Systèmes anti
Transcription
Systèmes anti
Systèmes anti-intrusion Guide aux normes européennes Édition 1 – 2012 Publié par 2 3 4 INDEX 1Introduction 1.1 Objectif du guide 1.2 Présentation de l’entreprise 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Les principales lignes directrices pour la réalisation d’un système anti-intrusion Analyse du risque Procédure à suivre Niveau de sécurité Niveau de protection Classe environnementale Emplacement de l’édifice Diagramme de flux 3 3.1 3.2 3.3 3.4 Composants d’un système anti-intrusion Les principaux composants d’un système anti-intrusion Exemple de protection de la première zone concentrique Exemple de protection de la deuxième zone concentrique Exemple de protection de la troisième zone concentrique 4 Système vidéo 4.1Videoalarm 5 5.1 5.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 Types de systèmes anti-intrusion Installations filaires Installations mixtes EN 50131-5-3 Nombre de codes Perte de connexion périodique Détection d’interférence Détection d’anomalie 6 Réalisation d’un système anti-intrusion 6.1 Conception 6.2Installation 6.3 Détecteurs d’intrusion 6.4 Exigences et prestations des centrales 7 Exigences et prestations des détecteurs 7.1 Fiche de qualification 7.2Sirènes 7.3 Système de transmission d’alarmes 7.4 Sources d’alimentation 7.5 Câbles électriques 8 8.1 8.2 Formation Tecnoalarm Stages techniques pour installateurs Certificat de participation 5 6 9 9.1 9.2 Portrait de l’installateur professionnel Qualification professionnelle Téléassistance technique et télégestion 10 10.1 Installation du système anti-intrusion Entreprise et best practices 11 Mise en service, essai et remise du système 11.1 Mise en service 11.2Essai 11.3Remise 12 Maintien de l’efficacité du système 12.1 Programme d’entretien 12.2Garantie 13 13.1 Systèmes de signalisation à distance Télésurveillance et vidéosurveillance 14 14.1 Les normes techniques les plus importantes dans le secteur anti-intrusion Normes nationales et européennes 15 EN 50131-1 (exigences de systèmes d’alarme contre l’intrusion et les hold-up) 15.1Description 16 CLC/TS 50131-7 (guide d’application pour systèmes d’alarme contre l’intrusion et les hold-up) 16.1Description 17 EN 50131-5-3 (exigences pour les équipements d’alarme intrusion utilisant des techniques radio) 17.1Description 18 Liste des normes de secteur 19Définitions 19.1 Vocabulaire de la sécurité anti-intrusion 20Bibliographie 21Annexes 7 1 INTRODUCTION 1.1Objectif du guide Ce guide, réalisé par le Service Qualité et Certification de Tecnoalarm, a l’objectif d‘expliquer de façon simple et compréhensible comment identifier les éléments principaux qui constituent un système anti-intrusion. Il s’adresse autant aux clients et aux projeteurs qu’aux installateurs, en mettant en évidence le cadre réglementaire du secteur au niveau européen (EN). 8 1.2 Présentation de l’entreprise Tecnoalarm, depuis plus de 30 ans présente dans le domaine de la sécurité et de l’anti-intrusion, est aujourd’hui considérée comme une marque de référence internationale dans le secteur. Technologie et design totalement italiens distinguent depuis toujours l’activité de la société. Recherche, développement et production ont en effet lieu dans le nouveau siège de San Mauro Torinese, alors que le design des produits est confié aux prestigieux crayons de Pininfarina. Tecnoalarm peut compter en Italie sur un réseau de distribution en plus de 2 succursales qui couvrent de manière capillaire les exigences des sociétés spécialisées et des installateurs autorisés. À l’étranger elle est présente non seulement à travers les 3 succursales en Espagne et en France mais aussi avec un ample réseau de distributeurs en Europe, en Afrique du Nord et au Moyen Orient qui lui ont permis, au fil du temps, de figurer parmi un des plus grands fabricants de systèmes de sécurité. 2 LES PRINCIPALES LIGNES DIRECTRICES POUR LA RÉALISATION D’UN SYSTÈME ANTI-INTRUSION 2.1 Analyse du risque 2.3 Niveau de sécurité Pendant la fondamentale phase d’inspection il faudrait approcher l’édifice ou l’aire à protéger avec le but d’effectuer une analyse attentive du risque en identifiant toutes les possibilités d’intrusion par des intrus ayant différent niveaux de capacité. Le niveau de sécurité est défini par les normes européennes EN 50131-1 qui en distinguent 4 et qui en définissent les prestations requises: le niveau 1 est associé au risque le plus bas et le 4 au plus haut. 2.2 Procédure à suivre La procédure à suivre afin d’obtenir ce but est la suivante: • Déterminer “le niveau de sécurité” sur la base des valeurs contenues dans l’édifice. • Définir la “classe environnementale” des aires à protéger. • Identifier le “niveau de protection” basé sur les valeurs contenues et la classe environnementale. Niveau 1 Risque bas Niveau 1 Risque bas Il est prévu que les intrus connaissent très peu les systèmes de sécurité et qu’ils disposent d’une gamme limitée d’outils pour la plupart facilement repérables. Niveau 2 Risque moyen-bas Il est prévu que les intrus connaissent très peu les systèmes de sécurité mais qu’ils utilisent une gamme d’outils et d’instruments génériques portables (ex. testeurs, passe-partout). Niveau 2 Risque moyen-bas 9 Niveau 3 Risque moyen-haut Il est prévu que les intrus connaissent discrètement les systèmes de sécurité et qu’ils disposent d’une gamme complète d’outils et d’appareils électroniques portables. Niveau 4 Risque haut Il est attribué lorsque la sécurité a la priorité sur tous les autres facteurs. Il est prévu que les intrus ont les compétences et les ressourses nécessaires pour planifier une intrusion dans le détail et qu’ils disposent d’une gamme complète d’équipements y compris les moyens nécessaires pour remplacer des composants d’un système anti-intrusion. Niveau 3 Risque moyen-haut Niveau 4 Risque haut 10 2.4 Niveau de protection Il est défini par la norme EN 50131-1 et par le guide CLC/TS 50131-7. Il est divisé en 4 niveaux. À considérer Niveau de sécurité 1 Niveau de sécurité 2 Niveau de sécurité 3 Niveau de sécurité 4 O O OP OP Fenêtres O OP OP Autres ouvertures O OP OP Portes extérieures Murs P Plafonds et toits P Planchers P Pièces T T Objets (risque haut) Légende: O = ouverture (ex. microcontact, porte) T = piège (ex. pièce, volumétrique) Le tableau indique que: le contrôle des portes extérieures et au moins un détecteur volumétrique dans une zone “piège” sont suffisants au premier niveau; le deuxième niveau ajoute le contrôle de toutes les fenêtres et les autres ouvertures; le troisième niveau demande des détecteurs volumétriques ultérieurs et une surveillance particulière d’un élément sensible 2.5 T T S S P = pénétration (ex. fenêtre, infrarouge) S = objet (ex. micro, coffre-fort) (ex. micro sur coffre-fort); le quatrième niveau rajoute à ce qui est prévu pour le troisième niveau le contrôle des murs, des plafonds et des planchers avec des détecteurs dédiés. Nous rappelons que la “TS” est une “Spécification Technique”, apte à démontrer la valeur d’un projet, alors que “EN” a le status (plus élevé) de “Norme Européenne”. Classe environnementale Classe environnementale I - Intérieur Classe environnementale II - Intérieur général Elle se réfère aux environnements fermés, lorsque la température est bien contrôlée, se limitant aux locaux résidentiels/bureaux (ex. propriétés résidentielles ou commerciales). Elle se réfère aux environnements fermés sujets normalement à des influences environnementales, lorsque la température n’est pas bien contrôlée (ex. couloirs, entrées ou escaliers, aires pas réchauffées utilisées comme entrepôt ou magasins avec chauffage intermittent, boutiques, restaurants). 