2008, Ouagadougou, Burkina Faso
Transcription
2008, Ouagadougou, Burkina Faso
Improving Sustainability of Cotton Production in Africa Papers Presented at the Technical Seminar at the 67th Plenary Meeting of the INTERNATIONAL COTTON ADVISORY COMMITTEE Discover natural fibres 2 0 0 9 Ouagadougou, Burkina Faso November 2008 Contents Introduction Positive developments in integrated pest control for cotton in West Africa Ouola Traoré, Institute of the Environment and Agricultural Research (INERA), Cotton Program, Bobo-Dioulasso, Burkina Faso Developing a Sustainable Production and Marketing System for the Cotton Industry in Kenya Edwin Caleb Ikitoo, Kenya Agricultural Research Institute, Nairobi, Kenya, Waweru Gitonga, Kenya Agricultural Research Institute, Kerugoya, Kenya 2 3 9 Enhancing the Value of Cotton Peter Kapingu, Agricultural Research Institute Ukiriguru, Mwanza, Tanzania 18 Economically Viable Cotton Production Systems Bouré Ouéyé Gaouna, Cotton Breeder, Chadian Institute of Agricultural Research for Development, Chad 21 Components of a Sustainable Cotton Production System: Perspectives From the Organic Cotton Experience 26 Simon Ferrigno and Alfonso Lizarraga, Organic Exchange, UK Environmental Risks Associated with Cotton Growing in Francophone Africa: Assessment and Current Developments M. Vaissayre and M. Cretenet, CIRAD, Annual Cropping Systems Research Unit, France 34 Review of a Few Agricultural and Managerial Ways and Means for Minimizing Cotton Production Costs in West and Central Africa 36 Amadou Aly Yattara, Cotton Program Manager, Institute of Rural Economy, Sikasso, Mali. Balancing Yield and Quality for Higher Profitability in Egypt Mohamed A. Aziz, Cotton Research Institute, Egypt Osama Ahmed Momtaz, Agricultural Genetic Engineering Institute, Egypt 39 Rapports en Français Les succès de la lutte intégrée contre les ravageurs du cotonnier en Afrique de l’Ouest Ouola Traoré, Institut de l’Environnement et de recherches agricoles (INERA), Programme Coton, Bobo-Dioulasso, Burkina Faso Systèmes de production de coton économiquement viables Bouré Ouéyé Gaouna, Cotton Breeder, Institut Tchadien de Recherche Agricole pour le Développement, Chad Risques environnementaux liés à la culture du cotonnier en Afrique francophone : Bilan et évolutions en cours M. Vaissayre et M. Cretenet, CIRAD, Unité de Recherche; Systèmes de Culture Annuels, France Réduire les coûts de production Amadou Aly Yattara, Chef du programme coton, Institut d’Economie Rurale, Sikasso, Mali. 43 50 55 57 2 Introduction The Technical Seminar at the 67th Plenary Meeting of the ICAC held in Ouagadougou, Burkina Faso, from November 17-21, 2008, was on the topic ‘”Improving Sustainability of Cotton Production in Africa.” Six papers were presented in the Technical Seminar on November 20, 2008. According to Dr. Ouola Traore of INERA, Burkina Faso, the cotton producing countries in the region have suffered from resistance developed by insects to a variety of insecticides. Insecticides were commonly used in mixtures, pyrethroid+organophosphate or sometimes even one pyrethroid mixed with two organophosphates. A new calendarbased windows program for insecticide use was developed and popularized. The main difference was in the startup date and the chemicals used with two or three windows. Recently, a threshold-based program was introduced but it is not popular yet because of farmers’ limitations in identifying insects and assessing damage in fields. In Kenya, cotton production has suffered due to poor institutional management, price controls, and poor water supplies among other problems. Recently, the Government of Kenya has taken steps to revitalize the industry by improving seed production and input supply, and cotton production has just started to improve. According to Dr. Edwin Ikitoo of the Kenya Agricultural Research Institute (KARI), the cotton classification system also needs to be improved in Kenya. Mr. Peter Kapingu of Tanzania could not attend the meeting to make his presentation. However, his paper is included in the publication. His paper is focused on improving sustainability by producing quality cotton. Instrument testing optimizes cotton quality use and provides better returns to producers. The data from the International Textile Manufacturers Federation (ITMF) emphasizes the need to produce least-contaminated cotton. The paper also states that elimination of subsidies could improve sustainability through higher prices and incentives for growers to produce quality cotton. Mr. Bouré Ouéyé Gaouna of the Chadian Institute of Agricultural Research for Development (ITRAD) could not attend the meeting either. According to his paper, cotton production in the region has suffered from under use of organic manure, poor weed control, insufficient rains and lower prices offered by cotton companies. Cotton is one of the few commodities that puts African cotton growers in direct competition with producers in developed countries. Lower international prices have harmed cotton growers in the region. It is estimated by the Organic Exchange that about 150,000 metric tons of organic cotton was produced in the world in 2007/08. According to Mr. Simon Ferrigno of the Organic Exchange, organic production is also one way of improving the sustainability of cotton production, not only at the production level but also throughout the value chain. But, for organic production to be sustainable, it needs to be more than “environmentally friendly.” Organic production must bring higher yields, lower costs, and better prices and should be efficient in terms of land use. Organic production is as technical as conventional production and requires strong training and farmers’ organization in groups for negotiating better prices. According to CIRAD, herbicide use is at a minimum, defoliants are not used at all, fertilizers are used below recommended doses and insecticide use has been reduced since the late 1990s in Central and West African countries. This makes the African cotton production system one of the most environmentally friendly cotton production system in the world. While West African countries have made significant progress in terms of managing resistance and reducing insecticide use, the soil fertility problem is getting worse. Farmyard manure is not commonly used, and cropping intensity continues to increase. The other threat to cotton production in the Francophone countries is stagnation in yields. The paper from Dr. Amadou Aly Yattara of Mali warns that the cotton sector in the region could collapse if the current trend of continued increases in cost of production and stagnation in yield is not reversed. The options for growers to improve profitability are to adopt newer technologies, improve fiber quality and produce least-contaminated cotton, and optimize labor use. There is a need for quality ginning, but ginning losses should also be reduced to improve lint recovery. According to a paper from Egypt, Egyptian cotton growers are at an advantage in producing extra long and long staple cotton. The paper compares yield data, price and gross income data from four West African countries and Tanzania, and shows that it is more profitable to produce long and extra long staple cotton in Egypt mainly because of a higher price for better quality cotton. The 2009 Technical Seminar will be on the topic of “Biosafety Regulations, Implementations and Consumer Acceptance.” 3 Positive Developments in Integrated Pest Control for Cotton in West Africa Ouola Traoré, Institute of the Environment and Agricultural Research (INERA), Cotton Program, Bobo-Dioulasso, Burkina Faso Introduction Cotton is one of the leading cash crops in the West African subregion. It employs more than 10 million growers. In 2007, total output came to 1.2 million metric tons of seedcotton on approximately 1.5 million hectares, for an average yield of 800 kg/ha. Lint exports from these countries account for less than 15 percent of world exports but are second highest worldwide, trailing the USA. Yields recorded significant growth of 6 percent annually between 1960 and 1980, versus 2 percent worldwide. Beginning in the 1980s, though, yields virtually stagnated, or even declined. This situation is due to a number of factors: - dismantling of the extension system; - declining soil fertility; - declining world prices for cotton lint; - difficulties with pest control. Cotton is one of the most highly attacked plants in the world. There are more than 1,300 insect and acarid species recorded on cotton plants, and this does not include nematodes and mammals. In the absence of pest and disease control, average harvest losses in the West African subregion range between 40 and 70 percent, depending on the agro-ecological zone and the year. This paper reviews integrated pest control efforts undertaken in the West African cotton sector. the young plantlet are attacked by diplopods (millipedes). The most harmful species belong to the genera Peridontopyge and Tibiomus. These species are dark in color, with alternating lighter-colored bands and blackish-brown bands. Their crosssection is round, and they range from 2 to 8 cm in length. Diplopods attack and hollow out the seed. They feed on it during germination. Principal root pests These primarily consist of insects and nematodes. • Insects Syagrus calcaratus: A small, shiny blue-black beetle with a tawny orange thorax and lower legs. The orange-headed adults feed on the leaves, where they leave elongated perforations. The larvae live in the soil, where they feed on the roots, which they decorticate by making rings around these organs, leading to a characteristic wilting of the plant. • Nematodes Noxious nematodes belonging to the Nemathelminths family have been identified in root ectoparasites and endoparasites. They fall mainly within the genera Pratylenchus, Rotylenchus, Meloidogyne, Scutellonema, and Helicotylenchus. Principal Leaf Pests and Their Damage Phyllophagous caterpillars According to the International Organization for Biological Control (IOBC), integrated control is “a system for controlling noxious organisms that uses a set of methods meeting economic, ecological, and toxicological requirements, with priority given to the deliberate implementation of natural limiting factors and respect for tolerance thresholds.” In cotton, integrated pest control requires full knowledge of the plant’s main pests and diseases and their natural enemies. • Syllepte derogata This is the cigarette-shape “leaf-rolling” caterpillar. It is light green in color, often translucent with a black head. It attacks leaves at all stages of the plant’s development by spinning silky threads. Black excrement can be seen inside the leaf. Infestations of this pest are often localized within the field and may result in spectacular defoliation. It also attacks okra. Cotton Pests in West Africa • Spodoptera littoralis The caterpillar may be brown, yellowish, or gray. It is characterized by two rows of black triangles on the back and a light line on each side. But these triangles may be present only at the front or rear of the body. The eggs are deposited in a pile on the underside of the leaves, where the young caterpillars are born and then begin to feed on the supporting leaves. Older caterpillars perforate the leaves and also attack the reproductive organs. Spodoptera also causes damage to cowpeas, groundnuts, etc. Cotton pests are classified according to the types of organs attacked on the plant. All parts of the plant are attacked (seeds, roots, vegetative and fruit-bearing organs). The principal pests and diseases of the vegetative and fruit-bearing organs of the cotton plant can be divided into three groups, according to the phenological stage of the plant: Principal Seed and Root Pests Principal seed pests Insects of the Tenebrionidae family (Tribolium castaneum) attack the seed during storage. The seed also harbors Pectinophora gossypiella and Cryptophlebia leucotreta caterpillars in areas where these pests proliferate. At sowing, the seed and • Anomis flava This is the “surveyor caterpillar,” so called because of its highly characteristic motion. The caterpillar is yellow, with a yellow or greenish-yellow head. It has five, very fine white 4 lines on its back. It attacks leaves only. Damage from these caterpillars consists of circular perforations measuring 1 to 3 cm in diameter in the leaves. Phyllophagous beetles • Flea beetles These small, highly mobile insects are of several colors. They make lots of holes in the leaves of young glandless cotton plants. - Nisotra dilecta: blue - Nisotra uniformis: brown - Podagrica decolorata: yellow-orange They are also found on okra, the various Hibiscus spp. (jutes, kenaf, etc.), and sometimes on glanded cotton plants. Acarids There are two genera that are cotton pests in the subregion: Tetranychus or red spider mites and Tarsonemus mites, which are the most important. They are tiny, almost invisible to the naked eye, and live on the underside of the leaf. • Tetranychus All the species encountered belong to the genus Tetranychus. They include T. urticae, T. neocaledonicus, and T. falcaratus. They are red in color, hence the name of red spiders. They are not very mobile. They feed on the underside of leaves with a necrosed appearance. They are usually unimportant. • Tarsonemus The most important species is Polyphagotarsonemus latus, which is yellow-white in color and highly mobile. It appears on cotton plants in humid zones (rainfall above 1000 mm/year), especially Benin, Côte d’Ivoire, and Togo. It has a very short biological cycle, multiplies every five days, and causes substantial damage, particularly in damp, overcast conditions. Affected leaves show a number of successive symptoms, depending on the level of gravity: - the underside is dark green, glazed, oily, and shiny; - the sides of the limb roll downward; - the leaves look chapped and torn as if cut by a knife. The plant takes on a spindly appearance with few or no fruit-bearing organs. Early or severe attacks result in heavy declines in output. Piercing and sucking insects These include the Homoptera and the Heteroptera. The former are the most dangerous. Among the Homoptera, aphids, white flies, and jassids are of concern, while the Heteroptera include, in particular, mirids (Dysdercus sp. and Helopeltis schoutedeni). Homoptera • Aphids: Aphis gossypii These are yellow, yellow-green, or black-green in color, may be either winged or apterous, and have a very short biological cycle. They are polyphagous. They live in colonies on the underside of leaves that become arched and tense and shrivel downward. The waste matter, consisting of a sweet substance (honeydew), falls on the leaves and gives them a shiny appearance. Microorganisms (mushrooms) may develop on the honeydew and produce a black discoloration on the leaves and the seedcotton: this is called sooty mold. • Whiteflies: Bemisia tabaci The larvae are oval in shape, flattened, and green when they are young but yellowish when they are older. They are attached to the underside of the leaves. The adults are very small insects with two pairs of white wings. They are very mobile and flit around the plant. Large populations cause the leaves to yellow and disturb the plant’s development. As in the case of aphids, they also produce a honeydew that spoils cotton in open bolls. This pest is also highly polyphagous: it can be found on many other cultivated plants, particularly vegetable crops such as tomatoes. • Jassids: Jacobiella fascialis These are tiny green insects with a characteristic, oblique type of motion. They pierce the leaves, which then take on a reddish appearance around the edges. Heteroptera The genera and species that attack the cotton plant are very numerous in the subregion and particularly in the most humid zones. The main concern is: • Helopeltis schoutedeni This is a mirid with an elongated form and orange-yellow or bright red coloring. It is found mainly in the most humid zones. It attacks the leaves, branches, stems, and bolls and produces brown or black cankers. In the case of early and severe attacks, the leaves become waffled and cracked, taking on the appearance of “claws.” The plant’s growth is slowed as a result. Other Heteroptera of lesser economic importance also bear mention: Anoplocnomus curvipes, Campyloma spp., etc. Principal Reproductive Organ Pests These include both insects and mammals. Insects These are classified as carpophagous insects with exocarpal and endocarpal diets. Carpophagous insects with an exocarpal diet • Helicoverpa armigera The caterpillars are of variable color, with two light lateral lines and small hairs on the body. They attack and cause major damage to the flower buds, flowers, and bolls. The larvae are highly voracious. A single larva can destroy in one day between five and ten reproductive organs, specifically the squares, flower buds, and flowers. The excrement on flower buds and bolls that have been attacked is often abundant and expelled from the organ. In certain cases (second-generation infestation and shortage of the abovementioned organs), the caterpillar may attack young leaves and 5 branches. H. armigera is highly polyphagous (cultivated plants: maize, sorghum, tomatoes, sunflowers, etc., as well as wild plants: Cleome viscosa, etc.). • Diparopsis watersi The young, yellowish caterpillar later becomes pale green and squat, with horizontal red lines that grow closer together toward the head. It reaches full growth at 2.5 to 3 cm in length. It is not very mobile and it attacks flower buds, flowers, and bolls by perforating them so that they sometimes remain hanging from the plant by threads. It is much less voracious than H. armigera. After nearly having disappeared from the West African subregion due to the introduction of pyrethroids in the late 1970s, this pest has reappeared at relatively high levels since the reintroduction of endosulfan. This active matter, designed to manage the resistance to pyrethroids acquired by H. armigera, is in fact very inadequate on Diparopsis. • Earias insulana and E. biplaga The squat caterpillars are easy to recognize because they have numerous spines, hence their popular name of “spiny” caterpillars. They attack the terminal buds (topping) and the flower buds, flowers, and bolls. The entry holes are quite large and easily visible. Carpophagous insects with an endocarpal diet • Pectinophora gossypiella (pink bollworm) Called the pink bollworm because of its color, this caterpillar has segments marked with bands and horizontal lines. Fully grown, it reaches a length of 1 to 1.5 cm. It is sometimes confused with Cryptophlebia. It attacks the flowers and causes a specific symptom: “rosette flowers.” At birth, the caterpillar enters directly into the attacked organ and feeds by preference on boll seeds, causing damage that is often followed by secondary rot. P. gossypiella lives solely on plants of the same family as cotton. • Cryptophlebia leucotreta The caterpillar is pale gray at full growth and resembles a pink bollworm. It has the same mode of attack and causes the same damage as P. gossypiella (deteriorated seedcotton, orange segment, etc.). The caterpillar’s entry hole into the boll produces a curl. C. leucotreta is highly polyphagous and also attacks maize, guava, citrus fruit, etc. Carpophagous Heteroptera • Dysdercus vöelkeri This is a large, red and black mirid, 1 to 1.5 cm in length. The larvae are apterous, while the adults have front wings characterized by two black dots centered on a light brown background and ending in a black band. They are all bright red in color and live in colonies. D. vöelkeri pierces green bolls or those that are already open in order to feed on the seeds. It depreciates the germinative value of the seed and the fiber discolors. Mammals The arrival and spread of glandless cotton varieties in the mid 1980s caused mammals (particularly monkeys and rodents) to develop an interest in this plant and inflict damage of major economic importance. At the same time, the very high pressure on ophidians, particularly the family of Boidae (Phyton regius), exacerbated the phenomenon with a very high proliferation of rodents on glanded cotton varieties. These rodents belong to the following families, genera, and species: Muridae Mastomys natalensis Myomis dybowskii M. deroii Rattus rattus Arvicanthis niloticus Cricetomidae Cricetomys gambianus C. emini Sciuridae Funisciurus anerythrus F. leucogenys Xerus erythropus Gabillidae Tatera guinae T. kempii They attack all reproductive and sometimes the vegetative organs, which they then consume either within the cotton field or in the surrounding bush. The damage is sometimes very high and may cause growers to lose harvests. Principal Cotton Plant Diseases and Deficiencies in West Africa Cotton Plant Diseases Cotton plants are attacked by certain diseases, often of minor importance but which can become major in the case of severe attacks. They include, in particular: • Bacteriosis: The new form that has developed is called “black arm.” All the aerial organs of the plant (leaves, branches, stems, bolls, etc.) are attacked from the beginning to the end of the cotton plant’s growth cycle. The foliar symptoms are angular, oily blotches, while cankers appear on the stems and rot on the bolls. In varying degrees, depending on location, bacteriosis has attacked virtually all the varieties grown in the subregion for nearly 15 years now. • Floral virescence: This disease leads to a yellowing of the leaves and stems, transformation of floral organs into foliated organs, a greening of the corolla and the stamens, and, finally, a proliferation of branches at the internodes, resulting in spectacular sterility. It is transmitted by an infectious agent akin to the Mycoplasma. The vector is a Homoptera, and the main species is Orosius cellulosus. • Blue disease: Plant growth is slowed if the attack comes early. The internodes become shorter, the plant takes on a bush-like, sometimes creeping appearance, and the leaf blades become thicker and take on a bluish-green appearance, darker than normal and brittle in texture, with the edges rolled downward; the leaf blades themselves tend to become vertical. In the beginning, the flower-bearing organs are scrawny, and they cease to appear if the attack continues. But if the attack comes late, then the symptoms are confined to the vegetative extremities. Mineral Deficiencies and Growth Accidents • Potassium deficiency: This can be recognized by the presence of yellowish blotches between veins of the leaves, the edges of which turn brown. At an advanced stage, the leaves dry completely but still hang on to the plant, looking rather like bats. The cotton lint yield and quality both diminish. 6 • Growth accidents: Lightning strikes may cause damage of a natural origin in certain countries and locations. The affected area is always circular (roughly 12 meters in diameter), equivalent to the area covered by 15 ridges spaced 0.8 meters apart. The leaves of the affected cotton plants dry and fall off the plant, leaving brown, seemingly burned stems. The damage is different from phytotoxicity. Damage from lightning strikes is sometimes wrongly confused with damage caused by insects. Table 1: Doses of the Principal Insecticides and Fungicides Used in West Africa Active substances Benfuracarb Carbosulfan Imidacloprid Thiamethoxam Chlorpyriphos ethyl Carbendazime Chlorothalonil Metalaxyl Propiconazole TMTD - Thirame Principal Components of Integrated Control in West Africa Seed disinfection Seed is one of the most important inputs in the cotton production chain. It must be protected against all forms of aggression that could affect its quality. To achieve good sprouting, the seed must first of all have good germinative capacity. Unfortunately, cotton growers often run into problems of poor sprouting on their farms. Minimum dose (g/kg seed) Insecticides 1 1.25 2.5 0.15 0.5 Fungicides 0.7 1 0.35 0.15 0.75 Maximum dose (g/kg seed) 4 2.5 3.5 1 4 4 1.6 3.2 tacks by diseases and pests. The principal insecticides and fungicides used in West Africa and their doses are shown in table 1. Varietal control The objective of seed disinfection is to preserve seed quality. The method of varietal control encompasses all the qualities induced in the cotton plant, through traditional selection or modern biotechnology, for the purpose of reducing the impact of certain pests on seedcotton yields. These qualities may involve the production of excrescences on the organs of the cotton plant so as to prevent movements by pests (pilosity) or the production of toxins harmful to pests (VIP and Bt proteins). The principal causes of poor sprouting are: A few examples of varietal control and their implementation: - Abiotic factors: The seed handling and storage conditions must take into account any excessive heat or humidity in order to avoid seed deterioration. - Biotic factors: These include diseases and pests. • Diseases Damping off is by far the most important. This is caused by a complex of pathogenic mushrooms that are either agents carried by seeds (Colletotrichum gossypii, Fusarium spp) or agents found in the soil (Rhizoctonia solani, Pythium spp, Macrophomina phaseoli). Attacks may occur either before or after sprouting. If before, the seeds rot in the soil and do not germinate. By contrast, in the case of damage after sprouting, the seeds germinate but the young plantlets wither and soon die. • Seed and plantlet pests Many insects may cause non-germination or poor sprouting of the cotton seed. Some destroy the seed by consuming the kernel. Others attack the plantlets when they are in the cotyledonary stage. This latter category of seed and plantlet pests includes julids, which hollow out the seeds in the soil or gnaw on the cotyledons or the tigelle of the plantlets. Insects whose larvae live in the soil also attack the plantlets, typically the small roots (Syagrus, crickets, ants, aphids, and even some caterpillars). Seed treatment To obtain good sprouting, the seed must first of all have good germinative capacity, but it must also be protected from at- • Glanded cotton plants Classic cotton plants contain phenolic yellow pigments called gossypol. This gossypol is present in small glands found in the various organs of the plant. The gossypol is used to fight against infestations of beetles that produce small holes in the leaves. The varieties without gossypol (i.e. glandless varieties) are useful for animal feed, through their seeds, but they are strongly attacked by beetles. That is the reason why this type of variety is not widely grown in the subregion. • Cotton plants with hairiness to combat jassids Jassids are small leafhoppers that move around on various organs of the cotton plant. They pierce and suck the sap, often transmitting diseases to cotton plants, as in the case of Orosius cellulosus which transmits a mycoplasmal disease called floral virescence or phyllody. The typical diagonal movement of jassids is greatly obstructed by the presence of hairs on the organs of the cotton plant. This simple fact reduces the presence of this pest on the cotton plant; in such a case, the pest prefers to look for other plants where it can move around more easily. Today, the impact of jassids (O. cellulosus, which transmits phyllody to the cotton plant) is greatly controlled by the use of systemic seed treatment chemicals such as neonicotinoids (imidaclopride, thiamethoxam, acetamipride), carbamates (carbosulfan), etc. The use of hairy varieties is no longer in fashion, all the more so because infestations of the whitefly Bemisia tabaci – a leading cotton plant pest in 7 the subregion since the late 1990s – are greatly encouraged by thairy varieties. In fact, the larvae of B. tabaci, once attached to the leaf, become inaccessible to their natural enemies and are only slightly reached by the insecticides used against them. Research on varietal selection in the subregion should now focus on non-hairy varieties that make access to B. tabaci larvae easier for natural enemies and insecticides. In Burkina Faso, for example, the FK37 variety is considerably less hairy than FK290, which is being phased out. Researchers’ efforts to improve varieties in the West African subregion should continue in the same direction. • Genetically modified cotton (GMC) to combat boll and leaf caterpillars A GMC is a conventional