RP115L181D-E2 Datasheet

Transcription

RP115L181D-E2 Datasheet
RP115x SERIES
Low On Resistance/ Low Voltage 1ch 500mA/ 1.0A Alternative LDO
NO. EA-274-150708
OUTLINE
The RP115x Series are CMOS-based positive voltage regulators featuring 500mA/ 1.0A that provide high
ripple rejection, low dropout voltage, high output voltage accuracy, and low supply current. Internally, the RP115x
Series consist of a voltage reference unit, an error amplifier, a resistor-net for output voltage setting, a current
limit circuit, a thermal shutdown circuit, and a reverse current protection circuit.
The RP115x Series uses CMOS process for achieving low supply current, low On Resistance for low dropout
voltage (TYP. 0.195V (DFN1216-8, IOUT=1.0A, VSET=1.2V)) and CE function for long battery life.
Excellent ripple rejection, input transient response, and load transient response make this series ideal for the
power sources of mobile communication equipments.
The RP115x Series are available in the DFN1216-8 package for space saving and the SOT-89-5 (Output
current: 1.0A fixed) package for higher power applications.
The RP115L Series (DFN1216-8 package) can choose the output current limit between 1.0A or 500mA by
alternating the LCON pin between “H” or “L”.
The RP115H Series (SOT-89-5 package) can output only 1.0A since it does not include the LCON pin.
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
*1
Supply Current ········································ TYP. 110μA
Supply Current (Standby Mode) ·················· TYP. 0.5μA
Dropout Voltage ······································ TYP. 0.195V (DFN1216-8: IOUT=1.0A, VSET=1.2 V)
TYP. 0.235V (SOT-89-5: IOUT=1.0A, VSET=1.2 V)
Ripple Rejection ······································ TYP. 80dB (f=1kHz, VSET ≤ 1.8V)
TYP. 75dB (f=1kHz, VSET > 1.8V)
Output Voltage Accuracy ··························· ±1.0% (VSET ≥ 1.75V)
Output Voltage Temperature Coefficient ········ TYP. ±30ppm/ ºC (VSET ≥ 1.75V)
Line Regulation ······································· TYP. 0.02%/V
Package ················································ DFN1216-8, SOT-89-5
Output Voltage Range······························· 0.7V to 4.3V*1 (0.1V increments)
Built-in Short Current Limit Circuit ················ TYP. 60mA (DFN1216-8: LCON = "L")
Built-in Peak Current Limit
Built-in Thermal Shutdown Circuit ················ Thermal Shutdown Temperature: 165ºC
Built-in Constant Slope Circuit for Start-up
Built-in Inrush Current Suppression Circuit ···· TYP. 300mA (DFN1216-8: LCON="L")
Reverse Current Protection
Recommended Ceramic Capacitors ············· 1.0µF or more
For the voltages in 0.05V increments, please refer to SELECTION GUIDE.
APPLICATIONS
•
•
•
•
Power source for portable communication equipments.
Power source for electrical appliances such as cameras, VCRs and camcorders.
Power source for battery-powered equipments.
Local power source for home appliances, printers, scanners, office equipment machines.
1
RP115x
NO. EA-274-150708
BLOCK DIAGRAMS
RP115Lxx1B
VDD
RP115Lxx1D
VOUT
-
VDD
-
VFB
+
Vref
VOUT
Current Limit
Thermal Shutdown
Current Limit
Thermal Shutdown
Reverce
Ditector
Reverce
Ditector
GND
CE
GND
CE
LCON
LCON
RP115Hxx1B
VDD
RP115Hxx1D
VOUT
Vref
VDD
VOUT
-
VFB
+
Vref
Current Limit
Thermal Shutdown
Reverce
Detector
GND
CE
Note: The RP115H does not include the LCON pin. The output current limit is fixed at 1A.
2
VFB
+
Current Limit
Thermal Shutdown
Reverce
Detector
CE
VFB
+
Vref
GND
RP115x
NO. EA-274-150708
SELECTION GUIDE
The output voltage, the auto-discharge function*2, and the package type for the ICs are user-selectable.
Product Name
RP115Lxx1∗(y)-E2
RP115Hxx1∗(y)-T1-FE
Package
Quantity per Reel
Pb Free
Halogen Free
DFN1216-8
5,000 pcs
Yes
Yes
SOT-89-5
1,000 pcs
Yes
Yes
xx: Specify the output voltage (VSET) within the range of 0.7V (07) to 4.3V (43) in 0.1V steps.
(y): If the output voltage includes the 3rd digit, indicate the digit of 0.01.
(0.75V, 1,15V, 1.25V, 1.35V, 1.75V, 1.85V, 2.15V, 2.85V, 2.95V)
Ex. If the output voltage is 0.75V, RP115x071∗5
1.15V, RP115x111∗5
1.25V, RP115x121∗5
1.35V, RP115x131∗5
1.75V, RP115x171∗5
1.85V, RP115x181∗5
2.15V, RP115x211∗5
2.85V, RP115x281∗5
2.95V, RP115x291∗5
∗: Specify the version with auto-discharge function or without auto-discharge function.
(B) without auto-discharge function
(D) with auto-discharge function
*2
Auto-discharge function quickly lowers the output voltage to 0V by releasing the electrical charge in the external
capacitor when the chip enable signal is switched from the active mode to the standby mode.
3
RP115x
NO. EA-274-150708
PIN CONFIGURATIONS
DFN1216-8
Bottom View
Top View
8
7
SOT-89-5
6
5
5
6
7
8
3
2
1
5
4
∗3
1
2
3
4
4
1
2
3
PIN DESCRIPTION
RP115L: DFN1216-8*3
Pin No
Symbol
Pin Description
VOUT
*4
Output Pin
2
VOUT
*4
Output Pin
3
LCON
1
*4
Output Current Limit Alternate Pin (“H”=1A, “L”=500mA)
4
VFB
Feedback Pin
5
GND
Ground Pin
6
CE
7
8
Chip Enable Pin
*5
Input Pin
*5
Input Pin
VDD
VDD
*3
The exposed tab on the bottom of the package enhances thermal performance and is electrically connected to
GND (substrate level). It is recommended that the exposed tab be connected to the ground plane on the board or
otherwise be left open.
*4 The V
OUT pins and the VFB pin must be wired together when mounting on the board.
*5 The V
DD pins must be wired together when mounting on the board.
RP115H: SOT-89-5
Pin No
*6
Pin Description
1
VFB
Feedback Pin
2
GND
Ground Pin
3
CE
4
VDD
5
*6
Symbol
VOUT
Chip Enable Pin
*6
Input Pin
Output Pin
The VOUT pin and the VFB pin must be wired together when mounting on the board.
Notes: Output Current Limit is fixed at 1A.
4
RP115x
NO. EA-274-150708
ABSOLUTE MAXIMUM RATINGS
Symbol
Rating
Unit
6.0
V
VIN
Input Voltage
VCE
Input Voltage (CE Pin)
-0.3 to 6.0
V
VLCON
Input Voltage (LCON Pin)
−0.3 to 6.0
V
VOUT
Output Voltage
−0.3 to 6.0
V
PD
Ta
Tstg
*7
Item
Power Dissipation (Standard Land Pattern)*7
DFN1216-8
625
SOT-89-5
900
mW
Operating Temperature Range
-40 to +85
ºC
Storage Temperature Range
-55 to +125
ºC
For Power Dissipation and Standard Land Pattern, please refer to PACKAGE INFORMATION.
ABSOLUTE MAXIMUM RATINGS
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent
damages and may degrade the lifetime and safety for both device and system using the device in the field. The
functional operation at or over these absolute maximum ratings is not assured.
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)
All of electronic equipment should be designed that the mounted semiconductor devices operate within the
recommended operating conditions. The semiconductor devices cannot operate normally over the recommended
operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And
the semiconductor devices may receive serious damage when they continue to operate over the recommended
operating conditions.
5
RP115x
NO. EA-274-150708
ELECTRICAL CHARACTERISTICS
VIN=VSET*8+1.0V, IOUT=1mA, CIN=COUT=1.0μF, unless otherwise noted.
The specifications in
are guaranteed by design engineering at -40ºC ≤ Ta ≤ 85ºC.
RP115x
Symbol
(Ta=25ºC)
Item
Conditions
Ta=25°C
VOUT
Output Voltage
-40°C≤Ta≤85°C
ILIM
Typ.
Max.
Unit
VSET≥1.75V
x0.99
x1.01
V
VSET<1.75V
-18
+18
mV
VSET≥1.75V
x0.985
x1.015
V
VSET<1.75V
Refer to Output Voltage
LCON=”L”
500
mA
LCON=”H”*9
1.0
A
Output Current Limit
VIN=VSET+0.5V
∆VOUT
/∆IOUT
Load Regulation
VIN=VSET+0.5V
1mA≤IOUT≤500mA
VIN=VSET+0.5V
1mA≤IOUT≤1.0A
VDIF
Dropout Voltage
ISS
Supply Current
IOUT=0mA
110
160
μA
Istandby
Standby Current
VCE=0V
0.5
3.0
μA
∆VOUT
/∆VIN
Line Regulation
VSET+0.5V≤VIN≤5.25V (VIN≥1.4V)
0.02
0.10
%/V
RR
Ripple Rejection
f=1kHz,
Ripple 0.2Vp-p,
VIN=VSET+1.0V,
IOUT=30mA
VIN
Input Voltage*10
∆VOUT
/∆Ta
LCON=”L”
20
1
LCON=”H”*9
Refer to Dropout Voltage
VSET>1.8V
75
dB
VSET≤1.8V
80
dB
1.4
±30
VSET<1.75V
±100
LCON=”L”
60
ISC
Short Current Limit
VOUT=0V*11
ICE
CE Pull-down Current
0.05
VCEH
CE Input Voltage “H”
1.0
VCEL
CE Input Voltage “L”
VLCONH
VLCONL
TTSD
TTSR
5.25
VSET≥1.75V
-40°C≤Ta≤85°C
LCON Pull-down Current
(RP115L only)
LCON Input Voltage “H”
(RP115L only)
LCON Input Voltage “L”
(RP115L only)
Thermal Shutdown
Temeprature
Thermal Shutdown
Released Temperature
mV
40
Output Voltage
Temperature Coefficient
ILCON
6
Min.
LCON=”H”
*9
ppm
/ºC
mA
110
0.05
0.3
V
0.6
μA
V
0.3
0.4
V
0.6
µA
V
1.0
0.4
V
Junction Temperature
165
ºC
Junction Temperature
110
ºC
RP115x
NO. EA-274-150708
Symbol
IREV
Item
Conditions
VSET≥1.75V
VOUT=VSET+1.0V,
0≤VIN≤VOUT
VSET<1.75V
Reverse Current
Detector Offset Voltage in
VREV_DET*12 Reverse Current
Protection Mode*13
Release Offset Voltage in
VREV_REL*12 Reverse Current
Protection Mode*14
en
Typ.
7.5
10
VOUT≥0.7V, 0≤VIN≤5.25V
20
VOUT≥0.7V, 0≤VIN≤5.25V
30
VSET≥1.75V
BW=10Hz to
100kHz
Output Noise
Min.
VSET<1.75V
RLOW
Auto-discharge Nch Tr.
ON Resistance
(RP115xDxx1D only)
VIN=4.0V, VCE=0V
IRUSH
Inrush Current Limit
CC Mode*15
LCON=”L”
LCON=”H”*9
Max.
Unit
µA
mV
50
mV
17
x VSET
35
x VSET
µVrms
60
Ω
300
500
mA
All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25ºC) except Output
Noise, Ripple Rejection, and Output Voltage Temperature Coefficient.
*8 V
SET=Set Output Voltage
*9 RP115H: Same Electrical Characteristics as LCON=”H”.
*10 The maximum input voltage listed under Electrical Characteristics is 5.25V. If for any reason the input voltage exceeds
5.25V, it has to be no more than 5.5V with 500 cumulative operating hours.
*11 Short Current is the value when V
OUT and GND are short-circuited after the device starts up. Inrush Current flows when
the device starts up while VOUT and GND are short-circuited.
*12 Guaranteed operating range of reverse current protection circuit is V
OUT≥0.7V. When VIN=VOUT=0V, reverse current
protection mode is constantly active.
*13 V
REV_DET=VIN−VOUT
*14 V
REV_REL=VIN−VOUT
*15 For CC (Constant Current) Mode, please refer to Start-up Characteristics.
Output Voltage
Set Output Voltage
VSET (V)
Output Voltage
VOUT (mV)
TYP.
MAX.
0.7
−33
+28
0.8
−35
+29
0.9
−37
+30
1.0
−39
+31
1.1
−41
+33
1.2
−43
+34
1.3
−45
+35
1.4
−47
+36
1.5
−49
+38
1.6
−51
+39
1.7
−53
+40
7
RP115x
NO. EA-274-150708
Dropout Voltage
RP115L: DFN1216-8
(Ta=25ºC)
Dropout Voltage
VDIF (V)
Set Output Voltage
VSET (V)
IOUT=500mA
IOUT=1000mA
TYP.
MAX.
TYP.
MAX.
0.7 ≤ VSET < 1.1
*16
*16
*16
*16
1.1 ≤ VSET < 1.2
*16
*16
*16
0.300
1.2 ≤ VSET < 1.3
*16
*16
0.195
0.275
1.3 ≤ VSET < 1.5
0.095
0.135
0.185
0.260
1.5 ≤ VSET < 1.75V
0.085
0.120
0.165
0.235
1.75V ≤ VSET < 2.6
0.075
0.110
0.150
0.215
2.6 ≤ VSET < 3.3
0.065
0.090
0.130
0.180
3.3 ≤ VSET ≤ 4.3
0.060
0.085
0.125
0.170
If the dropout voltage falls below the release offset value of reverse current protection mode (VREV_REL), the reverse
