 COUT: Ceramic Capacitor, 1.0µF, muRata GRM155R61A105KE15 Ceramic Capacitor, 2.2µF, muRata GRM155R61A225KE95 Notes: *17 The LCON pin is only included in RP115L (DFN1216-8). *18 The VOUT pin and the VFB pin should be wired together when mounting on the board. TECHNICAL NOTES Phase Compensation In LDO (Low Drop Out) regulators, phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, use a capacitor COUT with 1.0μF or more and proper ESR (Equivalent Series Resistance). Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit taking actual characteristics into account. Especially for the 1.75-V-output product, it is recommended to use 2.2µF or higher output capacitor when the product is used under the low-temperature environment such as −20°C or lower. If you use a tantalum type capacitor and the ESR value of the capacitor is large, the output might be unstable. Evaluate your circuit including consideration of frequency characteristics. PCB Layout Ensure the VDD and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable operation may result. Connect a capacitor CIN with 1.0μF or more between VDD and GND pins, and as close as possible to the pins. Likewise, connect COUT capacitor with suitable values between the VOUT and GND pins, and as close as possible to the pins. 9 RP115x NO. EA-274-150708 REVERSE CURRENT PROTECTION CIRCUIT The RP115x Series include a Reverse Current Protection Circuit, which stops the reverse current from VOUT pin to VDD pin or to GND pin when VOUT becomes higher than VIN. Usually, the LDO using Pch output transistor contains a parasitic diode between VDD pin and VOUT pin. Therefore, if VOUT is higher than VIN, the parasitic diode becomes forward direction. As a result, the current flows from VOUT pin to VDD pin. The ICs of this series switches the mode to the reverse current protection mode before VIN becomes lower than VOUT by connecting the parasitic diode of Pch output transistor to the backward direction, and connecting the gate to VOUT pin. As a result, the Pch output transistor is turned off. However, from VOUT pin to GND pin, via the internal divider resistors, very small current IREV flows. Switching to either the normal mode or to the reverse current protection mode is determined by the magnitude of VIN voltage and VOUT voltage. For the stable operation, offset and hysteresis are set as the threshold. The detector threshold is set to VREV_DET and the released voltage is set to VREV_REL. Therefore, the minimum dropout voltage under the small load current condition is restricted by the value of VREV_REL. Following figures show the diagrams of each mode, and the load characteristics of each mode. When giving the VOUT pin a constant-voltage and decreasing the VIN voltage, the dropout voltage will become lower than VREV_DET. As a result, the reverse current protection starts to function to stop the load current. By increasing the dropout voltage higher than VREV_REL, the protection mode will be released to let the load current to flow. If the dropout voltage to be used is lower than VREV_REL, the detection and the release may be repeated. The operating voltage guaranteed level of the reverse current protection circuit is for VOUT ≥ 0.7V. If VIN=0V, the reverse current protection mode becomes always active. VDD Reverse Detector VDD Reverse Detector IOUT VOUT VOUT + + Vref Vref GND Figure 1. Normal Operation Mode 10 IREV CE GND CE Figure 2. Reverse Current Protection Mode RP115x Output/ Reverse Current IOUT/ IREV Input/ Output Voltage VIN/ VOUT [V] NO. EA-274-150708 VIN VREV_REL VREV_DET VOUT IOUT Normal Mode Reverse Current Protection Mode Normal Mode 0 IREV Figure 3. Detection/ Release Timing of Reverse Current Protection Function 11 RP115x NO. EA-274-150708 START-UP CHARACTERISTICS Constant slope circuit is included in the RP115x Series to prevent the overshoot of the output voltage. The start-up time (tON) is 100µs (Typ.). If inrush current increases due to the large capacitance of COUT, the operation mode will be shifted from Constant Slope (CS) mode to Constant Current (CC) mode. The CC mode maintains a constant level of inrush current. In the CC mode, tON varies according to the size of COUT and the amount of load current. Start-up Time and Inrush Current Estimations Start-up time and inrush current in the CS mode and the CC mode can be estimated as follows. ・CS Mode Start-up Time: tON = 100μs (TYP.) Inrush Current: IRUSH = COUT ∙ VSET / tON + IOUT*19 Note: If the result of the above calculation is more than the following values, the operation mode will be shifted from the CS mode to the CC mode. LCON=”L”······························· 300mA (TYP.) LCON=”H” ······························ 500mA (TYP.) ・CC Mode Start-up Time: tON = COUT ∙ VSET / ICO*20 Inrush Current: IRUSH LCON=”L”································ 300mA (TYP.) LCON=”H” ······························· 500mA (TYP.) *19 *20 IOUT: When RLOAD is connected to load, IOUT can be calculated by RLOAD = VSET / IOUT. ICO: ICO is a charge current of COUT and can be calculated roughly by IRUSH ≈ ICO + IOUT. IRUSH VDD VIN CIN LCON Control VOUT RP115x Series LCON VFB IOUT*19 COUT RLOAD CE GND CE Control Circuit Example Note: The LCON pin is only included in RP115L (DFN1216-8). RP115H: Same Electrical Characteristics as LCON=”H”. 