cotton plant that has received a gene enabling it to acquire an additional characteristic. The insertion or transgenesis can be accomplished by physical or biological methods. To protect the cotton plant against pests, the inserted genes come from Bacillus thuringiensis, which is a soil bacterium. The GMCs currently available are effective against most larvae of carpophagous and phyllophagous moths. The toxins produced by the GMCs have no direct effect on piercing and sucking Homoptera including aphids, whiteflies, and jassids. If necessary, treatments targeting these piercing and sucking insects are warranted. The fact of not using insecticides to control moth larvae encourages the presence of natural enemies. Agronomic control Agronomic control of cotton plant pests includes the whole range of farming techniques used to disturb the development of pests at a given stage of their biological cycle. These techniques run all the way from preparing the field to performing post-harvest operations. A few examples of agronomic control and their implementation : • Early sowing to control second-generation H. armigera Conventional cotton growing depends greatly on the period when the crop is started. Early sowing is recommended in order to avoid rainfall cessation at the time of cotton plant fructification, which would cause a decline in productivity. In regard to phytosanitary protection, early sowing is also recommended, as soon as the rains have begun, to prevent the most sensitive period for the cotton plant from coinciding with second-generation H. armigera, which causes very serious damage at this phase. Two to three generations of H. armigera have been found on cotton plants, depending on the length of the rainy season. This pest’s first phase of proliferation takes place between mid-July and mid-August in the West African subregion and matches the development of the first fruit-bearing organs. Very often, this phase is not especially dangerous because the individual pests are few in number and are more highly sensitive to insecticides. The second generation is observed between mid-September and mid-October. This is the most dangerous generation because the individuals resulting from parents that survived the first generation develop some tolerance to the insecticides, which makes them harder to control. • Plowing Deep plowing is a way to bring the chrysalises of pests to the surface before the butterflies emerge. These chrysalises are either gathered by birds or dried out by the climate, thus diminishing the number of butterflies to emerge. • Hoeing This operation serves to eliminate weeds in the vicinity of the cotton plant, and thus potential hosts for pests. A well aerated field receives better penetration of insecticide treatments in the various organs of the cotton plant. • Early and staggered harvests Insecticide applications cease several days before the start of the harvest. Piercing and sucking insects such as the aphid Aphis gossypii and the white fly Bemisia tabaci feed on the young buds and produce sweet substances that result in sticky cotton. To avoid this, it is recommended that growers harvest their crop as the bolls gradually open. • Destruction of old cotton plants to control Diparopsis, Syagrus, pink bollworm, and diseases If the cotton stems are left in the field after the harvest, some regrowth occurs after the first rainfall. This regrowth provides a refuge for certain pests such as Syagrus calcaratus before the new cotton plants emerge. Once the new field has abundant vegetation, pests easily migrate to it and thus inflict damage. It is therefore recommended that growers pull up the cotton plants or cut their stems after the harvest. Biological control Biological control is defined as the use of living organisms or their products to combat other organisms that are considered harmful. The living organisms typically used are predators, parasites, parasitoids, and entomopathogens. A number of projects have been started in West Africa concerning the biological control of cotton pests, but they have not been continued due to practical and financial difficulties. The efforts made in this area tend to protect indigenous natural enemies by using active substances that spare them. Chemical control Despite implementation of other components of integrated control (excluding GMC), in West Africa chemical control remains the principal tool for combating cotton pests, particularly boll caterpillars. The chemical treatment programs currently under way for cotton growing in West Africa are based on the results of large-scale experimentation, repeated over several crop years in various agro-ecological zones. The design takes into account the principal issues, namely the biological cycle of the cotton plant and the dynamics of pest populations. Two main methods of intervention have been developed on the basis of the research results: 8 - calendar-based treatment programs, - threshold-based intervention programs. Calendar-based treatment program The principal objective in developing a calendar-based treatment program, or predefined treatment program, was to ensure that cotton plants are protected during the entire period from the start of flowering until the majority of formed bolls have reached maturity. It took into account the very low level of expertise of growers, who did not know how to recognize the pests or manage their supplies of different products. Types of calendar-based programs In West Africa, since its conception, the principle of protecting the cotton crop through a calendar-based program has involved two variants: the standard program and the windows program. • Standard program The standard program has fallen into disuse by the great majority of cotton growers. It was mostly aimed at protecting the fructiferous phase of cotton plants. The interventions began as soon as the first flowers appeared, roughly 45 to 50 days after sprouting. In general, the recommended treatment schedule was every 14 days. The number of treatments typically came to five or six for growers who adhered to the research recommendations. All the applications were done solely with mixtures (pyrethroid + organophosphorus) or occasionally three products (one pyrethroid + two organophosphorus) throughout the period of protection. Unfortunately, this unvaried approach resulted in the development of resistance on the part of certain pests, particularly Helicoverpa armigera. • Windows program Development of the new calendar-based program, known as the windows program, was motivated by the appearance and then expansion of the problem of resistance to pyrethroids on the part of the Helicoverpa armigera boll caterpillar. The principle of calendar-based interventions at 14-day intervals was maintained. Modifications were made in terms of the start-up date for treatments and the products used. The timing of the initial treatment was moved up to 30-35 days after sprouting, i.e. when the floral buds appear. The goal is to target young and fragile Helicoverpa armigera caterpillars. Based on the notion of six treatments to be carried out in order to protect a cotton field, the main innovation of this program was to create intervention “windows.” The six treatments were grouped into two or four successive interventions to form one window. Two- and three-window programs thus emerged. - Two-window program: This program is based on the principle that the first and second treatments form the first window, while the second window consists of the remaining four (third, fourth, fifth, and sixth treatments). - Three-window program: The first and second treatments form the first window; the third and fourth treatments form the second window; and the fifth and sixth treatments form the third window. It is important to note that the choice of products to be applied is made with great care. Thus: For both types of window program, the treatments of the first window are always performed with a product that does not belong to the pyrethroid family, as the objective is to reduce the duration of use of the molecules of this family, to which H. armigera has developed a resistance. A few examples include profenofos, indoxacarb, spinosad, malathion, flubendiamide-spirotetramate association, etc. During the second window (two-window program) or the last two windows (three-window program), the treatments are performed with binary products containing a pyrethroid in association with a product from a different family. In the case of the three-window program, the second window may involve the use of acaricides, followed by aphicides and/or aleurodicides during the third window. Examples of such products include: - acaricides: cypermethrine/profenofos, deltamethrine/ triazophos - aphicides/aleurodicides: lambdacyhalothrine/acetamiprid, alphamethrine/imidacloprid This new strategy has been widely adopted in the subregion. It has helped stop the growing problem of caterpillar resistance to pyrethroids. In addition, it has led to greater awareness in regard to the necessity of avoiding the emergence of the same problem with other cotton crop pests. Threshold-based program Programs of threshold-based interventions represent a very recent innovation in the subregion. Their expansion remains slow for a number of reasons related to insufficient knowledge concerning cotton pests, indisputably the determining factor in the success of this program. Design This technique is based on determining infestation thresholds for the principal pests. The assortment of cotton pests in the West African subregion is rich and varied, and any strategy to protect the crop must be designed with this in mind. Using an approach rooted in research results on the cotton plant and other crops coming from other regions of the world, a priority is placed on assessing the amount of damage caused by harmful insects. The results of these assessments are used to make the decision to initiate treatments and control infestations after the treatments have been performed. Knowledge of insects and the damage they cause Assessing the level of infestation of insect populations requires knowledge of the various species harmful to the cotton plant and the damage they cause. To that end, samples need to be taken. Sampling and decision-making The purpose of sampling is to assess populations or damage in the cotton field and then make an informed decision. 9 The samples should be taken diagonally, in a homogeneous, large, and fairly representative portion of the cotton field in question. The size of the sample varies from one country to another, and the intervention threshold is related to the sample size. Readings are taken once a week, starting on the 30th day after sprouting and continuing until a majority of bolls in the cotton field have reached maturity. The basic principle is that the sampled plants must be carefully and systematically examined. In the subregion, mainly three groups of pests are taken into account in the assessments of populations and damage: carpophagous pests, phyllophagous pests, and piercing and sucking insects. While threshold-based interventions are easy with exocarpal caterpillars, the task is more complicated with endocarpal ones. The treatments are generally performed with specific products in the event that intervention thresholds are reached, or with mixtures when necessary. This requires managing supplies of products of several different chemical fami- lies, a task that is not very easy for growers of the subregion. Conclusion In the case of cotton, integrated pest control in West Africa remains highly dependent on chemical controls, without which productivity cannot be assured. In the face of globalization, fluctuations in world prices for cotton lint, and the subsidies granted to cotton growers in the North, the West African subregion needs to make efforts to increase field productivity in order to secure a better living for the more than 20 million persons involved in the subregion’s cotton industry. Increased productivity will require the establishment of a more favorable institutional framework, the adoption of more effective technical approaches, and better organized growers. New technologies such as the production and use of organic fertilizer with the help of activators, the protection of intervention thresholds, and genetically modified cotton may well be part of the solution. Developing a Sustainable Production and Marketing System for the Cotton Industry in Kenya Edwin Caleb Ikitoo, Kenya Agricultural Research Institute, Nairobi, Kenya, and Waweru Gitonga, Kenya Agricultural Research Institute, Kerugoya, Kenya (Presented by Edwin Caleb Ikitoo) Abstract The East African upland cottons (Gossypium hirsutum, L.) were introduced into Kenya at the turn of the 20th century. However, early attempts to establish the crop in the country, i.e. 1912-1923, were hampered by poor cultivars, wide ranging dates of planting and high incidences of pests and diseases. Following research initiative in the 1950s by the Cotton Research Corporation (CRC) in collaboration with the Cotton Board (CB) formerly Cotton Lint and Seed Marketing Board (CL & SMB), it was possible to establish the crop, first in the Lake Victoria and coastal regions and later in the 1960s, in the central/eastern region. Improved varieties from Tanzania and Uganda, i.e. UK, UKA, IL, BP and BPA lines with strong resistance to bacterial blight [Xanthomonas malvacearum (EF Smith), Dowson], verticilium wilt and pests, in particular, the Jassid (Empoasca spp), were introduced. Thus, by using the improved varieties and suitable agronomic practices, cotton production in the country increased from 23,000 bales (4,255 tons) in 1965/66 to 70,000 bales (12,950 tons) in 1984/85. However, in 1997/98, production reached an all time low of 20,000 bales (3,700 tons). A number of constraints were cited for the drastic decline in production, including (a) competition for resources, i.e. inputs and labor, between cotton and food crops, (b) lack of finance and credit support to farmers, (c) collapse of Hola and Bura irrigation schemes, which accounted for 20 – 40% total production, (d) lack of a system for certified seed production, hence, poor quality seed resulting in low yields and ginning outturn, (e) delayed payments to farm- ers for seedcotton deliveries and (f) negative impact of market liberalization. Research to address the agronomic constraints has been conducted with new and improved varieties. However, location-specific technology packages on manure, fertilizer use and cropping systems are required. Thus, by repealing the cotton Act of 1988 and replacing it with the revised cotton Act of 2006 that formed the legal and institutional framework for the creation of the Cotton Development Authority, The Kenya Cotton Growers Association and the Cotton Ginners Association,the Government is making it possible to revitalize the cotton industry in Kenya. The revitalization process should address research issues of low yields and lint quality, increasing pest and disease problems, certified seed production and increasing crop production under irrigation. These aspects are discussed in the paper and the way forward is proposed. Introduction Cotton (Gossypium spp) is a weak perennial plant grown annually for economic reasons. The economic species of cotton originated from Africa; however, they were first domesticated in the Indus Valley in Pakistan/India (Leakey, 1970; Purseglove, 1992). The East African upland cottons (G. hirsutum L) were introduced into Kenya from Tanzania at the turn of the 20th century, with initial crops being cultivated around the shores of Lake Victoria (Ackland, 1971). However, the initial attempts to establish the crop in the country, i.e. 1912 -1923, were hampered by poor cultivars, a wide range of planting dates and high incidences of pests and diseases resulting in 10 Figure 1: Cotton Production in Kenya for the Period 1965/66 to 2006/07 Metric Tones of Seedcotton 80 000 Bales of Lint (one bale =185 kg) Production in metric tones/bales 70 000 60 000 50 000 40 000 30 000 20 000 10 000 19 65 /6 19 6 67 /6 19 8 69 /7 19 0 71 /7 19 2 73 /7 19 4 75 /7 19 6 77 /7 19 8 79 /8 19 0 81 /8 19 2 83 /8 19 4 85 /8 19 6 87 /8 19 8 89 /9 19 0 91 /9 19 2 93 /9 19 4 95 /9 19 6 97 /9 19 8 99 /0 20 0 01 /0 20 2 03 /0 20 4 05 /0 6 0 Year of production low and variable yields (Leakey, 1970; Ackland, 1971; Kenya Ministry of Agriculture, 1999). Nevertheless, in 1950, the Cotton Research Corporation (CRC), a British organization established to undertake cotton research in its colonies and protectorates in Africa, initiated research on cotton at the Cotton Research Station (CRS), Kibos near the City of Kisumu. The research commenced with the testing of varieties introduced from Tanzania and Uganda and suitable agronomic practices. Thus, by applying selected varieties and suitable agronomic practices, it was possible to establish the crop in western Kenya and the coastal region. Later in the 1960s, the crop was extended to central/eastern Kenya. The CRC worked in collaboration with the Cotton Lint and Seed Marketing Board (CL&SMD), a statutory body established by an Act of Parliament in 1955, to intervene in activities pertaining to cotton production, processing and marketing. The CRC had major breeding programs at Ukiriguru and Ilonga in Tanzania and Bukalasa and Serere in Uganda (Ikitoo, 1997; Kenya Ministry of Agriculture, 1999). After overcoming the initial establishment problems, cotton production in the country increased consistently, and in 1984/85, the highest level of 39,000 metric tones of seedcotton (70,000 bales of lint), was produced (Figure, 1). Soon after, cotton production consistently declined attaining the lowest level in 20 years, i.e. 11,000 MT of seedcotton, 13 years later in 1997/98. Various factors were sited as being responsible for the decline in production. These included inadequate on-farm tillage capacity, competition for resources, i.e. inputs and labor, between cotton and more favorable food crops, low gross margins, unrealistic price controls by the Cotton Board (CB), formerly CL & SMB, and delayed cash payments to farmers for seedcotton deliveries (Muturi, 1976; Djikstra, 1990). In spite of the decline in production, cotton remains an important industrial crop in Kenya. Potentially, the country has approximately 350,000 hectares that could be put under cotton annually compared to the current annual cultivation of 30,000 hectares. With an estimated population of 38 million, the country has a domestic demand for cotton raw materials in excess of 120,000 bales (22,200 tons) of lint per annum (pa), while current production is below 30,000 bales (5,550 tons) of lint pa. Cotton is also important for food security in marginal rainfall areas, i.e. 500 -950 mm pa, since it is the most assured crop, increasing local people’s purchasing power. Thus, to address the demand-supply gap, the cotton industry was liberalized in the 1990s overriding the role of the CB; yet, encouraging private sector participation. However, the liberalization was ushered in with problems including a weakening of institutional support services, i.e. research and extension, and market linkages between the cotton farmers and the ginners (Ministry of Agriculture, 1999; Kariuki et al., 2008). In order to give legal legitimacy to the liberalization process, the Government in keeping with the Session Paper No. 1 of 1986 on Economic Management for Renewed Growth and Session Paper No. 2 of 1997 and Industrial Transformation to the Year 2020, had to repeal the 1988 Act Cap 335 (No 3) revised in 1990, which replaced the 1955 CL&SMB Act and created the CB as a regulatory and not a facilitative organ and put in place a new Cotton Amendment Act 2006. This paved the way for the formation of the Cotton Development Authority (CODA), whose principle object under the revised legal framework shall be to promote, co-ordinate, monitor and direct the cotton industry in Kenya (Ministry of Agriculture, 1999; Kariuki et al., 2008). It is hoped that under the direction of the newly formed CODA, in collaboration with relevant government institutions, i.e. Ministry of Agriculture (MoA), Kenya Agricultural Research Institute (KARI) and Kenya Plant Health Inspection Services (KEPHIS) and other stakeholders among them, the Kenya Cotton Ginners Association (KCGA) and the Cotton Manufacturers Association, the cotton industry in Kenya will grow and thrive once again. Crop Improvement The initial crop improvement activities at the CRS, Kibos focused on evaluation of varieties developed in Tanzania and Uganda for high yields and resistance to pests and diseases. The varieties included the American upland types mainly Acala and Deltapine series, the UK and UKA series from Ukiriguru consisting of crosses from the East African upland cultivars and West and Central African cultivars derived from Allen variety with Albar gene. Other varieties included BP, BPA and SATU lines from Uganda and accessions from Russia, Malawi, Swaziland, South Africa, India and Pakistan. Table, 1 shows some of the varieties evaluated by the breeding program in Kenya. The Ukiriguru, Ilonga and Bukalasa varieties with Albar gene showed strong resistance to bacterial blight (black arm), caused by Xanthomonas malvacearum and verticillium wilt. Further, the varieties were resistant to leaf sucking pests, in particular the jassid (Empoasca spp), due to their hairy leaves (Leakey, 1970; Leakey, 1973; Ikitoo, 1997). The varieties UK 68 and UKA 59/240 from Ukiriguru, IL 62 from Ilonga and BPA 75 from Bukalasa, were recommended for cultivation in the country. UKA 59/240, a drought tolerant late maturing variety with ginning outturn of about 32% and ≥ 2,000 kg/ha seedcotton yield, was recommended for cultivation in western, central, eastern and coastal regions (CGR, 1971; Ministry of Agriculture, 1999). on the other 11 Table 1: Some Varieties and Strains Evaluated in the Cotton Breeding Program PERIOD Before 1970 & Under Irrigation 1970/71 to SOURCE VARIETY / STRAIN TESTED Acala 4-42 Acala 4-42 A Acala 4-42-77 Acala 1517 C Acala 4447 Ashimoni A 34 Austin blight master Auburn M Bar 14/25 Bar XL1 Bar XL3 Coker 100 AWR Coker 124 Deltapine 15 Deltapine SL Deltapine 45 Ukiriguru (Tanzania) UK 64 UK 68 UK 69 UK70 UKA K 76 UKA 59/240 UKA (63) 712 UKA (63) 720 Ilonga (Tanzania) IL 62 IL 66 Bukalasa (Uganda) ALA 960 (65) 1 Albar XSR BPA BPA C BPA 68 BPA 75 American Upland Acala 1517 Acala 15 17 D Acala 15 17 V Acala 3080 Acala SJ - 1 Acala 4 – 42 West/Central Africa ASA (65) 38 BJA 592 BSA (67) 15 BTK 12 L 142.9 L 299.10 Russia via Malawi K 3400 K 3400 -7 K 3811 K 4219 South Africa /Swaziland Albacal Cape Acala Egypt, Sudan & Upland American 1979/80 Deltapine Smooth leaf-Rex Dixie King – Rex SL Domains sakel Gregg – Stoneville 213 Lanket 57 – Stoneville 213 Lockett 88A UKA (6) 736 UKA (63) 750 UKA (63) 763 UKA (63) 769 CA (68) 36 CA (7) 43 CA (7) 43 UKA (63) 771 UKA HM UKA (63) A1/66/275 UKA HMB UKA B2 (67) 380 UKA (71) MO 1 PB (70) 5 PB (70) 13 Atlas 67 Deltapine 45 A Deltapine 5826 L 379.12 L 433.15 L 470.16 K 4245 K 255 M 327.4 Reba B 50 Samaru 71 K 4371 Del Cerro Stoneville 7A SA (66) 44 K 4614 SR 1054 – 2 59/240, which was recommended for growing in both the SRs and LRs. The variety UKA 59/240 was planted at the on-set of the SRs, i.e. mid-October and harvested at the end of the LRs, i.e. mid-August September in the following year. The unusual cultural practice was necessitated by the bi-modal rainfall pattern in the region and inadequacy of any single season in the region to sustain an economical cotton crop. However, the prolonged growing period in the two seasons increases weeding and pest control regimes, hence, costs of production (CGR, 1971). The varieties evaluated included the early maturing types from Russia, Pakistan and India and late maturing types from West and Central Africa (IRCT germplasm). Results indicated that the SRs, i.e. 250 - 450 mm, could sustain reasonable yields in early maturing varietIndia C 1998, BG (68) 16, PRS 72, P 108F, HARNA (73) 5 HARNA (73) 44, Krishna ies, i.e. 400 to 800 kg of seedcotton Source: Ikitoo, 1997. Coast Province (CGR, 1971; Ikitoo, 1997). per hectare, within three months. However, the SRs were inadequate hand, BPA 75 had a better ginning percentage, i.e. 35%, and lint quality, but was more determinate in growth and highly for cotton fiber maturation. With regard to the LRs, which was sensitive to drought conditions. BPA 75 was recommended a cooler period compared to the SRs, the early maturing varifor production in Kerio Valley, Rift Valley Province and un- eties performed less satisfactorily compared to UKA 59/240, der irrigation in the Hola and Bura irrigation schemes in the most likely due to their poor adaptation to the cooler weather Tana River district. However, with time under production, the conditions. At the same time, the late maturing varieties from commercial varieties started declining in yield and lint qual- West and Central Africa consisting of mainly the L and M ity due to segregation of the economic plant components into lines from IRCT, which had genetic elements of G. arborium original parental types. At the same time, ad-mixture of seed and G. raimondii Ulbr were evaluated in the region starting materials for planting with seed from neighboring countries from the early 1980s through the 1990s. The late maturing due to cross-border movement of seedcotton for ginning and varieties had high ginning outturn and more mature and stronlack of a certified seed production and distribution system in ger fiber compared to the UKA 59/240 (Fielding et al., 1984). the country affected crop performance. Further, although the Selection, back crossing and evaluation within the IRCT vavarieties grown in Kenya were bred in Tanzania and Uganda, rieties culminated in the development of a multiline variety none were grown in their mother countries. Thus, no further HART 89M, which proved superior to UKA 59/240 and is breeding work or seed production for the varieties was con- now recommended for cultivation in central/eastern Kenya ducted in the countries of origin. This necessitated initiation and the coast region (Ikitoo, 1997; Waturu et al., 2002). of a complete breeding program in Kenya. Thus, line selec- Varietal evaluations for irrigated cotton were conducted in the tions in UKA 59/240 and UK series and back crossing work Hola and Bura irrigation schemes in the 1980s. The evaluawas started at Kibos in the early 1980s. Over 50 lines from tions aimed at finding a better alternative to the variety BPA UKA 59/240 were evaluated from which a multi-line, KSA 75, recommended for growing under irrigation. BPA 75 was 81M, was found superior to UKA 59/240 in both yield and lint more sensitive to soil moisture stress, and also more determiquality and recommended for growing in western Kenya as a nate in its growth habit compared to UKA 59/240. However, replacement for UKA 59/240 (Ikitoo, 1997). under irrigation, it performed better than UKA 59/240, having The crop improvement work in central/eastern Kenya was an average seedcotton yield of 4,000 kg/ha compared to UKA started at the CRS Mwea Tebere in the late 1970s and early 59/240’s 3,500 kg/ha, with superior fiber quality of 1-1/8 to 1980s. The work emphasized the evaluation of early maturing 1-½ inch, 22 grams per tex and micronaire of 4.4 (Ikitoo and varieties to be grown one season, i.e. long rains (LRs) or short Ngigi, 1989). In the mainly American upland varieties evalurains (SRs), with the aim of getting a replacement for UKA ations, results indicated that all varieties had mature or very Albacala 70 12 mature fibers. However, all the American upland varieties were shorter and early maturing with fewer and larger bolls compared to BPA 75 and only a few out yielded BPA 75. Nevertheless, all the promising varieties, including Stoneville 817 F, Stoneville 7a, Acala 1517D, Acala 3080, Deltapine 16 and Albacala 70, out yielded BPA 75 by 7 - 20% and had ginning outturns of 35 - 41% compared to 32% for BPA 75, with yields ranging from 4,000 to 5,500 kg seedcotton per hectare. The yield was, however, negatively correlated with the ginning outturn. Acala 3080 ranked highest in fiber quality (Fielding and Baraza, 1985; 1986). In spite of all the crop improvement work done, the challenge to increased cotton production in Kenya still remains, namely, increasing