current protection circuit may repeat the detection and release operations. Please refer to Reverse Current
Protection Circuit.
*16 Input voltage should be equal or more than the minimum operating voltage (1.4V).
RP115H: SOT-89-5
Set Output Voltage
VSET (V)
(Ta=25ºC)
Dropout Voltage
VDIF (V)
IOUT=1000mA
TYP.
MAX.
0.7 ≤ VSET < 1.1
*16
*16
1.1 ≤ VSET < 1.2
*16
0.350
1.2 ≤ VSET < 1.3
0.235
0.330
1.3 ≤ VSET < 1.5
0.225
0.320
1.5 ≤ VSET < 1.75V
0.205
0.295
1.75V ≤ VSET < 2.6
0.190
0.270
2.6 ≤ VSET < 3.3
0.170
0.240
3.3 ≤ VSET ≤ 4.3
0.165
0.225
If the dropout voltage falls below the release offset value of reverse current protection mode (VREV_REL), the reverse
current protection circuit may repeat the detection and release operations. Please refer to Reverse Current
Protection Circuit.
*16 Input voltage should be equal or more than the minimum operating voltage (1.4V).
8
RP115x
NO. EA-274-150708
TYPICAL APPLICATION
VDD
VIN
VOUT
VOUT*18
RP115x Series
CIN
LCON*17 VFB*18
COUT
LCON Control
CE
GND
CE Control
External Parts Example
CIN: Ceramic Capacitor, 1.0µF, muRata GRM155R61A105KE15
COUT: Ceramic Capacitor, 1.0µF, muRata GRM155R61A105KE15
Ceramic Capacitor, 2.2µF, muRata GRM155R61A225KE95
Notes:
*17
The LCON pin is only included in RP115L (DFN1216-8).
*18
The VOUT pin and the VFB pin should be wired together when mounting on the board.
TECHNICAL NOTES
Phase Compensation
In LDO (Low Drop Out) regulators, phase compensation is provided to secure stable operation even when
the load current is varied. For this purpose, use a capacitor COUT with 1.0μF or more and proper ESR
(Equivalent Series Resistance).
Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature
characteristics are different. Evaluate the circuit taking actual characteristics into account. Especially for the
1.75-V-output product, it is recommended to use 2.2µF or higher output capacitor when the product is used
under the low-temperature environment such as −20°C or lower.
If you use a tantalum type capacitor and the ESR value of the capacitor is large, the output might be
unstable. Evaluate your circuit including consideration of frequency characteristics.
PCB Layout
Ensure the VDD and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable
operation may result. Connect a capacitor CIN with 1.0μF or more between VDD and GND pins, and as close as
possible to the pins.
Likewise, connect COUT capacitor with suitable values between the VOUT and GND pins, and as close as
possible to the pins.
9
RP115x
NO. EA-274-150708
REVERSE CURRENT PROTECTION CIRCUIT
The RP115x Series include a Reverse Current Protection Circuit, which stops the reverse current from VOUT
pin to VDD pin or to GND pin when VOUT becomes higher than VIN.
Usually, the LDO using Pch output transistor contains a parasitic diode between VDD pin and VOUT pin.
Therefore, if VOUT is higher than VIN, the parasitic diode becomes forward direction. As a result, the current
flows from VOUT pin to VDD pin.
The ICs of this series switches the mode to the reverse current protection mode before VIN becomes lower
than VOUT by connecting the parasitic diode of Pch output transistor to the backward direction, and connecting
the gate to VOUT pin. As a result, the Pch output transistor is turned off. However, from VOUT pin to GND pin,
via the internal divider resistors, very small current IREV flows.
Switching to either the normal mode or to the reverse current protection mode is determined by the
magnitude of VIN voltage and VOUT voltage. For the stable operation, offset and hysteresis are set as the
threshold. The detector threshold is set to VREV_DET and the released voltage is set to VREV_REL. Therefore, the
minimum dropout voltage under the small load current condition is restricted by the value of VREV_REL.
Following figures show the diagrams of each mode, and the load characteristics of each mode. When giving
the VOUT pin a constant-voltage and decreasing the VIN voltage, the dropout voltage will become lower than
VREV_DET. As a result, the reverse current protection starts to function to stop the load current.
By increasing the dropout voltage higher than VREV_REL, the protection mode will be released to let the load
current to flow. If the dropout voltage to be used is lower than VREV_REL, the detection and the release may be
repeated.
The operating voltage guaranteed level of the reverse current protection circuit is for VOUT ≥ 0.7V. If VIN=0V,
the reverse current protection mode becomes always active.
VDD
Reverse
Detector
VDD
Reverse
Detector
IOUT
VOUT
VOUT
+
+
Vref
Vref
GND
Figure 1. Normal Operation Mode
10
IREV
CE
GND
CE
Figure 2. Reverse Current Protection Mode
RP115x
Output/ Reverse Current
IOUT/ IREV
Input/ Output Voltage
VIN/ VOUT [V]
NO. EA-274-150708
VIN
VREV_REL
VREV_DET
VOUT
IOUT
Normal Mode
Reverse Current Protection Mode
Normal
Mode
0
IREV
Figure 3. Detection/ Release Timing of Reverse Current Protection Function
11
RP115x
NO. EA-274-150708
START-UP CHARACTERISTICS
Constant slope circuit is included in the RP115x Series to prevent the overshoot of the output voltage.
The start-up time (tON) is 100µs (Typ.).
If inrush current increases due to the large capacitance of COUT, the operation mode will be shifted from
Constant Slope (CS) mode to Constant Current (CC) mode. The CC mode maintains a constant level of
inrush current. In the CC mode, tON varies according to the size of COUT and the amount of load current.
Start-up Time and Inrush Current Estimations
Start-up time and inrush current in the CS mode and the CC mode can be estimated as follows.
・CS Mode
Start-up Time: tON = 100μs (TYP.)
Inrush Current: IRUSH = COUT ∙ VSET / tON + IOUT*19
Note: If the result of the above calculation is more than the following values, the operation mode will be
shifted from the CS mode to the CC mode.
LCON=”L”······························· 300mA (TYP.)
LCON=”H” ······························ 500mA (TYP.)
・CC Mode
Start-up Time: tON = COUT ∙ VSET / ICO*20
Inrush Current: IRUSH LCON=”L”································ 300mA (TYP.)
LCON=”H” ······························· 500mA (TYP.)
*19
*20
IOUT: When RLOAD is connected to load, IOUT can be calculated by RLOAD = VSET / IOUT.
ICO: ICO is a charge current of COUT and can be calculated roughly by IRUSH ≈ ICO + IOUT.
IRUSH
VDD
VIN
CIN
LCON Control
VOUT
RP115x Series
LCON VFB
IOUT*19
COUT RLOAD
CE
GND
CE Control
Circuit Example
Note: The LCON pin is only included in RP115L (DFN1216-8).
RP115H: Same Electrical Characteristics as LCON=”H”.
12
ICO*20
RP115x
NO. EA-274-150708
VIN
VIN ≥1.4V
CE
CS Mode
VOUT
tON = 100µs (TYP.)
VSET
60µs (TYP.)
IOUT ≤ 500mA (LCON=”L”)
≤ 1.0A (LCON=”H”)
IRUSH = COUT • VSET / tON + IOUT
IOUT
IRUSH
CC Mode
VOUT
tON = COUT • VSET / ICO
VSET
60µs (TYP.)
IOUT ≤ 150mA (LCON=”L”)
≤ 350mA (LCON=”H”)
IRUSH
IOUT ≤ 500mA (LCON=”L”)
≤ 1.0A (LCON=”H”)
IRUSH = 300mA (LCON=”L”)
500mA (LCON=”H”)
IOUT
Precautions Before Use
During the start-up, the inrush current limit circuit is in operation; therefore, the load current (IOUT) should be
drawn after the output voltage (VOUT) reached the preset value (Best timing: tON + 60µs or more). If the load
current is drawn during the start-up, it should be within the following values.
LCON=”L” ···················································· IOUT ≤ 150mA
LCON=”H”···················································· IOUT ≤ 350mA
In the CC mode, IRUSH is limited until VOUT reaches the preset value. IRUSH ≈ ICO + IOUT is true; therefore, if large
IOUT is drawn during the start-up, the charge current (ICO) of COUT decreases and tON becomes longer. Please
refer to Start-up Time and Inrush Current Estimations.
In order to control the start-up operation by using the CS mode or CC mode, input “H” into the CE pin while
VIN ≥ 1.4V. If “H” is input into the CE pin while VIN is less than the minimum operating voltage, the operation may
not be controlled by the CS mode or CC mode.
When starting up the device while the short circuit is occurring between the VOUT pin and GND, the short
current protection circuit does not control the current but the current limit circuit does.
When there’s excessive heat generation in the device, thermal shutdown circuit shuts down the circuitry before
the device overheats dangerously.
13
RP115x
NO. EA-274-150708
LCON PIN OPERATION
By alternating the LCON pin between “H” or “L”, the RP115L can choose the output current limit either
1.0A or 500mA. Please note that during start-up (tON + 60µs (TYP.)), do not change the logic of the LCON
pin.
LCON=”L” ································ 500mA
LCON=”H” ······························· 1.0A
Application Example
Even when using the RP115L with LCON=”H”, IRUSH in the CC mode can be reduced from 500mA (TYP.)
to 300mA (TYP.) by starting up the IC with LCON=”L”. Please refer to START-UP CHARACTERISTICS.
14
RP115x
NO. EA-274-150708
PACKAGE INFORMATION
Power Dissipation (DFN1216-8)
Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the
Measurement Conditions below.
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind Velocity=0m/s)
Board Material
Glass cloth epoxy plastic (Double sided)
Board Dimensions
40mm*40mm*1.6mm
Copper Ratio
Top side: Approx. 50%, Back side: Approx. 50%
Through-holes
φ 0.5mm * 28pcs
Measurement Result
(Ta=25°C)
Standard Land Pattern
625mW (Tjmax=125°C)
781mW (Tjmax=150°C)
θja = (125-25°C)/0.625W = 160°C/W
Power Dissipation
Thermal Resistance
θjc = 26 °C/W
40
781
800
700
600
625
500
40
Power Dissipation PD (mW)
900
400
300
200
100
0
0
25
50
75
85
100
125
150
Measurement Board Pattern
Ambient Temperature (°C)
IC Mount Area (Unit: mm)
Power Dissipation
Note: The above graph shows the power dissipation of the package based on Tjmax=125ºC and Tjmax=150ºC.
Operating the IC within the shaded area in the graph might have an influence on its lifetime.
Operating time must be within the time limit described in the table below.
Operating Time
Estimated Years
(Operating 4 hrs/ day)
13,000 hours
9 Years
15
RP115x
NO. EA-274-150708
B
X4
1.30±0.05
5
8
*
1.20
0.05
4
1
0.40
0.18±0.05
Bottom View
0.05 S
0.05
0.30±0.05
C0.15
0.4max
INDEX
S
0.20±0.05
1.60
A
0.20±0.05
Package Dimensions (DFN1216-8)
0.05
M
AB
(Unit : mm)
exposed tab is substrate level (GND).
* The
It is recommended that the exposed tab be connected to the
ground plane on the board or otherwise be left open.
The GND pins must be wired together when mouting on the
board.
DFN1216-8 Package Dimensions
Mark Specification (DFN1216-8)
: Product Code … Please refer to Mark Specification Table (DFN1216-8).
: Lot Number … Alphanumeric Serial Number


