"Métro du Grand Paris": application of a prototype RELU
Transcription
"Métro du Grand Paris": application of a prototype RELU
Spatial effects of the “Métro du Grand Paris”: application of a prototype RELUTRAN approach Matthieu de Lapparent, IFSTTAR Alex Anas, State University of New York at Buffalo 21 Mai 2012 Background • RELU-TRAN is a computable general equilibrium model, based on microeconomic theory and designed for the analysis of metropolitan development scenarios and policies. See the page on RELU-TRAN at URL: http://sites.google.com/site/alexanashomepage/the-relu-tran-model-and-itsapplications • The model has been developed in two phases RELU-TRAN1 (2000-2006) and RELU-TRAN2 (2006-2010). It however continues a long period of development of earlier theoretical models and applications by Alex Anas Background --continued • RELU-TRAN 1 was developed under a grant from the United States National Science Foundation to Dr. Alex Anas. The NSF received 115 proposals and funded 5 of them. • RELU-TRAN 2 was developed as an extension of RELU-TRAN 1 incorporating treatment of energy consumption in automobile travel under an award to Dr. Alex Anas from the United States Environmental Protection Agency’s Science to Achieve Results Program. Background --continued • The model has been applied to the Chicago, MSA (Metropolitan Statistical Area), making forecasts and policy analysis scenarios over the time span from 2000 to 2030. • Currently under a Multi-campus Research Initiative of the University of California which has made an award, RELU-TRAN 2 is being developed for the Greater Los Angeles Region. The project will last until 2014 (it began in 2010). Background: Related references • Anas, Alex & Ikki Kim, General Equilibrium Models of Polycentric Urban Land Use with Endogenous Congestion and Job Agglomeration, Journal of Urban Economics, 40, 217-232, 1996. • Anas, Alex and Richard J. Arnott, “Taxes and Allowances in a Dynamic Equilibrium Model of Urban Housing Market with a Size -Quality Hierarchy”, Regional Science and Urban Economics, 27, 547-580, 1997. • Anas, Alex & Rong Xu, Congestion, Land Use and Job Dispersion : A General Equilibrium Analysis, Journal of Urban Economics , 45,3, 451-473, 1999. • Alex Anas & Hyok-Joo Rhee, Curbing excess sprawl with congestion tolls and urban boundaries, Regional Science and Urban Economics, 36, 510-541, 2006. • Alex Anas & Hyok-Joo Rhee, When are urban growth boundaries second-best policies to congestion tolls ?, Journal of Urban Economics, 61, 263-286, 2007. • Alex Anas & Yu Liu, A Regional Economy, Land Use and transportation Model (RELU- TRAN): Formulation, algorithm design and testing, Journal of Regional Science, vol. 47, 3, 415–455, 2007. Recent articles on the Chicago applications of RELU-TRAN2 • Alex Anas and Tomoru Hiramatsu, “The Effect of the Price of Gasoline on the Urban Economy: From Route Choice to General Equilibrium” In Press (accepted), Transportation Research A, Special Issue on Transportation Economics. • Alex Anas, “Decentralization and the Stability of Travel Time”, In review, 2011. • Alex Anas and Tomoru Hiramatsu, “The Economics of Cordon Tolling: General Equilibrium and Welfare Analysis,” Working paper, August 19, 2011 Scope • The model has been used to analyze the impacts of the following scenarios and policies in the Chicago MSA. 1. 2. 3. 