profitability. The profitability in cotton production could be increased either by cutting down costs of production and/or increasing yields. Cotton production under irrigation offers the best opportunity for increasing yields and stabilizing production against high fluctuations in production frequently observed under rainfed conditions due to uncertain weather conditions in cotton growing areas. Agronomic Practices choices depended on convenience for efficient management, i.e. weeding, spraying and harvesting (Mwea Tebere, 1988; 1989; Ikitoo, 2003). Date of planting Manning (1950) developed a method for estimating expected rainfall and its reliability. Thus, based on our knowledge of crop water requirements (Hutchinson et al., 1958), the expected rainfall could be related to crop water requirements, hence, theoretically determining the optimal planting dates for cotton in the different Agro-ecological zones. However, studies on optimal planting dates started in the 1950s showed optimal planting dates vary with regions. Planting was optimal in mid-March for most of western Kenya, optimal in early-May for the coastal region and Kerio valley and optimal in midOctober for most of the central/eastern region. The common factor for all regions though was that any delay in planting after the optimal date of planting resulted in a significant decline in yields. Thus, timely seedbed preparation and planting are critical factors in achieving high yields in cotton. Table 2: Some Cotton Spatial Arrangements and Plant Population Tested Tillage In cotton, standard conventional tillage practices consisting of one or two disc ploughs followed by harrowing before planting is recommended (Munro, 1970; Acland, 1971; CGR, 1971; Waturu et al., 2002;). However, in Kenya, most cotton farmers use oxen for ploughing and for economic reasons normally plough only once before planting. This method of ploughing, rather shallow and repeated over years, could result in compaction of lower soil layers, especially in clay soils such as Vertisols (black cotton soils) and where fields are grazed after the crop is harvested. Modern approaches in tillage, e.g. minimum tillage, should be adopted in cotton alongside crop/ livestock management systems that involve controlled grazing and use manure combined with crop residues (Munro, 1970; Ikitoo, 1997). Plant population, spatial arrangement A wide range of spatial arrangements and plant populations was tested for over 40 years from the 1950s to the 1990s in the western, coastal and central/eastern regions of the country. Treatments consisted of inter-row spacing of 60 to 120 cm and intra-row spacing of 15 to 60 cm with 1 or 2 plants per hill. This resulted in a wide range of plant populations from 13,888 to 222,222 plants per hectare. Generally, yields per hectare increased with increasing plant population. However, the number of bolls per plant and yield per plant declined with increasing plant population, indicating complex physiological response mechanisms for yield with population change. (Ikitoo, 1985; Ikitoo, 1997; Ikitoo and Macharia, 2003). Table 2 gives some of the spatial arrangements and plant populations used in the studies. Results indicated that with good management, yields were optimal and remained fairly stable within a range of 33,333 to 74,074 plants per hectare. Thus, within the range, the plant population and spatial arrangement COTTON SPACING Between row (cm) Within row (cm) 60 60 75 75 80 80 80 80 90 90 90 90 90 90 100 100 100 100 120 120 120 120 15 15 30 30 20 20 50 50 15 15 30 30 45 45 30 30 60 60 30 30 60 60 NO OF PLANTS PER HILL PLANT POPULATION PER HECTARE 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 111,111 222,222 44,444 88,888 62,.500 125 25 50 74,074 148,148 37,037 74,074 24,691 49,383 33,333 66,666 16,666 33,333 27,777 55,554 13,888 27,777 Source: Ikitoo, 1997 Water management Water is a major factor in cotton production. Thus, on heavy clay soils, in particular Vertisols, water logging could be a major problem, while in dry areas, moisture stress is often a problem. Studies on drainage in western Kenya and water harvesting in central/eastern Kenya indicated that use of broad bed and furrow (BBF) for surface water drainage and tied ridges (TR) for water harvesting, are necessary for increased cotton 13 yields (Ikitoo, 1997). Thus, detailed studies on drainage, water harvesting and irrigation are proposed as major options for increasing cotton yields. a wide range of natural vegetation that forms diverse habitats for a large number of cotton pests. Thus, cotton production in Kenya is confronted by a greater pest challenge compared to neighboring countries, i.e. Tanzania and Uganda. However, with good management, high yields of up to 3,000 kg/ha can be obtained under rainfed condition (Mwea Tebere, 1988; 1989; 1990; 1991; 1992). Soil fertility and fertilizer use Cotton is grown on wide ranging soil types in Kenya including sandy soils (coast province), highly weathered acid loams (western Kenya), heavy clay soils (Kano plains and Mwea), and poorly developed loamy soils (Mwea, Meru, Machakos and Kitui). The sandy and loamy soils tend to be low in nitrogen (N) and phosphorus (P), while the heavy clay soils tend to be low in N and moderate to high in P (Tveitnes and Nyaas The major cotton pests in Kenya are leaf sucking and cut worms, mainly the aphids (Aphis gossypii) and jassids (Empoasca spp), bollworms including the American bollworm spp) and false codling moth (Cryptophlebia luecotreta Meyr); and Cotton stainer (Dysdercus spp). However, in the recent past, possibly due to increased use of pesticides that decimate natural enemies or predators, some cotton pests that were formally minor, including the red spider mites (Tetranychus telarius) and tobacco white fly (Bemisia tabaci) have become major pests with significant economic implications for cotton production in the country (Leakey, 1970; Acland, 1971; CGR, 1971; Ikitoo, 1997; Waturu et al., 2002). Aakerbakkern, 1973; Michieka and Oswaggo, 1970). Considerable studies on the application of manure and fertilizer have been done in cotton in the country. Results indicated that the use of manure enhanced soil water status and N availability. However, fertilizer application, in particular N, tended to enhance the pest status. Thus, proper and effective pest control was critical to achieve the full impact of fertilizer applications (Ikitoo, 1997). Thus, there is a need to undertake location-specific studies on fertilizer requirements with specific attention to the soil types and climatic conditions, i.e. rainfall and temperature, for better crop responses and high yields to be achieved. Pest management Cotton intercropping with food crops Since its introduction into the country, cotton has been intercropped with cereals, legumes and some other crops. In the coastal region, it is intercropped with either cereals, in particular maize, or groundnut. In western Kenya, it is intercropped with maize, sorghum or legumes including groundnuts, beans and green grams. In central/eastern Kenya, cotton is intercropped with beans, pigeon peas, green grams, chickpeas, cowpeas or sunflower. Results from the experiments indicated higher reduction in cotton yields due to cereals, i.e. maize/sorghum, shading effect compared to the legumes shading effect. However, combined monetary returns from intercropped land units were in most cases greater than those obtained from their respective pure stands. Further, land equivalent ratios of the intercrops were greater than those of the pure stands, confirming the intrinsic and monetary values of inter cropping (Ikitoo, 1997; 2008). However, the cost of application was prohibitive for most farmers because conventional formulations of Carbaryl/DDT consisted mainly of wettable powders (WP) and emulsifiable Table 3: Major Cotton Pests in Kenya* Cotton Pest and their Management TYPE OF PEST Cotton pests The cotton growing areas in Kenya cover a wide range of agro-ecological zones (AEZ) namely L1, L2, L3, L4, LM1, LM2, LM3 and LM4, derived from two temperature zones, i.e. lowlands (L): 0 - 500 m above sea level (asl) and lower mid-lands (LM): 510 to 1,250 m asl, combined with various rainfall regimes categorized as zones 1, 2, 3 and 4 within 500 to 1,500 mm per annum rainfall bracket (Jaetzold and Schmidt, 1982a; 1982b and 1982c). Abrupt changes in the AEZs within very short distances accommodate Pest control is a major factor in the management of cotton for increased production. Poor pest control results in yield loss of 20 to 100%, and pesticide applications are the most important method of pest control for cotton in Kenya (Ikitoo, 1997; Waturu et al., 2002). However, a number of factors influence pesticide use in cotton, including (a) cost of pesticide, (b) availability of water for conventional spraying, (c) cost and frequency of application, (d) stage of plant growth, (e) application skills and (f) safety considerations. Nonetheless, because of the high incidence of pests and diseases that characterized early establishment of the cotton in the country, the entomology program at the CRS Kibos initiated in the 1950s commenced by evaluating organo-chlorine and organo-phosphorus pesticides for controlling cotton pests. Results indicated that seven applications of 3% y-BHC and 5% DDT at 7-day intervals staring at squaring were effective on most of the pests. COMMON AND SCIENTIFIC NAMES Bollworm American boll worm (Helicoverpa armigera); Pink bollworm (Pectinophora gossypiella) Spiny bollworm (Earias spp). Leaf cutting and sucking pest Red spider mite (Tetranychus telarius). Cotton aphid (Aphis gossypii). Tobacco white flies (Bemisia tabaci). Stainer Cotton stainer (Dysdercus spp). * The Red spider mite, Cotton aphid and Tobacco white fly have become major cotton pests recently due increased use of synthetic pyrethroids. 14 concentrates (EC) applied in either high or low volume by knapsack sprayers. Further, the y-BHC and DDT combination was found to have toxic side effects on plants including malformation and shedding of leaves and flowers, and the need to replace the y-BHC/ DDT combination was apparent. Thus, studies initiated in the late 1960s to early 1970s aimed at developing a system of pesticide application based on pest counts, plant spatial arrangement and plant population, thereby, reducing the costs of application. Results indicated that considerable improvement in yield and grade was realized with scouting methods compared to a fixed spray regime. However, disappointing results could be obtained if the scouting was not properly done. From the 1980s however, emphasis was placed on evaluation of low cost synthetic pyrethroids, and currently over 40 individual and mixed compounds are recommended for use against cotton pests, with the most popular including permethrin 10% (Ambush), alpha-cypermethrin 10% EC (Fastac), endosulpfan 350 g (Thiodan 35 EC) and cybolt ME 10% EC (Flucythrinate). Various mixtures are also in use (Ikitoo, 1997; Waturu et al., 2002). However, continuous use of synthetic pyrethroids destroys the pests’ natural enemies and predators. Thus, formerly minor pests including red spider mite, white fly and aphids have become major pests. It is proposed that future research should focus on IPM for effective and economical results, and environmental safety. Pesticide application Since the 1950s pest control in cotton was done by conventional spraying using knapsack sprayers with either high or low volume water usage. The method worked well in humid areas where water was readily available. However, in the 1980s, as emphasis in cotton production shifted from the humid to semi-arid areas, water availability became a major issue because of the large volumes required for spraying at peak periods of plant growth, i.e. 250 – 300 lof water per hectare per spray could not be readily found. Thus, ultra low volume (ULV) chemical formulations and applicators were evaluated and recommended for use in the marginal areas (Ikitoo, 1997). Nevertheless, the ULV technology was not readily adopted in cotton due to the cost implications of using 4 to 6 dry cells to operate the ULV applicator. Most farmers were not able to sustain the cash requirement for the ULV operation in the spray period. It is proposed here that solar technology should be developed for ULV applicators in cotton because solar energy is readily available in most parts of the country through out the year. Certified Cotton Seed Production and Distribution Production and Certification It is always necessary to use good quality seed for planting, which is obtained through the process of seed certification because it ensures that: • The superior characteristics of the recommended commercial variety are maintained against deterioration by periodic recycling of the breeder’s seed. • The good qualities of the improved variety including (i) high germination percentage, (ii) high plant vigor, (iii) high growth rate and (iv) high yield and lint quality, are maintained through good crop management, field inspection and certification. In Kenya, the Cotton Lint and Seed Marketing Board / Cotton board in conjunction with ginners operated a cotton seed supply system whereby seed from commercial seedcotton, ginned basically for its lint, was dressed with fungicides, packaged and re-distributed to farmers for planting. With time, the varieties deteriorated considerably in yield and lint quality due to segregation of the economic plant characteristics into original parental types. Thus, in order to maintain the superior qualities of the recommended varieties, a system of certified cotton seed production is proposed. In that regard, the certified seed will be patterned in accordance with the well known ‘wave system’ of seed production that is in use in many cotton growing countries worldwide. In the system, seed renewal is a continuous process with routine progression through successive stages of foundation, certified and registered seed from the breeder’s seed (nucleus stock) (Lewis, 1970). The major objectives of the system will be: • To ensure sustenance of high seedcotton yield and lint quality through constant supply of certified seed to farmers. • To establish and maintain an economically viable system of seed production, certification and distribution for the recommended commercial varieties. • To develop guidelines and procedures for application to regulate the cotton seed certification process in order to ensure high quality standards. Figure 2 indicates the first cycle of the certified seed production, which is repeated with the release of the breeder’s seed for foundation seed production every three years. Thus, farmers will grow certified seed from breeder’s seed issued after every three years. However, in the interim three years, they will be issued with regenerated certified seed. That way it will be possible to sustain a system of clean planting seed that is true to type. Further, the seed is expected to be high yielding and of good lint quality. Figure 3 indicates how the responsibility for seed production and certification is shared among the production partners or stakeholders. KARI provides pure seed, or breeder’s seed, to the foundation seed stock farms, which could be commercial KARI farms of appointed production agencies overseen by the Cotton Development Authority (CODA) and inspected by the Kenya Plant Health Inspectorate Services (KEPHIS). The seed is advanced to the registered stage the following season, which could be produced on KARI farms, appointed agencies such as the National Irrigation Board (NIB) under their irrigation schemes or the Kenya Volunteer development Association (KVDA) farms on behalf of a registered seed company, overseen by CODA and inspected by KEPHIS. All ginning of certified seed will have 15 to be done by selected ginneries in collaboration the Cotton Ginners Association (CGA). The management of selected ginneries jointly with the CGA will ensure adherence to seed certification protocol, including high standards of ginning, seed dressing and packaging. Distribution b) The collapse of the Hola and Bura irrigation schemes, which accounted for 20 and 38% of total national seedcotton production. c) Lack of a system for certified seed production and distribution, hence, poor quality planting materials, thus, low yields and ginning outturn. Cotton is grown solely by smallholder farmers in well over 20 d) Delayed payment to farmers for seedcotton deliveries. districts in Western, Nyanza, Rift Valley, Central and Coast e) The negative impact of market liberalization. The CB Provinces. Thus, distribution of seed for planting is a chalwas disabled from its market operations without putting lenge. Traditionally, seed was distributed by over 38 ginneries in place alternative mechanisms for running the cotton overseen by the Cotton Board (CB). However, most of the industry. ginneries are now dysfunctional and in the absence of CB, In view of the above, the Government had to intervene through seed distribution was taken over by the Ministry of Agriculan appropriate policy and legal framework that could address ture (MoA). Because only a few ginneries are functional, cotthe needs of the cotton industry under a liberalized economic ton seed has to be moved over long distances and distributed environment. This included establishment of institutions to through the District Agriculture Officers in the cotton produccoordinate and facilitate the activities of the industry. A key ing districts. Further, ginneries and farmers must agree on institution formed under the 1998 Cotton Act is CODA, which how to share the costs of the seed and transportation. Such a in collaboration with the KCGA, will promote standards for scenario is not sustainable. Thus, it is proposed to establish a assessing/grading seedcotton and classifying lint and promote seed company that will collaborate with CODA and KCGA under the provisions of the Cotton Figure 2: A Schematic Presentation of the Act to ensure high standards of seed production, Wave System of Seed Multiplication processing, packaging and distribution. Marketing Up until the market liberalization of the early 1990s, the CB (formerly CL&SMB) directly or indirectly through licensed agents; purchased, transported, ginned and sold cotton seed and lint. Under the CB initiative, cotton cooperative societies and unions were formed to handle primary cotton activities, namely production through supply of inputs and processing and payments for seedcotton deliveries through establishment and management of ginneries. A few private ginneries were also established to undertake cotton ginning. Thus, between 1965/66 and 1978/79 seedcotton production rose from 13,600 to 35,000 MT. However, due to payment problems by the cooperatives, production fell to 23,500 MT of seedcotton by 1982/83 and to a much lower 16,300 MT seedcotton in 1983/84, due to the combined effects of delayed payments and severe drought. However, in the 1984/85, the CB intervened by taking over farmer payments in the worst affected areas, supply of inputs and seed distribution. Seedcotton production for the season recovered to 39,300 MT (Ministry of Agriculture, 1999). The decline in production since the mid-1980s and associated poor crop performance could be summarized as having been caused by: a) Lack of finance and credit for seedbed preparation and procurement of inputs. YEAR - 1 (2009) YEAR - 2 (2010) YEAR - 3 (2011) YEAR - 4 (2012) YEAR – 5 (2013) BREEDER’S SEED 2 – 4 Hectares: Grown by the plant breeder at the Research Centre. FOUNDATION SEED 20 – 40 Hectares: Grown under the supervision of the plant breeder in a government farm. REGISTERED SEED CERTIFIED SEED FARMER’S SEED 500 Hectares: grown by government institutions and selected farmers under supervision of KEPHIS. 1,000 Hectares: Grown by many farmers and public institutional farms under the supervision of KEPHIS. 1,000 – 6,000 Tons: New seed released to cotton farmers. Organizational structure for the seed 16 Figure 3: Organizational Structure for the Seed Multiplication MULTIPLICATION STAGE: RESPONSIBILITY: COTTON BREEDER (KARI). COTTON DEVELOPMENT AUTHORITY. FOUNDATION SEED KEPHIS NIB ADC LBDA KVDA SELECTED FARMERS KEY: REGISTERED SEED CERTIFIED SEED Under plant breeder. Seed inspection. Seed certification. Seed production. local and export markets, among its many functions (Ministry of Agriculture, 1999). Currently, cotton marketing in Kenya is fully liberalized. However, the marketing system faces difficulties, in particular, weak cooperative societies/unions and farmer groups, resulting in poor farmers’ bargaining power and no economies of scale. In that regard, farmers are encouraged to form organizations to undertake their marketing activities. Further, the government has written off non-performing loans owed to the Cooperative Bank by cotton farmers’ cooperatives, and since 2007/08 a cotton pricing model (CPM) has been put in place to inform the industry on pricing based on world cotton prices. The lint price is used as a benchmark upon which freight charges, local transport and ginning costs and profit margin are incorporated to determine the farm gate price for seedcotton. The CPM is used by the Cotton Apex Committee comprising of the Kenya Cotton Growers Association, Kenya Cotton Ginners Association and the Textile Manufacturers. It is expected that with the involvement of CODA and KCGA, it will be possible to operate an open market with CODA op- Way Forwad Strengthening cotton research and extension NUCLEOUS STAGE PUBLIC INSTITUTIONS erating as a market regulator in the same way the Cotton Corporation of India (CCI) operates in the Indian market (Echessa et al., 1996). Human resource development: There is limited staffing for the cotton programs both in research and extension. For a long period the cotton program did not attract adequate funding from either the exchequer (Government of Kenya) or development partners, hence the low levels of staff establishment. Thus, considerable capacity building (recruitment and training) is required. Strengthening the research agenda: There is adequate scientific information and a resource base for developing a strong cotton research program in the country to address emerging concerns of poor yield, drought, increasing pests and diseases, declining ginning outturn and lint quality, provision of location specific agronomic packages based on ecological conditions (soils/climate), application of IPM approaches for more economical results/ environmental safety and the need for increased production under irrigation. Strengthening the extension system: The cotton extension services should be strengthened by reviving cotton specialists in all cotton growing areas and re-establishment of the cotton district development programs operated through the District Development Committees and District Agricultural Committees. Strengthening institutional framework Policy framework: The Government through the MoA, KARI, CODA and KEPHIS, should ensure that an appropriate policy and legal framework for efficient cotton production under the liberalized economic environment is upheld. Certified seed production: The MoA, KARI and CODA in collaboration with other stakeholders should develop and maintain an economically viable system of certified cotton seed production. Strengthening crop development Finance and credit: Finance and special credit arrangement for farm inputs (seed, fertilizer and pesticides), should be provided through selected banks with protection of farmer interest. Irrigated cotton production: The collapsed irrigation schemes should be revived and new potential area for irrigated crop production should be identified and developed for cotton production. 17 References Ackland, J.D. 1971. East African Crops. Longman Group Ltd, London, UK: 94 – 111. CGR, 1971. Cotton growing recommendations for Kenya. The Cotton Research Corporation, Kenya. 1971. Da Costa, V.P.F.X (1973). Characterization and interpretation of the soils of the Kano plains for irrigation agriculture. Thesis submitted in partial fulfillment of the requirements for the degree of Msc (Agriculture) in the University of East Africa, 1973, Nairobi/Kampala. Djikstra, T. 1990. Marketing policies and economic interests in the cotton sector of Kenya. African Studies Centre, Leiden, The Netherlands: Echessa, J.E., Ikitoo, E.C. and Pathack, R.S. 1996. A study report on cotton research and development in India, 19th March – 15th April 1996. Ministry of Agriculture, Livestock Development and Marketing, Nairobi, Kenya: 1 – 21. Fielding, J. Ngigi, R.G. and Olungotie, P.S. 1984. Cotton breeding. In: Annual Report, 1984, Mwea Tebere Agricultural Research Station, SRD, Ministry of Agriculture, Kerugoya, Kirinyaga. Governement of Kenya (GoK) Ministry of Agriculture, 1999. Sessional Paper No. 1 of 1999 on the Revitalization of the Cotton Industry. Ministry of Agriculture, Government of Kenya, Nairobi, Kenya. Hastie, M.S. 1953. Progress report from experimental stations, season 1952/53, Kenya: The Empire Cotton growing Corporation. mation: Part A (West Kenya - Nyanza and Western Provinces):13 - 80; 127 - 265. Jaetzold, R. and Schmidt, H. (1982b). Farm Management Handbook of Kenya. Vol II: Natural Conditions and Farm Management Information: Part B (Central Kenya - Rift Valley and Central Provinces): 683 - 731. Jaetzold, R. and Schmidt, H. (1982c). Farm Management Handbook of Kenya. Vol II: Natural conditions and farm management information: Part C (Eastern Kenya -Eastern and Coast Provinces): 21 - 78; 367 - 411. Kariuki, J., Munoko, G. and Kuloba, P. (2008). Revitalizing Cotton Industry in Kenya: study of cotton sector in Kenya. CODA/Ministry of Agriculture (FAO Support), Nairobi, Kenya. Leakey, C.L.A, 1970. Crop improvement in East Africa. Commonwealth Agricultural Bureaux, Farnham Royal, England: 1- 206. Leakey, C.L.A, 1973. A note on Xanthomonas blight of beans [Phaseolus vulgaris (L) Savi] and properties for its control by breeding for tolerance. Euphytica, 22: 132 – 140. Lewis, C.F. 1970. Concepts of varietal maintenance in cotton. Cott. Gr Rev. 47: 272 – 284. Michieka, D.O, and Oswaggo, O. 1970. Soils of Mwea Tebere Cotton Research Station. Soil Survey Unit, National Agricultural Laboratories, Nairobi. Hastie, M.S. 1956. Progress report from experimental stations, season 1955/56, Kenya: The Empire Cotton growing Corporation. Muchena, F. N. 1987. Soils and irrigation of three areas in the lower Tana region, Kenya. Wagengen Landbouw Universitert, Wageningen, The Netherlands. (In Dutch). Hastie, M.S. 1959. Progress report from experimental stations, season 19557/58, Kenya: The Empire Cotton growing Corporation. Munro, 1970. Cotton in the Tropics. Longman Group Ltd., London UK. Hastie, M.S. 1960. Progress report from experimental stations, season 1958/59, Kenya: The Empire Cotton growing Corporation. Muturi, S. 1975. Constraints in cotton production. Ministry of agriculture, SRD, Paper No. 2, Nairobi, Kenya. Hastie, M.S. 1966. Progress report from experimental stations, season 1964/65, Kenya: The Empire Cotton growing Corporation. Mwea Tebere, 1988. Annual report, 1988. National Fiber Research Centre, Mwea Tebere, KARI, Kerugoya, Kenya. Ikitoo, E.C. 1985. Effect of nitrogen, phosphorus and organic manure on growth and development of cotton (Gossypium hirsutum, L.) at Tebere, Kenya. A Thesis submitted to the University of Nairobi in partial fulfillment of the requirements for the degree of Master of Science in Agronomy. University of Nairobi, Nairobi, Kenya. Mwea Tebere, 1989. Annual report, 1989. National Fiber Research Centre, Mwea Tebere, KARI, Kerugoya, Kenya. Ikitoo, E.C. and Ngigi, R.G. 1989. Guidelines and strategy for certified cotton seed production in Kenya. National Fiber Research Centre, Mwea Tebere, Kirinyaga, Kenya. Ikitoo, E.C. 1997. Review of Kenyan Agriculture, Vol. 19, Fiber Crops. KARI , Nairobi, Kenya/CAZS university of Wales. Bangor, Gwynedd, UK: 1 – 40. Ikitoo, E.C. 2003. Effect of plant spacing and plant population on cotton yield in central and eastern Kenya. E. Afr. Agric. For. J, 69 (3): 229 – 243. Ikitoo, E.C. 2008. Intercropping cotton with common bean (Phaseolus vulgaris L.) and cowpeas (Vigna unguiculata L) in central and eastern Kenya. E. Afr. Agric. For. J. (In Press) Jaetzold, R. and Schmidt, H. (1982a). Farm Management Handbook of Kenya. Vol II: Natural Conditions and Farm Management Infor- Mwea Tebere, 1990. Annual report, 1990. National Fiber Research Centre, Mwea Tebere, KARI, Kerugoya, Kenya. Mwea Tebere, 1991. Annual report, 1991. National Fiber Research Centre, Mwea Tebere, KARI, Kerugoya, Kenya. Mwea Tebere, 1992. Annual report, 1992. National Fiber Research Centre, Mwea Tebere, KARI, Kerugoya, Kenya. Purseglove, J.W. 1992. Tropical crops: Monocotyledons 1. Longman Group Ltd., London UK: Tveitnes, N. and Nyaas Aakerbakken, O. 1973. Fertilizer experiments on small cotton farms in Kenya. E. Afri. Agric. For J., Vol. 38, No 3: 282 – 297. Waturu, C.N., Opondo, R.M., Macharia, J.M.K., Onzere, B.B. and Wasike, V.W. 2002. Recommendations for growing cotton in Kenya. KARI, Nairobi, Kenya. 