11 Classe environnementale III - Extérieur Classe environnementale IV - Extérieur général Elle se réfère aux aires extérieures à l’abri ou en conditions extrêmes sujettes normalement aux influences environnementales, lorsque les systèmes anti-intrusion ne sont pas complètement exposés aux agents atmosphériques ou bien à l’intérieur, en conditions environnementales extrêmes (ex. dépôts, granges, zones de chargement). Elle se réfère aux aires extérieures sujettes normalement aux influences environnementales, lorsque les composants des systèmes anti-intrusion sont complètement exposés aux intempéries (ex. pelouses, jardins, zones industrielles en plein air). 2.6 Emplacement de l’édifice Dans le cadre de l’analyse des risques il faut tenir compte de l’emplacement de la zone à protéger. En particulier il faut considérer: •si l’habitation est isolée ou proche d’autres •si l’habitation est située dans un chemin privé loin des routes à haut débit •si l’extérieur de l’habitation, villa ou immeuble, est bien illuminé •si la zone est sujette à de longues périodes de brouillard •le type de portes d’accès et de serrures installées •le nombre et le type de fenêtres, balcons, terrasses ansi que le type de stores ou de volets utilisés •l’étage où est située l’habitation à protéger 12 2.7 Diagramme de flux PROJET DU SYSTÈME PLANIFICATION DU SYSTÈME INSTALLATION DU SYSTÈME Inspection de la zone à protéger Inspection technique Procédure d’installation Inspection de l’aire et des autres facteurs d’influence Mise à jour du projetdevis Inspection, essais et mise en service Projet-devis Plan d’installation Document de description 13 3 COMPOSANTS D’UN SYSTÈME ANTI-INTRUSION 3.1 Les principaux composants d’un système anti-intrusion Les principaux composants d’un système antiintrusion sont: •Centrale d’alarme •Détecteurs d’intérieur •Détecteurs d’extérieur •Unités de contrôle •Dispositifs d’alarme •Dispositifs radio Centrales d’alarme Protection volumétrique pour intérieur Détecteurs double technologie 14 Détecteurs à infrarouge Protection périmétrique pour extérieur Barrières à infrarouge Barrières à hyperfréquence Détecteurs à infrarouge Unités de contrôle Lecteurs de transpondeurs Lecteurs de cartes RFID Lecteurs d’empreintes Consoles à LCD Console tactile 15 Dispositifs de signalisation d’alarme Sirènes pour extérieur Transmetteur téléphonique Sirènes pour intérieur Dispositifs radio Sirènes radio Récepteurs radio Consoles radio 16 Radiocommandes Détecteurs à infrarouge radio pour intérieur et extérieur Émetteurs radio avec contacts magnétiques Pour mieux illustrer l’application des différents éléments qui constituent un système anti-intrusion, supposons d’installer un système d’alarme dans une villa. Les trois zones de protections concentriques résultent évidentes: •Première zone: protection des aires sensibles à l’intérieur (ex. chambre, salon etc.) •Deuxième zone: protection périphérique à l’extérieur du bâtiment (portes et fenêtres) •Troisième zone: protection périmétrique du jardin (au niveau du mur de clôture ou du portail) 3ème zone concentrique 2ème zone concentrique 1ère zone concentrique Aire intérieure du bâtiment Aire périphérique du bâtiment Aire périmétrique du terrain 17 3.2 Exemple de protection de la PREMIÈRE zone concentrique Plusieurs types de produits sont disponibles sur le marché afin de protéger ces zones. a) Détecteurs à infrarouge passif – IR 2005 IR Mask 05 pour la protection intérieure de pièces, de bureaux etc. Afin de couvrir toutes les exigences du client, différents modèles sont disponibles ayant des portées maximales de 8 à 22 mètres, plusieurs types de couverture et la compensation dynamique de la température. Détecteur à infrarouge passif 18 Tecnoalarm propose deux technologies ayant plusieurs solutions applicables. b) Détecteurs double technologie – Twintec pour la protection intérieure de pièces, de bureaux etc. Ce sont des détecteurs à double technologie avec contrôle brouillage, disponibles en différents modèles afin de couvrir toutes les exigences du client. Avec les technologies RDV® et RSC® (brevets internationaux pour la vérification de la fiabilité de l’alarme), en cas d’alarme, le détecteur envoie au portable de l’utilisateur un signal sonore spécifique de détection et permet à la centrale de sauvegarder sur sa mémoire jusqu’à 128 événements et 6 graphiques qui représentent l’état de fonctionnement instantané, pour une analyse complète et précise de ce qui s’est passé. Exemple de protection de la première zone concentrique avec détecteurs volumétriques 19 EXEMPLE DE PROTECTION DE LA PREMIÈRE ZONE CONCENTRIQUE AVEC DÉTECTEURS VOLUMÉTRIQUES 20 21 Programmation Dual Mask Bus 05 Log événements Dualtecno Bus 10 Graphique Dualtecno Bus 10 22 3.3 Exemple de protection de la DEUXIÈME zone concentrique Plusieurs types de produits sont disponibles sur le marché afin de réaliser ce niveau de protection. Tecnoalarm propose deux technologies ayant plusieurs solutions applicables. a)Barrière à infrarouge actif – Doorbeam/s et Winbeam/s pour la protection de portes et fenêtres. Afin de couvrir toutes les exigences du client plusieurs modèles de 2 à 8 faisceaux sont disponibles. La portée maximale de chaque barrière est de 16 mètres et, grâce à la technologie RSC, il est possible de programmer à distance les paramètres, de vérifier la cohérence hardware et, surtout, le fonctionnement. 23 Exemple de protection de fenêtres et portes avec barrière à infrarouge actif 24 Programmation Doorbeam/s Graphique Doorbeam/s 25 b) Détecteurs à infrarouge passif – Trired et Trired Bus pour la protection extérieure de portes, de fenêtres et de terrasses. Ils disposent de trois unités de détection indépendentes ayant une portée réglable jusqu’à environ 30 mètres, plus un système de protection contre les tentatives de brouillage. Ils offrent une multitude de possibilités de programmation afin de permettre le fonctionnement le meilleur dans la zone à protéger. Exemple de protection d’une terrasse avec détecteur à infrarouge passif 26 Programmation Trired Bus Graphique Trired Bus 27 EXEMPLE DE PROTECTION DE LA DEUXIÈME ZONE CONCENTRIQUE 28 AVEC BARRIÈRE À INFRAROUGE ACTIF ET DÉTECTEUR À INFRAROUGE PASSIF 29 3.4 Exemple de protection de la TROISIÈME zone concentrique Périmètre extérieur du jardin (au niveau du mur de clôture ou du portail) Il est supposé qu’à l’intérieur de la maison il y a des biens de valeur, qu’elle n’est pas contrôlée par un gardien et que le périmètre de la propriété est entouré par une clôture. Plusieurs types