12 ICO*20 RP115x NO. EA-274-150708 VIN VIN ≥1.4V CE CS Mode VOUT tON = 100µs (TYP.) VSET 60µs (TYP.) IOUT ≤ 500mA (LCON=”L”) ≤ 1.0A (LCON=”H”) IRUSH = COUT • VSET / tON + IOUT IOUT IRUSH CC Mode VOUT tON = COUT • VSET / ICO VSET 60µs (TYP.) IOUT ≤ 150mA (LCON=”L”) ≤ 350mA (LCON=”H”) IRUSH IOUT ≤ 500mA (LCON=”L”) ≤ 1.0A (LCON=”H”) IRUSH = 300mA (LCON=”L”) 500mA (LCON=”H”) IOUT Precautions Before Use During the start-up, the inrush current limit circuit is in operation; therefore, the load current (IOUT) should be drawn after the output voltage (VOUT) reached the preset value (Best timing: tON + 60µs or more). If the load current is drawn during the start-up, it should be within the following values. LCON=”L” ···················································· IOUT ≤ 150mA LCON=”H”···················································· IOUT ≤ 350mA In the CC mode, IRUSH is limited until VOUT reaches the preset value. IRUSH ≈ ICO + IOUT is true; therefore, if large IOUT is drawn during the start-up, the charge current (ICO) of COUT decreases and tON becomes longer. Please refer to Start-up Time and Inrush Current Estimations. In order to control the start-up operation by using the CS mode or CC mode, input “H” into the CE pin while VIN ≥ 1.4V. If “H” is input into the CE pin while VIN is less than the minimum operating voltage, the operation may not be controlled by the CS mode or CC mode. When starting up the device while the short circuit is occurring between the VOUT pin and GND, the short current protection circuit does not control the current but the current limit circuit does. When there’s excessive heat generation in the device, thermal shutdown circuit shuts down the circuitry before the device overheats dangerously. 13 RP115x NO. EA-274-150708 LCON PIN OPERATION By alternating the LCON pin between “H” or “L”, the RP115L can choose the output current limit either 1.0A or 500mA. Please note that during start-up (tON + 60µs (TYP.)), do not change the logic of the LCON pin. LCON=”L” ································ 500mA LCON=”H” ······························· 1.0A Application Example Even when using the RP115L with LCON=”H”, IRUSH in the CC mode can be reduced from 500mA (TYP.) to 300mA (TYP.) by starting up the IC with LCON=”L”. Please refer to START-UP CHARACTERISTICS. 14 RP115x NO. EA-274-150708 PACKAGE INFORMATION Power Dissipation (DFN1216-8) Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the Measurement Conditions below. Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind Velocity=0m/s) Board Material Glass cloth epoxy plastic (Double sided) Board Dimensions 40mm*40mm*1.6mm Copper Ratio Top side: Approx. 50%, Back side: Approx. 50% Through-holes φ 0.5mm * 28pcs Measurement Result (Ta=25°C) Standard Land Pattern 625mW (Tjmax=125°C) 781mW (Tjmax=150°C) θja = (125-25°C)/0.625W = 160°C/W Power Dissipation Thermal Resistance θjc = 26 °C/W 40 781 800 700 600 625 500 40 Power Dissipation PD (mW) 900 400 300 200 100 0 0 25 50 75 85 100 125 150 Measurement Board Pattern Ambient Temperature (°C) IC Mount Area (Unit: mm) Power Dissipation Note: The above graph shows the power dissipation of the package based on Tjmax=125ºC and Tjmax=150ºC. Operating the IC within the shaded area in the graph might have an influence on its lifetime. Operating time must be within the time limit described in the table below. Operating Time Estimated Years (Operating 4 hrs/ day) 13,000 hours 9 Years 15 RP115x NO. EA-274-150708 B X4 1.30±0.05 5 8 * 1.20 0.05 4 1 0.40 0.18±0.05 Bottom View 0.05 S 0.05 0.30±0.05 C0.15 0.4max INDEX S 0.20±0.05 1.60 A 0.20±0.05 Package Dimensions (DFN1216-8) 0.05 M AB (Unit : mm) exposed tab is substrate level (GND). * The It is recommended that the exposed tab be connected to the ground plane on the board or otherwise be left open. The GND pins must be wired together when mouting on the board. DFN1216-8 Package Dimensions Mark Specification (DFN1216-8) : Product Code … Please refer to Mark Specification Table (DFN1216-8). : Lot