4. The effects of a gasoline price increase; Growth in population and the effects of continuing urban sprawl; Cordon tolls around the center and Pigouvian tolling of all major roads; Effects of installing urban growth boundaries that limit a city’s outward expansion. Why a SCGE? • G.E. models help avoid oversimplification. • G.E. models can help us study real cities. EXAMPLES OF ISSUES G.E. MODELING CAN HELP WITH… • Travel trends are becoming complex. • Interdependence of producer and consumer location decisions. • Decisions involve several dimensions that are related in complex ways. Outline • RELU-TRAN architecture • Application: data and model specification/estimation/calibration • Results 9 Structure of the model and solution algorithm • The next pages describe the behavior of consumers, firms and real estate developers in RELU-TRAN and how these are modeled. • After the structure of the model the solution algorithm is described by means of three flowcharts. RELU-TRAN architecture: Consumer Decisions Decisions are hierarchically linked and involve discrete as well as continuous choices Consumer Decision to work: Workplace- residence locations • Labor supply / leisure • Commuting mode and vehicle choices • Housing (quantity / type) • Vehicle ownership (type and fuel intensity) • Discretionary travel pattern to obtain goods and services Where to go ? Where not to go ? How many trips per period ? How much to spend ? Mode choice / vehicle choice on each trip Decision to not work All choices on left apply except those in red A mix of discrete and continuous choices Discrete choice of Working/not working Stay out of labor market Enter labor market Discrete choice of triplet: i: residence zone j: workplace zone k: type of housing (i,j,k) Discrete choice of mode for commuting Auto Transit Continuous variables •Floor space of type k in residence zone I •Labor hours of work supplied to place of work at j • Number of non-work trips and their destinations and modes • Quantity of goods purchased on non-work trips CONSUMER Assets Wages Work Income Consumer Commute/Mode and Route Choice Housing (Floor space) Non-work trips: Commute/Mode and Route Choice Residence Retail trips and Purchases Utility maximization problem 1 f f MaxZ z ,b U ijk | f f ln z|ijf ( Z z ) f ln b Eijk | f eijk | f z * U ijk | f subject to the budget : ( pz cijf giz ) Z z bRik dgij Max(i , j ,k ) z w jf H dGij cijf Z z Giz M f z and H dGij cijf Z z Giz 0. z CONTINUOUS CHOICES Demand for floor space bijk | f f ijf Rik Demand for retail goods Z z|ijf 1 1 f z |ijf 1 f 1 z |ijf 1 1 f s s|ijf f f 1 s|ijf f ijf DISCRETE CHOICES Indirect utility (simplest version): Uijk | f f ln f f ln f ln ijf f ln Rik f 1 f (1 f ) 1 f f 1 ln z z|ijf z|ijf Eijk| f f Workplace-Residence Discrete Choice Probability (simplest version, nested logit is also, see after in the application): Pijk | f exp f U ijk | f exp( U ) f stn | f ( s ,t , n ) FIRMS LABOR TYPES BUILDING TYPES PRODUCTION FUNCTION INTERMEDIATE INPUTS FROM OTHER INDUSTRIES OUTPUT MIXED C.E.S.-COBB-DOUGLAS PRODUCTION FUNCTION X rj Arj K r f |rj L f r f 0 F r r r B k |rj k k 0 r r LABOR INPUTS L f |rj f |rj 1 1 r 1 1 r F z 0 w jf 1 r 1 w jz z |rj r r 1 r prj X rj BUILDING INPUTS Bk |rj k |rj 1 1 r 2 z 0 1 R jk 1 1 r z |rj r 1 R jz r r 1 r prj X rj INTERMEDIATE INPUTS Ysn|rj 1 1 1 sr sr 1 sn|rj snj sr 1 1 sr sr 1 sy|rj syj y 0 ˆ p ˆ p sr prj X rj sr Y sn|rj sn s 1 n 0 sr sr . INTER-INDUSTRY STRUCTURE AGRICULTURE BUSINESS SERVICES MANUFACTURING RETAIL TRADE CONSUMER PHYSICAL I-O COEFFICIENTS asn rj Ysn|rj X rj 1 1 1 sr sr 1 sn|rj snj sr 1 1 sr sr 1 sy|rj syj y 0 ˆ p sr prj ˆ p VALUE-BASED I-O COEFFICIENTS asn rj ˆ snjYsn|rj p prj X rj FLOW CONSERVATION asn rj ˆ snj p prj a