de produits sont disponibles sur le marché afin de réaliser cette protection. Tecnoalarm propose deux technologies ayant plusieurs solutions applicables. a) Barrière à infrarouge actif – Beamtower. Elle est composée par une série d’émetteurs de faisceaux à infrarouge et d’autant de récepteurs qui créent des barrières invisibles à l’œil humain. La couverture maximale peut arriver à 100 mètres. La traversée de ces faisceaux de la part d’un intrus provoque une condition d’alarme. Cet équipement dispose de plusieurs possibilités de réglage afin de s’adapter au lieu à protéger et il est doté de plusieurs contrôles pour neutraliser les tentatives de sabotage. La barrière à infrarouge actif se sert de la technologie RSC, la seule qui permet la gestion complète à distance et permet en outre d’analyser les derniers 128 événements précédents l’alarme. Premier exemple de protection périmétrique avec barrière à infrarouge actif 30 Deuxième exemple de protection périmétrique avec barrière à infrarouge actif Exemple de protection d’une piscine par alarme pour enfants 31 EXEMPLE DE PROTECTION DE LA TROISIÈME ZONE CONCENTRIQUE AVEC BARRIÈRE À INFRAROUGE ACTIF 32 33 Programmation Beamtower Graphique Beamtower 34 b)Barrière à hyperfréquence - Explorer Bus. Elle est composée d’une paire de détecteurs à hyperfréquence (émetteur et récepteur), qui provoquent un lobe invisible en forme de cigare ayant une portée maximale d’environ 220 mètres. La traversée de ce lobe de la part d’un intrus provoque une condition d’alarme. Cet équipement dispose de plusieurs possibilités de calibrage afin de s’adapter au lieu à protéger. La barrière Explorer Bus aussi se sert de la technologie RSC qui permet d’analyser les graphiques qui ont précédé une alarme déterminée. RX 2 TX 4 RX 3 3 TX 1 RX TX 1 2 4 TX RX 35 EXEMPLE DE PROTECTION DE LA TROISIÈME ZONE CONCENTRIQUE AVEC BARRIÈRE À HYPERFRÉQUENCE 36 37 Programmation Explorer Bus 38 Log événements Explorer Bus Graphique Explorer Bus 39 4 SYSTÈME VIDÉO 4.1 Videoalarm Le système Videoalarm s’intègre parfaitement avec la protection des trois zones concentriques mises en évidence au point 3. Un système antiintrusion uni à un système de vidéosurveillance, en effet, augmente considérablement l’efficacité de la protection. L’association du signal vidéo aux zones contrôlées par les détecteurs permet, en cas d’alarme, de commuter à plein écran les images capturées par la caméra et d’en enregistrer les dernières 5 avant ainsi que les 3 successives à l’événement afin de mieux en évaluer les causes. Le système Videoalarm inclut des lecteurs biométriques d’empreintes digitales de troisième génération et une console en mesure d’archiver jusqu’à 30.000 photos pouvant aussi être copiées sur une clé USB. Jusqu’à 24 caméras 40 5 TYPES DE SYSTÈMES ANTIINTRUSION 5.1 Installations filaires Tous les composants du système d’alarme sont raccordés entre eux par un réseaux de câbles électriques (systèmes câblés). C’est à dire que chaque dispositif est raccordé aux autres au moyen d’un câble sur lequel est distribuée l’alimentation et sont transmises toutes les signalisations d’état. Serial BUS RS485 5.2 Installations mixtes (filaires + radio) Normalement les systèmes mixtes sont réalisés lorsqu’il est nécessaire de concilier un bon niveau de sécurité avec les difficultés objectives de poser les câbles de raccordement dans les aires très inconfortables. Tecnoalarm propose une gamme complète de systèmes à technologie mixte. Serial BUS RS485 41 5.3 EN 50131-5-3 5.3.1 Nombre de codes Exigences pour les équipements et les systèmes de détection et de signalisation d’alarme contre l’intrusion et les hold-up “sans fils” qui utilisent les connexions en radiofréquence. Cette norme classe les prestations requises sur quatre niveaux (1, 2, 3, 4). Pour la transmission, Tecnoalarm utilise les deux bandes de fréquences disponibles: 433MHz et 868MHz. Niveau Protection contre le sabotage sur le canal de transmission. Pour éviter la substitution intentionelle des messages, chaque émetteur devra être identifié en tant qu’appartenant au système par un code d’identification. Le nombre des codes d’identification demandés doit correspondre à celui indiqué dans le tableau ci-dessous. Nombre de codes d’identification des dispositifs Niveau 1 100.000 Niveau 2 1.000.000 Niveau 3 10.000.000 Niveau 4 100.000.000 Tecnoalarm utilise dans ses équipements plus de 16 millions de codes. 5.3.2 Perte de connexion périodique Exigences pour la détection de la perte de connexion périodique (supervision). La perte de connexion doit être traitée comme une anomalie. Tableaux intervalle Tableau des temps pour la détection de la perte de connexion périodique. Niveau CIE par le détecteur CIE par WD CIE par ATE ATE par CIE Périodes Niveau 1 240 min 240 min (a) 240 min (a) 240 min Niveau 2 120 min 120 min 120 min 120 min Niveau 3 100 s 100 s 100 s 100 s Niveau 4 10 s 10 s 10 s 10 s (a) (a) Légende: CIE = control and indicating equipment (centrale d’alarme) WD = warning device (sirène) ATE = automatic transmission equipment (envoyeur de messages d’alarme) N.B. L’indication visuelle ou sonore de la connexion correcte sera donnée par la sirène ou par la centrale pendant la procédure de mise en service. La disponibilité des connexions sera contrôlée par la centrale pendant la procédure de mise en service. 42 Pour les niveaux 1, 2, 3, 4, la mise en service doit être empêchée lorsque le temps écoulé depuis le dernier message de communication périodique à partir de n’importe quel appareil émetteur dépasse la période spécifiée dans le tableau. Niveau Période Niveau 1 60 min Niveau 2 20 min Niveau 3 100 s Niveau 4 10 s 5.3.3 Détection d’interférence S’il existe un risque de dérangements radioélectriques pouvant influer sur la communication entre la centrale et les appareils, il est nécessaire d’activer la détection d’interférence. La centrale doit indiquer un niveau d’interférence élevé lorsque celle-ci dépasse la durée prévue par les temps indiqués dans le tableau ci-dessous. Niveau 1 Un total de 30” de signal d’interférence en 60” Niveau 2 Un total de 30” de signal d’interférence en 60” Niveau 3 Un total de 10” de signal d’interférence en 20” Niveau 4 Un total de 10” de signal d’interférence en 20” 5.3.4 Détection d’anomalie L’interférence doit être traitée comme une anomalie de la centrale. État du système CIE Niveau 1 À chaque moment Obligatoire Facultatif (a) Facultatif Niveau 2 À chaque moment Obligatoire Facultatif Facultatif Niveau 3 À chaque moment Obligatoire Obligatoire Obligatoire Niveau 4 À chaque moment Obligatoire Obligatoire Obligatoire Niveau WD ATE Détection des interférences (a) Légende: CIE = centrale WD = dispositif de signalisation acoustique (sirène) ATE = dispositif de signalisation téléphonique OPT = signalisation optionnelle M = signalisation obligatoire 43 6 RÉALISATION D’UN SYSTÈME ANTI-INTRUSION 6.1 Conception La conception d’un système anti-intrusion a comme principal objectif le choix des composants avec niveau de sécurité et classe environnementale correspondants (qui seront déterminés lors de l’inspection) en fonction des exigences du client. À la fin de la phase d’inspection, lorsque les différents paramètres de protection sont définis, il est conseillé de rédiger un document qui détaille les choix effectués afin qu’il reste une trace de ce qui est convenu entre les parties. 