Number … Alphanumeric Serial Number DFN1216-8 Mark Specification 16 RP115x NO. EA-274-150708 Mark Specification Table (DFN1216-8) RP115Lxx1B Product Name R P11 5L0 71B R P11 5L0 81B R P11 5L0 91B R P11 5L1 01B R P11 5L111B R P11 5L1 21B R P11 5L1 31B R P11 5L1 41B R P11 5L1 51B R P11 5L1 61B R P11 5L1 71B R P11 5L1 81B R P11 5L1 91B R P11 5L2 01B R P11 5L211B R P11 5L2 21B R P11 5L2 31B R P11 5L2 41B R P11 5L2 51B R P11 5L2 61B R P11 5L2 71B R P11 5L2 81B R P11 5L2 91B R P11 5L3 01B R P11 5L311B R P11 5L3 21B R P11 5L3 31B R P11 5L3 41B R P11 5L3 51B R P11 5L3 61B R P11 5L3 71B R P11 5L3 81B R P11 5L3 91B R P11 5L4 01B R P11 5L411B R P11 5L4 21B R P11 5L4 31B R P11 5L0 71B5 R P11 5L1 21B5 R P11 5L1 81B5 R P11 5L2 81B5 R P11 5L1 31B5 R P11 5L111B5 R P11 5L211B5 R P11 5L2 91B5 R P11 5L1 71B5 RP115Lxx1D DU0 7 DU0 8 DU0 9 DU1 0 DU11 DU1 2 DU1 3 DU1 4 DU1 5 DU1 6 DU1 7 DU1 8 DU1 9 DU2 0 DU2 1 DU2 2 DU2 3 DU2 4 DU2 5 DU2 6 DU2 7 DU2 8 DU2 9 DU3 0 DU3 1 DU3 2 DU3 3 DU3 4 DU3 5 DU3 6 DU3 7 DU3 8 DU3 9 DU4 0 DU4 1 DU4 2 DU4 3 DU0 0 DU0 1 DU0 2 DU0 3 DU0 4 DU0 5 DU0 6 DU6 0 DU6 1 VSET 0.7V 0.8V 0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V 1.6V 1.7V 1.8V 1.9V 2.0V 2.1V 2.2V 2.3V 2.4V 2.5V 2.6V 2.7V 2.8V 2.9V 3.0V 3.1V 3.2V 3.3V 3.4V 3.5V 3.6V 3.7V 3.8V 3.9V 4.0V 4.1V 4.2V 4.3V 0.75V 1.25V 1.85V 2.85V 1.35V 1.15V 2.15V 2.95V 1.75V Product Name R P11 5L0 71D R P11 5L0 81D R P11 5L0 91D R P11 5L1 01D R P11 5L111D R P11 5L1 21D R P11 5L1 31D R P11 5L1 41D R P11 5L1 51D R P11 5L1 61D R P11 5L1 71D R P11 5L1 81D R P11 5L1 91D R P11 5L2 01D R P11 5L211D R P11 5L2 21D R P11 5L2 31D R P11 5L2 41D R P11 5L2 51D R P11 5L2 61D R P11 5L2 71D R P11 5L2 81D R P11 5L2 91D R P11 5L3 01D R P11 5L311D R P11 5L3 21D R P11 5L3 31D R P11 5L3 41D R P11 5L3 51D R P11 5L3 61D R P11 5L3 71D R P11 5L3 81D R P11 5L3 91D R P11 5L4 01D R P11 5L411D R P11 5L4 21D R P11 5L4 31D R P11 5L0 71D5 R P11 5L1 21D5 R P11 5L1 81D5 R P11 5L2 81D5 R P11 5L1 31D5 R P11 5L111D5 R P11 5L211D5 R P11 5L2 91D5 R P11 5L1 71D5 D V0 7 D V0 8 D V0 9 D V1 0 D V11 D V1 2 D V1 3 D V1 4 D V1 5 D V1 6 D V1 7 D V1 8 D V1 9 D V2 0 D V2 1 D V2 2 D V2 3 D V2 4 D V2 5 D V2 6 D V2 7 D V2 8 D V2 9 D V3 0 D V3 1 D V3 2 D V3 3 D V3 4 D V3 5 D V3 6 D V3 7 D V3 8 D V3 9 D V4 0 D V4 1 D V4 2 D V4 3 D V0 0 D V0 1 D V0 2 D V0 3 D V0 4 D V0 5 D V0 6 D V6 0 D V6 1 VSET 0.7V 0.8V 0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V 1.6V 1.7V 1.8V 1.9V 2.0V 2.1V 2.2V 2.3V 2.4V 2.5V 2.6V 2.7V 2.8V 2.9V 3.0V 3.1V 3.2V 3.3V 3.4V 3.5V 3.6V 3.7V 3.8V 3.9V 4.0V 4.1V 4.2V 4.3V 0.75V 1.25V 1.85V 2.85V 1.35V 1.15V 2.15V 2.95V 1.75V 17 RP115x NO. EA-274-150708 Power Dissipation (SOT-89-5) Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the Measurement Conditions below. Measurement Conditions Environment Board Material Board Dimensions Copper Ratio Through-hole High Wattage Land Pattern Standard Land Pattern Mounting on Board (Wind Velocity=0m/s) Glass Cloth Epoxy Plastic (Doublesided) 30mm x 30mm x 1.6mm Topside: Approx. 20% Backside: Approx. 100% φ0.85mm x 10pcs Mounting on Board (Wind Velocity=0m/s) Glass Cloth Epoxy Plastic (Double-sided) 50mm x 50mm x 1.6mm Topside: Approx. 10% Backside: Approx. 100% - Measurement Result (Ta=25°C) High Wattage Land Pattern 1300mW Thermal Resistance 77°C/W Power Dissipation PD (mW) Power Dissipation 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 Standard Land Pattern 900mW (Tjmax=125°C) 1125mW (Tjmax=150°C) 111°C/W Free Air 500mW 200°C/W On Board (High Wattage Land Pattern) On Board (Standard Land Pattern) Free Air 0 25 50 75 85 100 125 150 Ambient Temperature (°C) Power Dissipation 30 50 50 15 15 Note: The above graph shows the power dissipation of the package based on Tjmax=125°C and Tjmax=150°C. Operating the IC within the shaded area in The graph might have an influence on its lifetime. Operating time must be within the time limit described in the table below. 7.5 30 7.5 High Wattage Standard Measurement Board Pattern IC Mount Area Unit: mm 18 Operating Time Estimated years (Operating four hours/day) 13,000 hours 9 years RP115x NO. EA-274-150708 Package Dimensions (SOT-89-5) 4.5±0.1 1.5±0.1 0.4±0.3 2 5 4.35±0.1 φ1.0 1 4 4 2.5±0.1 1.00±0.2 5 0.4±0.1 0.3±0.2 0.42±0.1 0.1 S 3 3 2 1 0.4±0.1 0.3±0.2 1.6±0.2 Bottom View S 0.42±0.1 0.42±0.1 0.47±0.1 1.5±0.1 1.5±0.1 Unit : mm SOT-89-5 Package Dimensions Mark Specification (SOT-89-5) : Product Code … Please refer to RP115H Series Mark Specification Table. : Lot Number … Alphanumeric Serial Number SOT-89-5 Mark Specification 19 RP115x NO. EA-274-150708 Mark Specification Table (SOT-89-5) RP115Hxx1B Product Name R P11 5H071 B R P11 5H081 B R P11 5H091 B R P11 