18 Enhancing the Value of Cotton Peter Kapingu, Agricultural Research Institute Ukiriguru, Mwanza, Tanzania Abstract Cotton is grown in over 80 countries, providing a significant source of income to millions of people each year. Exports of cotton lint account for a significant portion of the foreign exchange earnings of many counties, especially the developing and least developed countries in the world. However activities associated with the growing, handling and trade have a bearing in the way they influence the value of cotton. This paper examines some of these issues, with a view to enhancing the value of this commodity. Introduction Although cotton is produced in over 80 countries in the world, only five of them, China (Mainland), India, Pakistan, USA and Uzbekistan, share 75% of production, 71% of area and 70% of consumption. The five large producers have been the same for decades, although production and consumption have shifted a lot among them. The most significant changes have been reduced consumption in the USA, expanded production and use in China (Mainland), high local consumption in Pakistan and more than a 50% increase in yields in India. Production in Uzbekistan has experienced different changes but with minimum or no impact at an international level. So, in general terms, most international scenarios can be attributed to the changes in the four countries. On average 33-34 million hectares are planted to cotton every year, almost 90% in the Northern Hemisphere and 10% in the Southern Hemisphere. It is estimated that cotton was planted on 34.5 million hectares in 2006/07, as against 34.2 million hectares the previous year. In almost all producing countries the value of cotton is influenced by activities related with the production, handling, trade and marketing of this commodity. This paper examines some of the issues that need to be addressed in order to enhance the value of cotton. Improving Quality Cotton, like all commodities, is differentiated by quality parameters for the purposes of trade. Although many types of cotton can substitute for each other in various products, their distinct characteristics prevent them from being perfect substitutes. Buyers may value various attributes differently, depending on the final product and the production technology being used. There is a direct correlation between specific quality characteristics of the fiber and those of the yarn. Raw material is the most important factor influencing yarn quality, and represents about 50% of the cost of yarn. Better fiber quality translates to better yarn quality and higher processing efficiency. Cotton is a natural product, and therefore lint characteristics vary greatly according to environmental and genetic factors, as well as with picking and ginning conditions. Spinners are more interested in the fiber properties that affect the quality of their yarns and the efficiency at which they produce those yarns. The textile industry has been striving to improve quality and efficiency through automatic high-speed machinery. New technologies place increasingly severe technical demands on textile fibers, raising the importance of other properties of cotton: strength, uniformity, maturity, fineness, elongation, neps, short fiber content, spinning performance and dyeing ability. Consumers also want uniform consignments which are consistent from the first bale of a sale to the last, with even-running cotton in all its characteristics, free from contamination and wrapped in cotton. At the moment, foreign matter, stickiness and seed cotton fragments continue to be among the most serious problems affecting the cotton industry worldwide. Modern high-speed machinery requires more exacting fiber characteristics to operate at maximum efficiency as follows: Middling, or preferably Strict Middling white Staple length 2.5% span length should be a minimum of 1.08” or 27.4 mm (1-3/32”), preferably 1-1/8” Micronaire minimum 3.8 maximum 4.4 Color reflectance Rd >75 Yellowness < 10 Nep content < 200 per gram Strength > 28 g/tex Length uniformity ratio >83% Maturity > 80% Elongation >6% Short fiber content < 5% index Seed coat fragments < 15 per gram For cotton which does not meet those criteria, export customers should expect discounts. Regardless of the spinning system in use, longer and finer fibers result in longer and finer yarns. In spite of that, the order of importance of the fiber properties varies from one system to the other, for example length is ranked first, before strength and micronaire in ring spinning, while rotor spinning ranks strength first, before micronaire and length. Therefore producing countries need to keep track of the technological changes taking place in the spinning industry in order for making required improvements in fiber quality that would make their cotton receive premium prices from consuming countries. Use of Instrument Testing Improvements in cotton quality and quality measurement are components of an overall strategy of improved cotton industry competitiveness. There is an international consensus that instrument-based quality evaluation systems are superior to traditional hand-classing methods for cotton. However these systems are expensive and involve the operation of complex instruments in specialized environments with trained person- 19 nel, which are lacking in most developing countries. Fortunately the ICAC is working to assist developing countries with the adoption of new cotton classing technologies to enable them to compete in the international marketing of cotton. For example the ICAC and the Task Force on Commercial Standardization of Instrument Testing of cotton is conducting a CFC project hosted by the Tanzania Bureau of Standards whose aim is to assist producing countries in the Southern and Eastern Africa region to meet the emerging quality assessment demands of the global market so as to strengthen or at least maintain their competitive position in the world market by keeping up with modern developments from end-markets. The project will study the within-bale variability in order to ensure no claims due to cotton quality characterization. sian. In the ITMF survey, the most contaminated cotton came from India, Togo, Turkey, Mali, and Uzbekistan. On the other hand, very clean cotton came from the USA, Australia, Israel, Brazil and Cameroon. Although the contamination survey for 2005 showed that stickiness had fallen to 17%, it had risen to 21% in the 2007 survey, and the problem continued to be of concern to spinning mills. Cotton from Benin, Cameroon, and the medium staple descriptions from Uzbekistan was affected most, as well as some from the USA. Cotton from Greece, some descriptions from India, Egypt and the USA were least affected by stickiness. Table I a The underlying force pushing the world cotton indusAll Countries/All Growths try toward instrument testing systems is competition Source of contamination with polyester. The world textile economy is consumer-driven, and competitive pressures force spinners to 1 Fabrics made of woven plastic 2 plastic film meet consumer preferences for reductions in real prices 3 jute/Hessian and improvements in product quality. Success for the 4 cotton 5 Strings made of woven plastic cotton industry in competition with chemical fibers de6 plastic film pends on meeting consumer demands. Instrument test7 jute/Hessian 8 cotton ing systems facilitate improved competitiveness with 9 Organic matter leaves, feathers, paper, polyester in two ways. First, spinners can optimize the leather etc. use of cotton only through the use of instrument testing 10 Inorganic matter sand/dust 11 rust systems. Equally important, instrument testing systems 12 metal/wire implemented at the producer level, if combined with 13 Oily substances/chemicals grease/oil 14 rubber an economically rational system of pricing cotton, can 15 stamp color provide incentives to breeders, producers and ginners 16 tar for improvements in cotton quality as defined by the inAverage of 1-16 trinsic characteristics of cotton valued by the spinning industry. The implementation of spinning-oriented fiber No (%) Yes (%) Stickiness 79 21 evaluation systems can enable market forces to provide rational incentives to the entire cotton production, ginning and sales pipeline, to produce cotton with the characteristics that better enable cotton spinners to Table I b meet the demands of quality and price-conscious consumers. The Most Contaminated Descriptions Elimination of Contamination As stated earlier, customers also want shipments uniform and consistent from the first bale of a sale to the last, with even-running cotton in all its characteristics, free of contamination and wrapped in cotton. The Cotton Contamination survey 2007 conducted by the International Textile Manufacturers Federation (ITMF) in which 114 spinning mills located in 23 countries evaluated 72 different cotton growths concluded that foreign matter, stickiness and seed coat fragments continue to be among the most serious problems affecting the cotton industry worldwide. Most contaminants are composed of organic matter, including paper, leaves, feathers, and leather. Other serious contaminants are fabrics made of plastic film or cotton, strings made of plastic or jute/ Hes- Ranking Description 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. India India India India India India Togo Turkey Mali Uzbekistan 11. 12. 13. 14. 15. 16. Ivory coast Greece USA Burkina Faso Egypt Turkmenistan LRA MCU-5 J-34 Shankar-4/6 H-4 India-Others Togo Izmir Mali Medium Staples Ivory coast Greece Arizona Burkina Faso Giza Medium Staples Number of Samples: 715 Degree of contamination (%) Non-existent/ Moderate Serious insignificant 77 17 6 70 20 10 73 17 10 70 19 11 75 16 9 71 18 11 71 17 12 74 14 12 60 75 87 83 27 18 9 13 13 7 4 4 78 15 7 Seed-coat fragments No (%) Yes (%) 63 37 Degree of contamination (%)* Non-existent/ Moderate insignificant Serious 45 54 56 58 58 60 67 68 69 69 31 23 19 26 29 22 28 15 22 23 24 23 25 16 13 18 5 17 9 8 Number of samples* * 5 13 13 24 12 12 6 6 18 20 74 76 77 79 79 80 18 19 19 9 14 18 8 5 4 12 7 2 10 17 5 8 41 8 * Average degree of contamination by each of the 16 pre-indicated contaminants ** Minimum: 5 samples 20 Table I c The Least Contaminated Descriptions Ranking 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. Description USA USA Australia USA USA Israel USA Brazil Cameroon USA Zimbabwe Chad Spain Benin Tajikistan Syria Memphis Territory Texas High Plains Australia USA-Others South Eastern Pima California Brazil Cameroon Pima Zimbabwe Chad Spain Benin Medium Staples Syria ings (from an initial level of US$963 million). Degree of contamination (%)* Non-existent/ Moderat Serious insignificant e 94 5 1 93 7 0 93 6 1 93 6 1 92 7 1 91 9 0 88 11 1 88 10 2 88 6 6 85 14 1 85 10 5 84 16 0 84 13 3 84 12 4 84 12 4 83 15 2 Number of samples** 29 21 19 9 12 7 18 34 8 25 11 8 8 10 10 9 Estimates by the ICAC Secretariat indicate that in the absence of government support for the cotton industry in 2001/02, market prices would have been approximately 70% higher than they were. For 2002/03, the ICAC Secretariat estimated that cotton prices would have been about 15% higher than the actual result if government measures had not supported production in some countries. For sub-Saharan African producers alone, the losses * Average degree of contamination by each of the 16 pre-indicated contaminants in income linked to subsidies ** Minimum: 5 samples to cotton production were estimated at $920 million in Seed-coat fragments also remained an issue with 37% of spinners reporting to have come across the problem, the same 2001/02 and $230 million in 2002/03. The impact of these level as in 2005. The following tables, taken from the 2007 loses to individual countries with high cotton dependency, ITMF survey, summarize some of the results obtained from such as Benin, Burkina Faso, Chad, Mali and Sudan was substantial. that survey. Main Results It is clear from those tables that concerted efforts are required in all producing countries to eliminate contamination in their cotton. The elimination of contamination is of vital importance for the future of the global cotton sector. For example in Zimbabwe and Zambia, the systematic pursuit of quality is reflected in a premium of at least one percent over the selling prices achieved by other African origins. Elimination of Government Measures The Northern Hemisphere accounts for over 90% of global cotton production, the major producers being China, the USA, India, Pakistan, Uzbekistan, Francophone Africa, Turkey, Brazil, Australia, and Greece. One-third of cotton is traded internationally. Cotton is subject to numerous marketing and trade distortions, with some of the major cotton producers giving direct production support to their farmers. For example, direct production support given by the USA, China, European Union, Turkey, Brazil, Mexico, and Egypt over a period of eight seasons between 1997/98 and 2001/02 ranged from US$ 3.8 to US$5.3 billion. Studies predict that a removal of support subsidies would result in an increase in the world price of cotton of 11-28%. These studies suggest that cotton earnings could increase for all developing countries by US$610 million to US$3,250 million. West and Central African countries could gain between US$94 million and US$360 million in cotton production earn- Producing countries need to respond to the declines in cotton prices with strategies that expand the demand for cotton, facilitate the adoption of competitive technologies and reduce or eliminate government measures that distort production and trade. In the ongoing “Doha Round” of WTO negotiations, Mali, Burkina Faso, Benin and Chad have succeeded in bringing the issue of cotton subsidies and their effects as a special case in the Doha Round of WTO negotiations. As a result of the case that they have made, it was agreed in one of the meetings that there would be considerable reductions in the level of distortions in international cotton markets. But since the nature of WTO negotiations is that nothing is agreed until everything is agreed, this agreement cannot take effect until the negotiations are completed. The ICAC strongly supports a successful outcome to the talks on agriculture and other topics being conducted under the auspices of the WTO. The overwhelming majority of member government reaffirm the negative impacts of subsides and other government measures on cotton production and trade affecting cotton farmers, especially in the developing and least developed countries, and urge that all government measures and subsidies on cotton be removed. International organizations can advance the interests of agricultural trade liberalization by articulating a positive program of mutual benefit within the talks on agriculture being conducted under the auspices of the WTO. Given the importance of cotton to the livelihoods of hundreds of millions of cotton producers, the specific concerns of the cotton industry regarding production subsidies deserve the full attention of governments and the international community. 21 Improving the Share of Cotton in Total Fiber Consumption In order to strengthen the market for cotton, the ICAC has been encouraging all countries to require fiber content labels in all textile products sold at retail. There is abundant research showing that when consumers are aware of fiber content, they consistently choose cotton products. However, by 2003 only 59 out of 166 countries surveyed have laws requiring that fiber content be labeled in products sold at retail. Consequently, many consumers are not able to readily identify the fiber content of products offered for sale in their countries, thus inhibiting efforts to boost retail level demand for cotton. At the 62nd Plenary Meeting of the ICAC in September 2003 in Gdansk, Poland a consensus was reached that countries should encourage fiber content labeling of products sold at retail. The support of UNCTAD and other international organizations for this initiative by helping the ICAC to communicate this need to governments would be appreciated. Summary Cotton is differentiated by quality parameters for purposes of trade. A direct relationship exists between the quality characteristics of fiber and those of the yarn. Cotton which does not meet the quality criteria of the export markets should expect discounts. Foreign matter, stickiness and seed-coat fragments continue to be among the most serious problems affecting the cotton industry and concerted efforts to eliminate them must be made. Adoption of new technologies for classing cotton is important especially for developing countries in order for them to be able to compete in the international marketing of cotton. The success of the cotton industry in competing with chemical fibers depends on meeting consumer demand. Negative impacts of subsidies and other government measures on cotton production and trade affecting cotton farmers especial- ly in developing countries must be removed. Fiber content labeling should be encouraged because when consumers know the fiber content they choose cotton products. References Tanzania Gatsby Trust. 2007. “The Cotton and Textiles Sector in Tanzania: Issues and Opportunities”. Report to the Government of Tanzania supported by the Tanzania Gatsby Trust and the Gatsby Charitable Foundation. Chaudhry, Rafiq. 2006. “Cotton Research: World Situation”. Paper presented to the 50th Anniversary of the National Cotton Project, Saenz Peira, Argentina,18th Sept. Estur, Gerald. 2005. “The competitiveness of African Cotton in the World Market”. Paper published in Cotton Outlook, Special Feature March 2005 “Cotton in Africa”. Estur, Gerald. 2004. “Quality Requirements on Export Markets for US Cotton”. Paper presented at the Quality Measurements Conference, Beltwide Cotton Conferences, San Antonio, Texas, 8th Jan . Townsend, Terry. 2004. “Competitiveness in World Cotton Industry”. Paper presented to the 36th World Farmers Congress, Washington DC, 29th May - 4th June. Townsend, Terry. 2003, “Commercial Standardization of Instrument Testing of Cotton: How soon a Reality?” at http://www.icac.org/cotton_info/speeches/Townsend/2005/ csitc_2005.pdf Townsend, Terry. 2003, Impacts of Government Measures on African Cotton Producers”. Statement delivered before the session of Trade and Development Board, United Nations Conference on Trade and Development. ITMF. 2005 and 2007. “Cotton Contamination Survey Reports”. International Textile manufacturers Federation. Economically Viable Cotton Production Systems Bouré Ouéyé Gaouna, Cotton Breeder, Chadian Institute of Agricultural Research for Development, Chad Summary Cotton is the only crop for which there is an organized industry in Chad, while in other countries of Francophone Africa it is not the sole organized industry, although better organized than others in relative terms. Putto (1992) noted that the success of the cotton crop depends not only on the growers, but also on upstream organization and control, the development of technical approaches, the creation of new varieties, pest and disease control in accordance with timetables validated by research, and other factors. Downstream, success involves seedcotton collection by cotton companies, the processing of cotton products, and marketing. Cotton is a relatively important source of income for growers. Berout (1994) calculated that cotton is grown on 50 to 60 percent of official farms in Chad, for example; he noted further that the cotton industry plays a vital role in Chad’s economy since cotton production accounts for 60 percent of operating income and no other agricultural product is currently in a position to take its place. From a social perspective, the cotton industry contributes to development through the jobs it creates and its activities, which include purchasing and ginning the seedcotton, transporting the lint, and crushing the seed. The cotton industry crisis in Chad, a consequence of the dramatic fluctuation of world prices for cotton, has had negative repercussions on cotton production, with serious related effects both upstream and downstream; surveys have been conducted to better understand the situation and, based on a comparative analysis of farms in Cameroon and Chad, these surveys have pointed to a number of conclusions while also raising quite pertinent questions about the role that agricultural research can play in containing Chad’s cotton crisis. The work was carried out by selecting lands in physical settings that are similar in terms of their potential. It was found that Chadian cotton growers are increasingly abandoning cotton in favor of groundnuts, and the reasons given appear to be clear and 22 logical. This study underscores the precarious circumstances faced by many farms where the production system is dominated by cotton. Key words: Cotton industry crisis, Chad, Cameroon, agricultural research, production systems, surveys, farms, economic viability Introduction In most cotton growing areas of the continent, and particularly in the countries of West and Central Africa, small family farms typically operate under rainfed conditions. In many cases, the level of intensification is low: the techniques for working the soil are often inappropriate, the use of organic or mineral fertilizers is rare, and weeding is inadequate. Such is the description, in short, of family farms that maintain a production system dominated by the cotton crop. A review of the yields obtained between 1992 and 2005 suggests that, on most of these farms, average seedcotton yields under rainfed conditions showed no improvement, contrary to what occurred in places where cotton is grown as an irrigated crop, as in Egypt or South Africa. It is easy to say that climate constraints and an inappropriate technical approach to rainfed cotton appear to have blunted the gains in yields expected from the adoption of new varieties. There are many causes for this situation: the uncertainty of rainfall is the dominant factor driving the cotton crop (Crétenet et al., 2006). A review of the rainfall statistics for Mali and Benin (Crétenet, Guibert, unpublished data), for example, reveals two types of frequent climate events in cotton growing areas: irregular onset of the rains, and periods of drought during flowering. In the latter case, the effect of the gaps in rainfall is to create water stress, which can result in the loss of some of the fruit-bearing organs (Cognée, 1968; 1974). These observations also apply to other countries where cotton production remains relatively important. In addition to the climate-related and agro-technical causes, the cotton industry crisis in African countries, a consequence of the dramatic fluctuation of world prices for cotton, has had negative repercussions on cotton production, with serious related effects both upstream and downstream. Under these conditions, only farms that are relatively well equipped with agricultural equipment (animal or mechanical traction) or in a position to rent such equipment appear capable of achieving economic viability. This study draws on a variety of information and data and attempts to answer the question, “Which production systems are economically viable?” Materials and Methods This study is based mainly on surveys and inventories: For the first and second parts of this paper, open surveys were conducted at the Ministry of Agriculture, the Ministry of Commerce and Industry, the Chadian cotton company COTONTCHAD, and the Chadian Institute of Agricultural Research for Development (ITRAD). These open surveys resembled meetings and served to verify a number of points of information and identify possible causes of the cotton industry crisis in Chad; For the third part of this paper, the study took place within the framework of the Regional Pole of Applied Research for the Development of the Central African Savanna (PRASAC). The surveys took the form of comprehensive inventories and covered, in 2001, 791 farms in six different communities of Southern Chad and 922 farms in five communities of Northern Cameroon. All the farms covered by the survey were analyzed. Results: a Few Discussion Points The following tables describe the environment in which different cotton-dominated production systems have evolved. Table 1: Cultivated Area, Output, and Yield of Seedcotton in Certain West and Central African Countries in 2001/02 Country Benin Burkina-Faso Cameroon Côte d’Ivoire Mali Togo Chad Cultivated area (ha) 330,400 355,900 210,400 285,000 516 300 150,000 306,110 Yield (kg/ha) 1,196 1,054 1,141 1,298 1,143 1,033 538 Output (metric tons) 415,000 378,000 240,000 370,000 575,000 155,000 164,546 Lint output (metric tons) 175,130 158,179 99,577 160,505 248,111 63,395 67,363 Source Cotontchad – Dagris Table 2: Evolution of Lint Output in Certain West and Central African Countries in 2004 and 2006 In thousand tons Benin Burina Faso Côte d’Ivoire Guinea Mali Senegal Togo Cameroon Central African Republic Chad 2004/05 171 264 145 3 239 17 74 125 3 84 2005/06 82 302 108 3 244 18 32 100 2 82 Difference in % -52.05 +14.39 -25.52 0.00 +2.09 +5.88 -56.76 -20.00 -33.33 -2.38 Source: Dagris Table 3: Evolution of Producer Prices in Certain West and Central African Countries in 2004 and 2006 In FCFA/kg of seedcotton Benin Burkina Faso Côte d’Ivoire Mali Senegal Togo Cameroon Chad 2004/05 2005/06 200 210 140 210 195 175 190 190 170 175 140 160 195 160 170 160 Reduction in % 15 17 0 24 0 09 11 16 23 The status of cotton on the world market is exacerbated by the fact that it is one of the rare products that place African producers in direct competition with producers in the North, Selling prices 2005/06 (/Kg of fiber) % although the status of cotton is also enhanced by its strategic 2004-2005 610FCFA 0.93 67.78 role on the world market. It is estimated that between 12 and 2005-2006 670FCFA 1.02 74.48 16 million households benefit directly or indirectly from cotAverage for the last 25 years 900FCFA 1.37 100.00 ton growing in West Africa. The CFA zone produces some 80 Source: Dagris percent of the region’s total output and cotton accounts for 5 to 10 percent of GDP in the main producing countries. Furthermore, in 2001, cotton accounted Table 5: Estimated Declines in Cotton Growers’ Income for 51.4 percent of export earnings in Burkina Estimated income of cotton 2004/05 2005/06 Decline in Change Faso, 37.6 percent in Benin, and 25 percent in growers (million metric ton) (CFAF billion) (CFAF billion) income (%) Mali (SWAC, 2004). Still, despite the fact that Benin 81.429 33.190 -48.238 -59 its production costs are among the world’s lowBurkina Faso 132.000 125.833 -6.167 -5 est, West African cotton is in crisis because of Côte d’Ivoire 48.333 36.000 -12.333 -26 the particularly low level of cotton prices. Table 4: Evolution of Cotton Prices from 2004 to 2005 in the Cotton Industries of West and Central Africa Mali Senegal Togo Cameroon Chad 119.500 7.893 30.833 56.548 38.000 92.952 8.357 12.190 40.476 31.238 -26.548 464 -18.643 -16.071 -6.762 Except in Togo and Benin where production has collapsed, and despite declining revenues in recent years, cotton growers have in general maintained their output. They have few viable alternatives to cotton available to them (Table 2). Table 3 summarizes the evolution of the seedcotton purchase price paid to growers in the 2004/05 and 2005/06 crop years. It shows the decline between these two crop years only. In fact, the decline in the producer price has been spread over several crop years and, overall, exceeds 15 percent. In 2003/04, the average price was CFAF 200 per kg in the region. This leveling effect partly explains the moderate impact of falling