6.2 Installation Installation et emplacement de la centrale et des unités de contrôle. Ces dispositifs doivent être installés si possible à l’intérieur de la zone protégée et cachés (couvercles de fermeture) afin d’éviter que des étrangers puissent en comprendre le fonctionnement. 6.3 Détecteurs d’intrusion Les détecteurs d’intrusion doivent être installés en suivant les indications du manuel technique du fabricant. 44 6.4 Exigences et prestations des centrales Normes de référence: EN 50131-1 (système), EN 50131-3 (centrales), EN 50131-6 (sources d’alimentation). Exemple (partiel) de fiche de qualification Circuits de réception et de signalisations d’alarmes Niveau Normes EN 50131-1, 20131-3 I Entrées à variation d’état (contact ouvert/fermé) Caractéristiques fonctionnelles À variation de résistance et À variation de résistance variable aléatoire au fils du temps prescrites Signalisation séparée pour alarme et auto-surveillance II III La technique de notifier l’état n’est pas imposée Oui Oui Oui Oui Niveaux d’accès au système prévus 4 4 4 4 Nombre de chiffres pour les codes d’accès 3 4 5 6 Oui Oui Oui Oui M M Oui ¹ Obligation de l’archive événements Contrôle tension source d’alimentation et vérification batterie Op Op Blocage mise en service en cas de panne ou d’auto-surveillance Oui ² Possibilité de forcer un état de blocage Oui ³ Protection batteries contre les décharges profondes Op Op Détection panne batteries obligatoire Op Op Oui Notification accès au niveau non autorisé Prévu Sirènes excluables si notification aussi avec ATS En fonction du niveau ATS avec backup autre vecteur Prévus Critères installation (sirènes intérieures, extérieures, ATS) Temps de sonneries WD De 90 à 180 sec. Temps d’entrée Jusqu’à 45 sec. Prévues Opérations on/off en combinaison avec plusieurs utilisateurs Exclusion détecteurs Non Oui Exclusion permanente détecteurs Non Oui Contrôle arrachement du boîtier Oui Oui Oui Oui Oui Contrôle perforation du boîtier En fonction du niveau Gestion des processus et des signalisations Contrôle des interconnexions Contrôle remplacement des composants Radiofréquences Décharges électrostatiques Oui Oui Reconnaissance brouillage et réduction de portée détecteurs Essais immunité: IV Selon procédures Non Oui Oui Oui Op Op Oui Oui EN50130-4 + A1 + A2 Impulsions de tension aux borniers d’alimentation Légende: Op = prestation optionnelle ; M = prestation obligatoire N.B. 1) L’archive événements est obligatoire; nombre et types d’événements (min. 250) dépendent du niveau 2) En présence d’une condition anormale, l’activation du système doit être empêchée 3) Il est prévu qu’une condition de blocage puisse être forcée par une manœuvre appropriée par un utilisateur autorisé 45 7 EXIGENCES ET PRESTATIONS DES DÉTECTEURS 7.1 Fiches de qualification La fiche générique de qualification d’un dispositif d’alarme ci-dessous reportée énonce les prestations de certaines familles de produits (ex. détecteurs double technologie) qui sont nécessaires afin qu’elles soient conformes aux exigences EN 50131-2-4. Exemple (partiel) de fiche de qualification Niveau Normes EN 50131-2-4 Détecteurs combinés Protection contre: I II III IV Ouverture boîtier M M M M Arrachement op op M M M M M Sabotage avec des moyens magnétiques Désorientation M M M Brouillage op op M M Réduction importante de la portée op op op M Perte totale de l’alimentation op M M M Corrosion Pénétration de l’eau Radiofréquences M M M X Décharges électrostatiques M M M M Impulsions de tension aux borniers de l’alimentation M M M M Auto-diagnostic locale op op M M Auto-diagnostic à distance op op op M Essais immunité à: Vérifiabilité: Essai de durée: En fonction de la classe environnementale Légende Op = prestation optionnelle M = prestation obligatoire 46 En fonction de la classe environnementale D’autres tableaux de qualification peuvent être consultés en visualisant les normes de la famille EN 50131-2-x. Plusieurs tableaux de qualification sont disponibles (à usage des fabricants des dispositifs) et ci-dessous un exemple en est reporté. 7.2 Sirènes Les sirènes pour extérieur doivent être positionnées de façon à ce qu’elles soient visibles par la route publique et solidement installées dans un point élevé de l’édifice, avec le double but de rendre dificile un éventuel sabotage et de rendre facilement visible le clignotement post-alarme. Comme il est prévu par la norme EN 50131-1, il est possible d’installer à l’extérieur plusieurs sirènes pour augmenter le niveau de sécurité du système. Les sirènes d’intérieur ont une pression sonore inférieure. Sirène pour intérieur Sirène pour extérieur Dispositifs de signalisation acoustiques (sirènes) – WD (warning devices) Exemple (partiel) de fiche de qualification sirènes selon la norme EN 50131-4 Niveau Normes EN 50131-4 Sirène pour extérieur Protection contre: Essais de: Essai immunité à: Vérifiabilité: Signalisations: Contrôles: Pression sonore: Temps d’alarme: Autonomie: Temps de recharge batterie: Ouverture boîtier Arrachement Perforation Vibrations sinusoïdales Chaud Chaud humide en continu Froid Corrosion SO2 Corrosion saline Pénétration de l’eau Impact mécanique (indice IK) selon EN 62262 Radiofréquences Décharges électrostatiques Impulsions de tension aux borniers de l’alimentation Fonctionnelle Tension d’alerte batterie basse Déconnexion physique de la batterie déchargée Présence +12V de recharge batterie Intégrité comande d’alarme Autotest local Entrée de test Au moins Maximum Maximum I M Op Op M II III IV M M M M M M Op M Op M M M +60°C selon spécification M M M M -25°C/-40°C selon spécification M M M M M M 07 07 08 08 M M M M M M M M M M M M Voir contrôles M M*¹ Op Op Op M M M M*¹ M*¹ M*¹ Op M M Op M M Op Op M 100dB @ 1 mètre 15 minutes 12h 60h 72h 24h Légende Op = prestation optionnelle ; M = prestation obligatoire M*¹ = le manque de tension de recharge batterie doit activer ou une alarme, une alarme d’auto-surveillance ou bien une panne 47 7.3 Systèmes de transmission d’alarmes Pour la transmission à distance d’une condition d’alarme il est conseillé d’utiliser des systèmes redondants, comme la transmission par ligne téléphonique RTC en combinaison avec celle sur le réseau GSM qui sera employée en cas d’anomalie ou de sabotage de la ligne commutée (RTC). Naturellement il existe d’autres systèmes de transmission d’alarmes tel que: ponts radio, lignes dédiées etc. qui seront utilisés en fonction du niveau de sécurité choisi. Bus sériel 7.4 Sources d’alimentation Le groupe de l’alimentation est composé par: • Une source d’alimentation • Une batterie d’accumulateurs Les batteries d’accumulateurs faisant partie des groupes d’alimentation doivent avoir une capacité telle à garantir, en cas de défaut secteur, une autonomie de: • 12 heures pour les niveaux 1 et 2 • 60 heures pour les niveaux 3 et 4 Ces temps peuvent être réduits de moitié si les événements sont notifiés à un centre de réception d’alarmes dédié (comme indiqué par la norme EN 50131-1). 