s 1 n 0 sn rj sr 1 1 sr sr 1 sn|rj snj sr 1 1 sr sr 1 sy|rj syj y 0 ˆ p sr 1 ˆ p sr 1. s 1 ZERO ECONOMIC PROFIT CONDITION FOR FIRMS PRICE=UNIT COST UNDER C.R.T.S. F prj sr f 0 r r r Arj r r r ( sr ) r 1 1 r f |rj r r 1 w jf r ( r 1) r k 0 1 1 r k |rj s 1 11 sr1 sn|rjsr pˆ snsr|rj s 1 n 0 sr ( sr 1) sr r r 1 R jk r ( r 1) r DEVELOPERS CONSTRUCTION PROBABILITIES (OWNERS OF LAND) 1 exp i 0 Vik pk ,i mk Ci 0k 1 Qiok (Vi 0 ,Vi1 ,...,Vi ) 1 1 exp i 0Vi 0 s1... exp i 0 V p m C is s,i k i0s ZERO-PROFIT 1 1 E max i 00 , i 0 k ; k 1... Ri 0 1 i 0Vi 0 0 1 DEMOLITION PROB. (OWNERS OF BUILDINGS) Qik 0 (Vi 0 ,Vik ) ZERO-PROFIT 1 1 exp ik pk ,i Cik 0 Vi 0 1 mk 1 1 1 exp ik pk ,i Cik 0 exp ik Vik Cikk Vi 0 1 1 mk E max kk , k 0 ik ( Rik ) 1 ikVik 0 1 BLDG 1 BLDG 2 LAND TRAN module • Probabilistic mode choice model to split OD matrix derived from RELU module • Stochastic user equilibrium traffic assignment procedure 23 TRAN module 24 TRAN module 25 TRAN module 26 Interdependence of producers and consumers Location of Production Location of Residences • We cannot explain the location of residences (producers) if we do not know the location of producers (residences). Labor market, Housing market wages, residential rents Goods market, Housing market goods prices, business rents HOUSING & LABOR MARKETS HOUSING MARKET : f N Pijk| f bijk| f f j Sik qik SUPPLY OF FLOOR SPACE DEMAND FOR FLOOR SPACE LABOR MARKET : r L f |rj DEMAND FORTYPE f LABOR i k f H DGij cijf Z z|ijf Gij N Pijk| f z SUPPLY OFTYPE f LABOR SOLUTION ALGORITHM 1 STARTING POINT p, w, R,V,S G, g RELU-TRAN CYCLE RELU RELU LOOPS CONVERGED Update G and g for next cycle RELU TRIPS TRAN TRAN ITERATIONS CONVERGED G and g converged? p, w, R, V converged? Excess demands, profits converged? YES RELU-TRAN CYCLES CONVERGED Cyclical linking of the RELU and TRAN algorithms in RELU-TRAN START POINT p, w, R, V, S, G, g RELU LOOP PRICES, p ( w, R ) p OUTPUTS, X ( p, w, R, S,V ) X WAGES, w ( p, X, R,S,V )w Update p, w, R, V for next loop RENTS, R (p, X, w, S,V) R VALUES, V RV STOCKS, S VS NO YES p, w, R, V converged? Excess demands converged? Economic profits converged? RELU loops converged The RELUALGORITHM algorithm SOLUTION 2 SOLUTION ALGORITHM 3 RELU TRIPS AUTO MODE CHOICE PROBABILITIES ROUTE CHOICE & NETWORK EQUILIBRIUM FLOW ITERATIONS CONVERGED CONGESTED HIGHWAY LINK TRAVEL TIMES ZONE-TO-ZONE EXPECTED TIMES & COSTS G and g TRAN The TRAN Algorithm Application • • • • • • Exploit flexibility of RELU-TRAN model to adapt to case study Spatial resolution: medium level application Data collection and preparation Estimation and calibration Definition of scenarios Results 32 Prototyped RELU-TRAN model • Tight schedule: – Data access – Implementation of the model – Choice has been made to not consider different industrial sectors and different types of workers: only total employment – The same for workers and households: there is no difference – No adequate data about construction or demolition 33 Spatial resolution • Zone system: 50 internal zones + 4 outside zones – Starting at 1300 “communes” resolution – Based on definition of June 2011 “contrats de développement territoriaux – CDT” – Then using the 40 administrative “arrondissements” to allocate the other “communes” – Isolated “communes” finally reassigned to neighbour “arrondissement” of the same “département” – When not possible, isolated “communes” were assigned to neighbour CDT of the same “département” – The 4 outside zones caracterize the surrounding rest of the world 34 35 36 Data collection for base