DFN1216-8 Mark Specification
16
RP115x
NO. EA-274-150708
Mark Specification Table (DFN1216-8)
RP115Lxx1B
Product Name
R P11 5L0 71B
R P11 5L0 81B
R P11 5L0 91B
R P11 5L1 01B
R P11 5L111B
R P11 5L1 21B
R P11 5L1 31B
R P11 5L1 41B
R P11 5L1 51B
R P11 5L1 61B
R P11 5L1 71B
R P11 5L1 81B
R P11 5L1 91B
R P11 5L2 01B
R P11 5L211B
R P11 5L2 21B
R P11 5L2 31B
R P11 5L2 41B
R P11 5L2 51B
R P11 5L2 61B
R P11 5L2 71B
R P11 5L2 81B
R P11 5L2 91B
R P11 5L3 01B
R P11 5L311B
R P11 5L3 21B
R P11 5L3 31B
R P11 5L3 41B
R P11 5L3 51B
R P11 5L3 61B
R P11 5L3 71B
R P11 5L3 81B
R P11 5L3 91B
R P11 5L4 01B
R P11 5L411B
R P11 5L4 21B
R P11 5L4 31B
R P11 5L0 71B5
R P11 5L1 21B5
R P11 5L1 81B5
R P11 5L2 81B5
R P11 5L1 31B5
R P11 5L111B5
R P11 5L211B5
R P11 5L2 91B5
R P11 5L1 71B5
RP115Lxx1D