7.5 Câbles électriques Pour la sécurité des personnes et des choses, les câbles doivent être de type anti-flamme. Leur isolation doit être au moins égale à celle des câbles existants dans l’installation électrique. Il est conseillé d’utiliser des câbles blindés pour les signaux à basse fréquence. Suivre toujours les normes en vigueur dans chaque pays. 48 Les nouveautés les plus importantes introduites par les normes EN 50131-1 et EN 50131-6, concernant les alimentations en fonction du niveau de sécurité, sont: • Sectionnement des batteries à la fin de la décharge • Protection des courts circuits et des surcharges • Détection du défaut de la batterie • Signalisation de batterie basse avec limite de temps (max. 5 minutes) • Protection contre les surtensions seulement pour les niveaux de sécurité 3 et 4 8 FORMATION TECNOALARM 8.1 Stages techniques pour les installateurs L’objectif stratégique de Tecnoalarm est celui de fournir une qualification constante à ses installateurs, en organisant régulièrement, auprès des succursales italiennes et des sièges des importateurs étrangers, des stages de formation ainsi que des séminaires techniques et commerciaux qui tiennent compte des exigences du secteur et qui les informent de l’introduction de nouveaux produits et de nouvelles technologies. 8.2 Certificat de participation Les installateurs qui ont participé aux stages reçoivent un certificat attestant les compétences et les qualifications acquises. 49 9 PORTRAIT DE L’INSTALLATEUR PROFESSIONNEL 9.1 Qualification professionnelle La qualification des installateurs au plus haut niveau professionnel est un des objectifs stratégiques de Tecnoalarm. En effet, des stages de spécialisation sont périodiquement organisés afin d’apporter une connaissance approfondie des produits, des applications standards ainsi que de leurs spécifications techniques, en fonction des exigences réglementaires volontaires et obligatoires. Les installateurs professionnels se distinguent également par l’équipement spécialisé dont ils disposent pour la programmation simple et avancée des systèmes et des composants: ordinateurs portables, oscilloscopes, logiciels de gestion, postes de travail informatisés fixes de téléassistance, valises de démonstration pour la présentation des produits aux clients finaux etc. 9.2 Téléassistance technique et télégestion L’installateur habilité peut choisir d’installer et d’utiliser les produits Tecnoalarm dotés de technologie RSC (pour programmer et régler à distance les paramètres du système de sécurité en toute simplicité). Pour des raisons de sécurité, l’accès à distance cependant doit toujours être autorisé préalablement par le client. 50 10 INSTALLATION DU SYSTÈME ANTI-INTRUSION 10.1 Entreprise et best practices L’entreprise d’installation doit agir en conformité avec les normes européennes et les normes nationales, en réalisant l’installation à ”règles de l’art”. Par définition les “règles de l’art” sont respectées lorsque les normes techniques reconnues sont observées. Il est conseillé, par exemple, non seulement de présenter un projet technique qui sera contresigné soit par le client pour acceptation, soit par le projeteur pour prise en charge de responsablité, mais aussi d’éviter que les câbles de signalisation des systèmes de sécurité anti-intrusion passent dans les mêmes conduites de l’installation électrique. Si ce n’est pas possible, il est nécessaire que les câbles du système de sécurité aient le même indice d’isolation du câble électrique à plus haute tension qui se trouve dans la conduite. 51 11 MISE EN SERVICE, ESSAI ET REMISE DU SYSTÈME 11.1 Mise en service La mise en service d’un système peut prévoir une petite période d’essai (convenue entre les parties) pendant laquelle le système fonctionne normalement exception faite pour les alarmes sonores. Pendant cette phase il est possible de tester les fonctionnalités du système et d’en affiner la programmation afin de garantir la pleine efficacité et d’éliminer les causes des fausses alarmes. Programmation Sael 2010 Bus 11.2 Essai L’essai est la vérification de l’efficacité fonctionnelle et opérationnelle de chaque composant du système. C’est un moment fondamental pour la vérification des prestations par rapport au projet technique approuvé. Pour cette raison la présence du client ou 52 du responsable du système est indispensable. À la fin des travaux, l’installateur professionnel délivre un certificat d’essai attestant le bon fonctionnement du système et confirmant le résultat positif de l’essai. 11.3 Remise La livraison du système prévoit la fourniture des dessins, des schémas de raccordement, de la déclaration de conformité, des manuels pour l’utilisateur, des instructions d’entretien et, évidemment, d’un registre des interventions. Une formation pour l’utilisation correcte du système anti-intrusion fait partie de la procédure de livraison. Contrôle cohérence hardware Log événements 53 12 MAINTIEN DE L’EFFICACITÉ DU SYSTÈME 12.1 Programme d’entretien Les conditions pour le meilleur maintien de l’efficacité du système anti-antrusion prévoient le respect d’un programme d’entretien approprié. En particulier il est conseillé de vérifier périodiquement, environ chaque 6 mois, le fonctionnement des détecteurs, des sirènes, des transmetteurs téléphoniques ainsi que de tous les autres composants du système en fonction du niveau du risque établi. L’expérience suggère d’être particulièrement attentifs à la source d’alimentation auxiliaire (batterie de la centrale et de tous les dispositifs autoalimentés). Il est souhaitable que toutes ces opérations soient effectuées par le personnel technique spécialisé. Il est aussi possible, grâce à la technologie RSC, d’inspecter à distance chaque composant à partir du logiciel Tecnoalarm, en satisfaisant ainsi complètement tout ce qui est requis par les récentes normes de la famille EN 50131 (où il est mentionné qu’un des deux contrôles programmés peut être effectué à distance). 