output prices. In addition, the drop in producer income would have been even more severe without rebates from the previous crop year or the subsidies granted by several countries. The Burkina Faso price of CFAF 210 in 2004/05 corresponded to a purchase price of CFAF 175 and a rebate of CFAF 35 from 2003/04 profits. Similarly, the Mali price of CFAF 210 in 2004-2005 corresponded to a purchase price of CFAF 200 and a rebate of CFAF 10 from 2003/04 profits. The Benin price of CFAF 200 in 2004/05 included a government subsidy of CFAF 43. In Cameroon in 2005/06, the producer price of CFAF 170 included CFAF 150 paid by the cotton company and CFAF 20 from OPCC (Organization of Cotton Produc- Description ers of Cameroon). Even though lint prices recovered slightly in 2005/06, they remain too low to restabilize the cotton industries of West and Central Africa. They are still well below the average for the last 25 crop years, which works out to CFAF 900 per kg of lint. This drop in prices coincides with a drop in the selling price for cottonseed, an important by-product; the price per kg of cottonseed has fallen from CFAF 30 to CFAF 20 in West African markets (Table 4). -22 +6 -60 -28 -18 Table 5 presents an evaluation of the declines in cotton growers’ gross income resulting from the lower prices paid and production trends. It shows the shrinkage of cotton growers’ gross income between 2004/05 and 2005/06 only. The cotton companies’ losses are calculated on the basis of an estimated fixed cost for processing and bringing the product to market of CFAF 295 per kg of lint produced, plus the purchase price of seedcotton converted into the inferred lint equivalent (using a ginning ratio of 42 percent) at the selling price of the crop year in question. Table 5 shows only the impact of cotton production trends on the balance of payments. Cotton plays an essential role in stabilizing the balance of payments in countries such as Burkina Faso and Benin where, in normal years, it accounts for more than two-thirds of export earnings. In addition, the losses in fiscal revenue, estimated at between 4 and 7 percent of total revenue, should be noted (cf. Les dossiers de FARM, Nicolas Gergely, Le coton: quels enjeux?). Different types of farms/production systems inventoried in a comparative study of Chad versus Cameroon Figures 1, 2, 3, 4: Comparative Typologies of Cotton-dominated Farms/Production Systems, Chad versus Cameroon Figure 1. Costs of Production and revenu per hectare in Mali for 4 types of farm Cost of protection ($US/ha) Cost of Pyréthrinoïde ($US/ha) Total cost ($SD/ha) RDT (kg/ha) Gross revenu ($US/ha) Benefit ($US/ha) Type I 47,47 28,48 452,70 1 127 467 14,30 Type of farm Type II Type III 39,04 23,42 423,93 1 109 448 23,70 A = farm with more than 2 units of animal or mechanical traction B = farm with one unit of animal traction C = farm with an incomplete unit of animal traction D = Manually (Nabukpo, Keita, 2006) 42,71 25,63 314,32 859 339 24,80 Type IV 14,64 14,64 257,08 621 262 4,40 Women, I Tenants Tequally y p eof II farm 1. One samplehead shared Women, head of farm Owners Non-users Non-users Non-users Owners Tenants The value of in an Kg area is increased by the accessibility to animal traction Quantity used Areas are larger in Chad than in Cameroon Urea Cotton 1. One sample equally distributed Sorghum 2. An analog repartition of farms dominated by rentals of animal tractions Tenants Cameroon Farms type II Bag of Urea / 50 K Bag of NPKSB/50Kg Use of fertilizer is always higher in Cameroon Urea Quantity used in Kg Corn Groundnut Sorghum Cotton Non-users Cameroon Farms type I Farms type IIPlanting areas Farms type III Farms type IV Areas in hectares 2 5 0 0 type I Farms Non-users C am ero u n Cameroon Areas Farms I Farms type IIof an area Farms type III The value is increased The of Planting an area areas is increased by in thehectares accessibility totype animal traction 2 0 0value 0 Chad T ch ad Areas are larger in Chad than in C Areas are larger in Chad than in Cameroon Tenants Chad Women, Chad Areas in hectares Farms type I Farms typeof II an areaFarms type III by theFarms type IV The value is increased accessibility Women, head of farm 1 500 head of farm Women, Areas are larger in Chad than in Cameroon Owners Farms type I Farms type II Farms type III Farms type IV head of farmof an area is increased by the Non-users head ofThe accessibility farm Yields in Kg/ha to animal traction Yields in Kg/ha Women, Non-users YieldsAreas invalue Kg/ha 1 000 are larger in Chad than in Cameroon Non-users Tenants The value of an area is increased by the accessibility to animal Cotton traction Cotton Yields in Kg/ha 1. One sample equally distributed Tenants Sorghum Non-users Areas are larger in Chad than in Cameroon 500 Yields in Kg/ha Women, head of farm Rendements des cultures Rendements en Kg / Ha 31% Women, head of farm Tenants 2. An analogOwners repartition ofYields farms dominated by rentals of Sorghum animal tractions Cotton in Kg/ha Sorghum Cotton Owners T yp e T yNon-users p e III T Tenants y p e IV Tenants head of farm 2. An analog repartition of farms dominated by rentals of animal tractions Femmes Non utilisateurs Locataires de Propriétaires de Women, chefs Non-users Owners Tenants d’exploitation de TA TA TA Owners head of farm Owners Tenants Yields are always higher in Cameroon, whatever the crop co The value of an area is increased by the accessibility to ani Areas are larger in Chad than in Cameroon Fa Farms type III Farms type II 35% Farms type I 8% Owners 7% Non-users Women, Tenants Owners Non-users Tenants 9% Non-users Farms type typeinIICameroon, Farms whatever type III IV Yields areI always Farms higher theFarms croptype considered Farms type IV Non-users an area is increased by the accessibility to animal traction Areas are larger in Chad than in Cameroon 10% Women, head of farm head of farm Women, head of farm Non-users Women, 30% Women, 1. One sample equally distributed 2. An analog repartition of farms dominated by rentals of animal tractions 48% Chad Chad Women, head of farm 40% 20% Women, head headof of farm farm 11% 0 Groundnut Tenants 1. One sample equallyOwners shared Groundnut Cotton Yields in Kg/ha Groundnut Sorghum 1.ofOne equally distributed 2. An analog repartition farmssample dominated by rentals of animal tractions Bag of Urea / 50 K Bag of NPKSB/50Kg Use of fertilizer is always higher in Cameroon Utilisation des engrais Quantity used in Kgen kg Quantités utilisées Groundnut Bag of Urea / 50 K Sorghum Bag of NPKSB/50Kg Yields in Kg/ha Farms type III Farms type II Use of fertilizer is always higher Cotton in Cameroon Corn Areas in hectares Planting areas Groundnut Owners Tenants Yields in Kg/ha Non-users Women, The headvalue of farmof Farms type I Areas in hectares Planting areas 1,5 Caractéristiques de surface Yields are always higher in Cameroon, whatever the crop considered I II III IV I II III IV I II III IV I II III IV Planting areas An analog repartition by rentals of animal traction One equally COwners o to n S1. o2. rg h o sample A ra cdistributed h idof e farms dominated M a ïs Cotton Sorghum Corn Corn Groundnut 2. An analog repartition of farms dominated by rentals of animal tractions 1. One sample equally distributed 1.Non-users Women, Women, Women, Women, Fig. 2: Characteristics Areas in hectares 1. One sample1.equally distributed One sample equally shared Owners Owners head of farm headtractions of farm of farm head ofCorn farm supérieurs 2. Anpar analog repartition of Des farms dominated rentals animal rendements toujours au Cameroun que soitYields la headare Groundnut Planting areas 1. by One sample equally shared Sorghum 2.2. AnUne répartition analogue des exploitations dominée Corn Planting areas always higher in Came Yields are always higher inofCameroon, whatever the quelle crop considered analog repartition ofOwners farms dominated by rentals of animal tractions 2. An analog repartition of farms dominated by rentals of animal tractions Tenants Non-users Planting areas culture considérée Non-users Non-users Planting areas Tenants des locataires de traction animale1. One sample equally distributed 2. An analog repartition of farms dominated by rentals ofNon-users animal Farms type I Farms type II Farms type III Farms type IVtractions Areas in hectares Yields are always higher 2. An analog repartition of farms dominated by rentals of animal tractions Groundnut Cameroon Corn 1. One sample equally shared Quantity used in Kg whatever the in Cameroon, Quantity used in Kg Tenants Tenants Tenants Tenants One sample sample equally distributed 1. 1.One equally sharedPlanting areas Cameroon Areas in hectares Planting Owners areas Yields are always higher Cameroon 2. An analog repartitionFig. of farms by rentalsof of animal tractions Owners Owners 2.dominated AnOwners analog repartition farms dominated by rentals of animal The tractions Owners Farms type I the accessibility Farms type in II to FarmsOwners type III whatever typethe IV Chad Corn an areatractions is increased byalways traction Yields are higher in Cameroon, whatever the cropFarms considered 2:2. Characteristics Urea Urea value Quantity used in Kganimal An analog repartition by rentals of of animal Areas indominated hectares Chad 2: Characteristics Planting areasof farms Farms type I Farms 1. type Farms type III Farms type IV Fig. Areas in hectares OneIIsample equally distributed 1. One sample equally distributed 1. One sample equally distributed 1. One sample equally distributed 1. One sample equally distributed Areas are larger in Chad than in Cameroon Areas in hectares The value of an isfarms by the accessibility toalways animal traction 2.animal An analog repartition of by rentals of animal trac An analog ofwhatever dominated bycrop rentals of animal tractions 2. An dominated analog of farms dominat 2. Anare analog repartition of 2. farms dominated byarea rentals ofincreased tractions Yields always higher in the Quantity used inrepartition Kg Useconsidered offarms fertilizer isrepartition is always Urea 2. An analog repartition of farmsareas dominated by rentals of animal tractions Planting Farms type I Farms typeUse II of fertilizer Farms type Farms type IVCameroon, Areas inIII hectares Areas hectares Planting sample The value an area is increased thehigher accessibility to animal traction Areas areoflarger in Chad than inby Cameroon Farms type I Farmsareas type II1. One Farms type IIIinequally Farmsdistributed type IV inobtained Cameroon higher in Cameroon Planting areas Areas Fig.1: Typology of 4 classes Farms type I Farms type II Farms type III Farms type IV Planting areas Planting areas Planting areas Fig. 2: Characteristics Planting areas are larger in Chad than in Cameroon Fig.1: Typology of 4 classes obtained Quantity used in Kgtractions Urea Use of fertilizer An analog repartition ofvalue farms dominated rentals oftype animal Farms type Farms type II Farms type III is always Farms type IV Areas2. in hectares The area Farms is increased the accessibility traction Farms type I Farms typeofIIan typeby III by Farms IVI to animal by segmentation Women, Women, by segmentation Women, of Fertilizers Women, Women, Planting areas in hectares Areas in hectares in hectares Yields inWomen, Kg/ha Areas inFig. Cameroon hectares 4: Use The value ofWomen, an area isFig. by theFig.1: accessibility to animal traction Fig.1: Typology of 4are classes Bag ofAreas NPKSB/50Kg NPKSB/50Kg higher Areas in Cameroon Women, 2:is increased Characteristics The ofincreased an area by the accessibility animal traction Typology of 4toclasses obtained Areas larger inobtained Chad thanBag in of Cameroon head ofvalue head farm Yields in by Kg/ha head offarm farm head of farm headof of farm Cameroon head of farm head of farm Urea The value of an area is increased the accessibility to animal traction Use of fertilizer is always head of farm Areas are larger in Chad than Cameroon Farmsintype I Farms II by segmentation Farms type III Farms type IV to animalFarms I IV type III Farms type II type Farms type III type IIFarms type Farms I Farms type Farms Farms Farms typeIIV Farms Farms FarI type I Farms type IIintype III type IIFarms Farmstype type bytype segmentation Planting areas Yields Kg/ha Areas in hectaresLarger areas in Chad than in CameroonThe value of an area is increased by the accessibility Bag of Urea / 50 K Bag2 0of0 Urea / 50 K traction higher in Cameroon Bag of NPKSB/50Kg Cameroon Chad SU PERPlanting Cotton Non-users Non-users Non-users Non-users Theby value of an area is to increased by the to animal Areas are larger in Chad than in Cameroon Cotton Non-users Non-users The value of an area is increased the accessibility animal traction The value of accessibility an area is increased bytractio the a The value ofinanChad is increased by the accessibility to animal traction Non-users Larger areas than in Cameroon FIC IES C Uareas LT IVEES Use of fertilizer isarea always Non-users Chad C a m e r o u n Cameroon The value of an area is increased by the accessibility to animal traction used inin Kg Planting areas Cotton are larger in Chad than in Cameroon Areas are larger Chad than Areas Cameroon in Kg/ha Areas are larger in Chad than in Cameroo AreasQuantity are larger in Chad than in Cameroon 180 4,1 4,5type I Farms Farms type II Farms type III FarmsYields type IV Bag of NPKSB/50Kg Bag of inUrea / 50 K higher Cameroon inTenants Kg/haTenants Cameroon Yields T c h in a dCameroon Chad Sorghum Areas Tenants Tenants Tenants 1 6 0 Tenants Sorghum Tenants Fig. 3: Cameroon Crops Yieldsare larger in Chad than in Cameroon C Areas inameroun hectares Tenants4,0 Sorghum 3,6 Yields in Kg/ha Cotton Yields in Kg/ha Fig. 3: Crops Yields Yields in Kg/ha Yields in Kg/ha Areas in hectares Areas inhead hectares Chad Yields in Kg/ha Bag of Urea / 50 K Bag of NPKSB/50Kg The 3,5 value of an areaChad is increased by the accessibility to animal traction 140 Women, of farm Cotton Tchad Groundnut Owners Owners Owners Owners Owners CameroonCameroon Owners CottonUrea Owners Cotton Cotton Cotton Chad Owners Areas are larger in Chad than in Cameroon Groundnut 120 Groundnut FarmsChad typeYields Ihead inof Kg/ha Farms Cotton type II Farms type III Farms type IV Bag Cameroon Sorghum 3,0 of Urea / 50 Women, farm Non-users Sorghum Farms type I Ktype Farms type II Sorghum Farms typeSorghum III Farms type IV Women, head ofCorn farm Sorghum Sorghum 1 0 0 III Farms type I Farms type Farms IV 2,4 Farms type II 1.1.Chad One sample equally distributed 1.1.One sample equally distributed One sample equally distributed 1. sample equally distributed One sample equally distributed 1.One One sample equally distributed 1. One sample equally distributed Corn 1. One2,5sample equally distributed Chad Cotton Groundnut Corn 8 0 Groundnutdominated by Groundnut Groundnut Groundnut Non-users Sorghum 2.2. An analog repartition ofoffarm farms dominated by rentals ofofanimal tractions Areas in hectares Tenants 2.Kg/ha An analog repartition ofoffarms dominated by rentals ofofanimal tractions The value of an area is increased by the accessibility to animal traction An analog repartition farms dominated by rentals animal tractions 2. An analog repartition of farms rentals of animal tractions 2. An analog repartition farms dominated by rentals animal tractions Women, head of Chad 2. An analog repartition of farms dominated by rentals of animal tractions 2. An analog repartition of farms dominated by rentals of animal tractions 2,0 Groundnut Yields in Yields are always higher in Cameroon, whatever the crop considered Yields in Kg/ha 2. An analog repartition of farms dominated by rentals of animal tractions 1,6 The value of an area is increased by theinaccessibility to animal traction Fertilizer used is always higherwhatever in Cameroon Non-users 1,4 60 Corn are always higher Corn Corn the crop considered Corn in Kg/ha Yields Cameroon, Yields Non-users Fig. 2: Characteristics Tenants Un échantillon également réparti Owners Superficies en hectare 1,3 The value of an area is Corn increased by the accessibility toOwners animal traction Groundnut Sorghum Tenants 1,0 Urea Yields Planting are always higher in Quantity Cameroon, whatever the crophigher considered Corn used in Kg Cotton 0,9 Larger areasIIin Chad than in Cameroon Yields arewhatever always inYields Cameroon, whatever the in crop considered Non-users are always higher Cameroon, the crop considered Planting are always higher Cameroon, w Yields are always higher inYields Cameroon, whatever theincrop considered areas Planting areas areas Planting areasareas Farms typePlanting ICotton Farms type Farms type in IIIChad than Farms IV Planting areas 1,0 Planting Planting areas Quantity usedininCameroon Kg Cotton Areas are larger in type Cameroon areas Larger areas equally in Chad than Tenants 20 Areas in hectares Owners Groundnut 1. One sample shared Corn Owners 53% T chad Chad Areas in hectares C am ero u n Planting areas Cameroon 60% Non-users0 % head of farm Women, head of farm The value of an area is increasedTenants by the accessibility to Tenants areas in Chad than in Cameroon Non-users Tenants Owners 1. One sample equally distributed 1. One sample equally Larger distributed Fig.1: Typology of 4 classes obtained 2. An analog repartition of farms 2. An analog repartition of farms dominated by rentals of animal tractions Owners Tenants 1. One sample equally distributed by segmentation 2. An analog repartition of farms dominated by renta Fig.1: Typology of 4 classes obtained Fig.1: Typology 4 classes obtained Typologie en 4ofTypology classes obtenues Planting areas Fig.1: of 4 classes obtained Planting areas Owners 1. One sample distributed Fig.1: equally Typology of 4 classes obtained Fig.1: TypologyYields of 4 classes obtained Fig. 3: Crops by segmentation by segmentation 2. An analog repartition of farms dominated by rentals of animal tractio by segmentation Women, by segmentation by segmentation par segmentation Areas in hectares Areas in hectares 1. One sample equally distributed Planting areas head of farm Cameroon 2. An analog repartition of farms dominated by rentals of animal tractions Cameroon Cameroon5 0 % Chad 1. One sample equally distributed 2. An analog repartition of farms dominated by rentals of an 24 Non-users 40 Yields are always higher in Cameroon, whatever Corn Quantity used in Kg Quantity used in Kg Quantity used in Kg Quantitythe used crop in Kg considered 0,5 are always higher in Cameroon, whatever Urea Sorghum Yields the crop considered 0 Areas 2. An analog repartition of farms dominated by rentals of animal tractions Areas ininhectares Quantity usedin inhectares Kg Areas in Areas hectares Areas inhectares hectares Areas in hectares Areas in hectares UreaUrea Tenants Areas hectares Urea Urea Urea 1. OneCorn sample equally shared NPKSB Ur ée NPKSB Ur é e NPKSB Ur ée NPKSB Ur ée The value of anin0,0 area is increased by the accessibility to animal traction Quantity used in Kg Owners Yields are always higher in Cameroon, whatever the crop considered Use nofs fertilizer isEalways Exploitations Exploitations de Exploitations Fig. 3: Yields Groundnut E xp lo itatio n s E xp lo itatio xp lo itatio n s E xp lo itatio n s 2. An analogExploitations repartition of II farms dominated by rentals animal tractions Quantity used in Kg Farms ICrops Farms Farms type III Farms type Use of fertilizer isFarms always Use of fertilizer isisalways Farms type Itype type IItype type III type Farms Farms type II Farms Farms type IIIofFarms typeIV IV UseIV of Use isFarms always Farms type IIIof3:fertilizer type II Farms type III type Farms type Itype Farms type Farms type III Farms typeIV IV Farms type Farms type Farms type III Farms type IVfertilizer is always Use of fertilizer always Farms type Farms type IIIIin Farms type III Farms type IV Fig. Crops Yields deFarms type I ItypeFarms de typeFarms IIII type III Farms de typeFarms IV Urea higher Cameroon d e typ e I d e typ e II d e typ e III d e typ e IV Farms type I II type III type IV higher in Cameroon higher in Cameroon Fig. higher in Cameroon Yields in Kg/ha higher2:in Characteristics Cameroon Owners Yields are always higher in used Cameroon, whatever the crop considered higher in Cameroon Quantity in Kg Urea Corn 1.BagOne sample equally shared Cameroun Larger areasUrea in Chad than in Cameroon Bag of NPKSB/50Kg Cameroon Tchad Bag of NPKSB/50Kg The value of an area is increased by the accessibility to animal traction Bag of NPKSB/50Kg of NPKSB/50Kg The value of an area is increased by the accessibility to animal traction The value of an area is increased by the accessibility to animal traction The The value value of of an an area area is is increased increased by by the the accessibility accessibility to to animal animal traction traction The value of an area is increased by the accessibility to animal traction The value of an area is increased by the accessibility to animal traction Bag of NPKSB/50Kg Une d’engrais 2: Characteristics Une superficie valeur fonction l’accessibilité à la traction animale Planting areas The value of anmise area en isFig. increased byused theinde accessibility to animal traction Useutilisation of fertilizer is An always Cameroon 2. analog repartition of farms dominated by rentals Frs ofofanimal tractions Bag of NPKSB/50Kg NPKSB sac/50 Use of fertilizer is always Areas are inin Chad than ininshared Cameroon BagFrs of Urea / 50 K 15 540 Bag Areas are larger inQuantity Chad than in Cameroon Bag of Urea / 50 K kg 12 000 Areas are larger Chad than Cameroon Urea / 50 K Urea 1. larger One sample equally Areas Areas are larger larger in Chad than than in in Cameroon Cameroon Bag of Urea /in 50 Areas are larger in Chad than inKg Cameroon Areasare are larger inKChad Chad than in Cameroon Cotton mhigher inéral in toujours Yields are always higher in Cameroon, whatever the crop considered Use ofare fertilizer isin always Areas larger Chad than in Cameroon Cameroon UREE sac/50 12 340 Frs Bag of Urea / 50kgK 8 500 Frs higher in Cameroon Des superficiesChad par exploitation importantes au Tchad qu’au Cameroun Plantinganalog areasplus Cameroon repartition of farms dominated by rentals of animal supérieure tractions au Cam eroun Bag of Urea / 50 K higher in Cameroon 2. AnUrea Chad Use of fertilizer is always Quantity used in Kg Cameroon Fig. 3: Crops Yields Chad Yields ininKg/ha Sorghum higher in Cameroon Bag of NPKSB/50Kg Yields ininKg/ha Yields Kg/ha Bag of NPKSB/50Kg Yields Kg/ha Yields Kg/ha Yieldsin inFig. Kg/ha Yields in Kg/ha 2: Characteristics Bag ofinNPKSB/50Kg Yields Kg/ha Yields in Kg/ha Use of fertilizer is always Urea Yields Kg/ha Chad higher in Cameroon Bag of NPKSB/50KgBag of Urea / 50 K Areas ininhectares Cotton Fig. 2: Characteristics Cotton Cotton Cotton Cotton Cotton Cotton Bag of Urea / 50Planting K Bag of Urea / 50 K Cameroon Cotton areas Groundnut Cotton Use of fertilizer is always Areas Bag in hectares Farms type I Farms type II Farms type III Farms type IV of NPKSB/50Kg Bag of Urea / 50 K Cotton Sorghum Sorghum Sorghum Sorghum Sorghum Sorghum Sorghum higher in Cameroon Planting areas Sorghum Chad Cameroon Farms Bag type of ICorn Farms type II Farms type III Farms type IV The value of an area is increased by the accessibility to animal traction Urea / 50 K Groundnut Groundnut Groundnut Groundnut Groundnut Groundnut Groundnut Bag of NPKSB/50Kg Groundnut 1 Farms type I 2 3 Farms type II 4 Bag of NPKSB/50Kg Farms type III Farms type IV Gab of Urea / 50 Kg The value of an area is increased by the accessibility to animal traction Larger areas in Chad than in Cameroon Conclusions Fig.that 3: Crops Yields 1)In physical settings are similar in terms Cameroon The value of an area is increased by the accessibility to animal traction of their potential, one finds: Larger areas in Chad than in Cameroon Chad Yields in Kg/ha Corn Corn Corn Corn Corn crop considered Corn Bag of Urea / Corn 50 K Corn Yields are always higher in Cameroon, whatever the Cameroon Table 6: Farm Performance Based on Size Larger areas in Chad than in Cameroon Chad -A larger cultivated area per farm in the Yields are higher ininCameroon, whatever the considered Fig. 3: Crops Yields Yields are always higher ininCameroon, whatever considered Yields arealways always higher Cameroon, whatever thecrop crop considered Yields Yields are are always higher higher in in Cameroon, whatever whatever the the crop considered considered Areas in hectares Yields are always higher Cameroon, whatever thecrop crop considered Yields arealways always higher inCameroon, Cameroon, whatever thecrop cropMali considered and Level of Mechanization, CMDT Zone, Yields are always higher in Cameroon, whatever the crop considered Cotton Chad; Quantity used in Kg Fig. 3: Crops Yields Chad Cameroon Quantity used ininin Kg Quantity used in Quantity used Kghectares Quantity used in Kg Quantity usedAreas inKg Kg Quantity used in Kg Quantity used in Kg Quantity- used in Kg yields and income in Chad; Farms type I Farms type II Farms type III Farms type IV Lower Labor A single At least Cameroon Chad Urea Urea Urea Farms type Urea UreaUrea Urea IV I in Cameroon. Farms type II Farms type III FarmsUrea type Urea - Better food force pair of two pairs A single security Yields in Kg/ha The value of an area is increased by the accessibility to animal traction Chad Yields in Kg/ha ofoffertilizer isisalways oxen of oxen tractor Use fertilizer isisalways Use fertilizer always Use UseofUse of fertilizer always Useof offertilizer fertilizerisisisalways always Use of fertilizer always Use of fertilizer higher is always The value of an area is increased by the accessibility to animal traction Use of fertilizer is always in Cameroon 2)higher Chadian growers are increasingly turning higher ininCameroon higher inYields Cameroon higher Cameroon higher Cameroon higherin inLarger Cameroon higher in Cameroon in Kg/ha Cotton areas in Chad than in Cameroon in Cameroon highersuch in Cameroon Cotton from Bag cotton to other crops as ground- Number of cases studied Bag 15 15 17 Bag ofof NPKSB/50Kg NPKSB/50Kg Bag NPKSB/50Kg Bagof of NPKSB/50Kg Cotton areas in Chad than in Cameroon Bagof ofNPKSB/50Kg NPKSB/50Kg25 Bag of NPKSB/50Kg Bag of NPKSB/50Kg Larger nuts. Bag Bag ofofUrea Urea / Urea 50 Bag 50KK Bag of NPKSB/50Kg Bag Bag of of Urea Urea / / 50 50 K K Bagof of Urea / 50K/K/50 Bag of Urea / 50 K Bag of Urea / 50 K 3) It can be said Fig. with3:some that: Cropsconfidence Yields Bag of Urea / 50 K - Type I and II farms appear to be falterCameroon ing in both Chad and Cameroon, particChad ularly in view of the less and less favorable economic for African Yields environment in Kg/ha cotton; Cotton - The farms/production systems that appear to be faring reasonably well are Types III and IV, i.e. those that are in a position to use the full range of agricultural resources and equipment (animal Number of persons/farm Total cultivated area (ha) Cultivated area/person (are) Total workdays/person Total workdays/ha Financial income from agriculture (CFAF) Financial income from agriculture (CFAF/ha) Financial income from agriculture (CFAF/person) Financial income from agriculture (CFAF/workday) Fig. 3: Crops 31.2 Yields 15.3 15.9 104 89 86 436,000 9.9 9.2 93 77 83 312,000 7.9 3.8 48 40 84 71,000 29,000 27,000 34,000 19,000 33,000 29,000 32,000 9,000 372 320 407 223 34.8 112 88 Chad 79 Yields 1,018,000 in Kg/ha Cameroon Cotton 25 or mechanical traction, use of agricultural inputs, etc.). The table below confirms this trend to some extent. Other factors have also had an impact on the evolution of family farms over the last four decades. First of all, steady population growth (roughly 2.8 percent per year) has had the effect of increasing the demand for land (in Ghana, for example, the total cultivated area increased from 14.5 percent to 25.5 percent of all lands between 1961 and 1999, while in Côte d’Ivoire over the same period it increased from 8.5 percent to 23.5 percent [Mortimore, 2003]), which has resulted, in some cases, in migrations which have not only increased pressure on land but also, too often, led to conflicts. In addition, this pressure has led to a decline in per-person cultivated area. In the Office du Niger zone, for rainy season rice, per-person cultivated area fell from 0.38 ha to 0.22 ha between 1987 and 1999 (Bélières et al., 2002). Environmental challenges pose a potential threat to the continued growth of agricultural output, especially in regard to cotton, and family farms (Type I and Type II farms according to the study typology) will clearly face many difficulties in terms of their survival, particularly when the adoption of biotechnologies is considered (the much-vaunted genetically modified cotton). It is quite logical to expect that large farms, i.e. those that have the means to obtain agricultural equipment or possibly to rent such equipment, are the ones that will be economically viable. These large farms correspond to Types III and IV of the typology. les Agronomes ? Le cas des systèmes de culture en zone cotonnière du Cameroun. Entretien du Pradel, 2004, Agronome et Innovations. Montpellier, France. Rapports d’activités de la Cotontchad : Campagnes Agricoles 2000/2001, 2002/2003, 2003/2004 ; 2002/2005. Bara Guèye. 