DU0 7
DU0 8
DU0 9
DU1 0
DU11
DU1 2
DU1 3
DU1 4
DU1 5
DU1 6
DU1 7
DU1 8
DU1 9
DU2 0
DU2 1
DU2 2
DU2 3
DU2 4
DU2 5
DU2 6
DU2 7
DU2 8
DU2 9
DU3 0
DU3 1
DU3 2
DU3 3
DU3 4
DU3 5
DU3 6
DU3 7
DU3 8
DU3 9
DU4 0
DU4 1
DU4 2
DU4 3
DU0 0
DU0 1
DU0 2
DU0 3
DU0 4
DU0 5
DU0 6
DU6 0
DU6 1
VSET
0.7V
0.8V
0.9V
1.0V
1.1V
1.2V
1.3V
1.4V
1.5V
1.6V
1.7V
1.8V
1.9V
2.0V
2.1V
2.2V
2.3V
2.4V
2.5V
2.6V
2.7V
2.8V
2.9V
3.0V
3.1V
3.2V
3.3V
3.4V
3.5V
3.6V
3.7V
3.8V
3.9V
4.0V
4.1V
4.2V
4.3V
0.75V
1.25V
1.85V
2.85V
1.35V
1.15V
2.15V
2.95V
1.75V
Product Name
R P11 5L0 71D
R P11 5L0 81D
R P11 5L0 91D
R P11 5L1 01D
R P11 5L111D
R P11 5L1 21D
R P11 5L1 31D
R P11 5L1 41D
R P11 5L1 51D
R P11 5L1 61D
R P11 5L1 71D
R P11 5L1 81D
R P11 5L1 91D
R P11 5L2 01D
R P11 5L211D
R P11 5L2 21D
R P11 5L2 31D
R P11 5L2 41D
R P11 5L2 51D
R P11 5L2 61D
R P11 5L2 71D
R P11 5L2 81D
R P11 5L2 91D
R P11 5L3 01D
R P11 5L311D
R P11 5L3 21D
R P11 5L3 31D
R P11 5L3 41D
R P11 5L3 51D
R P11 5L3 61D
R P11 5L3 71D
R P11 5L3 81D
R P11 5L3 91D
R P11 5L4 01D
R P11 5L411D
R P11 5L4 21D
R P11 5L4 31D
R P11 5L0 71D5
R P11 5L1 21D5
R P11 5L1 81D5
R P11 5L2 81D5
R P11 5L1 31D5
R P11 5L111D5
R P11 5L211D5
R P11 5L2 91D5
R P11 5L1 71D5

D V0 7
D V0 8
D V0 9
D V1 0
D V11
D V1 2
D V1 3
D V1 4
D V1 5
D V1 6
D V1 7
D V1 8
D V1 9
D V2 0
D V2 1
D V2 2
D V2 3
D V2 4
D V2 5
D V2 6
D V2 7
D V2 8
D V2 9
D V3 0
D V3 1
D V3 2
D V3 3
D V3 4
D V3 5
D V3 6
D V3 7
D V3 8
D V3 9
D V4 0
D V4 1
D V4 2
D V4 3
D V0 0
D V0 1
D V0 2
D V0 3
D V0 4
D V0 5
D V0 6
D V6 0
D V6 1
VSET
0.7V
0.8V
0.9V
1.0V
1.1V
1.2V
1.3V
1.4V
1.5V
1.6V
1.7V
1.8V
1.9V
2.0V
2.1V
2.2V
2.3V
2.4V
2.5V
2.6V
2.7V
2.8V
2.9V
3.0V
3.1V
3.2V
3.3V
3.4V
3.5V
3.6V
3.7V
3.8V
3.9V
4.0V
4.1V
4.2V
4.3V
0.75V
1.25V
1.85V
2.85V
1.35V
1.15V
2.15V
2.95V
1.75V
17
RP115x
NO. EA-274-150708
Power Dissipation (SOT-89-5)
Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the
Measurement Conditions below.
Measurement Conditions
Environment
Board Material
Board Dimensions
Copper Ratio
Through-hole
High Wattage Land Pattern
Standard Land Pattern
Mounting on Board (Wind Velocity=0m/s)
Glass Cloth Epoxy Plastic (Doublesided)
30mm x 30mm x 1.6mm
Topside: Approx. 20%
Backside: Approx. 100%
φ0.85mm x 10pcs
Mounting on Board (Wind Velocity=0m/s)
Glass Cloth Epoxy Plastic (Double-sided)
50mm x 50mm x 1.6mm
Topside: Approx. 10%
Backside: Approx. 100%
-
Measurement Result
(Ta=25°C)
High Wattage Land Pattern
1300mW
Thermal Resistance
77°C/W
Power Dissipation PD (mW)
Power Dissipation
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
Standard Land Pattern
900mW (Tjmax=125°C)
1125mW (Tjmax=150°C)
111°C/W
Free Air
500mW
200°C/W
On Board
(High Wattage Land Pattern)
On Board
(Standard Land Pattern)
Free Air
0
25
50
75 85 100
125
150
Ambient Temperature (°C)
Power Dissipation
30
50
50
15
15
Note: The above graph shows the power
dissipation of the package based on
Tjmax=125°C and Tjmax=150°C.
Operating the IC within the shaded area in
The graph might have an influence on its
lifetime. Operating time must be within the
time limit described in the table below.
7.5
30
7.5
High Wattage
Standard
Measurement Board Pattern
IC Mount Area Unit: mm
18
Operating Time
Estimated years
(Operating four hours/day)
13,000 hours
9 years
RP115x
NO. EA-274-150708
Package Dimensions (SOT-89-5)
4.5±0.1
1.5±0.1
0.4±0.3
2
5
4.35±0.1
φ1.0
1
4
4
2.5±0.1
1.00±0.2
5
0.4±0.1
0.3±0.2
0.42±0.1
0.1 S
3
3
2
1
0.4±0.1
0.3±0.2
1.6±0.2
Bottom View
S
0.42±0.1
0.42±0.1
0.47±0.1
1.5±0.1
1.5±0.1
Unit : mm
SOT-89-5 Package Dimensions
Mark Specification (SOT-89-5)
: Product Code … Please refer to RP115H Series Mark Specification Table.
: Lot Number … Alphanumeric Serial Number


SOT-89-5 Mark Specification
19
RP115x
NO. EA-274-150708
Mark Specification Table (SOT-89-5)
RP115Hxx1B
Product Name
R P11 5H071 B
R P11 5H081 B
R P11 5H091 B
R P11 5H101 B
R P11 5H111B
R P11 5H121 B
R P11 5H131 B
R P11 5H141 B
R P11 5H151 B
R P11 5H161 B
R P11 5H171 B
R P11 5H181 B
R P11 5H191 B
R P11 5H201 B
R P11 5H211 B
R P11 5H221 B
R P11 5H231 B
R P11 5H241 B
R P11 5H251 B
R P11 5H261 B
R P11 5H271 B
R P11 5H281 B
R P11 5H291 B
R P11 5H301 B
R P11 5H311 B
R P11 5H321 B
R P11 5H331 B
R P11 5H341 B
R P11 5H351 B
R P11 5H361 B
R P11 5H371 B
R P11 5H381 B
R P11 5H391 B
R P11 5H401 B
R P11 5H411 B
R P11 5H421 B
R P11 5H431 B
R P11 5H071 B5
R P11 5H121 B5
R P11 5H181 B5
R P11 5H281 B5
R P11 5H131 B5
R P11 5H111B5
R P11 5H211 B5
20
RP115Hxx1D