12.2 Garantie La loi européenne stipule qu’en ce qui concerne les rapports entre les entreprises, la période de garantie est de 12 mois alors qu’entre les entreprises et les privés elle doit être de 24 mois. 54 Tecnoalarm, convaincue de la qualité des ses produits, et ne faisant aucune distinction, en a étendu de manière autonome la durée à 24 mois. 13 SYSTÈMES DE SIGNALISATION À DISTANCE 13.1 Télésurveillance et vidéosurveillance Tous les systèmes de sécurité TECNOALARM sont télécontrôlables et supportent de nombreux protocoles propriétaires. Par conséquent ils peuvent être raccordés à n’importe quelle station centrale de télésurveillance pour un service de télésurveillance 24 heures sur 24 avec le but d’intégrer un service à 360° pour la protection du client et de ses biens. Le monitoring peut s’étendre aux services suivants: A. Systèmes anti-intrusion avec réception détaillée des signalisations: •zone singulière / séquence de zones en alarme avec description des aires intéressées •sabotage du système •coupure des câbles accidentelle ou délibérée •accès au système avec vérification des horaires des faux codes ou des fausses clés •paramètres de fonctionnement comme l’état de la batterie, du réseau de l’alimentation et des pannes B. Systèmes anti-agression avec réception détaillée des signalisations: •par émetteurs portables, poussoirs ou pédales •accès en plages horaires pas prévues ou mise hors service sous contrainte •mise en service manquées ou retardées C. Systèmes de vidéosurveillance D. Systèmes incendie et/ou de fuite de gaz E. Systèmes de contrôle technologique •arrêt ou anomalie de fonctionnement des ascenseurs, chaudières, réfrigérateurs etc. 55 14 LES NORMES TECHNIQUES LES PLUS IMPORTANTES DANS LE SECTEUR ANTI-INTRUSION 14.1 Normes nationales et européennes La Communauté Européenne a stipulé un ensemble de règles (normes EN) qui définissent un standard de qualité pour tous les pays membres. En plus des normes européennes il est essentiel de respecter les normes nationales appliquées par les différents EN États en attente qu’elles soient remplacées par celles européennes. Le respect de ces règles est essentiel dans le but d‘exécuter l’installation à “règles de l’art”. ISO Les normes européennes et nationales s’adressent avec une attention toute particulière aux aspects suivants: • PRODUCTION DES ÉQUIPEMENTS • PROJET, INSTALLATION ET ENTRETIEN DES SYSTÈMES La production des équipements en conformité avec les normes européennes garantit à l’acheteur l’accès à un standard minimum de qualité du produit. Le fabricant, ayant effectué et passé avec succès les tests requis par les normes, peut appliquer le marquage “CE” sur ses produits. Afin d’améliorer la qualité du produit, le fabricant peut effectuer des tests supplémentaires (conformément aux normes nationales et internationales) qui assurent ainsi des standard plus élevés. Depuis longtemps Tecnoalarm a choisi de: • Tester ses produits selon le niveau le plus sévère des normes applicables afin d’obtenir le maximum de la fiabilité. • S’adresser à un organisme notifié pour garantir la conformité des appareils aux normes EN actuellement en vigueur. Ci-dessous sont indiquées quelques exigences pour 56 la construction des équipements: • Ils doivent être contenus à l’intérieur de boîtiers protégés et pouvant être ouverts avec des clés ou des outils spéciaux. • Ils doivent avoir une résistance mécanique apte à soutenir le stress du transport et l’exercice régulier. • Les parties actives à tension de réseau (ex. les circuits primaires des sources d’alimentation) doivent être protégées par une isolation appropriée contre le contact direct des personnes ou des choses. • Des protections appropriées doivent être prévues si les équipements résultent sensibles aux champs électromagnétiques, électriques ou magnétiques externes présents dans l’environnement et/ou procurés par des malintentionnés. • Le contact d’auto-protection du boîtier doit activer une alarme, selon le niveau de sécurité demandé, causé par les tentatives de sabotage suivants: -ouverture -perforation - arrachement de tout l’appareil -désorientation Les options peuvent varier selon les pays. Protection anti-perforation Protection anti-mousse Protection anti-ouverture et anti-arrachement Protection anti-ouverture • Les appareils conformes aux normes européennes EN doivent exposer de manière claire et indélébile les données techniques. • Chaque appareil doit être accompagné d’une documentation technique indiquant: - caractéristiques fonctionnelles - niveau de sécurité - indications de connexion - modalité d’installation et de service - conditions environnementales externes dans lesquelles le dispositif fonctionne correctement - réglages prévus - manuels d’installation - manuels utilisateur etc. 57 15 EN 50131-1 (exigences de systèmes d’alarme contre l’intrusion et les hold-up) EN 50131-1 2008-02 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 1: Exigences de système 15.1 Description Les EN 50131-1 sont des normes européennes qui spécifient les exigences pour les systèmes d’alarme contre l’intrusion et les hold-up installés dans les édifices avec des interconnexions filaires et radio. Elles prévoient 4 niveaux de securité et 4 classes environnementales. Un système de 58 sécurité devrait être intégré par des dispositifs et des procédures appropriés pour la sécurité physique dans le but d’en accroître l’efficacité, chose très importante pour les systèmes de niveau élevé. À ce jour, la norme n’inclut pas les exigences pour les systèmes anti-intrusion pour extérieur. 16 CLC/TS 50131-7 (guide d’application pour systèmes d’alarmes contre l’intrusion et les hold-up) CLC/TS 50131-7 2004-07 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 7: Guide d’application 16.1 Description Le CLC/TS 50131-7 est un guide à la conception, la planification, le fonctionnement, l’installation, la mise en service et l’entretien des systèmes d’alarme installés dans les édifices. Ce guide s’adresse à toutes les classes environnementales et à tous les niveaux de sécurité des systèmes d’alarme anti-intrusion de n’importe quelle dimension et complexité; il devrait être lu conjointement à la norme EN 50131-1. 59 17 EN 50131-5-3 (exigences pour les équipements d’alarme intrusion utilisant des techniques radio) EN 50131-5-3 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 5-3: Exigences pour les équipements d’alarme intrusion utilisant des techniques radio 17.1 Description La EN 50131-5-3 est une norme qui s’applique aux équipements et aux systèmes de détection et de signalisation d’alarme contre l’intrusion et RS485 60 les hold-up qui utilisent les connexions en radiofréquence et qui sont installés en environnements protégés. 18 LISTE DES NORMES DE SECTEUR Publication Titre Année INSTALLATIONS ET SYSTÈMES ANTI-INTRUSION ET ANTI-AGRESSION CLC/TS 50131-7 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 7: Guide d’application 2004 EXIGENCES DE SYSTÈME EN 50131-1 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 1: Exigences de système 2006 + A1:2010 suit > 61 Publication Titre Année DÉTECTEURS EN 50131-2-2 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 2-2: Exigences pour détecteurs à infrarouges passifs 2008 EN 50131-2-3 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 2-3: Exigences pour détecteurs à hyperfréquences 2009 EN 50131-2-4 EN 501341-2-5 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 2-4: Exigences pour détecteurs combinés à infrarouges passifs et à hyperfréquences Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 2-5: Exigences pour détecteurs combinés à infrarouges passifs et ultrasoniques 2008 2009 50131-2-6 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 2-6: Exigences pour contacts magnétiques 2009 CLC/TS 50131-2-7-1 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 2-7-1: Détecteurs d’intrusion – Détecteurs bris de verre (sonore) 2010 CLC/TS 50131-2-7-2 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 2-7-2: Détecteurs d’intrusion – Détecteurs bris de verre (passifs) 2010 TS 50131-2-7-3 