2006. L’agriculture familiale en Afrique de l’Ouest : concepts et enjeux actuels.ACB (2005). A profile of Monsanto in South Africa. African Centre for Biosafety [online]. <http://www.biosafetyafrica.net/_DOCS/ABC_Monsanto_ Southafrica.pdf> on April 2005, 26 p. AfricaBio (2005). Tanzania conducts GM field trials. Biolines [online]. http://www.africabio.com/biolines/71.pdf, on [04/03/05], 5 p. Brévault, T. and J. Achaleke. 2005. Status of pyrethroïd resistance in the cotton bollworm, Helicoverpa armigera, in Cameroon. Resist. Pest Manage. Newsl. 15 (1), p. 4–7. Cognée, M. 1974. Modalité de l’abscission post-florale chez le cotonnier. Liaison avec quelques facteurs internes. Cot. Fib. Trop. 29 (4), p. 447–462. Elbehri A. and S. MacDonald, 2004. Estimating the impact of transgenic Bt cotton on West and Central Africa: A general equilibrium approach. World Dev. 32 (12), p. 2049–2064. Estur, G. 2006. Le marché mondial du coton : évolution et perspectives. Cah. Agric. 15 (1), p. 9–16. Fok ACM., W. Liang , J. Wang and NY. Xu. 2006. Production cotonnière familiale en chine : forces et faiblesses d’une intégration à l’économie de marché. Cah. Agric. 15 (1), p. 42–52. Grain. 2004. GM cotton set to invade West Africa. Time to act! Grain Francophone Africa. [online]. <htpp://www.grain.org/ briefings/?id=184> on June 2004, 21 p. Green, W.M., M.C. De Billot, T. Joffe, L. Van Staden, A. BennettNel, Du Toit CLN., L. Van der Westhuizen. 2003. Indigenous plants and weeds on the Makhathini Flats as refuge hosts to maintain bollworm population susceptibility to transgenic cotton. Afric. Entomol. 11, p. 21–30. Hake, K. 2004. Cotton biotechnology: beyond Bt and herbicide tolerance. In Swanepoel A. (ed.). Proceedings of the world cotton research conference-3: cotton production for the new millennium. Cape Town, South Africa, 9–13 March 2003. Pretoria : ARC-IIC, p. 9–13. Reference Olina Bassala JP, 2002. Innovations techniques et changements socioéconomiques. Cas du semis ou « labour chimique » au sud du bassin cotonnier au nord Cameroun. DEA, Université de Toulouse(France), 74p. Vall, E., M. Cathala, P. Marnotte, R. Pirot, J.P. Olina, B. Mathieu, H. Guibert, K. Naudin, Aboubakary and I. Pabamé Tchinsahbé, 2002. Pourquoi inciter les les agriculteurs à innover dans les techniques de désherbage ? in Jamin JY et L Seiny Boukar éds., 2002. Savanes africaines : des espaces en mutation, des acteurs face à de nouveaux défis. Mai 2002, Garoua, Cameroun, Ndjaména-Tchad, PRASAC. Dugue, Patrick, Vall Eric, Cathala Magalie, Mathieu Bertrand, Olina Jean Paul and Seugue Caroline, 2004. Les paysans innovent, que font Hofs, J.L. and D. Marais. 2004. Effect of basic fertilization on transgenic Bt cotton yields in small-scale dryland farming systems: an experience in the Makhathini flats, Kwazulu-Natal, South Africa. Abstract. In CIEC. 15th International symposium of the International Scientific Centre of Fertilizers, 27-30 September 2004, Pretoria, South Africa, 22 p. ICAC. 2002. Cotton world statistics. Washington, DC: ICAC, 140 p. Ismael, Y., R. Bennett and S. Morse. 2002. Farm-level economic impact of biotechnology : smallholder bt cotton farmers in South Africa. Outlook Agric. 31, p. 107–111. James, C. (2005 a). Preview: Global status of commercialized Biotech/GM crops: 2004. ISAAA Briefs 32. New York: International Service for the Acquisition of Agri-Biotech Applications, 12 p. James, C. (2005 b). Executive summary of global status of commercialized Biotech/GM crops: 2005. ISAAA Briefs 34. New York: International Service for the Acquisition of Agri-Biotech Applications, 12 p. 26 Mendez, del Villar P., L.R.A. Alvez and M.S. Keita. 2006. Facteurs de performance et de compétitivité des exploitations cotonnières au Brésil, aux états-Unis et au Mali. Cah. Agric. 15 (1), p. 23–34. Nubukpo, K. and M.S. Keita. 2006. Prix mondiaux, prix au producteur et avenir de la filière coton au Mali. Cah. Agric. 15 (1), p. 35–41. Vaissayre, M., G.O. Ochou , O.S.A. Hema and M. Togola. 2006. Quelles stratégies pour une gestion durable des ravageurs du cotonnier en Afrique subsaharienne ? Cah. Agric. 15 (1), p. 80–84. Zhang, H., C. He, G. Shen, J. Yan, D. Auld and E. Blumwald. 2005. Analysis of transgenic cotton engineered for higher drought and salt-tolerance in greenhouse and in the field. In Proceedings of the beltwide cotton conferences, New Orleans, Louisiana, January 4–7, p. 871–875. Hofs, Jean-Luc et Fabio Berti, «Les cotonniers (Gossypium hirsutum L.) génétiquement modifiés, Bt : quel avenir pour la petite agriculture familiale en Afrique francophone ?». Biotechnol. Agron. Soc. Environ., volume 10 (2006) numéro 4 : Biotechnol. Agron. Soc. Environ. 2006 10(4), p. 335–343. http://popups.ulg.ac.be/Base/document. php?id=615 Components of a Sustainable Cotton Production System: Perspectives From the Organic Cotton Experience Simon Ferrigno and Alfonso Lizarraga1, Organic Exchange, UK Introduction Organic cotton is attracting a lot of attention at present following some impressive growth in recent years. This situation raises questions and challenges, which the industry must attempt to answer (Organic Exchange 2008). One of the central ones is how to guarantee the sustainability of the system in a time of growth (Ferrigno 2008), which in turn means identifying and analyzing what the components of a sustainable organic cotton system are. This analysis will have implications for the organic cotton sector itself, but also for the wider cotton sector and sustainable development debate. The Farm Development Program of Organic Exchange (OE) has been working for the past three years both to promote the production of organic cotton, and to understand and shape how it is produced and what are the key components of an organic cotton system. This paper talks about the current status of organic cotton production worldwide, and the necessary components to ensure production is sustainable, drawing on our work in India, Africa, Latin America, Turkey and United States. The paper concludes with some recommendations for the sector, for policy makers and for the cotton industry more generally. Current Status of Organic Cotton Organic cotton contributes 0.55% of global cotton production as of the latest estimates. Textiles made from organically grown cotton fiber have also achieved significant penetration in some markets, such as the UK, Germany, Switzerland, Japan, and the United States. Organic cotton production in the 2007/08 season was esti- mated at 145,872 metric tons of fiber. The data has been confirmed for most regions although some uncertainties remain, where data has been estimated based on past reports and trends (Turkey) or where it is difficult to verify and cross-reference reports (e.g., China). Total production was 152% higher than in 2006/07, partly due to better data gathering and more reliable information, although 60% of the additional production is from increased production by existing known projects. Production currently takes place in 22 countries, covering the same regions as conventional cotton. However, the vast majority (87%) of production takes place in just three countries: India, Turkey and Syria. The total area globally confirmed by research is 161,000 hectares. We extrapolate that total area in organic cotton production is close to 200,000 hectares. At least 177,678 confirmed farmers (with 70% of projects reporting data) are involved, of whom nearly 18% are women. Total organic cotton farmer numbers are estimated at 217,000 (Organic Exchange, 2008). Growth in production has been ad-hoc until recently, meaning that, while organic certification is generally to one of the EU (2092/91) or US (NOP) legal standards, the organization of production and farmers is not to any recommended or accepted set of practices. Recent growth has led to questions and discussion over the meaning and definition of what an organic cotton system needs to be sustainable and over the integrity of organic cotton. Africa is a region with much potential in organic cotton, some success stories and some challenges. Experiences in Africa have many valuable lessons in the definition of a sustainable production system (see Box 1 and Ferrigno et al., 2005). 1) With contributions from other Farm Development Programme team members Prabha Nagarajan, Silvere Tovignan, Phil Monday, Doraliz Aranda. Simon Ferrigno is Director of the Organic Exchange Farm Development Program andAlfonso Lizarraga its Director for LatinAmerica. 27 Organic cotton production in Africa 2007/08: trends and analysis2 Organic cotton production continues to increase in Africa. During the 2007/08 season, Africa produced a total of 6,531 MT of organic cotton fiber, 43 percent more than the 3,716 MT harvested in 2006/07. Eight countries (Benin, Burkina Faso, Mali, Senegal, South Africa, Tanzania, Uganda and Zambia) continue to lead the production of organic cotton on the continent. Pilot production began in South Africa in conjunction with a collaborative research project with Cotton South Africa, South Africa Agricultural Research Center in Rustenburg, and Woolworths South Africa. Tanzania and Uganda are Africa’s largest producers of organic cotton, contributing 83 percent of Africa’s total production of the fiber. Tanzania alone produced 44 percent of the continent’s total organic cotton fiber, taking over the lead from Uganda. The greatest increase in organic cotton production in Africa over the past season was in Zambia, followed by Burkina Faso. Zambia’s production increased as a result of trial acreage being scaled up, while Burkina Faso’s strong growth is in large part due to having secured a 5-year contract with a major buyer. Growth has continued across Africa despite late rains and subsequent flooding, especially in September 2007. Production growth may have been higher with more regular rainfall, but better market access and advance contracts, which many African countries now enjoy, is just as important a factor as weather in the growth figures. Reports from African farming projects are mostly optimistic, with new farmers joining existing projects, production scaling up in South Africa, and a new project beginning in 2007/08 in Benin. OE had expected organic cotton production to increase approximately 40 percent throughout Africa in 2007/08. However, as a result of the poor organic cotton seed supply (seed may be delivered late, of poor quality, and/or in insufficient quantities) and organic farmers being abandoned by potential buyers due to DDT concerns, production may fall or stagnate in the years to come. Africa CFA Region (Benin, Burkina Faso, Mali, Senegal) In the Africa CFA region, Burkina Faso has been surging ahead in terms of production, having secured high priced longterm contracts for the next five years. Next in order of production are Mali, Benin, and Senegal. All countries are seeing production increase, although the increases are occurring more slowly in countries such as Benin where sales remain uncertain and long-term commitments are unclear. In Benin, new certified organic cotton production will come on board in 2008/09, with a new project in Pendjari, developing organic cotton as a buffer around a national park to protect the national park from chemical contamination. Production on a significant scale will not occur for another 2-3 years. Organic Cotton and the General Cotton Sector Organic cotton has not evolved in a vacuum. It was introduced in response to social and environmental challenges, many of which have changed over time. As such, the organic cotton sector needs to evolve and respond to new challenges. It must also be seen, and see itself, as part of a global system in which lessons must be shared. In West Africa, some of the challenges that have motivated trials with organic cotton include the macroeconomic environment, such as impacts from subsidies. Various factors in recent years have left many cotton farmers on the margins of economic viability (PAN 2003, Ton 2002a). However, in many ways organic cotton’s main focus is to lift the entire cotton sector, not replace it. Natural fibers may need to stick together. 2) Extract from Organic Exchange Farm and Fibre Report 2008 3) www.organicexchange.org Sustainable Organic Cotton? Organic cotton, to be a sustainable method of producing fiber, needs to be more than just ‘environmentally friendly’. It needs to be productive, offer decent returns to farmers, and in a growing world with limited returns, needs to be efficient in terms of land use and offer opportunities to be more than just a fiber production system, i.e., it needs to be an efficient system for producing other crops and offering other benefits to its farmers and to the wider world, such as ‘clean’ air and water and reduced carbon footprints, for example. To be productive, organic cotton production needs to take place on fertile soils and in ‘perfect’ conditions where yields can easily match those from other production methods. In cases where organic cotton plays the role of a social safety net, ‘capturing’ farmers who can no longer afford to produce using other methods, this may be modified slightly. There are several ‘sustainability’ sides to the organic cotton story, which are visible behind some of the yield reports (See Organic Exchange Farm and Fiber Report 20083). 28 story is far from simple. For example, lower yields may be more related to the socio-economic status of the farmers or to areas where all yields are low because of water shortages, climatic conditions and change or general environmental degradation. With regards to water, most organic cotton is produced in rain-fed systems, while projects in areas with irrigation have often invested heavily in efficient technologies such as drip irrigation. Table 1: Organic cotton production in Africa (in metric tons of fiber), Organic Exchange 2008 Countries Production Production Contribution 2006-2007 2007-2008 per country (Tons of fiber) (Tons of fiber) (%) Growth as compared to 2007 (%) Benin 200 223 3% 10,31 % Burkina 140 436 7% 67,89 % Kenya 3 - - - Malawi 0 - - - Mali 250 335 5% 25,37 % Senegal 65 83 1% 21,69 % South Africa 0 7 0,1 % 100 % Tanzania 1 662 2 852 44 % 41,73 % Uganda 1 378 2 545 39 % 45,86 % Zambia 18 50 1% 64 % Total 3 716 6 531 100 % In general, we must note that organic cotton is most frequently produced by smallholder farmers in many developing countries, especially in Africa and India and parts of Latin America. Even in more developed economies such as the US and Turkey, organic farmers generally plant smaller area than their neighbors. However, on a global level, we can point towards some ingredients of a sustainable system, despite 43,10 % the diversity of production environments globally. These can be divided between the system within the farm (soil, land availability, inputs, water availability, labor, and so on) and the wider farm environment (market conditions, prices, regulatory issues, support services, organization and logistics and infrastructure, policy). We will cover both here. A Farm Systems Approach Cotton is grown in a farm system. In organic cotton, this is an essential basis for successful, productive organic cotton growing – other crops provide green manure, tools for pest management (by creating traps, providing ingredients, etc.). The farm system includes crops grown in rotation, livestock, and other products both farmed and wild. It is a systems approach that does not lend itself well to a monoculture (Van Elzakker 1999). Illustration 1: Example of an organic cotton farming system Beneficial and harmful organisms (fungus, mites, insect, birds, mammals and others) What is Organic? The IFOAM basic standards state that ‘Organic agriculture [also known as “Biological” or “Ecological” agriculture or protected equivalent forms of these words (in other languages)] is a whole system approach based upon a set of processes resulting in a sustainable ecosystem, safe food, good nutrition, animal welfare and social justice. Organic production therefore is more than a system of production that includes or excludes certain inputs (IFOAM 2008).’ Organic cotton has been criticized for offering lower yields and being water intensive, although both these points are far from borne out by the reality. Even where some evidence exists, the Association Food - Beans - Maize Cash - Sesame Animals Bees and Honey Cows and goats Crop Rotation Food - Maize - Beans - Lentil - Vegetables COTTON Border (useful plants) - Carob - Sunflower 4) Both quoted in vanLoon et al, Agricultural Sustainability, Strategies for Assessment, 2005 Cash - Sesame - Groundnut - Soya - Sweet potato Periphery Food - Cassava Soil (fungus, lichens, mites, insects, and others) Cash - Coffee - Banana - Mango 29 Illustration 2: The external environment of organic cotton farming Farmer services Primary processing Value chain Farmers Community Development Logistics, transport Marketing Managing/protecting landscapes and biodiversity Van Elzakker (1999) suggests the following quick formula for the organic farming system: ‘The use of locally adapted varieties + the reduction of nutrient losses + the use of locally available organic material and green manuring + a wide rotation + fostering natural balances + mechanical and manual weed control = no need for synthetic inputs’. In the years since this formula was suggested, growers have learned and refined this systems approach. Seed selection is clearly critical, but experiments have shown that hybrid seeds can be bred and adapted (e.g., Paraguay, Roa 2008) and native, resistant varieties improved (e.g., India). Different soil fertility management approaches can be used depending on resources and finance, and water has become a critical issue, if only as a potential tool used to criticize organic cotton production. Pest control is also an important factor in some agro-ecosystems. Input substitutions and externally purchased organic inputs have also been used, although to what extent these are sustainable in a narrow sense is questionable. The farm in the wider environment In a more recent research review of experiences with organic cotton, Eyhorn (2007) identifies the following factors as some of those necessary to support a sustainable organic cotton system: • Trade relations between farmers and the value chain • The need for purchase guarantees to give security of production over time • The need for a good Internal Control System, involving farmers in certification and training and extension • The need to work with the right farmers – organic is ideal for small and marginal farmers, and farmers must be motivated to work in an organic cotton system • The need for pre-financing of the crop and the organizational set-up. The work of the OE during the past three years in looking at how to create a sustainable foundation for growth of organic cotton and drawing from other experiences is given below. Definitions of Sustainable Production Systems and Organic Basic Standards In looking at sustainability within the organic cotton system, The Organic Exchange has used two main definitions of sustainable agriculture: Sustainable agriculture is: …“the ability of an agroecosystem to maintain production through time, in the face of long-term ecological constraints and socio-economic pressures” (Altieri, 1987) and ... “involves a system for food and fibre production that can maintain high levels of production with minimal environmental impact and can support viable rural communities” (Mellon et al., 1995)4 Organic cotton production requires the involvement of many different actors, and often, partnerships between public and private actors, NGOs and business stakeholders as well as farmers (See Illustration 3 for an example). This makes it a very complex sector, more so because of the diversity of ecological, environmental, cultural, social, economic and political contexts in which farming takes place. Making sense of this complexity to understand what makes production sustainable requires some understanding of the production systems and farmers’ profiles (e.g., marginal systems, population pressure, fragmentation, smallholders, resource poor, etc.) and some analysis of successful business models and their objectives, reports, indicators, and factors influencing these from outside, such as markets and policy. Illustration 4 shows an example of a business model in Latin America. The components OE is looking at include the following components (illustration 3), grouped under four headings to distinguish them. The paper will discuss these using examples from different organic cotton production systems within our experience. Social components of sustainable organic cotton production systems. “Training the farmers to develop leadership qualities, marketing skills for collective bargaining and educating them to strengthen their farmer organizations to execute their plans and internal control systems so that over a period of time they become independent. Alongside the training of farmers and strengthening their associations, creating the producer company with tangible assets which can process and trade multiple agro-commodities.” Zameen, India (Quoted in Truscott, 2008) The social aspects of organic cotton production were very important in most early organic cotton projects and continue to be promoted in many new ones. Investments were made in how farmers are organized among themselves for production 30 Illustration 3: Business model example from Latin America Business model in Latin America Finance (Bank / alternative financial) Organic Companies (other countries) Certification Individuals Transformer services Organic Company Organic Farmers Small groups Associations Research (Universities ) Export & Local Markets (consumers) Consumers Technical assistance & Educati on (NGOs) as well as marketing of their crops, and how they relate to those aspects of the value chain and wider cotton sector nearest to them. Strong farmer organizations and participation can benefit production by helping motivate farmers and drawing on their experience and knowledge. Most successful projects OE has studied involve some form of formal or semi-formal farmer structure and/or a strong element of social/community/family cohesion among farmers. In Peru and Uganda, the APAEM and LOFP groups are farmer owned/managed structures who are closely involved in the extension, certification, research and sometimes trading activities (OE find other examples of this model in India, Zambia and Senegal), while in countries such as Turkey, production is often based around farmers bonded by strong social and family ties. Strong groups can have a better influence on the supply chain when it comes to negotiating prices and contracts. While this may sometimes be uncomfortable for buyers, it gives a solid foundation to maintaining production over time. An example of social cohesion and farmer organization is also offered by the Texas Organic Cotton Marketing Cooperative, where a group of farmers founded their own marketing cooperative, and set prices based on real costs of production, trading directly with mills, bypassing traders and commanding a higher direct return as a result. Successful producer groups have often incorporated social goals in their programs, for example, around integration of women or building farmers’ organizations and capacity (Ferrigno et al., 2005). Farmers who are fully involved and cohesive will generate ideas and help sustain production. In cases where the social foundation is weak, organic cotton production many require more external support, in terms of finance, technical assistance and managing conflicts or weaknesses in self-management. In any case, in the early days of organic cotton production with a new group of farmers, a strong training program is required. This can be costly and is a major reason why sponsors of new production need to pay attention to ensuring farmers understand and adopt the concepts of organic cotton production and support some of the training, integrated cropping system management and research of the farming system as soon as possible, as this will help manage costs, especially after any initial grants or support for conversion has finished. A full-cost system to capture these expenses must be put in place so that the project, over time will be able to be self-sustaining. Tensions may occur within a group of farmers, between farmers’ groups, or between farmers and external agents. Externally driven initiatives where farmers are contracted are the most vulnerable, as farmers will constantly wonder whether they are getting fair returns and will be comparing themselves to other groups and organic returns against other production methods. Thus, transparency, negotiation and trust are key components of social sustainability, which can be built up through institutions, investments by producer partners and project organizers, and fair and transparent pricing mechanisms and a balance of benefits given to producers as part of the system. Government & International NGOs Ecosystem-Environment Understanding and working with the ecosystem and natural environment is critical for organic farming that is sustainable over time. Soil and soil fertility management are essential foundations for this. To be productive, organic farming requires fertile soils, and management of that fertility over time. In many cases where organic farming is introduced in areas where soil fertility is depleted, big efforts are required to repair this. It is noticeable as OE studies organic cotton yields that the lowest averages are recorded in areas where either soil fertility in general is poor or degraded (i.e., West Africa) or in areas where farmers are resource poor and unable to use the best available organic technologies and approaches to manage their soil (for example, Uganda). Soil fertility is the foundation of sustainable and productive organic farming. When soil is well managed, pest pressure is reduced, water use is optimized and yields will improve for all crops grown in the rotation. To be sustainable and to enable organic cotton production to grow to meet demand, soil fertility has to be a priority for farmers and farming projects. Soil fertility and its management require specific approaches in organic production, including: 1. using natural fertilization methods 31 2. practices such as crop rotation and association 3. elimination of chemical fertilizers Organic soil fertility management thus emphasizes the use of practices that systematically introduce nutrients into the system in natural ways Illustration 4: making the most of other crops in the production system can work for food security, local markets as well as export markets Extract from Monday and Lizarraga (2008) Seed selection is also important, and farmers need to have access to varieties that are resistant or less susceptible to common pests and diseases. Being able to choose an adapted variety for organic cotton can substantially improve productivity. Many examples from Latin America highlight the value of this approach, for example, organic cotton farmers in Paraguay obtain very good yields despite the common presence of the boll weevil, as do farmers in Nicaragua and Brazil. A similar situation with regards to damage caused by Heliothis / Helicoverpa exists in some parts of Africa. However, having to use the same varieties as in conventional cotton is a major problem for many producers, especially in Africa. Good compromises need to be found between the agronomic needs of farmers and the quality requirements of spinners for certain fiber characteristics. Specific organic cotton breeding programs are needed on a wider scale than the existing small experiments such as