D0 7F
D0 8F
D0 9F
D1 0F
D11 F
D1 2F
D1 3F
D1 4F
D1 5F
D1 6F
D1 7F
D1 8F
D1 9F
D2 0F
D2 1F
D2 2F
D2 3F
D2 4F
D2 5F
D2 6F
D2 7F
D2 8F
D2 9F
D3 0F
D3 1F
D3 2F
D3 3F
D3 4F
D3 5F
D3 6F
D3 7F
D3 8F
D3 9F
D4 0F
D4 1F
D4 2F
D4 3F
D0 0F
D0 1F
D0 2F
D0 3F
D0 4F
D0 5F
D0 6F
VSET
0.7V
0.8V
0.9V
1.0V
1.1V
1.2V
1.3V
1.4V
1.5V
1.6V
1.7V
1.8V
1.9V
2.0V
2.1V
2.2V
2.3V
2.4V
2.5V
2.6V
2.7V
2.8V
2.9V
3.0V
3.1V
3.2V
3.3V
3.4V
3.5V
3.6V
3.7V
3.8V
3.9V
4.0V
4.1V
4.2V
4.3V
0.75V
1.25V
1.85V
2.85V
1.35V
1.15V
2.15V
Product Name
R P11 5H071D
R P11 5H081D
R P11 5H091D
R P11 5H101D
R P11 5H111D
R P11 5H121D
R P11 5H131D
R P11 5H141D
R P11 5H151D
R P11 5H161D
R P11 5H171D
R P11 5H181D
R P11 5H191D
R P11 5H201D
R P11 5H211D
R P11 5H221D
R P11 5H231D
R P11 5H241D
R P11 5H251D
R P11 5H261D
R P11 5H271D
R P11 5H281D
R P11 5H291D
R P11 5H301D
R P11 5H311D
R P11 5H321D
R P11 5H331D
R P11 5H341D
R P11 5H351D
R P11 5H361D
R P11 5H371D
R P11 5H381D
R P11 5H391D
R P11 5H401D
R P11 5H411D
R P11 5H421D
R P11 5H431D
R P11 5H071D 5
R P11 5H121D 5
R P11 5H181D 5
R P11 5H281D 5
R P11 5H131D 5
R P11 5H111D5
R P11 5H211D 5