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 2-7-3: Détecteurs d’intrusion – Détecteurs bris de verre (actifs) 2010 DISPOSITIFS DE CONTRÔLE ET DE SIGNALISATION EN 50131-3 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 3: Équipement de contrôle et de signalisation 2009 CLC/TS 50398 Systèmes d’alarme – Systèmes d’alarme combinés et intégrés Règles générales 2009 DISPOSITIFS D’AVERTISSEMENT EN 50131-4 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 4: Dispositifs d’avertissement 2010 SYSTÈMES SANS FILS EN 50131-5-3 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 5-3: Exigences pour les équipements d’alarme intrusion utilisant des techniques radio 2007 + A1:2009 SOURCES D’ALIMENTATION EN 50131-6 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 6: Alimentation 2008 SYSTÈMES GÉNÉRATEURS DE FUMÉE EN 50131-8 Systèmes d’alarme – Systèmes d’alarme contre l’intrusion et les hold-up Partie 8: Système générateurs de fumée 2010 GÉNÉRAL EN 61082 62 Établissement des documents utilisés en électrotechnique Partie 1: Règles 2007 63 19 DÉFINITIONS 9.1 Vocabulaire de la sécurité anti-intrusion Adresse. Information apte à identifier de façon inéquivoque un composant du système Autonomie. Période de temps pendant laquelle la source d’alimentation auxiliaire est en mesure d’alimenter le dispositif Auto-alimentation. Appareil doté d’une source d’énergie propre (batterie) Brouillage. Action apte à neutraliser le principe physique des fonctionnements du détecteur Centrale d’alarme. Unité centrale de traitement (CPU) qui gère toutes les fonctions d’un système d’alarme Centre de réception alarmes. Centre constament présidié auquel sont envoyées les informations correspondantes à l’état de plusieurs systèmes anti-intrusion, ex. station centrale de télésurveillance Chiffrement. Technique d’encodage apte à masquer les informations et à les rendre disponibles seulement au possesseur de la clé de déchiffrement Codes d’accès. Numéros alphanumériques qui permettent l’accès aux fonctions d’une centrale anti-intrusion Contrôle brouillage. Contre-mesure apte à contraster la tentative de brouillage du détecteur Désorientation. Action intentionnelle modifier l’alignement du détecteur 64 apte Disqualification. Capacité d’un détecteur de s’auto-exclure et/ou d’activer une signalisation dans le cas où les agents atmosphériques, en atténuant le signal, auraient compromis l’efficacité du dispositif Documentation. Documents sur papier (ou sous autre forme) préparés lors de la conception, l’installation, la mise en service et la remise du système anti-intrusion témoignant tous les détails de celui-ci Entretien correctif. Intervention du personnel spécialisé suite à l’appel de l’utilisateur afin d’éliminer les pannes et les anomalies du système Entretien préventif. Ensemble d’interventions périodiques apte à maintenir le bon fonctionnement du système Fausse alarme/Alarme intempestive . Alarme activée par des événements ou des causes accidentels qui ne correspondent pas à une réelle tentative d’intrusion ex. un phénomène physique typique de la fonctionnalité du détecteur même (rayonnement solaire, mouvement rideaux, animaux domestiques etc.) Habitation isolée. Villa ou ferme ou appartement loin du centre habité Habitation non isolée. Appartement ou édifice dans une ville à suit > Historique d’événements. Liste des états opérationnels du système, des alarmes, des pannes, des alarmes auto-surveillance, des anomalies etc. Interconnexion sans fils. Échange d’informations entre les composants d’un système anti-intrusion en utilisant la technologie radio Interférence. Altération des signaux et/ou des messages qui passent entre les composants du système anti-intrusion Monitoring. Processus de vérification constant du correct fonctionnement des interconnexions et des équipements Notification d’alarme. Transfert d’une condition d’alarme vers des dispositifs de signalisation visuels/sonores et/ou vers des systèmes de transmission d’alarme Opérateur. Persone autorisée à agir sur les équipements anti-intrusion pour l’activité ordinaire, fonction normalement assumée par l’utilisateur final et par les personnes envers lesquelles il a confiance, généralement les membres de la famille Panne.Condition d’un système anti-intrusion qui empêche son bon fonctionnement Réparation. Ensemble des opérations aptes à éliminer une panne en rétablissant l’état normal de fonctionnement Rétablissement. Procédure apte à éliminer une condition d’alarme, d’alarme auto-surveillance, une panne etc. et à rétablir la centrale à son fonctionnement normal Sabotage. Action intentionnelle et frauduleuse apte à altérer le bon fonctionnement d’un dispositif Source d’alimentation auxiliaire. Source d’alimentation en mesure de distribuer énergie au système pendant une période prédéterminée lors de défaut secteur Système présidié. Système où est présent le personnel chargé d’intervenir, fonction typique de systèmes incendie Transmetteur téléphonique. Appareil apte à transférer un message vocal pré-enregistré et des paquets de données en format digital Unité de contrôle. Dispositif de commande et/ou de signalisation Zone. Aire délimitée dans laquelle fonctionner un ou plusieurs détecteurs peuvent 65 20 BIBLIOGRAPHIE • CLC/TS 50131-7 – Guide d’application pour les systèmes d’alarme contre l’intrusion et les hold-up • EN 50131-1 – Exigences de systèmes d’alarme contre l’intrusion et les hold-up • EN 50131-2-x – Exigences de détecteurs 66 • EN 50131-3 – Unités de contrôle et de signalisation pour centrales d’alarme intrusion • EN 50131-6 – Sources d’alimentation pour systèmes d’alarme intrusion • EN 50131-5-3 – Exigences pour les équipements d’alarme intrusion utilisant des techniques radio 21 ANNEXES A B C D Calcul de l’autonomie du système Calcul de la capacité de la batterie Choix de la source d’alimentation Dimension des câbles – Calcul des chutes de tension 67 ANNEXE A Calcul de l’autonomie du système Le tableau ci-dessous suggère comment calculer l’autonomie d’un système d’alarme, c’est-àdire pour quelle période de temps (exprimée en heures) celui-ci est en mesure de fonctionner parfaitement avec la seule aide de la batterie (alimentation auxiliaire) sans engendrer aucun type de dysfonctionnement. L’autonomie définit la capacité de fonctionner correctement en condition de défaut secteur 230V, c’est-à-dire absence de “l’alimentation primaire”. Pour faire ce calcul il faut avant tout connaître les caractéristiques techniques de chaque élément du système. Normalement toutes les données relatives à la consommation des composants sont indiquées dans les manuels techniques. Les valeurs considérées sont celles mesurées pendant l’état de repos (système avec programmes mis en service mais non en alarme). Par souci d’exhaustivité, se reférer aussi à celles de la situation de consommation maximale, à savoir pendant une alarme en cours. Consommation Au repos En alarme • 1 centrale TP8-64 100mA 105mA • 1 console LCD300/S 14mA 16mA • 3 détecteurs DUALTECNO 10 3x11= 33mA 3x20= 60mA • 2 détecteurs IR2005 5mA 10mA • 1 sirène SAEL 2010 LED* 22mA 22mA* • 2 sirènes