those in Paraguay (Roa 2007). Price is a critical point in this discussion – in the context of the return from the production system and not cotton alone (unless cotton is the only crop available). Illustration 5: Relationship between price and other factors in organic cotton production system Other important environmental factors to consider in a sustainable program are: • Biodiversity – a balanced agro-ecosystem helps reduce pest pressures and provides tools and ingredients for managing soil (green manures) and pests and diseases (botanical pesticide ingredients, trap and refuge crops). • Managing the rotation crops and other crops (farmed and wild) to maximize the total returns from the farm as far as possible, both in cash terms and in terms of food security. • Managing risks, for example, planning for climatic variation in the short term and the possible long term effects of climate change on the farm. • Managing and improving water consumption and retention. Improving water management is critical for improving productivity and sustainability over time. This is particularly true in dryland farming areas such as Senegal, Gujarat in India and Northern Peru, but in rainfed areas, being able to manage the impacts of variations in rainfall is also important. Economic components Several interrelated factors need to be discussed in looking at the economic sustainability of organic cotton production. These factors are both internal to the farms (socio-economic status of the farmers, their access to resources and finance, for example) and external. The latter components include the access to finance of the project donors or investors, availability of any local, national or international financial and technical support, and the willingness of fiber buyers to support the transition process and the necessary fiber costs over time, such as paying premiums. Variables such as changes in interest rates, oil prices and currency exchange rates can be important factors and sustainable organic cotton production requires an ability to absorb short term impacts and manage risk over time. Similarly, organic cotton systems need to be resilient in the face of global economic slowdowns. Partly, ensuring long term purchase agreements as discussed previously can help manage some of the risks. Productivity Variables: Currency exchange, etc Price Whole Farm Output Demand/Quality Staple In a system where service costs are internalized and the current final retail value of processed organic textiles is higher, there can be a strong temptation to try and squeeze the final returns to farmers to reduce the overall cost and make products more competitive against conventional garments. This is an error in several ways. First, the farm-level costs of organic cotton are a very small proportion of total costs of garments, and more attention should be on managing value chain costs. Second, the system depends on the farmers and requires that a range of services and costs not covered by the market price in conventional cotton be internalized in organic, such as training, extension, research and capacity building. Also, organic cotton depends in the market on its perceived solutions on a range of environmental and development problems, and squeezing prices threatens this. There are two aspects to this discussion: the internal farm level costs and the costs of the system, i.e., training, extension, certification, research and capacity building. The organic cotton value chain needs to support the following triangle at the farm level (i.e., for seed cotton): 32 1. Cost of production (inputs, soil fertility, seed research, water management), 2. Cost of basic needs (food, education, health, and shelter), 3. Cost of development/maintaining a healthy rural economy and landscape (infrastructure development and maintenance, human development, landscape and biodiversity management and preservation, a healthy rural economy…)’ (Ferrigno et al 2007). Illustration 6: Different pricing mechanisms in organic cotton, workshop report from Organic Exchange Annual Farm Development Meeting 2008 Overview of the current pricing mechanisms • Different from a context to an other: – Direct negotiation between organic farmers` leaders and company (Brazil). The organic premium is quite satisfying and sustainable for all involved actors since five years; – Linking organic price to conventional price with fixed or varying organic premium (Benin, USA, Zambia, India); – Agreement on a floor price taking into account the production cost (Paraguay). The system itself requires that extension, training, capacity building, certification and other normal costs of cotton trade be covered by the fiber price. Generally speaking this might lead to fiber prices for organic cotton being 20-50% higher than conventional cotton. A further necessity in organic cotton is the availability of services such as finance (crop and other business finance), and insurance. Innovative examples of financing in organic cotton exist already with the activities of the U.S. based ethical group Root Capital, who support crop financing for many organic cotton projects and in a new pilot program between the Dutch Cooperative Bank Rabobank, and the NGOs Solidaridad and Organic Exchange. Technology and Policy Ensuring sustainability over time with sufficient returns means that organic farming needs to invest in improving productivity of the cotton crop and of the whole farm. An ideal scenario would see organic farming totally independent of the need for premiums or even a specific organic market. To attain this ideal requires that organic yields and returns factored against production and management costs are sufficient to make a compelling economic case for farmers to adopt this system. Improving the technological package available in organic cotIllustration 7: The role of pricing in the sustainability of the organic cotton system ton by, for example, managing costs and improving knowledge on agronomic approaches while offering adapted seeds will make the system more attractive. Making sure farmers are recruited who are motivated and have access to good land or resources for the organic system is important. Development of technologies requires a system that supports research and extensions services to develop new approaches to managing organic cotton production, to develop seed varieties and seed banks, and to improve the overall sectoral sustainability. This means that organic production needs to gain (and earn) broad acceptance among the general cotton sector and with policy makers as another, valid method of cotton production to generate more research support – and to share the valuable lessons from organic systems with others. Policy support is also required to manage the interactions between different cotton production systems. Good progress is being made in India with regards to policy and cotton sector acceptance of organic cotton production, and the sector has recently started to incorporate perspectives from the organic sector in policy initiatives and boards. Conclusions Sustainable Pricing/ Business Model Maintaining/Improving rural incomes guarantees social and economic sustainability Investment in other crops and/or Value addition will make farmers more Competitive and reduce the pressure On cotton alone to meet costs ‘Fair’ Farm gate prices Fibre prices that support the System: extension, support, Research, seed breeding Organisational development, Business development and Market access, ICS, Certification, transparency 1) competitive productivity 2) making the most of all the systems' output 3) recognising a concept of a sustainable farming income Low prices threaten sustainability of the system and reduce productivity, Which in turn will lead to higher prices itself ..'involves a system for food and fibre production that can maintain high levels of production with minimal environmental impact and can support viable rural communities ' (Mellon et al., 1995) The organic cotton farming system relies on strong support and training structures. To succeed, groups need “price structures and income distribution that cover the costs of internal control systems, training and education, capacity building and business growth” (Ferrigno 2008). A successful business model moves farmers away from reliance/dependence on the market price to sharing in the efficiency and success of the whole chain (Organic Exchange 2007). Organic cotton is a complex system that is still being analyzed, understood and codified following the past two decades of experimentation and development. This is likely to result eventually in a Code of Conduct for Good Relationships to maintain the balance between social and developmental 33 goals, environmental responses and the market (see illustration 9 below). The production of organic cotton must be viewed in a comprehensive or holistic way, as the management of a system that integrates various elements together, including social, environmental, economic, and technological aspects. There are risks and real challenges, but with the right tools and planning, organic cotton production can be sustainable and productive and deliver real benefits. In a growth situation, such aspects as participatory processes, transparency, fair returns, and good relations in the supply chain are necessary. Lessons for the wider cotton sector The positive impacts on farmers of many organic cotton initiatives show that there is value in supporting organizational development of farmers’ groups and participation by farmers in marketing, extension and research. The capacity of organic cotton to internalize many costs of such a model might also point the way for more attempts to improve other forms of cotton production using market mechanisms and recognition. This might be a useful way forward for such programs as the Better Cotton Initiative. Surely improved practices deserve market rewards for producers who implement them. Similarly, organic cotton shows that much can be achieved with relatively low investments and without encouraging dependency on expensive inputs and technology, while supporting poor and resource poor farmers. For developing economies, a large and productive organic farming sector could have a positive impact on the balance of payments by reducing the imports of technology. Policy recommendations In organic cotton: 1. Finalize analysis of best practice in organization, agronomic practices, and service provision and make adoption of these a requirement in the sector. 2. Allow farmers to access adapted seed and develop research and breeding programs. 3. Allow farmers to save and replant seed. 4. Analyze cotton sectors and offer support to organic where appropriate, e.g., where certain socio-economic groups would benefit (resource poor, smallholders, women, minorities). 5. Invest more in organic cotton research itself and in sharing lessons between different production systems. References Eyhorn, F. Organic Farming for Sustainable Livelihoods in Developing Countries? The Case of Cotton in India vdf Hochschulverlag AG 2007. Ferrigno S., et al., Price Discussion Document, Internal Working Paper, Organic Exchange: O’Donnell 2007, Unpublished. Ferrigno, S. “The worldwide development of organic cotton cultivation: progress and future challenges” paper presented at IFOAM Congress on Fiber and Textiles, 16th and 17th of June 2008, Carpi, Italy Ferrigno, S., G. Ratter, Peter Ton, Davo Simplice Vodouhê, Stéphanie Williamson and John Wilson, Organic Cotton: A new development path for African smallholders, Gatekeeper Series 120, IIED: London 2005. IFOAM. IFOAM Basic Standards for Organic Production and Processing, Online, http://www.uni-kassel.de/fb11/ fnt/download/frei/dII/IFOAM%20Standards. potential organic pdf Illustration 8: Areas to be considered in a cotton Code of 'Relationships' Challenges to Growth Monday, P. and A. Lizarraga, Soil Fertility Management in Organic Cotton: an overview, Forthcoming, Organic Exchange: O’Donnell 2008. Maintaining Values/Ethical Approaches? Market access Cotton and other farm crops Myers, D. and S. Stolton, (Eds.) Organic Cotton: From Field to Final Product, Intermediate Technology Publications Ltd: London 1999. Monitoring/Traceability Price mechanisms Organic Exchange Farm and Fibre Report 2007 Organic Exchange: Berkeley 2007. Productivity/Access to on-farm inputs Sustainable Farming system Extension/Training/ Technical assistance Access to (appropriate and adapted) seed Finance and Capital Pesticide Action Network, UK, The Dependency Syndrome: pesticides use by African smallholders, PAN, UK, London 2003. Forecasts and planning Capacity building In Management and Business Access to value addition/ Premium certification/ Fairtrade -Organic Roa, C. Selecting Genetic Material, Presentation at Organic Exchange Regional Meeting, Asunción, Paraguay, April 2007. Markets for transition crops Ton, P. Organic cotton production in sub-Saharan Africa: the need for scaling-up PAN UK: London August 2002. Organic Exchange Farm and Fibre Report 2008 Organic Exchange: O’Donnell 2008. Organic Exchange Fibre Report 2006 Organic Exchange: Berkeley 2006. 34 Truscott, L. Organic Cotton Farm System Crops, Draft report, Organic Exchange: O’Donnell, 2008. Van Elzakker, B. Organic Cotton Production, Chapter in Myers, D.,and Stolton, S. (Eds.) Organic Cotton: From Field to Final Prod- uct Intermediate Technology Publications Ltd: London 1999. VanLoom, Gary W., S. G. Patil and L. B. Hugar: Agricultural Sustainability, Strategies for Assessment, Sage Publications, India Pvt., 2005. Environmental Risks Associated with Cotton Growing in Francophone Africa: Assessment and Current Developments M. Vaissayre and M. Cretenet, CIRAD, Annual Cropping Systems Research Unit, France (Presented by Alain Renou, CIRAD) With few exceptions, cotton is grown on small family farms in Sub-Saharan Africa. Cotton is a rainfed crop here, and it is produced as part of a cropping system that includes food crops, grown either for commercial purposes (maize, cowpeas) or for home consumption (millet, sorghum). The amount of land currently planted to cotton in the CFA zone is between 2.2 and 2.5 million hectares. In 2006/07, output in the CFA zone was the lowest since the start of the century, yielding less than 800,000 metric tons of lint (versus a record output of 1,126,000 metric tons in 2004/05), while in East and Southern Africa, output totaled approximately 460,000 metric tons of lint on a cultivated area estimated at 2 million hectares (ICAC, 2007). Since the bulk of the West African output is exported, this group of countries now ranks fourth worldwide, recently dislodged from its position as third largest exporter by India, and furthermore threatened by Brazil (ICAC, 2008). Nevertheless, cotton production remains a key sector in the subregion’s development programs. Cotton growing requires the use of fertilizers (organic and mineral) and also pesticides, for the most part insecticides. In Mali, for example, more than 2.6 million liters of formulated emulsible concentrate products were needed in 1999. In Benin and Burkina Faso, the figures are likely similar or even higher. At the current stage of development of the cotton growing areas, the use of inputs is essential to increase productivity, but for agriculture to be sustainable, environmental protection is of critical importance. This paper will therefore examine the sources of risks to the environment and human health, and look at a number of measures for limiting the impact of such factors. A Changing Landscape The natural vegetation of the cotton belt that runs across Africa from Senegal to Chad is that of the Sahelo-Sudanian savannah, with Vitellaria paradoxa (shea), Lannea spp., Sclerocarya birrea, Daniellia oliveri, Parkia biglobosa, Terminalia macroptera, Khaya senegalensis, Vitex spp., and Prosopis af- ricana. But as a result of the clearing done to accommodate a strong human presence, this vegetation is today scarcely visible. The principal cultivated species are millet, sorghum, and cotton. The agricultural landscape reproduces the structural elements that make up an “Africa of granaries” (Pourtier, 2003): cultivated fields alternating with bush; rings of village lands; wooded parks; a more or less well regulated division between farming and livestock. Farmers are faced with population pressures and the increasingly scarce availability of land: sustainable development now requires moving toward production systems that are more intensive and more in tune with less abundant land resources than in the past. Soil Fertility Savannah soils are fragile, and their mineral and organic content is often low. The cultivation of new areas is but a shortterm solution. The maintenance of soil fertility is thus a critical challenge for agriculture in these areas. The integration of farming and livestock varies tremendously within the cotton belt, and the type of relationship that different populations have with stockraising explains the different ways in which cotton is grown and fertilized. Animal traction has served to spread the practice of stockraising, and it seems clear that the integration of farming and livestock contributes to intensification of the system. This technical innovation has made it possible to increase the cultivated area, control weeds more effectively, and improve soil fertility. But the presence of trypanosomiasis makes it difficult and sometimes impossible to engage in stockraising and thus to rely on organic fertilization. Minimum doses of chemical fertilizers have been advocated in order to offset losses of mineral elements necessary for crops included in the traditional cropping pattern. In view of their purchase price, the quantities used rarely meet the recommended minimum dosage, and the mineral balance often remains negative, even though, due to crop rotations and cropping systems, such inputs are beneficial not only to cotton growing but also to the food crops that are part of the cropping pattern. 35 Repeated plowing and the exclusive use of mineral fertilizers have a tendency, in the long term, to break down the soil structure and acidify the soil. To protect soil fertility and address these major drawbacks, innovative techniques, especially involving plant-shaded beds, have been proposed and developed, mainly in the cotton growing area of Northern Cameroon and, to a lesser extent, in Burkina Faso. The development of threshold-based interventions in several countries, particularly Mali and Cameroon, following the development of targeted, staged pest and disease control in Benin, demonstrates that it is possible to reduce the quantities of pesticides needed for effective production, provided that farmers accept the related risks and are ready to commit the necessary time. Pesticides Lastly, the recent introduction of the Bt cotton plant in Burkina Faso could demonstrate that there are other approaches for reducing the use of insecticides, with treatments then being limited to infestations of sucking insects. As a result of an exclusively manual harvest, cotton growing in Africa does not rely on the chemical products needed for a mechanical harvest. This situation avoids major factors of pollution. In addition, the use of herbicides is relatively rare in Africa, where weeding is a purely manual operation on many farms. The bulk of the pesticides used by small African farmers consist of insecticides. All the families of insecticides (organochlorines, organophosphates, carbamates, and pyrethroids) have been used on cotton in Africa, but today the products targeted by the Rotterdam Convention have disappeared or are being phased out (such as endosulfan). The climate conditions, and the parasite pressure encountered in Sub-Saharan Africa all make it unrealistic to contemplate the prospect of growing cotton without any treatments. In regard to cotton pests, attacks by certain insects can greatly reduce or even wipe out production. Accordingly, to protect productivity and guarantee a minimum income level for farmers, a carefully thought-out system of pest and disease control has been set in place, based on the use of active ingredients that meet international standards and a reduced number of treatments, averaging roughly 4.5 applications per year. The treatments end prior to boll opening. As a result, the lint produced is free of any trace of pesticides. In addition, the manual harvest is much gentler on the lint than a mechanical harvest and, in particular, does not require the use of defoliants which, because of the stage at which they are applied, pollute the lint. African lint offered on the market is thus free of all traces of pesticides and other products used to assist the harvest. This moderate use of insecticides may have slowed, but did not prevent, the development of resistances by certain pests such as the aphid Aphis gossypii, the white fly Bemisia tabaci, and, above all, the bollworm Helicoverpa armigera. The emergence of these resistances in the late 1990s in the oldest cotton basin of West Africa (Mali-Burkina Faso-Northern Côte d’Ivoire) (Martin et al., 2002) and in the early 2000s in Central Africa (Brevault & Achaleke, 2005), mobilized the entire industry, and the rapid implementation of management measures did not engender the overuse of insecticides typically occurring in such a situation (Martin et al., 2005). Nevertheless, the cost of chemical protection has risen as a result of the use of alternative molecules, and health concerns have momentarily increased, due to the return of endosulfan, thus sparking interest in research on new molecules and innovative approaches. Conclusion Stagnant yields in the CFA zone over the past two decades, hovering around 450 kg/ha (under strictly rainfed conditions) – versus a world average of 730 kg/ha (mainly under irrigated conditions) – threaten the competitiveness of African cotton. A number of factors are involved : varying degrees of mastery of technical procedures, the arrival of new, less productive farmers who grow cotton on the fringes of the family farm, a decline in intensification due to the drop in world prices, and soil fertility problems in certain areas. Better management of agricultural inputs and the introduction of innovative cropping techniques would no doubt provide a substantial boost in yields. In a world context of abundant supply, efforts in Africa should focus on the promotion of high-quality cotton, which would of course require specific incentives (quality bonuses). From this perspective, the cropping and harvesting methods used in Africa place African cottons among those that are least risky for growers and their environment, as well as for lint consumers. While continuing to implement the intensification programs needed to ensure the crop’s competitiveness and sustainability, Africa’s cotton industries have been able to define technical approaches that take environmental requirements into effect and, despite the difficult economic conditions faced by producing countries, they continue even today to develop new techniques in this regard. Furthermore, the cotton crop in Sub-Saharan Africa is strictly rainfed and does not draw on any surface waters or aquifers, even as back-up. Combined with the manual harvest and the resulting absence of defoliants, the development of threshold-based intervention techniques, and the introduction of Bt cotton plants that require fewer chemical treatments, this cluster of practices helps make African cotton one of the most environmentally friendly crops. Reference: Dejoux, C. (1988). La pollution des eaux continentales africaines : experience acquise, situation actuelle et perspectives. Collection travaux et documents n° 123, éditions de l’ORSTOM, Paris : 513 pp. Djibril, R.B. (2002). Contribution à l’étude d’impacts de l’utilisation des engrais chimiques et des pesticides sur la qualité des eaux de surface dans la reserve de biosphere de la Pendjari. Mémoire de fin de formation pour l’obtention du Diplôme d’Ingénieur des Travaux 36 (DIT), Département des techniques d’aménagement et protection de l’environnement (APE, Collège Polytechnique Universitaire (CPU), Université d’Abomey Calavi, Bénin : 106 pp. Santé, Décembre 2000 : 75 pp. Floquet, A. et R. Mongbo (2004). Etude des effets et des impacts de la lutte étagée ciblée sur les producteurs – Résultats d’une enquête socio économique conduite en octobre et novembre 2004 dans 4 communes du centre et nord Bénin à la demande du PADSE. Documents du PADSE, MAEP/AFD/SOFRECO, Cotonou, Bénin : 74 pp. M’Biandoun M., H. Guibert and J.P. Olina (2006). Caractérisation de la fertilité du sol en fonction des mauvaises herbes présentes. Tropicultura, 24 (4) : 247-252. Hadonou-Yovo, B. (2000). Bilan et caractéristiques des cas d’intoxication lies aux produits phytosanitaires en république du Bénin Durant la campagne cotonnière 2000/2001 – Rapport de l’enquête initiée par les sociétés Calliope S.A. et Aventis en collaboration avec le Ministère du Développement Rural (MDR) et du Ministère de la Matthews, G.A. (1981). Improved systems of pesticide application. Phil. Trans. R. Soc. Lond., 8 : 163-173. Pourtier, R. (2003) ������������������������������������������������� Les savanes africaines entre local et global: milieux, sociétés, espaces. Cahiers/Agricultures, 12 (4) : 213-218 Prudent, P., A. Katary and A.C. Djihinto (2003b). La LEC confirme ses avantages comparatives sur le traitement calendaire. Les échos du PADSE (MAEP/AFD/SOFRECO) n° 11 : 1-6. Review of a Few Agricultural and Managerial Ways and Means for Minimizing Cotton Production Costs in West and Central Africa Amadou Aly Yattara, Cotton Program Manager, Institute of Rural Economy, Sikasso, Mali. Introduction In most countries of West and Central Africa, the economy is based primarily on the rural sector and, in particular, cotton growing, which is the main source of revenue in rural areas. The cotton output of these countries has shown strong growth in recent years, largely due to an increase in the number of producers and a doubling of the cultivated area on which cotton is grown, but today these countries face stagnant or even declining yields. The current status of cotton production needs to be turned around in order to avoid a collapse of the cotton industry, one of the pillars of the economy in these countries. The situation has grown all the more urgent because the drastic decline in world prices has had a major impact on the economy of African cotton-producing countries of the CFA franc zone, which are already penalized in terms of costs by the expense of delivering the product to the customer, and where the farm gate cost of lint represents two-thirds of the factory cost, and the selling price for lint has fallen well below the production cost. Under these conditions, there is an urgent need to take any and all measures likely to help contain production costs or even generate profits. A Few General Points in Regard to Production Costs Definitions The production cost of a product means the sum of all financial and nonfinancial expenses involved in the process of producing one unit of this product. In the case of seedcotton, the production cost includes two types of expenses: • unavoidable costs, corresponding to monetary outflows, and • the cost of operations performed by the producer, assisted by family members. The unavoidable costs are all the expenses involving an outflow of cash. This includes the cost of inputs, the cost of maintaining and repairing equipment, expenses associated with livestock feed and veterinary treatments, the cost of paid labor, and the cost of minor equipment purchases (batteries, hoes, etc.). Operations performed by the producer also involve a cost, which may be higher or lower, depending on the value attached to family labor. Thus, in calculating production costs, there are a number of hurdles to surmount, due not only to the difficulty in assessing the value of family labor, but also the difficulty in determining the amount of time spent working (particularly the amount of time spent in the field at the start and end of operations included in the profile of farm activities). Ultimately, seed cotton production costs vary by production zone and by type of farm. Production cost Seed cotton production costs, as calculated by a number of authors, are based on unavoidable expenses plus compensation of family labor. The study conducted by