D0 7G
D0 8G
D0 9G
D1 0G
D11 G
D1 2G
D1 3G
D1 4G
D1 5G
D1 6G
D1 7G
D1 8G
D1 9G
D2 0G
D2 1G
D2 2G
D2 3G
D2 4G
D2 5G
D2 6G
D2 7G
D2 8G
D2 9G
D3 0G
D3 1G
D3 2G
D3 3G
D3 4G
D3 5G
D3 6G
D3 7G
D3 8G
D3 9G
D4 0G
D4 1G
D4 2G
D4 3G
D0 0G
D0 1G
D0 2G
D0 3G
D0 4G
D0 5G
D0 6G
VSET
0.7V
0.8V
0.9V
1.0V
1.1V
1.2V
1.3V
1.4V
1.5V
1.6V
1.7V
1.8V
1.9V
2.0V
2.1V
2.2V
2.3V
2.4V
2.5V
2.6V
2.7V
2.8V
2.9V
3.0V
3.1V
3.2V
3.3V
3.4V
3.5V
3.6V
3.7V
3.8V
3.9V
4.0V
4.1V
4.2V
4.3V
0.75V
1.25V
1.85V
2.85V
1.35V
1.15V
2.15V
RP115x
NO. EA-274-150708
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Input Voltage (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C)
RP115x171x
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Output Voltage V OUT[V]
Output Voltage V OUT[V]
RP115x071x
Iout = 1mA
Iout = 30mA
Iout = 50mA
0
1
2
3
4
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
5
Iout = 1mA
Iout = 30mA
Iout = 50mA
0
1
Iout = 1mA
Iout = 30mA
Iout = 50mA
1
2
3
4
5
RP115x431x
Output Voltage V OUT[V]
Output Voltage V OUT[V]
RP115x181x
0
3
Input Voltage V IN[V]
Input Voltage V IN[V]
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
2
4
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
5
Iout = 1mA
Iout = 30mA
Iout = 50mA
0
1
Input Voltage V IN[V]
2
3
4
5
Input Voltage V IN[V]
2) Supply Current vs. Input Voltage (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C)
RP115x171x
140
140
120
120
Supply Current ISS[μA]
Supply Current ISS[μA]
RP115x071x
100
80
60
40
20
0
100
80
60
40
20
0
0
1
2
3
Input Voltage V IN[V]
4
5
0
1
2
3
4
5
Input Voltage V IN[V]
21
RP115x
NO. EA-274-150708
RP115x431x
140
120
120
Supply Current ISS[μA]
Supply Current ISS[μA]
RP115x181x
140
100
80
60
40
20
0
100
80
60
40
20
0
0
1
2
3
4
5
0
Input Voltage V IN[V]
1
2
3
4
5
Input Voltage V IN[V]
Short Current Limit vs. Temperature and Current Limit vs. Temperature
The RP115x contains a peak current limit circuit which protect the regulator from damage by overcurrent
if the output pin (VOUT) and the ground pin (GND) are shorted. The short-circuiting causes the overheating
of the device which leads a thermal shutdown circuit to operate. If the peak current limit circuit and the
thermal shutdown circuit work at the same time, fold-back type dropping characteristics cannot be
measured. As for the short-circuit current and the peak current limit circuit, please refer to 3) Short Current
Limit vs. Temperature and 4) Current Limit vs. Temperature.
3) Short Current Limit vs. Temperature
RP115x071x
65
60
55
50
120
V IN = 2.0V
V OUT = 0V
LCON = "H"
115
110
105
100
95
90
-40 -25
22
RP115x071x
Short Current Limit [mA]
Short Current Limit [mA]
70
V IN = 2.0V
V OUT = 0V
LCON = "L"
0
25
50
Temperature Ta [°C]
75 85
-40 -25
0
25
50
Temperature Ta [°C]
75 85
RP115x
NO. EA-274-150708
4) Peak Current Limit vs. Temperature
V IN = 1.2V
LCON = "L"
900
1500
850
1450
800
750
700
650
V IN = 1.2V
LCON = "H"
RP115x071x
Current Limit [mA]
Current Limit [mA]
RP115x071x
600
1400
1350
1300
1250
1200
-40 -25
0
25
50
75 85
-40 -25
Temperature Ta [°C]
0
25
50
75 85
Temperature Ta [°C]
5) Output Voltage vs. Temperature (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, IOUT=1mA)
RP115x171x
V IN = 1.7V
0.74
1.74
0.73
1.73
Output Voltage VOUT[V]
Output Voltage VOUT[V]
RP115x071x
0.72
0.71
0.7
0.69
0.68
0.67
0.66
V IN = 2.7V
1.72
1.71
1.7
1.69
1.68
1.67
1.66
-40 -25
0
25
50
Temperature Ta [°C]
75 85
-40 -25
RP115x181x
25
50
75 85
RP115x431x
V IN = 2.8V
1.84
V IN = 5.25V
4.34
4.33
Output Voltage VOUT[V]
1.83
Output Voltage VOUT[V]
0
Temperature Ta [°C]
1.82
1.81
1.8
1.79
1.78
1.77
1.76
4.32
4.31
4.3
4.29
4.28
4.27
4.26
-40 -25
0
25
50
Temperature Ta [°C]
75 85
-40 -25
0
25
50
75 85
Temperature Ta [°C]
23
RP115x
NO. EA-274-150708
6) Supply Current vs. Temperature (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, IOUT=0mA)
RP115x071x
130
120
110
100
90
80
V IN = 2.7V
130
Supply Current ISS[μA]
Supply Current ISS[μA]
RP115x171x
V IN = 1.7V
70
120
110
100
90
80
70
-40 -25
0
25
50
Temperature Ta [°C]
75 85
-40 -25
RP115x181x
110
100
90
80
V IN = 5.25V
130
Supply Current ISS[μA]
Supply Current ISS[μA]
120
120
110
100
90
80
70
70
-40 -25
24
75 85
RP115x431x
V IN = 2.8V
130
0
25
50
Temperature Ta [°C]
25
50
0
Temperature Ta [°C]
75 85
-40 -25
0
25
50
Temperature Ta [°C]
75 85
RP115x
NO. EA-274-150708
7) Dropout Voltage vs. Output Current (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF)
RP115L171x
RP115H171x
250
Dropout Voltage VDIF [mV]
Dropout Voltage VDIF [mV]
250
-40°C
25°C
85°C
200
150
100
50
0
200
400
600
800
100
50
1000
0
200
400
600
800
Output Current IOUT [mA]
Output Current IOUT [mA]
RP115L181x
RP115H181x
1000
250
Dropout Voltage VDIF [mV]
250
Dropout Voltage VDIF [mV]
150
0
0
-40°C
25°C
85°C
200
150
100
50
0
-40°C
25°C
85°C
200
150
100
50
0
0
200
400
600
800
1000
0
200
400
600
800
Output Current IOUT [mA]
Output Current IOUT [mA]
RP115L431x
RP115H431x
1000
250
Dropout Voltage VDIF [mV]
250
Dropout Voltage VDIF [mV]
-40°C
25°C
85°C
200
-40°C
25°C
85°C
200
150
100
50
-40°C
25°C
85°C
200
150
100
50
0
0
0
200
400
600
800
Output Current IOUT [mA]
1000
0
200
400
600
800
1000
Output Current IOUT [mA]
25
RP115x
NO. EA-274-150708
8) Dropout Voltage vs. Set Output Voltage (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C)
9) Dropout Voltage vs. Temperature (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF)
400
300
200
100
0
-40 -25
0
25
50
Temperature Ta [°C]
Dropout Voltage VDIF [mV]
300
200
150
100
50
0
0
25
50
Temperature Ta [°C]
26
200
150
100
50
0
-40 -25
0
25
50
75 85
Temperature Ta [°C]
250
-40 -25
250
75 85
30mA
100mA
300mA
500mA
1000mA
RP115L181x
300
75 85
RP115L431x
300
Dropout Voltage VDIF [mV]
Dropout Voltage VDIF [mV]
500
30mA
100mA
300mA
500mA
1000mA
RP115L171x
Dropout Voltage VDIF [mV]
30mA
100mA
300mA
500mA
1000mA
RP115L071x
30mA
100mA
300mA
500mA
1000mA
250
200
150
100
50
0
-40 -25
0
25
50
Temperature Ta [°C]
75 85
RP115x
NO. EA-274-150708
400
300
200
100
0
-40 -25
0
25
50
Temperature Ta [°C]
Dropout Voltage VDIF [mV]
300
250
200
150
100
50
0
-40 -25
0
25
50
Temperature Ta [°C]
250
200
150
100
50
0
-40 -25
75 85
30mA
100mA
300mA
500mA
1000mA
RP115H181x
300
0
25
50
Temperature Ta [°C]
75 85
30mA
100mA
300mA
500mA
1000mA
RP115H431x
300
Dropout Voltage VDIF [mV]
Dropout Voltage VDIF [mV]
500
30mA
100mA
300mA
500mA
1000mA
RP115H171x
Dropout Voltage VDIF [mV]
30mA
100mA
300mA
500mA
1000mA
RP115H071x
250
200
150
100
50
0
75 85
-40 -25
0
25
50
75 85
Temperature Ta [°C]
10) Ripple Rejection vs. Input Voltage (CIN=none, COUT=Ceramic1.0μF, Ripple=0.2Vp-p,
Ta=25°C)
100
90
80
70
60
50
40
30
20
10
0
0.1kHz
1kHz
10kHz
100kHz
0
1
2
3
RP115x071x
IOUT=1mA
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
RP115x071x
4
Input Voltage VIN(V)
5
IOUT=30mA
100
90
80
70
60
50
40
30
20
10
0
0.1kHz
1kHz
10kHz
100kHz
0
1
2
3
4
5
Input Voltage VIN(V)
27
RP115x
NO. EA-274-150708
2
3
4
Input Voltage VIN(V)
Ripple Rejection RR(dB)
RP115x181x
0.1kHz
1kHz
10kHz
100kHz
2
3
4
60
50
40
30
20
0.1kHz
1kHz
10kHz
100kHz
10
0
1
2
RP115x181x
5
4.2
4.4
4.6
4.8
Input Voltage VIN(V)
28
IOUT=30mA
2
3
4
5
Input Voltage VIN(V)
RP115x431x
IOUT=1mA
0.1kHz
1kHz
10kHz
100kHz
4
5
0.1kHz
1kHz
10kHz
100kHz
1
5
5.2
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
RP115x431x
3
4
Input Voltage VIN(V)
100
90
80
70
60
50
40
30
20
10
0
Input Voltage VIN(V)
100
90
80
70
60
50
40
30
20
10
0
IOUT=30mA
100
90
80
70
5
IOUT=1mA
100
90
80
70
60
50
40
30
20
10
0
1
Ripple Rejection RR(dB)
0.1kHz
1kHz
10kHz
100kHz
20
10
0
1
RP115x171x
IOUT=1mA
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
RP115x171x
100
90
80
70
60
50
40
30
100
90
80
70
60
50
40
30
20
10
0
IOUT=30mA
0.1kHz
1kHz
10kHz
100kHz
4
4.2
4.4
4.6
4.8
Input Voltage VIN(V)
5
5.2
RP115x
NO. EA-274-150708
11) Ripple Rejection vs. Frequency (CIN=none, COUT=Ceramic1.0μF, Ripple=0.2Vp-p, Ta=25°C)
RP115x071x
RP115x171x
VIN = 1.7V
Ripple Rejection RR [dB]
Ripple Rejection RR [dB]
120
100
80
60
40
1mA
30mA
150mA
20
100
80
60
40
1mA
30mA
150mA
20
0
0
0.1
1
10
100
1000
0.1
1
Frequency f [kHz]
RP115x181x
80
60
40
1mA
30mA
150mA
0
1
10
100
1000
VIN = 5.25V
120
100
80
60
40
1mA
30mA
150mA
20
0
0.1
100
RP115x431x
Ripple Rejection RR [dB]
100
20
10
Frequency f [kHz]
VIN = 2.8V
120
Ripple Rejection RR [dB]
VIN = 2.7V
120
1000
0.1
Frequency f [kHz]
1
10
100
1000
Frequency f [kHz]
Output Voltage
-20 -10 0 10 20 30 40 50 60 70 80
Time t [μs]
Input Voltage
2.7V <=> 3.7V
1.73
1.72
1.71
1.7
1.69
5
4
3
2
1
0
Input Voltage VIN [V]
0.73
0.72
0.71
0.7
0.69
0.68
Input Voltage
1.7V <=> 2.7V
5
4
3
2
1
0
RP115x171x
Output Voltage VOUT [V]
Output Voltage V OUT [V]
RP115x071x
Input Voltage VIN [V]
12) Line Transient Response (CIN=none, COUT=Ceramic1.0μF, IOUT=30mA, tr=tf=5μs, Ta=25°C)
Output Voltage
-20 -10 0
10 20 30 40 50 60 70 80
Time t [μs]
29
RP115x
NO. EA-274-150708
5
4
3
2
1
0
Output Voltage VOUT [V]
Input Voltage
2.8V <=>3.8V
1.82
1.81
1.8
1.79
1.78
Input Voltage VIN [V]
RP115x181x
Output Voltage
-20 -10 0 10 20 30 40 50 60 70 80
Time t [μs]
100
Load Current
50mA <=> 100mA
0.71
0
0.7
0.69
Output Voltage
0.68
-5 0
5 10 15 20 25 30 35 40
VIN = 1.7V
Load Current
1mA <=> 250mA
0.8
0.75
0.7
0.65
0.6
0.55
Output Voltage
-20
0
Output Voltage
-20
0
20 40 60 80 100 120 140
Time t [μs]
30
VIN = 1.7V
600
400
200
0
RP115x171x
VIN = 2.7V
Output Voltage VOUT [V]
Output Voltage VOUT [V]
RP115x071x
0.8
0.75
0.7
0.65
0.6
0.55
20 40 60 80 100 120 140
Time t [μs]
Output Current I OUT [mA]
Time t [μs]
Load Current
1mA <=> 500mA
300
200
100
0
Load Current
50mA <=> 100mA
1.72
1.71
1.7
1.69
1.68
1.67
Output Voltage
-5 0
5 10 15 20 25 30 35 40
Time t [μs]
150
100
50
0
Output Current I OUT [mA]
Output Voltage VOUT [V]
50
RP115x071x
Output Current I OUT [mA]
VIN = 1.7V 150
Output Voltage VOUT [V]
RP115x071x
Output Current I OUT [mA]