year • Data spanning from years 2005 to 2010 were collected to calibrate the model: – 2005 DRIEA/IAU base year data on population and employment – 2006 Census: persons, households, workers, housing, employment at workplace, housing stocks (occupied and vacant) by type – 2007 Côtes Callon (2006 prices): average market prices and rents of apartments, houses, shops, and offices, in euros per square metres (only about 250 observations) – INSEE: 2005 median net wages, inflation rate, median net incomes – DIREM: 2006 fuel prices – DGIFP: 2006 median fiscal incomes – DRIEA: 2009 road network, OD flows, travel times and distances for road and public transport (inputs & outputs from MODUS model, peak hours, all purposes) – IAU: 2008 land use data (MOS/EVOLUMOS) – IGN & SGP shapefiles • For the sake of clarity, “2005” reference year 37 Data Preparation • For RELU module: – Figures about population, workers, households, employment at workplace, establishments, land use, are aggregated from 1300 “communes” to the 50 inner zones • For TRAN module: – Road network: 3004 road links and 335 nodes – OD flows (total and by mode) aggregated from the MODUS zone system to the 50+4 system – Transit travel times computed as “weighted” average times 38 39 40 Model calibration 41 Model calibration 42 Model calibration 43 Model calibration 44 Model calibration: joint residential-workplace location 45 Model calibration: joint residential-workplace location 46 Model calibration: business establishment location 47 Model calibration: occupancy/vacancy of housing units 48 Model calibration: construction 49 Model calibration: TRAN, road 50 Definition of scenarios • Spatial distribution of population and employment over the 50+4 zones at 2025 and 2035 horizons: – Three assumptions about total population and employment: 1 do-nothing scenario + 2 scenarios for project implementation (one “Low”, one “High”) – When project is implemented: • 2025: partial implementation of the new infrastructure • 2035: full implementation of the new infrastructure Base year Reference Project « low » Project « high » 2005 2025 2035 2025 2035 2025 2035 Population 11433302 12512268 13051748 12558372 13120875 12633299 13233316 Jobs 5360447 5907272 6180692 6000443 6320442 6160451 6560455 51 Definition of scenarios • Population and jobs in difference with respect to base year under the different scenarios assumptions Population Jobs Reference 2025 2035 1078966 1618446 546825 820245 Project « low » 2025 2035 1125070 1687573 639996 959995 Project « high » 2025 2035 1199997 1800014 800004 1200008 52 53 54 Definition of scenarios • Further working assumptions: – Annual fuel price increases at 2% over inflation rate up to 2025 and real price doubles at horizon 2035 – No construction is allowed in the city of Paris: • Only vacancy rates and (perfect) substitution between types of real estate are used to manage demand and supply • No information on vacancy for shops and offices: presumed to be similar to this of housing • No house in Paris – 2.5 members per household in 2025, 2.2 in 2035 – Transportation LOS: • Levels of services for road network are endogenous • Levels of services for public transportation are computed using DRIEA OD matrices 55 Results: population Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region External zones pop2005 2 162 810 POP2025R 2 155 980 POP2025L 2 167 398 POP2025H 2 188 817 POP2035R 2 208 916 POP2035L 2 226 645 POP2035H 2 256 921 237 729 250 790 251 691 252 579 263 060 264 330 265 687 177 813 189 196 190 097 190 