SIREL 2000B 0mA 2x180= 360mA CONSOMMATION TOTALE 174mA 573mA * Ne repose pas sur la batterie de la centrale étant un dispositif autoalimenté Il est considéré: • que le système doit servir 1 événement d’alarme • que la durée de 1 cycle d’alarme est de 4 minutes • que l’autonomie demandée dans l’exemple est de 24h Il est supposé: • que la capacité réelle d’une batterie soit le 80% de celle déclarée donc: Cr = Cd x 0,8 68 ANNEXE B Calcul de la capacité de la batterie Comment déterminer la consommation maximale de courant afin d’obtenir 24 heures d’autonomie de la batterie Batterie de 2Ah: 2x0,8 = 1,6Ah BATTERIE DE 2Ah Courant I = 1,6Ah/24h 66mA Batterie de 7Ah: 7x0,8 = 5,6Ah BATTERIE DE 7Ah Courant I = 5,6Ah/24h 233mA Batterie de 18Ah: 18x0,8 = 14,4Ah BATTERIE DE 18Ah Courant I = 14,4Ah/24h 600mA Batterie de 24Ah: 24x0,8 = 19,2Ah BATTERIE DE 24Ah Courant I = 19,2Ah/24h 800mA Calcul pour déterminer la capacité minimale de la batterie afin d’obtenir 24 heures d’autonomie Total de la consommation au repos en mA dans l’exemple: Total de la consommation en alarme en mA dans l’exemple: 174mA 573mA [(174mA x 24 heures) + (573mA x 0,066*) x 1,25** ] /1000 = (4176 + 37) x 1,25 /1000 = 5,27Ah *durée d’alarme en heures, c’est-à-dire 4/60 ** capacité réelle de la batterie, c’est-à-dire 80% de la capacité déclarée Cela signifie que la batterie à utiliser dans l’exemple afin de garantir 24 heures d’autonomie, doit avoir une capacité nominale (indiquée sur l’étiquette) égale ou supérieure à 5,27Ah (c-à-d 6Ah). 69 ANNEXE C Choix de la source d’alimentation Souvent il arrive qu’à la base des mauvais fonctionnements d’un système, il y a des problèmes liés à l’alimentation. C’est donc extrêmement important de dimensionner correctement la source d’alimentation afin que le système anti-intrusion fonctionne pour le mieux. Afin d’effectuer cette analyse, il faut connaître: • Le total de la consommation au repos de la centrale, des détecteurs et des dispositifs de signalisation d’alarme (tous les composants non alimentés) en mA. • Le temps minimum en heures de recharge batterie (dans l’exemple 80% en 24 heures) indiqué par les normes. • Le total des capacités des batteries utilisées dans l’installation et chargées par la même source d’alimentation (somme des capacités en Ah de la batterie de la centrale et des avisateurs d’alarme). Il est supposé que la centrale a une batterie de 7Ah et une sirène autoalimentée ayant une batterie de 2Ah. Le courant (en Ah) qui devra être en mesure de fournir l’alimentation sera égal à: Capacité batterie centrale + capacité batteries dispositifs autoalimentés _________________________________________________________________ x 800 + (totale consommation au repos) 24 heures 7Ah + 2 Ah (------------- x800) + 174 = le courant minimum que l’alimentation doit pouvoir fournir régulièrement, c’est-à-dire: 24 heures (9/24) x 800 + 174 = 300 + 174 = 474mA Par conséquent la source d’alimentation du système en question devra fournir régulièrement un courant d’au moins 475mA afin de garantir le bon fonctionnement du système et, en même temps, de charger les batteries correctement. 70 ANNEXE D Dimensions des câbles Il peut arriver d’utiliser par habitude des câbles d’une section particulière sans tenir compte des lois de la physiques et de l’électricité qui devraient en déterminer le choix. Dans cette fiche seront omis les indices d’isolation qui régissent les règles de la coéxistence entre câbles à très basse tension (12V) et ceux à tension de réseau 230V et 380V. Nous allons plutôt affronter les aspects liés à la section conductrice d’un câble. Il est important qu’en fonction de sa longueur, du courant absorbé à l’autre bout et de la chute de tension maximale, le dispositif soit en mesure de fonctionner régulièrement et sans compromettre ses performances. L’exemple indiqué ci-dessous se réfère à des câbles en cuivre. Il est nécessaire de connaître avant tout la résistance spécifique par rapport à la section. Section du câble en mm² Résistance spécifique 0,22 0,090 0,50 0,035 1,00 0,018 1,50 0,012 2,00 0,009 Exemple 1 CALCUL DE LA CHUTE DE TENSION I ass = 180mA Il est supposé de devoir raccorder une sirène SIREL 2000AUTO qui absorbe 180mA avec un câble de la section de 0,22mm2, à 65 mètres de la centrale. La centrale fournit une tension de 13,7V pour l’activation de la signalisation acoustique avec un courant approprié. La chute de tension V à l’autre bout de la ligne sera égale à: Tension d’arrivée: 11,6V V = (résistance spécifique x longueur ligne*) x (courant absorbé en mA) ---------------------------------------------------------------------------1000 = [(0,090 x 2* x 65 mètres) x 180]/1000 = 2,1V = chute de tension du trajet 65 mètres Câble 2x0,22 * Attention! La longueur doit être multipliée par 2: aller et retour. Tension arrivant à la sirène: (13,7V – 2,1V) = 11,6V ANALYSE DU RÉSULTAT Dans cet exemple, la chute de tension due à la section réduite du câble est importante (2,1V). La sirène serait alimentée à environ 11,6V et, en cas d’absence prolongée de la tension du secteur (fonctionnement avec la batterie de la centrale) il se pourrait que sa fonctionnalité soit compromise. Centrale V out 13,7V Par contre, si un câble de section de 0,50mm² avait été utilisé, la chute de tension aurait été d’environ: = [(0,035 x 2 x 65) x 180]/1000 = 0,8V de chute 71 Exemple 2 CALCUL DE LA CHUTE DE TENSION I ass = 11mA Il est supposé de devoir raccorder un détecteur double technologie Dualtecno 10 qui absorbe 11mA avec un câble de la section de 0,22mm2, à 50 mètres de la centrale. La centrale fournit une tension de 13,7V avec un courant approprié. La chute de tension V à l‘autre bout de la ligne sera égale à: Tension d’arrivée: V = (résistance spécifique x longueur ligne*) x (courant absorbé en mA) 13,6V ---------------------------------------------------------------------------1000 = [(0,090 x 2* x 50 mètres) x 11]/1000 = 0,09V = chute de tension du trajet 50 mètres Câble 2x0,22 * Attention! La longueur doit être multipliée par 2: aller et retour. Tension arrivant au détecteur: 13,7V – 0,09V = 13,61V ANALYSE DU RÉSULTAT Dans cet exemple, la chute de tension due à la section réduite du câble est minimale Centrale V out 13,7V 72 (0,09V). La distance pas excessive (50 mètres) uni à un absorbement modeste (11mA) jouent un rôle fondamentale. Les images présentées dans ce guide, sont fournies exclusivement a titre démonstratif et sont protégées par copyright. Tecnoalarm ne pourra être retenue responsable des informations inexactes ou des caractéristiques différentes de la réalité reportées dans ce guide. Guide aux normes européennes Édition 1 – Janvier 2012 73 Via Ciriè, 38 - 10099 San Mauro T.se - Torino (Italy) tel. +390112235410 - fax +390112735590 [email protected] www.tecnoalarm.com 74 495, Rue Antoine Pinay - 69740 Genas - Lyon (France) tél. +33478406525 - fax +33478406746 [email protected] www.tecnoalarm.com Agence de Paris : 125, Rue Louis Roche - 92230 Gennevilliers c/Vapor 18 (Pol. Ind. El Regas) 08850 Gavá - Barcelona (España) tel. +34936622417 [email protected] www.tecnoalarm.com