13) Load Transient Response (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, tr=tf=0.5μs, Ta=25°C)
RP115x
Load Current
1mA <=> 250mA
Output Voltage
-20
0
20 40 60 80 100 120 140
Load Current
1mA <=> 500mA
1.8
1.75
1.7
1.65
1.6
1.55
Output Voltage
-20
0
20 40 60 80 100 120 140
Time t [μs]
Output Voltage V OUT [V]
VIN = 2.8V
Load Current
50mA <=> 100mA
150
100
50
0
Output Voltage
-5 0
5 10 15 20 25 30 35 40
RP115x181x
VIN = 2.8V
Output Voltage V OUT [V]
RP115x181x
Output Current I OUT [mA]
Time t [μs]
1.81
1.8
1.79
1.78
1.77
1.76
Load Current
1mA <=> 250mA
1.85
1.8
1.75
1.7
1.65
-20
0
Output Voltage
20 40 60 80 100 120 140
time [μs]
RP115x431x
VIN = 5.25V
Output Voltage V OUT [V]
Load Current
1mA <=> 500mA
600
400
200
0
Output Current I OUT [mA]
Output Voltage V OUT [V]
VIN = 2.8V
0
20 40 60 80 100 120 140
time [μs]
RP115x181x
-20
300
200
100
0
Output Voltage
time [μs]
1.85
1.8
1.75
1.7
1.65
600
400
200
0
Output Current I OUT [mA]
1.8
1.75
1.7
1.65
1.6
1.55
VIN = 2.7V
Output Current I OUT [mA]
300
200
100
0
RP115x171x
Load Current
50mA <=> 100mA
4.32
4.31
4.3
4.29
4.28
150
100
50
0
Output Current I OUT [mA]
Output Voltage VOUT [V]
VIN = 2.7V
Output Voltage VOUT [V]
RP115x171x
Output Current I OUT [mA]
NO. EA-274-150708
Output Voltage
-5 0
5 10 15 20 25 30 35 40
time [μs]
31
RP115x
Output Voltage V OUT [V]
VIN = 5.25V
Load Current
1mA <=> 250mA
4.4
4.35
4.3
4.25
4.2
4.15
300
200
100
0
Output Voltage
-20 0
20 40 60 80 100 120 140
RP115x431x
VIN = 5.25V
Load Current
1mA <=> 500mA
4.4
4.35
4.3
4.25
4.2
4.15
600
400
200
0
Output Current I OUT [mA]
RP115x431x
Output Voltage V OUT [V]
Output Current I OUT [mA]
NO. EA-274-150708
Output Voltage
-20 0
20 40 60 80 100 120 140
time [μs]
time [μs]
0
Iout = 0mA
Iout = 30mA
Iout = 150mA
1
0.5
1
Output Voltage
0
-20 0
50
100
150 180
Time t [μs]
VIN = 2.8V
Output Voltage VOUT [V]
32
4
2
CE Input Voltage
0V => 2.8V
0
2
Output Voltage
1
Iout = 0mA
Iout = 30mA
Iout = 150mA
0
-20 0
50
100
Time t [μs]
4
CE Input Voltage
0V => 2.7V
2
0
2
1
Output Voltage
Iout = 0mA
Iout = 30mA
Iout = 150mA
0
-20 0
50
100
150 180
Time t [μs]
150 180
CE Input Voltage VCE[V]
RP115x181x
VIN = 2.7V
RP115x431x
VIN = 5.25V
8
4
CE Input Voltage
0V => 5.25V
0
4
Output Voltage
Iout = 0mA
Iout = 30mA
Iout = 150mA
2
0
-20 0
50
100
Time t [μs]
150 180
CE Input Voltage VCE[V]
Output Voltage VOUT [V]
CE Input Voltage
0V => 1.7V
RP115x071x
CE Input Voltage VCE [V]
2
Output Voltage VOUT [V]
VIN = 1.7V
Output Voltage VOUT [V]
RP115x071x
CE Input Voltage VCE [V]
14) Turn-on Waveform by CE Pin Signal (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C)
RP115x
NO. EA-274-150708
1
Output Voltage
0.5
Iout = 0mA
Iout = 30mA
Iout = 150mA
0
-50 0
100
200
300
Time t [μs]
RP115x181D
400450
VIN = 2.8V
CE Input Voltage
2.8V => 0V
4
2
Output Voltage VOUT [V]
0
2
Output Voltage
Iout = 0mA
Iout = 30mA
Iout = 150mA
1
0
-50 0
100
200
300
Time t [μs]
400 450
CE Input Voltage VCE[V]
Output Voltage VOUT [V]
0
VIN = 2.7V
CE Input Voltage
2.7V => 0V
4
2
0
2
CE Input Voltage VCE[V]
1
RP115x171D
Output Voltage
Iout = 0mA
Iout = 30mA
Iout = 150mA
1
0
-50 0
100
200
300
Time t [μs]
400 450
RP115x431D VIN = 5.25V
CE Input Voltage
5.25V => 0V
8
4
0
Output Voltage
4
CE Input Voltage VCE[V]
CE Input Voltage
1.7V => 0V
2
Output Voltage VOUT [V]
VIN = 1.7V
Output Voltage VOUT [V]
RP115x071D
CE Input Voltage VCE[V]
15) Turn-off Waveform by CE Pin Signal (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C)
Iout = 0mA
Iout = 30mA
Iout = 150mA
2
0
-50 0
100
200
300
Time t [μs]
400 450
33
RP115x
NO. EA-274-150708
400
300
200
Inrush Current 100
0
-50
0
50
100
Time t [μs]
150
200
RP115L181x (LCON="L", CS mode)
VIN = 2.8V
3
2.5
2
1.5
1
0.5
0
CE Input Voltage
0V => 2.8V
Cout = 1.0μF
Cout = 2.2μF
Cout = 4.7μF
Cout = 10μF
400
300
200
Inrush Current
100
0
-50
0
50
100
Time t [μs]
150
200
Inrush Current Irush [mA]
Output Voltage
50
100 150 200 250
Time t [μs]
Inrush Current Irush [mA]
[V] / CE Input Voltage V CE[V]
OUT
3
2.5
2
1.5
1
0.5
0
0
RP115L171x (LCON="L", CC mode)
VIN = 2.7V
CE Input Voltage
0V => 2.7V
Output Voltage
Cout = 22μF
Inrush Current
-50
0
50
400
300
200
100
0
100 150 200 250
Time t [μs]
Inrush Current Irush [mA]
Cout = 1.0μF
Cout = 2.2μF
Cout = 4.7μF
Cout = 10μF
Inrush Current Irush [mA]
Output Voltage
-50
RP115L181x (LCON="L", CC mode)
VIN = 2.8V
3
2.5
2
1.5
1
0.5
0
CE Input Voltage
0V => 2.8V
Output Voltage
Cout = 22μF
Inrush Current
-50
0
400
300
200
100
0
50 100 150 200 250
Time t [μs]
Inrush Current Irush [mA]
CE Input Voltage
0V => 2.7V
400
300
Inrush Current
200
100
0
Output Voltage V
200
VIN = 2.7V
3
2.5
2
1.5
1
0.5
0
Output Voltage V
[V] / CE Input Voltage V CE[V]
150
RP115L171x (LCON="L", CS mode)
OUT
Output Voltage V
34
50
100
Time t [μs]
[V] / CE Input Voltage V CE[V]
0
Output Voltage
OUT
-50
CE Input Voltage
0V => 1.7V
Cout = 47μF
Output Voltage V
400
300
200
Inrush Current100
0
[V] / CE Input Voltage V CE[V]
Cout = 1.0μF
Cout = 2.2μF
Cout = 4.7μF
Cout = 10μF
Cout = 22μF
Inrush Current Irush [mA]
Output Voltage
2
1.5
1
0.5
0
RP115L071x (LCON="L", CC mode)
VIN = 1.7V
OUT
CE Input Voltage
0V => 1.7V
Output Voltage V
RP115L071x (LCON="L", CS mode)
VIN = 1.7V
2
1.5
1
0.5
0
OUT
[V] / CE Input Voltage V CE[V]
Output Voltage V OUT [V] / CE Input Voltage V CE[V]
16) Inrush Current (CIN=Ceramic1.0μF, IOUT=0mA, Ta=25°C)
RP115x
2
1.5
1
0.5
0
Output Voltage
Cout = 1.0μF
Cout = 2.2μF 500
Cout = 4.7μF
Cout = 10μF 400
Cout = 22μF
Cout = 47μF 300
200
Inrush Current100
0
-50
0
50
100
Time t [μs]
150
200
Inrush Current Irush [mA]
CE Input Voltage
0V => 1.7V
RP115x171x (LCON="H", CS mode)
VIN = 2.7V
3
2.5
2
1.5
1
0.5
0
CE Input Voltage
0V => 2.7V
Output Voltage
Cout = 1.0μF
Cout = 2.2μF
Cout = 4.7μF
Cout = 10μF
500
400
300
Inrush Current 200
100
0
-50
0
50
100
Time t [μs]
150
200
CE Input Voltage
0V => 5.25V
1
0
Cout = 10μF
Inrush Current
-50
2
1.5
1
0.5
0
0
50 100 150
Time t [μs]
400
300
200
100
0
200
250
Inrush Current Irush [mA]
Output Voltage
OUT
[V] / CE Input Voltage V CE[V]
5
4
3
2
RP115x071x (LCON="H", CC mode)
VIN = 1.7V
CE Input Voltage
0V => 1.7V
Output Voltage
Cout = 100μF
500
Inrush Current400
300
200
100
0
-50
0
50
100 150 200 250
Time t [μs]
Inrush Current Irush [mA]
RP115x071x (LCON="H", CS mode)
VIN = 1.7V
Output Voltage V
200
6
RP115x171x (LCON="H", CC mode)
VIN = 2.7V
3
2.5
CE Input Voltage
2
0V => 2.7V
1.5
Output Voltage
1
0.5
0
Cout = 22μF 500
400
300
Inrush Current
200
100
0
-50
0
50
100 150 200 250
Time t [μs]
Inrush Current Irush [mA]
Output Voltage V
150
[V] / CE Input Voltage V CE[V]
50
100
Time t [μs]
RP115L431x (LCON="L", CC mode)
VIN = 5.25V
OUT
0
Inrush Current Irush [mA]
Output Voltage V
Output Voltage V OUT [V] / CE Input Voltage V CE[V]
-50
OUT
[V] / CE Input Voltage V CE[V]
Inrush Current
400
300
200
100
0
Output Voltage V
Cout = 1.0μF
Cout = 2.2μF
Cout = 4.7μF
Inrush Current Irush [mA]
Output Voltage
[V] / CE Input Voltage V CE[V]
CE Input Voltage
0V => 5.25V
OUT
6
5
4
3
2
1
0
VIN = 5.25V
Output Voltage V
RP115L431x (LCON="L", CS mode)
OUT
[V] / CE Input Voltage V CE[V]
NO. EA-274-150708
35
RP115x
150
200
RP115x431x (LCON="H", CS mode)
VIN = 5.25V
6
CE Input Voltage
5
0V => 5.25V
4
3
Output Voltage
2
1
0
Cout = 1.0μF
Cout = 2.2μF 500
Cout = 4.7μF 400
300
Inrush Current 200
100
0
-50
0
50
100
Time t [μs]
150
200
Cout = 22μF
OUT
[V] / CE Input Voltage V CE[V]
Output Voltage
Inrush Current
-50
0
500
400
300
200
100
0
50 100 150 200 250
Time t [μs]
Inrush Current Irush [mA]
50
100
Time t [μs]
CE Input Voltage
0V => 2.8V
RP115x431x (LCON="H", CC mode)
VIN = 5.25V
6
5
4
3
2
1
0
CE Input Voltage
0V => 5.25V
Output Voltage
Cout = 10μF
500
400
300
200
100
0
Inrush Current
-50
0
50 100 150
Time t [μs]
200
250
Inrush Current Irush [mA]
0
Inrush Current Irush [mA]
Output Voltage V
[V] / CE Input Voltage V CE[V]
OUT
Output Voltage V
36
-50
3
2.5
2
1.5
1
0.5
0
Output Voltage V
500
400
300
Inrush Current200
100
0
[V] / CE Input Voltage V CE[V]
Cout = 1.0μF
Cout = 2.2μF
Cout = 4.7μF
Cout = 10μF
Inrush Current Irush [mA]
Output Voltage
RP115x181x (LCON="H", CC mode)
VIN = 2.8V
OUT
3
2.5
2
1.5
1
0.5
0
Output Voltage V
RP115x181x (LCON="H", CS mode)
VIN = 2.8V
CE Input Voltage
0V => 2.8V
OUT
[V] / CE Input Voltage V CE[V]
NO. EA-274-150708
RP115x
NO. EA-274-150708
60
80
VIN = 1.7V
IOUT = 500mA
LCON Voltage
0V <=> 1.7V
0.72
0.71
0.7
0.69
0.68
0.67
Output Voltage
-20
0
20
40
time t [μs]
60
80
RP115x431x
Output Voltage VOUT[V]
3
2
1
0
VIN = 5.25V
IOUT = 150mA 6
4
2
0
LCON Voltage
0V <=> 5.25V
4.34
4.33
4.32
4.31
4.3
4.29
Output Voltage
-20
0
20
40
time t [μs]
60
80
LCON Voltage VLCON[V]
0.72
0.71
0.7
0.69
0.68
0.67
Output Voltage
-20
0
20
40
time t [μs]
60
80
6
4
2
0
LCON Voltage VLCON[V]
20
40
time t [μs]
VIN = 1.7V
IOUT = 150mA 3
2
1
0
LCON Voltage
0V <=> 1.7V
VIN = 5.25V
IOUT = 500mA 6
4
2
0
LCON Voltage
0V <=> 5.25V
LCON Voltage VLCON[V]
0
LCON Voltage VLCON[V]
-20
Output Voltage VOUT[V]
Output Voltage
RP115x431x
Output Voltage VOUT[V]
0.72
0.71
0.7
0.69
0.68
0.67
3
2
1
0
RP115x071x
VIN = 5.25V
IOUT = 1mA
LCON Voltage
0V <=> 5.25V
4.34
4.33
4.32
4.31
4.3
4.29
Output Voltage
-20
0
20
40
time t [μs]
60
80
RP115x431x
Output Voltage VOUT[V]
LCON Voltage
0V <=> 1.7V
RP115x071x
Output Voltage VOUT[V]
VIN = 1.7V
IOUT = 1mA
LCON Voltage VLCON[V]
Output Voltage VOUT[V]
RP115x071x
LCON Voltage VLCON[V]
17) LCON Pin Transient Response (CIN=Ceramic1.0μF, COUT=Ceramic1.0μF, Ta=25°C)
4.34
4.33
4.32
4.31
4.3
4.29
Output Voltage
-20
0
20
40
time t [μs]
60
80
37
RP115x
NO. EA-274-150708
EQUIVALENT SERIES RESISTANCE (ESR) vs. OUTPUT CURRENT
Ceramic type output capacitor is recommended for the RP115x but any capacitor with low ESR can be used.
The graphs below show the relation between IOUT and ESR (noise level: average 40μV or less).
Measurement Conditions