973 197 374 198 621 199 959 721 233 765 344 768 761 772 091 803 380 807 833 812 973 340 392 360 231 545 585 341 369 126 261 670 782 379 697 387 787 594 843 375 624 132 477 721 246 380 193 389 928 597 021 377 168 132 662 722 429 381 469 391 862 599 593 378 940 133 097 725 373 392 208 417 198 638 811 392 582 135 434 773 105 392 919 420 574 642 085 394 862 135 590 774 947 394 816 423 668 646 335 397 580 136 129 779 751 162 929 186 488 186 936 187 637 193 574 194 182 195 230 5 586 172 6 301 912 70 883 6 322 111 71 978 6 354 079 76 790 6 578 982 57 123 6 609 251 59 036 6 658 979 65 288 56 Results: population Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region External zones DELTA 2025R2005 -6 830 DELTA 2035R2005 46 106 DELTA 2025L2005 4 588 DELTA 2035L2005 63 835 DELTA 2025H2005 26 007 DELTA 2035H2005 94 111 13 061 25 331 13 962 26 601 14 850 27 958 11 383 19 561 12 284 20 808 13 160 22 146 44 111 82 147 47 528 86 600 50 858 91 740 39 305 27 556 49 258 34 255 6 216 50 464 51 816 56 967 93 226 51 213 9 173 102 323 39 801 29 697 51 436 35 799 6 401 51 647 52 527 60 343 96 500 53 493 9 329 104 165 41 077 31 631 54 008 37 571 6 836 54 591 54 424 63 437 100 750 56 211 9 868 108 969 23 559 30 645 24 007 31 253 24 708 32 301 715 740 70 883 992 810 57 123 735 939 71 978 1 023 079 59 036 767 907 76 790 1 072 807 65 288 57 Results: population 58 Results: population 59 Results: population 60 Results: population 52 936 59 247 DELTA 2035H2025H 68 104 21 419 30 276 11 418 17 729 DELTA 2025H2025R 21 419 12 271 12 639 13 107 888 1 357 902 1 269 888 2 626 8 178 8 524 8 986 877 1 338 900 1 247 877 2 585 38 036 39 072 40 882 3 331 5 141 3 417 4 453 3 331 9 593 12 511 29 411 43 968 16 958 2 956 51 858 12 727 30 645 45 064 17 693 2 928 52 518 13 347 31 807 46 742 18 640 3 032 54 378 1 276 1 933 2 572 1 771 435 2 944 1 897 3 095 4 250 2 718 538 4 804 496 2 141 2 178 1 544 185 1 182 711 3 375 3 274 2 280 157 1 842 1 276 1 933 2 572 1 771 435 2 944 2 608 6 470 7 524 4 998 695 6 646 7 086 7 246 7 593 701 1 048 448 609 701 1 657 277 071 287 140 304 901 31 968 49 728 20 199 30 269 31 968 79 997 -13 760 -12 942 -11 502 4 812 6 251 1 095 1 913 4 812 8 165 DELTA DELTA 2035R-2025R 2035L-2025L Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region External zones DELTA DELTA DELTA DELTA 2025H-2025L 2035H-2035L 2025L-2025R 2035L-2035R DELTA 2035H2035R 48 005 61 Results: jobs Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region External zones job2005 1 646 905 JOB2025R 1 487 688 JOB2025L 1 503 838 JOB2025H 1 554 632 JOB2035R 1 546 911 JOB2035L 1 580 393 JOB2035H 1 659 154 61 922 77 780 80 296 82 253 81 111 84 458 87 162 44 679 53 572 54 844 56 219 56 925 58 382 60 276 296 013 367 464 389 069 399 167 397 345 420 387 436 158 149 956 322 928 172 199 147 721 141 719 380 434 189 654 480 060 232 736 186 959 174 600 482 567 187 831 498 635 238 157 193 945 175 795 481 275 195 016 509 868 241 324 199 212 180 934 493 575 204 487 517 208 241 429 200 998 186 809 501 927 203 559 541 636 246 236 211 056 188 187 501 623 215 382 558 105 249 910 219 211 195 438 519 930 47 097 63 973 63 426 64 914 68 657 68 136 70 517 1 948 875 2 110 219 2 133 332 2 183 337 2 176 885 2 216 391 2 289 212 62 Results: jobs Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region DELTA 2025R2005 -159 217 DELTA 2035R2005 -99 994 DELTA 2025L2005 -143 067 DELTA 2035L2005 -66 512 DELTA 2025H2005 -92 273 DELTA 2035H2005 12 249 15 858 19 189 18 374 22 536 20 331 25 240 8 893 12 246 10 165 13 703 11 540 15 597 71 451 101 332 93 056 124 374 103 154 140 