5H101 B R P11 5H111B R P11 5H121 B R P11 5H131 B R P11 5H141 B R P11 5H151 B R P11 5H161 B R P11 5H171 B R P11 5H181 B R P11 5H191 B R P11 5H201 B R P11 5H211 B R P11 5H221 B R P11 5H231 B R P11 5H241 B R P11 5H251 B R P11 5H261 B R P11 5H271 B R P11 5H281 B R P11 5H291 B R P11 5H301 B R P11 5H311 B R P11 5H321 B R P11 5H331 B R P11 5H341 B R P11 5H351 B R P11 5H361 B R P11 5H371 B R P11 5H381 B R P11 5H391 B R P11 5H401 B R P11 5H411 B R P11 5H421 B R P11 5H431 B R P11 5H071 B5 R P11 5H121 B5 R P11 5H181 B5 R P11 5H281 B5 R P11 5H131 B5 R P11 5H111B5 R P11 5H211 B5 20 RP115Hxx1D D0 7F D0 8F D0 9F D1 0F D11 F D1 2F D1 3F D1 4F D1 5F D1 6F D1 7F D1 8F D1 9F D2 0F D2 1F D2 2F D2 3F D2 4F D2 5F D2 6F D2 7F D2 8F D2 9F D3 0F D3 1F D3 2F D3 3F D3 4F D3 5F D3 6F D3 7F D3 8F D3 9F D4 0F D4 1F D4 2F D4 3F D0 0F D0 1F D0 2F D0 3F D0 4F D0 5F D0 6F VSET 0.7V 0.8V 0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V 1.6V 1.7V 1.8V 1.9V 2.0V 2.1V 2.2V 2.3V 2.4V 2.5V 2.6V 2.7V 2.8V 2.9V 3.0V 3.1V 3.2V 3.3V 3.4V 3.5V 3.6V 3.7V 3.8V 3.9V 4.0V 4.1V 4.2V 4.3V 0.75V 1.25V 1.85V 2.85V 1.35V 1.15V 2.15V Product Name R P11 5H071D R P11 5H081D R P11 5H091D R P11 5H101D R P11 5H111D R P11 5H121D R P11 5H131D R P11 5H141D R P11 5H151D R P11 5H161D R P11 5H171D R P11 5H181D R P11 5H191D R P11 5H201D R P11 5H211D R P11 5H221D R P11 5H231D R P11 5H241D R P11 5H251D R P11 5H261D R P11 5H271D R P11 5H281D R P11 5H291D R P11 5H301D R P11 5H311D R P11 5H321D R P11 5H331D R P11 5H341D R P11 5H351D R P11 5H361D R P11 5H371D R P11 5H381D R P11 5H391D R P11 5H401D R P11 5H411D R P11 5H421D R P11 5H431D R P11 5H071D 5 R P11 5H121D 5 R P11 5H181D 5 R P11 5H281D 5 R P11 5H131D 5 R P11 5H111D5 R P11 5H211D 5 D0 7G D0 8G D0 9G D1 0G D11 G D1 2G D1 3G D1 4G D1 5G D1 6G D1 7G D1 8G D1 9G D2 0G D2 1G D2 2G D2 3G D2 4G D2 5G D2 6G D2 7G D2 8G D2 9G D3 0G D3 1G D3 2G D3 3G D3 4G D3 5G D3 6G D3 7G D3 8G D3 9G D4 0G D4 1G D4 2G D4 3G D0 0G D0 1G D0 2G D0 3G D0 4G D0 5G D0 6G VSET 0.7V 0.8V 0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V 1.6V 1.7V 1.8V 1.9V 2.0V 2.1V 2.2V 2.3V 2.4V 2.5V 2.6V 2.7V 2.8V 2.9V 3.0V 3.1V 3.2V 3.3V 3.4V 3.5V 3.6V 3.7V 3.8V 3.9V 4.0V 4.1V 4.2V 4.3V 0.75V 1.25V 1.85V 2.85V 1.35V 1.15V 2.15V RP115x NO. EA-274-150708 TYPICAL CHARACTERISTICS 1) Output Voltage vs. Input Voltage (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C) RP115x171x 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Output Voltage V OUT[V] Output Voltage V OUT[V] RP115x071x Iout = 1mA Iout = 30mA Iout = 50mA 0 1 2 3 4 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 5 Iout = 1mA Iout = 30mA Iout = 50mA 0 1 Iout = 1mA Iout = 30mA Iout = 50mA 1 2 3 4 5 RP115x431x Output Voltage V OUT[V] Output Voltage V OUT[V] RP115x181x 0 3 Input Voltage V IN[V] Input Voltage V IN[V] 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 2 4 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 5 Iout = 1mA Iout = 30mA Iout = 50mA 0 1 Input Voltage V IN[V] 2 3 4 5 Input Voltage V IN[V] 2) Supply Current vs. Input Voltage (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C) RP115x171x 140 140 120 120 Supply Current ISS[μA] Supply Current ISS[μA] RP115x071x 100 80 60 40 20 0 100 80 60 40 20 0 0 1 2 3 Input Voltage V IN[V] 4 5 0 1 2 3 4 5 Input Voltage V IN[V] 21 RP115x NO. EA-274-150708 RP115x431x 140 120 120 Supply Current ISS[μA] Supply Current ISS[μA] RP115x181x 140 100 80 60 40 20 0 100 80 60 40 20 0 0 1 2 3 4 5 0 Input Voltage V IN[V] 1 2 3 4 5 Input Voltage V IN[V] Short Current Limit vs. Temperature and Current Limit vs. Temperature The RP115x contains a peak current limit circuit which protect the regulator from damage by overcurrent if the output pin (VOUT) and the ground pin (GND) are shorted. The short-circuiting causes the overheating of the device which leads a thermal shutdown circuit to operate. If the peak current limit circuit and the thermal shutdown circuit work at the same time, fold-back type dropping characteristics cannot be measured. As for the short-circuit current and the peak current limit circuit, please refer to 3) Short Current Limit vs. Temperature and 4) Current Limit vs. Temperature. 