Noise Frequency Band Width: 10Hz to 2MHz

Operating Temperature Range: −40°C to +85°C

Hatched Area: Output noise level is average 40μV or less.

CIN, COUT: 1.0μF or more
RP115x071x
100
Ta = -40°C to 85°C
ESR [Ω]
10
1
0.1
1
0.1
0.01
0.01
0
38
V IN = 4.3V to 5.25V
100
Ta = -40°C to 85°C
10
ESR [Ω]
RP115x431x
V IN = 1.4V to 5.25V
200
400
600
800
Output Current IOUT [mA]
1000
0
200
400
600
800
Output Current IOUT [mA]
1000
1. The products and the product specifications described in this document are subject to change or
discontinuation of production without notice for reasons such as improvement. Therefore, before
deciding to use the products, please refer to Ricoh sales representatives for the latest information
thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without
prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or
otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example
application circuits for the products. The release of such information is not to be construed as a
warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any
other rights.
5. The products listed in this document are intended and designed for use as general electronic
components in standard applications (office equipment, telecommunication equipment, measuring
instruments, consumer electronic products, amusement equipment etc.). Those customers intending to
use a product in an application requiring extreme quality and reliability, for example, in a highly specific
application where the failure or misoperation of the product could result in human injury or death
(aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and
transportation equipment, combustion equipment, safety devices, life support system etc.) should first
contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but
semiconductor products are likely to fail with certain probability. In order to prevent any injury to
persons or damages to property resulting from such failure, customers should be careful enough to
incorporate safety measures in their design, such as redundancy feature, fire containment feature and
fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from
misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. Please contact Ricoh sales representatives should you have any questions or comments concerning
the products or the technical information.
Halogen Free
Ricoh is committed to reducing the environmental loading materials in electrical devices
with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since
April 1, 2012.
http://www.e-devices.ricoh.co.jp/en/
Sales & Support Offices
RICOH ELECTRONIC DEVICES CO., LTD.
Higashi-Shinagawa Office (International Sales)
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502
RICOH EUROPE (NETHERLANDS) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
RICOH ELECTRONIC DEVICES KOREA CO., LTD.
3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea
Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD.
Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203,
People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299
RICOH ELECTRONIC DEVICES CO., LTD.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Ricoh Electronics:
RP115L111D-E2 RP115L121D-E2 RP115L291D5-E2 RP115L281D-E2 RP115L181D-E2 RP115L181D5-E2
RP115L401D-E2 RP115L121D5-E2 RP115L311D-E2 RP115L431B-E2 RP115L331D-E2 RP115L301D-E2
RP115L321D-E2 RP115H231D-T1-FE RP115L291D-E2 RP115H111D-T1-FE RP115L101D-E2 RP115H191D-T1-FE
RP115H301D-T1-FE RP115L341B-E2 RP115L131D-E2 RP115H101D-T1-FE RP115L181B5-E2 RP115L331B-E2
RP115L171D-E2 RP115H121D8-T1-FE RP115L241B-E2 RP115H351D-T1-FE RP115L181B-E2 RP115L311B-E2
RP115H131D-T1-FE RP115L321B-E2 RP115L111D5-E2 RP115L151D-E2

Documents pareils

RP110x Datasheet

RP110x Datasheet start-up time and the start-up slope angle are fixed inside the IC. If the capacitance of the external output capacitor (COUT) becomes more than the certain capacitance, the output current limit ci...

Plus en détail