145 39 698 157 132 60 537 39 238 32 881 102 133 54 531 194 280 69 230 53 277 45 090 121 493 37 875 175 707 65 958 46 224 34 076 100 841 53 603 218 708 74 037 63 335 46 468 121 189 45 060 186 940 69 125 51 491 39 215 113 141 65 426 235 177 77 711 71 490 53 719 139 496 16 876 21 560 16 329 21 039 17 817 23 420 161 344 228 010 184 457 267 516 234 462 340 337 63 Results: jobs 64 Results: jobs 65 Results: jobs 66 Results: jobs Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region DELTA 2035R2025R 59 223 DELTA DELTA DELTA DELTA DELTA DELTA DELTA DELTA 2035L-2025L 2035H-2025H 2025H-2025L 2035H-2035L 2025L-2025R 2035L-2035R 2025H-2025R 2035H-2035R 76 555 104 522 50 794 78 761 16 150 33 482 66 944 112 243 3 332 4 162 4 908 1 957 2 704 2 516 3 346 4 474 6 050 3 353 3 538 4 057 1 374 1 894 1 273 1 457 2 647 3 351 29 881 31 319 36 992 10 098 15 771 21 604 23 042 31 702 38 813 14 833 37 148 8 693 14 038 12 209 19 360 15 728 43 001 8 079 17 111 12 391 20 348 20 366 48 237 8 587 19 999 14 504 26 355 7 185 11 233 3 167 5 267 5 139 12 300 11 823 16 469 3 675 8 156 7 252 18 307 -1 823 18 575 5 420 6 985 1 195 -1 292 -928 24 428 4 806 10 058 1 377 -303 5 362 29 808 8 587 12 253 6 334 11 009 10 895 40 897 8 481 18 214 8 629 18 003 4 683 4 709 5 602 1 488 2 381 -547 -521 941 1 860 66 666 83 058 105 875 50 005 72 821 23 113 39 506 73 118 112 327 67 Results: housing rents, houses Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region 2005R 2025R 2035R 2025L 2035L 2025H 2035H 98.924 123.95 122.87 129.897 130.56 135.908 139.32 127.12 158.496 157.56 165.902 166.97 173.357 177.88 133.886 184.383 187.43 191.526 195.75 198.374 205.75 101.546 165.709 121.121 150.825 95.569 108.988 128.07 284.156 154.67 237.909 126.661 137.503 130.01 298.06 155.24 243.36 134.42 137.23 130.023 294.283 160.013 244.126 128.96 139.967 132.88 311.73 162.17 251.90 136.32 140.69 136.393 302.701 166.558 250.805 135.364 147.391 142.49 323.80 171.78 261.71 144.89 151.74 104.296 131.147 132.91 134.627 137.44 140.586 146.25 107.292 133.74 139.27 138.9568 139.27 145.8507 149.41 68 Results: housing rents, houses Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region DELTA 2025R2005 DELTA 2035R2005 DELTA 2025L2005 DELTA 2035L2005 DELTA 2025H2005 DELTA 2035H2005 25.026 23.95 30.973 31.63 36.984 40.40 31.376 30.44 38.782 39.85 46.237 50.76 50.497 53.55 57.64 61.86 64.488 71.87 26.524 118.447 33.549 87.084 31.092 28.515 28.46 132.36 34.12 92.53 38.85 28.24 28.477 128.574 38.892 93.301 33.391 30.979 31.33 146.02 41.05 101.07 40.75 31.70 34.847 136.992 45.437 99.98 39.795 38.403 40.95 158.09 50.66 110.89 49.33 42.75 26.851 28.61 30.331 33.14 36.29 41.95 26.4455 31.98 31.6648 31.98 38.5587 42.12 69 Results: housing rents, houses DELTA DELTA 2035R-2025R 2035L-2025L Paris Aulnay Montfermeil Le Bourget Biotechnologi e Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France - Gonesse Rest of the region DELTA 2035H2025H DELTA DELTA DELTA DELTA DELTA DELTA 2025H-2025L 2035H-2035L 2025L-2025R 2035L-2035R 2025H-2025R 2035H-2035R -1.08 0.66 3.41 6.011 8.76 6.61 7.68 13.03 16.45 -0.94 1.07 4.53 7.455 10.91 8.48 9.41 15.80 20.33 3.05 4.22 7.38 6.848 10.00 11.37 8.32 10.94 18.32 1.94 13.91 0.57 5.45 7.76 -0.28 2.85 17.45 2.16 7.77 7.36 0.72 6.10 21.10 5.22 10.91 9.53 4.35 6.37 8.418 6.545 6.679 6.404 7.424 9.62 12.07 9.61 9.82 8.57 11.05 4.81 27.57 7.50 13.99 9.66 3.19 2.87 13.66 6.93 8.54 1.90 3.47 6.38 4.64 11.32 7.45 0.94 10.17 12.48 25.73 16.54 18.36 10.47 14.51 1.76 2.81 5.66 5.959 8.81 6.29 4.53 7.68 13.34 5.53 0.31 3.56 6.8939 10.14 5.53 