3) Short Current Limit vs. Temperature RP115x071x 65 60 55 50 120 V IN = 2.0V V OUT = 0V LCON = "H" 115 110 105 100 95 90 -40 -25 22 RP115x071x Short Current Limit [mA] Short Current Limit [mA] 70 V IN = 2.0V V OUT = 0V LCON = "L" 0 25 50 Temperature Ta [°C] 75 85 -40 -25 0 25 50 Temperature Ta [°C] 75 85 RP115x NO. EA-274-150708 4) Peak Current Limit vs. Temperature V IN = 1.2V LCON = "L" 900 1500 850 1450 800 750 700 650 V IN = 1.2V LCON = "H" RP115x071x Current Limit [mA] Current Limit [mA] RP115x071x 600 1400 1350 1300 1250 1200 -40 -25 0 25 50 75 85 -40 -25 Temperature Ta [°C] 0 25 50 75 85 Temperature Ta [°C] 5) Output Voltage vs. Temperature (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, IOUT=1mA) RP115x171x V IN = 1.7V 0.74 1.74 0.73 1.73 Output Voltage VOUT[V] Output Voltage VOUT[V] RP115x071x 0.72 0.71 0.7 0.69 0.68 0.67 0.66 V IN = 2.7V 1.72 1.71 1.7 1.69 1.68 1.67 1.66 -40 -25 0 25 50 Temperature Ta [°C] 75 85 -40 -25 RP115x181x 25 50 75 85 RP115x431x V IN = 2.8V 1.84 V IN = 5.25V 4.34 4.33 Output Voltage VOUT[V] 1.83 Output Voltage VOUT[V] 0 Temperature Ta [°C] 1.82 1.81 1.8 1.79 1.78 1.77 1.76 4.32 4.31 4.3 4.29 4.28 4.27 4.26 -40 -25 0 25 50 Temperature Ta [°C] 75 85 -40 -25 0 25 50 75 85 Temperature Ta [°C] 23 RP115x NO. EA-274-150708 6) Supply Current vs. Temperature (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, IOUT=0mA) RP115x071x 130 120 110 100 90 80 V IN = 2.7V 130 Supply Current ISS[μA] Supply Current ISS[μA] RP115x171x V IN = 1.7V 70 120 110 100 90 80 70 -40 -25 0 25 50 Temperature Ta [°C] 75 85 -40 -25 RP115x181x 110 100 90 80 V IN = 5.25V 130 Supply Current ISS[μA] Supply Current ISS[μA] 120 120 110 100 90 80 70 70 -40 -25 24 75 85 RP115x431x V IN = 2.8V 130 0 25 50 Temperature Ta [°C] 25 50 0 Temperature Ta [°C] 75 85 -40 -25 0 25 50 Temperature Ta [°C] 75 85 RP115x NO. EA-274-150708 7) Dropout Voltage vs. Output Current (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF) RP115L171x RP115H171x 250 Dropout Voltage VDIF [mV] Dropout Voltage VDIF [mV] 250 -40°C 25°C 85°C 200 150 100 50 0 200 400 600 800 100 50 1000 0 200 400 600 800 Output Current IOUT [mA] Output Current IOUT [mA] RP115L181x RP115H181x 1000 250 Dropout Voltage VDIF [mV] 250 Dropout Voltage VDIF [mV] 150 0 0 -40°C 25°C 85°C 200 150 100 50 0 -40°C 25°C 85°C 200 150 100 50 0 0 200 400 600 800 1000 0 200 400 600 800 Output Current IOUT [mA] Output Current IOUT [mA] RP115L431x RP115H431x 1000 250 Dropout Voltage VDIF [mV] 250 Dropout Voltage VDIF [mV] -40°C 25°C 85°C 200 -40°C 25°C 85°C 200 150 100 50 -40°C 25°C 85°C 200 150 100 50 0 0 0 200 400 600 800 Output Current IOUT [mA] 1000 0 200 400 600 800 1000 Output Current IOUT [mA] 25 RP115x NO. EA-274-150708 8) Dropout Voltage vs. Set Output Voltage (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C) 9) Dropout Voltage vs. Temperature (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF) 400 300 200 100 0 -40 -25 0 25 50 Temperature Ta [°C] Dropout Voltage VDIF [mV] 300 200 150 100 50 0 0 25 50 Temperature Ta [°C] 26 200 150 100 50 0 -40 -25 0 25 50 75 85 Temperature Ta [°C] 250 -40 -25 250 75 85 30mA 100mA 300mA 500mA 1000mA RP115L181x 300 75 85 RP115L431x 300 Dropout Voltage VDIF [mV] Dropout Voltage VDIF [mV] 500 30mA 100mA 300mA 500mA 1000mA RP115L171x Dropout Voltage VDIF [mV] 30mA 100mA 300mA 500mA 1000mA RP115L071x 30mA 100mA 300mA 500mA 1000mA 250 200 150 100 50 0 -40 -25 0 25 50 Temperature Ta [°C] 75 85 RP115x NO. EA-274-150708 400 300 200 100 0 -40 -25 0 25 50 Temperature Ta [°C] Dropout Voltage VDIF [mV] 300 250 200 150 100 50 0 -40 -25 0 25 50 Temperature Ta [°C] 250 200 150 100 50 0 -40 -25 75 85 30mA 100mA 300mA 500mA 1000mA RP115H181x 300 0 25 50 Temperature Ta [°C] 75 85 30mA 100mA 300mA 500mA 1000mA RP115H431x 300 Dropout Voltage VDIF [mV] Dropout Voltage VDIF [mV] 500 30mA 100mA 300mA 500mA 1000mA RP115H171x Dropout Voltage VDIF [mV] 30mA 100mA 300mA 500mA 1000mA RP115H071x 250 200 150 100 50 0 75 85 -40 -25 0 25 50 75 85 Temperature Ta [°C] 10) Ripple Rejection vs. Input Voltage (CIN=none, COUT=Ceramic1.0μF, Ripple=0.2Vp-p, Ta=25°C) 100 90 80 70 60 50 40 30 20 10 0 0.1kHz 1kHz 10kHz 100kHz 0 1 2 3 RP115x071x IOUT=1mA Ripple Rejection RR(dB) Ripple Rejection RR(dB) RP115x071x 4 Input Voltage VIN(V) 5 IOUT=30mA 100 90 80 70 60 50 40 30 20 10 0 0.1kHz 1kHz 10kHz 100kHz 0 1 2 3 4 5 Input Voltage VIN(V) 27 RP115x NO. EA-274-150708 2 3 4 Input Voltage VIN(V) Ripple Rejection RR(dB) RP115x181x 0.1kHz 1kHz 10kHz 100kHz 2 3 4 60 50 40 30 20 0.1kHz 1kHz 10kHz 100kHz 10 0 1 2 RP115x181x 5 4.2 4.4 4.6 4.8 Input Voltage VIN(V) 28 IOUT=30mA 2 3 4 5 Input Voltage VIN(V) RP115x431x IOUT=1mA 0.1kHz 1kHz 10kHz 100kHz 4 5 0.1kHz 1kHz 10kHz 100kHz 1 5 5.2 Ripple Rejection RR(dB) Ripple Rejection RR(dB) RP115x431x 3 4 Input Voltage VIN(V) 100 90 80 70 60 50 40 30 20 10 0 Input Voltage VIN(V) 100 90 80 70 60 50 40 30 20 10 0 IOUT=30mA 100 90 80 70 5 IOUT=1mA 100 90 80 70 60 50 40 30 20 10 0 1 Ripple Rejection RR(dB) 0.1kHz 1kHz 10kHz 100kHz 20 10 0 1 RP115x171x IOUT=1mA Ripple Rejection RR(dB) Ripple Rejection RR(dB) RP115x171x 100 90 80 70 60 50 40 30 100 90 80 70 60 50 40 30 20 10 0 IOUT=30mA 0.1kHz 1kHz 