0.00 6.58 10.14 70 Results: housing rents, apartments Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region 2005R 358.32 2025R 429.3829 2035R 427.61 2025L 435.80795 2035L 437.75 2025H 452.49725 2035H 462.86 77.40 76.442 71.87 81.20 78.11 86.361 85.73 95.71 95.691 91.27 101.31 98.49 107.384 107.46 101.87 103.387 99.89 108.70 106.30 114.366 114.67 76.57 128.19 89.17 114.22 74.48 82.87 77.868 133.935 88.777 117.593 77.692 84.654 76.02 128.78 82.45 113.75 80.52 79.26 79.69 140.34 92.90 122.40 79.75 86.83 78.66 137.63 87.88 120.33 82.47 82.35 84.783 146.714 98.194 128.422 84.889 92.777 86.35 146.97 95.81 129.22 89.46 91.31 79.59 80.862 78.49 83.78 82.35 88.727 89.72 91.14 84.90615 79.97 88.11 84.44 93.62645 92.62 71 Results: housing rents, apartments 71.06 -0.95 -0.02 69.30 -5.53 -4.44 77.49 3.81 5.60 79.44 0.71 2.78 DELTA 2025H2005 94.18 8.97 11.68 1.52 -1.98 6.83 4.43 12.50 12.80 1.30 5.74 -0.39 3.37 3.21 1.79 -0.55 0.59 -6.72 -0.47 6.04 -3.60 3.12 12.15 3.73 8.18 5.27 3.97 2.09 9.44 -1.29 6.11 7.99 -0.51 8.21 18.52 9.03 14.20 10.41 9.91 9.78 18.78 6.65 15.00 14.98 8.45 1.27 -1.10 4.19 2.76 9.14 10.13 -6.24 -11.17 -3.03 -6.70 2.48 1.48 DELTA 2025R-2005 DELTA 2035R-2005 DELTA 2025L-2005 DELTA 2035L-2005 Paris Aulnay Montfermeil Le Bourget Biotechnologie Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France Gonesse Rest of the region DELTA 2035H2005 104.54 8.33 11.75 72 Results: housing rents, apartments 73 Results: housing rents, apartments 74 Results: housing rents, apartments 75 Results: housing rents, apartments Paris Aulnay Montfermeil Le Bourget Biotechnologi e Seine Amont Confluence La Défense Descartes Pleyel Roissy-pôle Saclay Val de France - Gonesse Rest of the region DELTA DELTA DELTA DELTA DELTA DELTA DELTA DELTA DELTA 2035R-2025R 2035L-2025L 2035H-2025H 2025H-2025L 2035H-2035L 2025L-2025R 2035L-2035R 2025H-2025R 2035H-2035R -1.77 1.95 10.36 16.6893 27.05 6.42505 10.14 23.11435 35.25 -4.57 -3.10 -0.63 5.158 4.53 4.761 6.24 9.919 13.86 -4.43 -2.82 0.08 6.079 6.16 5.614 7.22 11.693 16.20 -3.50 -2.40 0.30 5.669 5.97 5.31 6.40 10.979 14.78 -1.85 -5.15 -6.33 -3.84 2.82 -5.39 -1.04 -2.71 -5.02 -2.07 2.72 -4.48 1.56 0.26 -2.38 0.80 4.57 -1.47 5.091 6.371 5.297 6.018 5.14 5.944 6.65 6.63 2.91 6.82 9.71 4.48 1.824 6.408 4.12 4.811 2.057 2.179 2.64 8.85 5.43 6.58 1.95 3.09 6.915 12.779 9.417 10.829 7.197 8.123 10.33 18.19 13.37 15.47 8.94 12.05 -2.37 -1.43 0.99 4.945 5.94 2.92 3.86 7.865 11.23 -4.94 -3.67 -1.00 5.51175 4.51 3.20855 4.47 8.7203 12.66 76 Conclusions • Yet to be presented: – Equilibrium rents for offices and shops – Population of resident workers – Housing constructions • Architecture consistent with economic theory • Prototype of the model shows convincing results with respect to theory • Further develop the model in several aspects: – – – – Higher spatial resolution: “communes” would be OK as pertains to data availability Representation of population may be more disaggregate The same for representation of activity sectors Calibration and estimation may rely on higher quality data, e.g. disaggregate data for some of the components of the model – Introduce a transit assignment module • All of these items except the last rely mostly on data availability and preparation within a given schedule 77
Documents pareils
Comparisons of discriminant analysis techniques for high
Issues for high-dimensional data
Assumptions about variables - independent or
correlated?
Within-class covariance estimates in a range of recently
proposed methods
Simulations
Results and discussio...