10kHz 100kHz 4 4.2 4.4 4.6 4.8 Input Voltage VIN(V) 5 5.2 RP115x NO. EA-274-150708 11) Ripple Rejection vs. Frequency (CIN=none, COUT=Ceramic1.0μF, Ripple=0.2Vp-p, Ta=25°C) RP115x071x RP115x171x VIN = 1.7V Ripple Rejection RR [dB] Ripple Rejection RR [dB] 120 100 80 60 40 1mA 30mA 150mA 20 100 80 60 40 1mA 30mA 150mA 20 0 0 0.1 1 10 100 1000 0.1 1 Frequency f [kHz] RP115x181x 80 60 40 1mA 30mA 150mA 0 1 10 100 1000 VIN = 5.25V 120 100 80 60 40 1mA 30mA 150mA 20 0 0.1 100 RP115x431x Ripple Rejection RR [dB] 100 20 10 Frequency f [kHz] VIN = 2.8V 120 Ripple Rejection RR [dB] VIN = 2.7V 120 1000 0.1 Frequency f [kHz] 1 10 100 1000 Frequency f [kHz] Output Voltage -20 -10 0 10 20 30 40 50 60 70 80 Time t [μs] Input Voltage 2.7V <=> 3.7V 1.73 1.72 1.71 1.7 1.69 5 4 3 2 1 0 Input Voltage VIN [V] 0.73 0.72 0.71 0.7 0.69 0.68 Input Voltage 1.7V <=> 2.7V 5 4 3 2 1 0 RP115x171x Output Voltage VOUT [V] Output Voltage V OUT [V] RP115x071x Input Voltage VIN [V] 12) Line Transient Response (CIN=none, COUT=Ceramic1.0μF, IOUT=30mA, tr=tf=5μs, Ta=25°C) Output Voltage -20 -10 0 10 20 30 40 50 60 70 80 Time t [μs] 29 RP115x NO. EA-274-150708 5 4 3 2 1 0 Output Voltage VOUT [V] Input Voltage 2.8V <=>3.8V 1.82 1.81 1.8 1.79 1.78 Input Voltage VIN [V] RP115x181x Output Voltage -20 -10 0 10 20 30 40 50 60 70 80 Time t [μs] 100 Load Current 50mA <=> 100mA 0.71 0 0.7 0.69 Output Voltage 0.68 -5 0 5 10 15 20 25 30 35 40 VIN = 1.7V Load Current 1mA <=> 250mA 0.8 0.75 0.7 0.65 0.6 0.55 Output Voltage -20 0 Output Voltage -20 0 20 40 60 80 100 120 140 Time t [μs] 30 VIN = 1.7V 600 400 200 0 RP115x171x VIN = 2.7V Output Voltage VOUT [V] Output Voltage VOUT [V] RP115x071x 0.8 0.75 0.7 0.65 0.6 0.55 20 40 60 80 100 120 140 Time t [μs] Output Current I OUT [mA] Time t [μs] Load Current 1mA <=> 500mA 300 200 100 0 Load Current 50mA <=> 100mA 1.72 1.71 1.7 1.69 1.68 1.67 Output Voltage -5 0 5 10 15 20 25 30 35 40 Time t [μs] 150 100 50 0 Output Current I OUT [mA] Output Voltage VOUT [V] 50 RP115x071x Output Current I OUT [mA] VIN = 1.7V 150 Output Voltage VOUT [V] RP115x071x Output Current I OUT [mA] 13) Load Transient Response (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, tr=tf=0.5μs, Ta=25°C) RP115x Load Current 1mA <=> 250mA Output Voltage -20 0 20 40 60 80 100 120 140 Load Current 1mA <=> 500mA 1.8 1.75 1.7 1.65 1.6 1.55 Output Voltage -20 0 20 40 60 80 100 120 140 Time t [μs] Output Voltage V OUT [V] VIN = 2.8V Load Current 50mA <=> 100mA 150 100 50 0 Output Voltage -5 0 5 10 15 20 25 30 35 40 RP115x181x VIN = 2.8V Output Voltage V OUT [V] RP115x181x Output Current I OUT [mA] Time t [μs] 1.81 1.8 1.79 1.78 1.77 1.76 Load Current 1mA <=> 250mA 1.85 1.8 1.75 1.7 1.65 -20 0 Output Voltage 20 40 60 80 100 120 140 time [μs] RP115x431x VIN = 5.25V Output Voltage V OUT [V] Load Current 1mA <=> 500mA 600 400 200 0 Output Current I OUT [mA] Output Voltage V OUT [V] VIN = 2.8V 0 20 40 60 80 100 120 140 time [μs] RP115x181x -20 300 200 100 0 Output Voltage time [μs] 1.85 1.8 1.75 1.7 1.65 600 400 200 0 Output Current I OUT [mA] 1.8 1.75 1.7 1.65 1.6 1.55 VIN = 2.7V Output Current I OUT [mA] 300 200 100 0 RP115x171x Load Current 50mA <=> 100mA 4.32 4.31 4.3 4.29 4.28 150 100 50 0 Output Current I OUT [mA] Output Voltage VOUT [V] VIN = 2.7V Output Voltage VOUT [V] RP115x171x Output Current I OUT [mA] NO. EA-274-150708 Output Voltage -5 0 5 10 15 20 25 30 35 40 time [μs] 31 RP115x Output Voltage V OUT [V] VIN = 5.25V Load Current 1mA <=> 250mA 4.4 4.35 4.3 4.25 4.2 4.15 300 200 100 0 Output Voltage -20 0 20 40 60 80 100 120 140 RP115x431x VIN = 5.25V Load Current 1mA <=> 500mA 4.4 4.35 4.3 4.25 4.2 4.15 600 400 200 0 Output Current I OUT [mA] RP115x431x Output Voltage V OUT [V] Output Current I OUT [mA] NO. EA-274-150708 Output Voltage -20 0 20 40 60 80 100 120 140 time [μs] time [μs] 0 Iout = 0mA Iout = 30mA Iout = 150mA 1 0.5 1 Output Voltage 0 -20 0 50 100 150 180 Time t [μs] VIN = 2.8V Output Voltage VOUT [V] 32 4 2 CE Input Voltage 0V => 2.8V 0 2 Output Voltage 1 Iout = 0mA Iout = 30mA Iout = 150mA 0 -20 0 50 100 Time t [μs] 4 CE Input Voltage 0V => 2.7V 2 0 2 1 Output Voltage Iout = 0mA Iout = 30mA Iout = 150mA 0 -20 0 50 100 150 180 Time t [μs] 150 180 CE Input Voltage VCE[V] RP115x181x VIN = 2.7V RP115x431x VIN = 5.25V 8 4 CE Input Voltage 0V => 5.25V 0 4 Output Voltage Iout = 0mA Iout = 30mA Iout = 150mA 2 0 -20 0 50 100 Time t [μs] 150 180 CE Input Voltage VCE[V] Output Voltage VOUT [V] CE Input Voltage 0V => 1.7V RP115x071x CE Input Voltage VCE [V] 2 Output Voltage VOUT [V] VIN = 1.7V Output Voltage VOUT [V] RP115x071x CE Input Voltage VCE [V] 14) Turn-on Waveform by CE Pin Signal (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C) RP115x NO. EA-274-150708 1 Output Voltage 0.5 Iout = 0mA Iout = 30mA Iout = 150mA 0 -50 0 100 200 300 Time t [μs] RP115x181D 400450 VIN = 2.8V CE Input Voltage 2.8V => 0V 4 2 Output Voltage VOUT [V] 0 2 Output Voltage Iout = 0mA Iout = 30mA Iout = 150mA 1 0 -50 0 100 200 300 Time t [μs] 400 450 CE Input Voltage VCE[V] Output Voltage VOUT [V] 0 VIN = 2.7V CE Input Voltage 2.7V => 0V 4 2 0 2 CE Input Voltage VCE[V] 1 RP115x171D Output Voltage Iout = 0mA Iout = 30mA Iout = 150mA 1 0 -50 0 100 200 300 Time t [μs] 400 450 RP115x431D VIN = 5.25V CE Input Voltage 5.25V => 0V 8 4 0 Output Voltage 4 CE Input Voltage VCE[V] CE Input Voltage 1.7V => 0V 2 Output Voltage VOUT [V] VIN = 1.7V Output Voltage VOUT [V] RP115x071D CE Input Voltage VCE[V] 15) Turn-off Waveform by CE Pin Signal (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C) Iout = 0mA Iout = 30mA Iout = 150mA 2 0 -50 0 100 200 300 Time t [μs] 400 450 33 RP115x NO. EA-274-150708 400 300 200 Inrush Current 100 0 -50 0 50 100 Time t [μs] 150 200 RP115L181x (LCON="L", CS mode) VIN = 2.8V 3 2.5 2 1.5 1 0.5 0 CE Input Voltage 0V => 2.8V Cout = 1.0μF Cout = 2.2μF Cout = 4.7μF Cout = 10μF 400 300 200 Inrush Current 100 0 -50 0 50 100 Time t [μs] 150 200 Inrush Current Irush [mA] Output Voltage 50 100 150 200 250 Time t [μs] Inrush Current Irush [mA] [V] / CE Input Voltage V CE[V] OUT 3 2.5 2 1.5 1 0.5 0 0 RP115L171x (LCON="L", CC mode) VIN = 2.7V CE Input Voltage 0V => 2.7V Output Voltage Cout = 22μF Inrush Current -50 0 50 400 300 200 100 0 100 150 200 250 Time t [μs] Inrush Current Irush [mA] Cout = 1.0μF Cout = 2.2μF Cout = 4.7μF Cout = 10μF Inrush Current Irush [mA] Output Voltage -50 RP115L181x (LCON="L", CC mode) VIN = 2.8V 3 2.5 2 1.5 1 0.5 0 CE Input Voltage 0V => 2.8V Output Voltage Cout = 22μF Inrush Current -50 0 400 300 200 100 0 50 100 150 200 250 Time t [μs] Inrush Current Irush [mA] CE Input Voltage 0V => 2.7V 400 300 Inrush Current 200 100 0 Output Voltage V 200 VIN = 2.7V 3 2.5 2 1.5 1 0.5 0 Output Voltage V [V] / CE Input Voltage V CE[V] 150 RP115L171x (LCON="L", CS mode) OUT Output Voltage V 34 50 100 Time t [μs] [V] / CE Input Voltage V CE[V] 0 Output Voltage OUT -50 CE Input Voltage 0V => 1.7V Cout = 47μF Output Voltage V 400 300 200 Inrush Current100 0 [V] / CE Input Voltage V CE[V] Cout = 1.0μF Cout = 2.2μF Cout = 4.7μF Cout = 10μF Cout = 22μF Inrush Current Irush [mA] Output Voltage 2 1.5 1 0.5 0 RP115L071x (LCON="L", CC mode) VIN = 1.7V OUT CE Input Voltage 0V => 1.7V Output Voltage V RP115L071x (LCON="L", CS mode) VIN = 1.7V 2 1.5 1 0.5 0 OUT [V] / CE Input Voltage V CE[V] Output Voltage V OUT [V] / CE Input Voltage V CE[V] 16) Inrush Current (CIN=Ceramic1.0μF, IOUT=0mA, Ta=25°C) RP115x 2 1.5 1 0.5 0 Output Voltage Cout = 1.0μF Cout = 2.2μF 500 Cout = 4.7μF Cout = 10μF 400 Cout = 22μF Cout = 47μF 300 200 Inrush Current100 0 -50 0 50 100 Time t [μs] 150 200 Inrush Current Irush [mA] CE Input Voltage 0V => 1.7V RP115x171x (LCON="H", CS mode) VIN = 2.7V 3 2.5 2 1.5 1 0.5 0 CE Input Voltage 0V => 2.7V Output Voltage Cout = 1.0μF Cout = 2.2μF Cout = 4.7μF Cout = 10μF 500 400 300 Inrush Current 200 100 0 -50 0 50 100 Time t [μs] 150 200 CE Input Voltage 0V => 5.25V 1 0 Cout = 10μF Inrush Current -50 2 1.5 1 0.5 0 0 50 100 150 Time t [μs] 400 300 200 100 0 200 250 Inrush Current Irush [mA] Output Voltage OUT [V] / CE Input Voltage V CE[V] 5 4 3 2 RP115x071x (LCON="H", CC mode) VIN = 1.7V CE Input Voltage 0V => 1.7V Output Voltage Cout = 100μF 500 Inrush Current400 300 200 100 0 -50 0 50 100 150 200 250 Time t [μs] Inrush Current Irush [mA] RP115x071x (LCON="H", CS mode) VIN = 1.7V Output Voltage V 200 6 RP115x171x (LCON="H", CC mode) VIN = 2.7V 3 2.5 CE Input Voltage 2 0V => 2.7V 1.5 Output Voltage 1 0.5 0 Cout = 22μF 500 400 300 Inrush Current 200 100 0 -50 0 50 100 150 200 250 Time t [μs] Inrush Current Irush [mA] Output Voltage V 150 [V] / CE Input Voltage V CE[V] 50 100 Time t [μs] RP115L431x (LCON="L", CC mode) VIN = 5.25V OUT 0 Inrush Current Irush [mA] Output Voltage V Output Voltage V OUT [V] / CE Input Voltage V CE[V] -50 OUT [V] / CE Input Voltage V CE[V] Inrush Current 400 300 200 100 0 Output Voltage V Cout = 1.0μF Cout = 2.2μF Cout = 4.7μF Inrush Current Irush [mA] Output Voltage [V] / CE Input Voltage V CE[V] CE Input Voltage 0V => 5.25V OUT 6 5 4 3 2 1 0 VIN = 5.25V Output Voltage V RP115L431x (LCON="L", CS mode) OUT [V] / CE Input Voltage V CE[V] NO. EA-274-150708 35 RP115x 150 200 RP115x431x (LCON="H", CS mode) VIN = 5.25V 6 CE Input Voltage 5 0V => 5.25V 4 3 Output Voltage 2 1 0 Cout = 1.0μF Cout = 2.2μF 500 Cout = 4.7μF 400 300 Inrush Current 200 100 0 -50 0 50 100 Time t [μs] 150 200 Cout = 22μF OUT [V] / CE Input Voltage V CE[V] Output Voltage Inrush Current -50 0 500 400 300 200 100 0 50 100 150 200 250 Time t [μs] Inrush Current Irush [mA] 50 100 Time t [μs] CE Input Voltage 0V => 2.8V RP115x431x (LCON="H", CC mode) VIN = 5.25V 6 5 4 3 2 1 0 CE Input Voltage 0V => 5.25V Output Voltage Cout = 10μF 500 400 300 200 100 0 Inrush Current -50 0 50 100 150 Time t [μs] 200 250 Inrush Current Irush [mA] 0 Inrush Current Irush [mA] Output Voltage V [V] / CE Input Voltage V CE[V] OUT Output Voltage V 36 -50 3 2.5 2 1.5 1 0.5 0 Output Voltage V 500 400 300 Inrush Current200 100 0 [V] / CE Input Voltage V CE[V] Cout = 1.0μF Cout = 2.2μF Cout = 4.7μF Cout = 10μF Inrush Current Irush [mA] Output Voltage RP115x181x (LCON="H", CC mode) VIN = 2.8V OUT 3 2.5 2 1.5 1 0.5 0 Output Voltage V RP115x181x (LCON="H", CS mode) VIN = 2.8V CE Input Voltage 0V => 2.8V OUT [V] / CE Input Voltage V CE[V] NO. EA-274-150708 RP115x NO. EA-274-150708 60 80 VIN = 1.7V IOUT = 500mA LCON Voltage 0V <=> 1.7V 0.72 0.71 0.7 0.69 0.68 0.67 Output Voltage -20 0 20 40 time t [μs] 60 80 RP115x431x Output Voltage VOUT[V] 3 2 1 0 VIN = 5.25V IOUT = 150mA 6 4 2 0 LCON Voltage 0V <=> 5.25V 4.34 4.33 4.32 4.31 4.3 4.29 Output Voltage -20 0 20 40 time t [μs] 60 80 LCON Voltage VLCON[V] 0.72 0.71 0.7 0.69 0.68 0.67 Output Voltage -20 0 20 40 time t [μs] 60 80 6 4 2 0 LCON Voltage VLCON[V] 20 40 time t [μs] VIN = 1.7V IOUT = 150mA 3 2 1 0 LCON Voltage 0V <=> 1.7V VIN = 5.25V IOUT = 500mA 6 4 2 0 LCON Voltage 0V <=> 5.25V LCON Voltage VLCON[V] 0 LCON Voltage VLCON[V] -20 Output Voltage VOUT[V] Output Voltage RP115x431x Output Voltage VOUT[V] 0.72 0.71 0.7 0.69 0.68 0.67 3 2 1 0 RP115x071x VIN = 5.25V IOUT = 1mA LCON Voltage 0V <=> 5.25V 4.34 4.33 4.32 4.31 4.3 4.29 Output Voltage -20 0 20 40 time t [μs] 60 80 RP115x431x Output Voltage VOUT[V] LCON Voltage 0V <=> 1.7V RP115x071x Output Voltage VOUT[V] VIN = 1.7V IOUT = 1mA LCON Voltage VLCON[V] Output Voltage VOUT[V] RP115x071x LCON Voltage VLCON[V] 17) LCON Pin Transient Response (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C) 4.34 4.33 4.32 4.31 4.3 4.29 Output Voltage -20 0 20 40 time t [μs] 60 80 37 RP115x NO. EA-274-150708 EQUIVALENT SERIES RESISTANCE (ESR) vs. OUTPUT CURRENT Ceramic type output capacitor is recommended for the RP115x but any capacitor with low ESR can be used. The graphs below show the relation between IOUT and ESR (noise level: average 40μV or less). Measurement Conditions Noise Frequency Band Width: 10Hz to 2MHz Operating Temperature Range: −40°C to +85°C Hatched Area: Output noise level is average 40μV or less. CIN, COUT: 1.0μF or more RP115x071x 100 Ta = -40°C to 85°C ESR [Ω] 10 1 0.1 1 0.1 0.01 0.01 0 38 V IN = 4.3V to 5.25V 100 Ta = -40°C to 85°C 10 ESR [Ω] RP115x431x V IN = 1.4V to 5.25V 200 400 600 800 Output Current IOUT [mA] 1000 0 200 400 600 800 Output Current IOUT [mA] 1000 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon. 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh. 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights. 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us. 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. 7. Anti-radiation design is not implemented in the products described in this document. 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information. Halogen Free Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012. http://www.e-devices.ricoh.co.jp/en/ Sales & Support Offices RICOH ELECTRONIC DEVICES CO., LTD. Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502 RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309 RICOH ELECTRONIC DEVICES KOREA CO., LTD. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713 RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 RICOH ELECTRONIC DEVICES CO., LTD. Taipei office Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Ricoh Electronics: RP115L111D-E2 RP115L121D-E2 RP115L291D5-E2 RP115L281D-E2 RP115L181D-E2 RP115L181D5-E2 RP115L401D-E2 RP115L121D5-E2 RP115L311D-E2 RP115L431B-E2 RP115L331D-E2 RP115L301D-E2 RP115L321D-E2 RP115H231D-T1-FE RP115L291D-E2 RP115H111D-T1-FE RP115L101D-E2 RP115H191D-T1-FE RP115H301D-T1-FE RP115L341B-E2 RP115L131D-E2 RP115H101D-T1-FE RP115L181B5-E2 RP115L331B-E2 RP115L171D-E2 RP115H121D8-T1-FE RP115L241B-E2 RP115H351D-T1-FE RP115L181B-E2 RP115L311B-E2 RP115H131D-T1-FE RP115L321B-E2 RP115L111D5-E2 RP115L151D-E2
Documents pareils
RP110x Datasheet
start-up time and the start-up slope angle are fixed inside the IC.
If the capacitance of the external output capacitor (COUT) becomes more than the certain capacitance, the
output current limit ci...