HORUS/SERNES in 2002 lists unavoidable expenses in the order of CFAF 93 per kg, to which 105 days of family labor must be added. According to these authors, the seedcotton production cost thus ranges between CFAF 141 and CFAF 190 per kg, depending on whether the value of family labor is assessed at CFAF 500 or CFAF 1,000 per day. Diakité and Djouara in 2003 gave a production cost for organic cotton of CFAF 247 or CFAF 301 per kg by setting the value of family labor at CFAF 500 or CFAF 750 per day respectively. As part of the same study, the authors cited a production cost for conventional cotton of CFAF 148 or CFAF 37 172 per kg, once again setting the value of family labor at CFAF 500 or CFAF 750 per day respectively. Review of the Key Determinants of Production Cost and Their Impacts A study1 conducted in 1994 by the Production System and Natural Resources Management Team of Sikasso showed that, from an agronomic perspective, good farm management plays a meaningful role in boosting productivity. through successful adoption of cropping techniques. The implementation of other institutional and policy measures could of course also help to improve cotton industry performance. In a number of studies carried out specifically on the situation in Mali, but clearly valid for other producing countries of the subregion as well, it turned out that, to generate profits or, at the very least, contain production costs, the following paths warrant exploration: • improve field yields by adopting high performance plant material and innovative and efficient technologies, • improve the quality of the lint, • minimize production costs via labor and inputs. In addition to these directly impacting measures, other accompanying measures can help maximize or at least improve profits, particularly in the following areas: • make farmer organizations more dynamic, • increase the involvement of the private sector, producers, and decentralized local government, • improve producers’ participation in managing the cotton industry, • liberalize the cotton and oilseed sectors. Improvement of Field Productivity Boosting field productivity is a central and essential element of cost containment. Indeed, it is well known that the production cost of cotton amounts to a ratio between all production expenses and actual yield. Inasmuch as the issue of yields is of central importance in determining the production cost, it clearly deserves special attention. Boosting productivity requires first of all optimizing all the farming practices that are part of the overall work.2 The above mentioned study found that the dates of sowing, thinning, first weeding, and first insecticide treatment have a significant impact in terms of meeting the plant’s productive potential. In addition, it was found that efforts to improve the currently very low planting densities (40 to 50,000 plants) have a major impact and should be significantly increased. While maximization of the productive potential that exists can be sought through better implementation of the technical approaches already available, this in no sense diminishes the need to continue to develop technical innovations in order to reverse the decline in both yields and income. More specifically, this involves the development of true threshold-based pest and disease control interventions that are more economical and less harmful to the environment; better adapted varieties that offer a high ginning yield; technical reference systems on soil fertility management; and regionalized fertilization schemes that are cost-effective and inexpensive. It is important, on the one hand, to make better use of fertilizers so as to lower the production costs, but it is also important to give extension workers and farmer organizations clear information on the medium and long-term consequences of different approaches to soil fertility management. Improvement of Lint Quality Another path, and hardly the least important, toward the goal of improving the profitability of the cotton industry as a whole is to improve the quality of lint produced. This lint, in terms of both its quantity and quality, reflects not only all the costs generated at the farm level (producers and extension services) and at the mill level, but also virtually all the increased value that cotton companies and even countries can expect from their cotton output. It is easy to understand that the greater the quantity of lint, the lower the fixed costs per metric ton. To achieve optimal value from the lint, interventions need to be optimized on two very distinct, yet complementary levels. First, there is a need to minimize contaminants of all sorts, if not eliminate them entirely, in seed cotton. The input of growers is of critical importance in this area. A recent study3 on this subject in Mali showed that, by implementing a few very simple harvest management practices, it was possible to reduce the rate of contaminants very significantly (by at least 77 percent). Even though these contaminants consist largely of organic or inorganic matter (plant matter, sand, etc.), and thus are not greatly feared, the monetary loss incurred by producers at the point of purchase because of the contaminants’ presence in the seedcotton, based on a total output of some 450,000 metric tons of seedcotton, came to nearly CFAF 1,200,000,000. The second level of intervention, also critically important, concerns the industrial facilities. At the present time, the average ginning yield for varieties developed by researchers in the subregion is roughly 43 to 44 percent. Under industrial conditions, these varieties provide an average yield of 42 percent and very infrequently as high as 43 percent, whereas the tolerated deviation should almost never exceed 0.5 percentage point. It is easy to see that poor ginning can wipe out, in one fell swoop, any possible gains in ginning yield, as well as the length of the fiber, two key elements of the varietal improvement programs of the last decade. 1. Brons, J.; Bagayoko, S.; Diarra, S.; Djouara, H. Diversity in farm management. Study on factors of agricultural intensification in Southern Mali. CRRA, Sikasso, October 1994. 2. Fok, M.A.C.; Djouara, H.; Koné, M.; Ballo, D. 1999. Diversity of farming practices in cotton growing areas of Mali; scope and management limitations of different technical approaches. Proceedings of the seminar on the role and place of research to develop the evolving cotton industries in Africa, Montpellier, September 1-2, 1999, CIRAD-CA. 3. ICAC, 2008. Production and marketing of uncontaminated cotton in Mali. 38 These losses are all the more harmful because the lint yield at ginning is a critical component of output and productivity, while length is one of the bases for setting the lint price. In addition to these two characteristics, all the technological characteristics of the lint, except for micronaire, are negatively affected by inadequate ginning by the mills, thus resulting in a lower market value for the lint.4 It thus appears that proper management of the ginning operation (including efficient energy use) is a way to maximize the productive potential of the varieties and generate profits or, at the very least, lower the production costs. Labor and Inputs The costs of the equipment used, the labor force (paid workers and family labor), and inputs all affect the production cost of cotton. To determine the cost of inputs (chemical fertilizers and pesticides), a value is attached to the doses actually declared by producers, using short-term credit prices. While there is virtually no way to influence the cost of the inputs, which are already expensive and typically under-dosed (with the exception of urea), it is however possible to use them more efficiently through localized and timely applications as recommended. Use of the seed-spreader5 developed by the Production Systems and Natural Resources Management Team of Sikasso (Mali) is an example of this. In addition, studies have been conducted by the Cotton Program on the subject of adjusting fertilizer doses in line with area conditions, timing, or stated economic objectives6 and these have also produced convincing results. With respect to labor, there are different types and variable rates of compensation depending on the period and the type of work. Paid workers are recruited for certain operations as part of the technical approach to cotton growing. Surveys conducted in Mali have shown that more than 79 percent of labor utilization occurs during the harvest. Although the value of labor can be assessed in various ways, it seems unlikely that savings can be obtained in this area. However, the socioeconomic and technical organization of cotton farms (management of family labor, level of equipment, rapid crop planting, use of chemical weed-killers, etc.) allows for minimization of the constraints associated with the use of paid labor, and can thus reduce the total production cost, if only slightly. Other Organizational and Accompanying Measures In these times of privatization, such measures include, first and foremost, the transfer of skills and the training of new actors to assume full responsibility for all necessary actions to ensure the sustainability of the cotton industry. This involves, first of all, producer organizations that require training and capacity building in order to better negotiate and implement institutional change within the industry. The producer organizations will need to take on certain industry functions, particularly by encouraging the emergence of well managed trade organizations built on solid technical and economic foundations. Consultative frameworks should be set in place to share information jointly with industry actors. Such frameworks will make it possible to gather, compare, and validate available data from producer organizations, researchers, funding organizations, cotton companies, all economic operators active in the cotton growing area, and the rural development supervisory authorities so as to monitor technical and economic trends and provide food for thought regarding future development actions. Apart from producer organizations, other actors with a substantial impact on cotton production clearly include private sector operators such as input suppliers (fertilizers and pesticides), haulers, and financial and credit institutions. All these actors are involved in input supply, which is one of the most critical functions of agricultural production. Crop year results depend to a large extent on input supply. Conclusions and Recommendations Cotton is truly a strategic product on which our countries’ economies greatly depend. It is therefore important to maintain cotton growing at all costs, by constantly seeking to improve its competitiveness. This means ensuring the sustainability of production, by guaranteeing the required level of all technical inputs, which should nevertheless be used much more efficiently in order to minimize production costs. In this regard, great hope is placed in research. The challenge is to move beyond recommendations for one-size-fits-all technologies, advocated throughout the entire region, to recommendations that focus on carefully targeted technologies for specific agro-climatic and even socioeconomic conditions, with fairly precise expectations in regard to output. In addition, the effective participation of all partners is essential. To enhance cotton production, another very important factor is to steadily improve the quality of the output, essentially lint. Most of the characteristics on which lint sales are based are genetic in nature, despite the very substantial effect of environmental conditions. As a result, it is very important to place on the market lint that is recognized for the consistency of these technological characteristics. To reach this objective, a concerted effort by all industry actors is necessary. Also, there is a need to move toward widespread adoption of the measurements on the Standardized Instrument Testing of Cotton (SITC) to enhance the value of the lint produced. 4. Alidou Amadou Soule. The use of technological analyses to monitor ginning: the experience of Benin. Presentation at the gin operators training workshop for the C4 countries and Senegal, Ségou, Mali. October 13-18, 2008. 5. Sanogo J.L. Zana, Djouara Hamady, Doucouré Aminata, 2005. Development of a seeder-fertilizer spreader. Research report. IER/CRRA/ ESPGRN – Sikasso, Mali. 6. CRRA, Sikasso. 2006. Study of soil fertility trends and management strategies in cotton-based cropping systems. 59 pages. 39 References Dejoux, C. (1988). La pollution des eaux continentales africaines : experience acquise, situation actuelle et perspectives. Collection travaux et documents n° 123, éditions de l’ORSTOM, Paris : 513 pp. Djibril, R.B. (2002). Contribution à l’étude d’impacts de l’utilisation des engrais chimiques et des pesticides sur la qualité des eaux de surface dans la reserve de biosphere de la Pendjari. Mémoire de fin de formation pour l’obtention du Diplôme d’Ingénieur des Travaux (DIT), Département des techniques d’aménagement et protection de l’environnement (APE, Collège Polytechnique Universitaire (CPU), Université d’Abomey Calavi, Bénin : 106 pp. Floquet, A. and R. Mongbo (2004). Etude des effets et des impacts de la lutte étagée ciblée sur les producteurs – Résultats d’une enquête socio économique conduite en octobre et novembre 2004 dans 4 communes du centre et nord Bénin à la demande du PADSE. Documents du PADSE, MAEP/AFD/SOFRECO, Cotonou, Bénin : 74 pp. Hadonou-Yovo, B. (2000). Bilan et caractéristiques des cas d’intoxication lies aux produits phytosanitaires en république du Bénin Durant la campagne cotonnière 2000/2001 – Rapport de l’enquête initiée par les sociétés Calliope S.A. et Aventis en collaboration avec le Ministère du Développement Rural (MDR) et du Ministère de la Santé, Décembre 2000 : 75 pp. Matthews, G.A. (1981). Improved systems of pesticide application. Phil. Trans. R. Soc. Lond., 8 : 163-173. M’Biandoun M., H. Guibert and J.P. Olina, 2006. Caractérisation de la fertilité du sol en fonction des mauvaises herbes présentes. Tropicultura, 24 (4) : 247-252. Pourtier, R. (2003) Les savanes africaines entre local et global: milieux, sociétés, espaces. Cahiers/Agricultures, 12 (4) : 213-218. Prudent, P., A. Katary et A.C. Djihinto (2003b). La LEC confirme ses avantages comparatives sur le traitement calendaire. Les échos du PADSE (MAEP/AFD/SOFRECO) n° 11 : 1-6. Balancing Yield and Quality for Higher Profitability in Egypt Mohamed A. Aziz, Cotton Research Institute, Egypt and Osama Ahmed Momtaz, Agricultural Genetic Engineering Institute, Egypt (Presented by Osama Ahmed Momtaz) Introduction Egyptian cotton is known all over the world for its superiority and quality. Egypt is one of the 11 countries in the Common Market of Eastern and Southern Africa (COMESA), the East African Community (EAC) and the Southern African Development Community (SADC) targeted for the regional baseline study on cotton and textiles. These countries account for over 90% of the cotton and textiles traded in Africa. Egyptian cotton is one of the best cottons in the world; including extra long staple (ELS) and long staple (LS) varieties. Egyptian LS and ELS cotton production represent 43% of the world production in this category. ELS and LS cotton represent 3-5% of world cotton consumption. Productivity of cotton has been on the decline in the past 10 years. In African countries, adequate management of the cotton sector can have a strong multiplier effect on the economy. Many African countries depend on cotton as their main export commodity, providing valuable foreign currency earnings and rural incomes and employment. A structured sector approach, backed by medium to long term strategic planning by leading businesses, is necessary if these countries are to revitalize their cotton cultivation and processing in order to adapt to international market challenges and requirements. In Egypt, a trend of steady improvement in yield and fiber quality continued for decades. Several factors contributed to improvements in productivity and fiber quality. The measures taken by the Ministry of Agriculture from the early era of cotton production in Egypt have been maintained. Among these measures are: (i) A single variety zoning and the assignment 40 of varieties to zones on the basis of their responses with respect to both yield and quality, (ii) an improved system of maintenance of cotton varieties and renewal of planting seed starting from the breeder seed, which resulted in the whole cotton area being annually planted with registered and certified seed, and (iii) more importantly, the release of new Egypt high-yielding varieties that replaced the earlier ageing ones. Once a set of varietal traits is selected, it takes about ten years for breeders to place a variety with those traits in the marketplace. This process resulted in superior varieties such as Giza 88: 35.5 mm or better staple; mike, below 4.0; strength, better than 44 g/tex with a minimum of 43; uniformity 86-88 percent. The composition of the cotton crop is divided between two quality categories (LS and ELS). Originally, farmers used to grow the varieties they felt were more profitable to them depending on the yield and price, i.e., quality. However, price was dependent on foreign spinners demand. Therefore, Giza 45 was popular in the 1990s because the extra- long staple variety Giza 45 was of a much higher price, although it has a lower yield than competing varieties, mainly the Long Staple variety Giza 86. Table 1 presents the percentages of the area cultivated with the two categories: Table 1. Cotton Area in Egypt Year ELS LS 1984-87 26% 74% 1994-1997 18% 82% 2004-2007 22% 78% Table 2. Profitability Return/ Hectare in Egyptian High Quality Cottons Years 01/02-03/04 04/05-06/07 01/02-03/04 04/05-06/07 01/02-03/04 04/05-06/07 Yield Price (Kgs/ha) (cents/lb) Giza 45 528 131 473 200 Giza 88 1081 108 997 120 Giza 86 1104 100 1010 110 Profitability (US$/ha) 1521 2081 2568 2632 2429 2444 cheapest five quotations (price offers), CIF Far East, in U.S. cents per pound, as determined by Cotlook Ltd. Egyptian ELS and LS cottons always get price premiums over upland cottons, which differ from year to year according to world market conditions. Table 3 shows world market prices of MLS 1-3/32 inches (27-8 mm) upland cottons in Tanzania, African Franc zone (Benin, Burkina Faso, Côte d’Ivoire and Mali) and Egyptian LS (Giza 86) and ELS (Giza 88 and Giza 45) cottons, during two periods. Tables 2 emphasize the profitability return/hectare in high quality cotton grown in Egypt. Concerning this table, the high quality Egyptian cotton has high profitability for the Egyptian cotton growers. Egyptian LS and ELS cottons obtained a price about 416% and 443% over 1-3/32 inches (27-8 mm) cottons. The premium for Egyptian cotton varies from year to year but remains always substantially higher, reflecting the quality superiority of Egyptian cottons. The challenge for Cotton Research in Egypt is to provide cotton consumers with the qualities they need to compete in the market and couple that with high yield. Egyptian cotton growers need to plant varieties that give them the best overall return. A grower might plant a high-quality variety because it’s the vogue thing to do, Table 3. Profitability return/Hectare in some African countries without really looking at the tradeoff with a “low quality cottons” higher yielding but lower quality cotton. During the contemporary era, the cultivated area, and consequently the size of the crop, of each category was determined by governmental decrees based, largely, on the expected demand for each category. The changes in the composition of the crop during this era, revealed two interesting phenomena; the small differences in yield among the two categories, i.e. long-staple and extra long staple, and the substantial decrease in the proportion of the ELS as from the 1990s. The Cotlook A index is the widely-used indicator of the competitive level of international prices for cotton classed as internationally middling 1-3/32 inches (27-8 mm), and is cal, culated by taking a simple average of the day s Tanzania Years Yield (Kgs/Ha) Price C/P Profitability $/Ha 01/02-03/04 156 57.4 197 04/05-06/07 232 58.8 300 African franc zone Benin Burkina Faso Cote D’Ivoire Mali 01/02-03/04 331 73.5 535.2 04/05-06/07 254 57.7 322.4 01/02-03/04 408 72.0 646.2 04/05-06/07 643 58.0 820.4 01/02-03/04 482 65.0 689.2 04/05-06/07 409 57.0 512.8 01/02-03/04 434 65.0 620.6 04/05-06/07 435 57 545.5 41 Soule, Alidou Amadou. L’utilisation des analyses technologiques pour le suivi de l’égrenage : expérience du Bénin. Présentation à l’atelier de formation des égreneurs des pays C4 et du Sénégal, Ségou, Mali. 13 – 18 octobre 2008 Fok, M.A.C., H. Djouara, M. Koné and D. Ballo. 1999. Diversité des pratiques paysannes en zones cotonnières du Mali ; portée et limites des gestions d’itinéraires techniques observés. Actes du séminaire « Rôle et place de la recherche pour le développement des filières cotonnières en évolution en Afrique », Montpellier, 01-02 Septembre 1999, CIRAD-CA. Brons, J, S. Bagayoko, S. Diarra and H. Djouara. Diversité de gestion de l’exploitation agricole. Etude sur les facteurs d’intensification agricole au Mali Sud. CRRA, Sikasso, octobre 1994. HORUS-Entreprise, SERNES. 2002. Etude d’un mécanisme de détermination du prix du coton graine aux producteurs. Rapport Final. 115p. CRRA, Sikasso. 2006. Etude de l’évolution et stratégies de gestion de la fertilité des sols sous systèmes de culture à base de cotonnier. 59 pages. ICAC, 2008. Production et commercialisation de coton non contaminé au Mali. Reference : Diakité, Lamissa and Hamady Djouara. 2003. Etude socioéconomique de la production du coton biologique au Mali. Ministère de l’Agriculture de l’Elevage et de Pêche, IER, ECOFIL, HELVETAS. 61p. Sanogo J.L. Zana, Hamady Djouara and Aminata Doucouré, 2005. Mise au point d’un semoir-épandeur d’engrais. Rapport de recherche. IER/CRRA/ESPGRN – Sikasso, Mali. Discover natural fibres 2 0 0 9 Version française des rapports présentés lors du séminaire technique de la 67ème Réunion plénière sur le thème : Améliorer la durabilité de la production cotonnière en Afrique Table des matières Les succès de la lutte intégrée contre les ravageurs du cotonnier en Afrique de l’Ouest Ouola Traoré, Institut de l’Environnement et de recherches agricoles (INERA) Programme Coton, Bobo-Dioulasso, Burkina Faso Systèmes de production de coton économiquement viables Bouré Ouéyé Gaouna, Cotton Breeder, Institut Tchadien de Recherche Agricole pour le Développement, Chad Risques environnementaux liés à la culture du cotonnier en Afrique francophone : Bilan et évolutions en cours M. Vaissayre et M. Cretenet, CIRAD, Unité de Recherche; Systèmes de Culture Annuels, France Réduire les coûts de production Amadou Aly Yattara, Chef du programme coton, Sikasso, Institut d’Economie Rurale, Mali. 43 50 55 57 43 Les succès de la lutte intégrée contre les ravageurs du cotonnier en Afrique de l’Ouest Ouola Traoré, Institut de l’Environnement et de recherches agricoles (INERA) Programme Coton, Bobo-Dioulasso, Burkina Faso Introduction Le coton constitue l’une des principales cultures de rente dans la sous-région ouest africaine. Il occupe plus de 10 millions de producteurs. En 2007 la production totale était de 1,2 millions de tonnes sur une superficie d’environ 1,5 millions d’ha, soit un rendement moyen de 800 kg/ha. Les exportations de fibres de ces pays représentent moins de 15% des exportations mondiales et occupent le 2è rang mondial après les USA. Les rendements ont augmenté significativement de 6% par an entre 1960 et 1980 contre 2% sur le plan mondial. À partir des années 1980, les rendements ont pratiquement stagné voire baissé. Plusieurs raisons expliquent cette situation : • le démantèlement du système d’encadrement ; • la baisse de la fertilité des sols ; • la baisse des cours mondiaux de la fibre de coton ; • les difficultés de contrôle des nuisibles : Le cotonnier est l’une des plantes les plus attaquées au monde. Il y a plus de 1300 espèces recensées d’insectes et d’acariens auxquels s’ajoutent des nématodes et mammifères sur cette culture. En l’absence de protection phytosanitaire, les pertes de récolte varient en moyenne de 40 à 70% selon les zones agro écologiques et les années dans la sous-région de l’Afrique de l’Ouest. Ce document fait le point sur les efforts consentis par les filières cotonnières ouest africaines dans le domaine de la lutte intégrée contre les ravageurs. Selon l’Organisation Internationale de Lutte Biologique (OILB), la lutte intégrée est un « Système de lutte contre les organismes nuisibles qui utilise un ensemble de méthodes satisfaisant les exigences à la fois économique, écologique et toxicologique, en réservant la priorité à la mise en œuvre délibérée des éléments naturels de limitation et en respectant les seuils de tolérance ». La lutte intégrée contre les ravageurs du cotonnier nécessite une connaissance parfaite des principaux ravageurs et maladies de la plante ainsi que de leurs ennemis naturels. Les Ravageurs du Cotonnier en Afrique de l’Ouest Les ravageurs du cotonnier sont classé selon les types d’organes attaqués sur la plante. Toutes les parties de la plante sont attaquées (graines, racines, organes végétatifs et fructifères). Les principaux ravageurs et maladies des organes végétatifs et fructifères du cotonnier peuvent être répartis en trois groupes selon le stade phénologique de la plante : Principaux Ravageurs de la Semence et des Racines Principaux ravageurs de la semence Des insectes de la famille des Tenebrionidae (Tribolium castaneum) attaquent la semence au stockage. La semence héberge également des chenilles de Pectinophora gossypiella et de Cryptophlebia leucotreta dans les zones où ces ravageurs pullulent. Au semis, la graine et la jeune plantule sont attaquées par des diplopodes (mille pattes). Les espèces les plus nuisibles appartiennent aux genres Peridontopyge et Tibiomus. Les espèces sont de couleur sombre avec une alternance de zones plus claires et de zones brunes noirâtres. Leur section transversale est ronde. Leur taille varie de 2 à 8 cm. Les diplopodes attaquent et évident les semences, les rongent pour s’en nourrir lors de la germination. Principaux ravageurs des racines Ils sont essentiellement composés d’insectes et de nématodes. • Les insectes Syagrus calcaratus : Petit coléoptère bleu-noir brillant, le thorax et la base des pattes sont orange fauve. Les adultes, à tête orangée, consomment le feuillage dans lequel ils provoquent des perforations de forme allongée. Les larves sont terricoles (vivent dans le sol) où elles s’alimentent sur les racines qu’elles décortiquent en faisant des anneaux sur ces organes, d’où le flétrissement caractéristique des plants. • les nématodes Des nuisibles appartenant à la famille des Némathelmintes ont été identifiés en ecto et endoparasites de racines. Il s’agit principalement des genres Pratylenchus, Rotylenchus, Meloidogyne, Scutellonema et Helicotylenchus. Les Principaux Ravageurs du Feuillage et leurs Dégâts Chenilles phyllophages Syllepte derogata C’est la chenille « enrouleuse » des feuilles sous forme de cigarettes. Elle est vert clair, souvent translucide avec une tête noire. Elle s’attaque aux feuilles à tous les stades de développement de la plante à l’aide de fils soyeux. On remarque à l’intérieur de la feuille des excréments noirs. Les attaques de ce ravageur sont souvent localisées dans le champ et peuvent entraîner une défoliation spectaculaire. Il attaque aussi le gombo. 44 Spodoptera littoralis La chenille peut être brune, jaunâtre ou grise. Elle est caractérisée par deux rangées de triangles noirs sur le dos et une ligne claire sur chaque côté. Mais ces triangles peuvent seulement être présents à l’avant ou à l’arrière du corps. Les œufs sont pondus en amas à la face inférieure des feuilles où naissent les jeunes chenilles qui rongent d’abord ces feuilles de support. Les chenilles âgées perforent les feuilles et s’attaquent également aux organes reproducteurs. Spodoptera cause aussi des dégâts sur le niébé, l’arachide… Anomis flava C’est la chenille « arpenteuse » ainsi dénommée à cause de son déplacement très caractéristique. Elle est de couleur verte à tête jaune ou vert-jaune. Elle porte cinq lignes blanches très fines sur le dos. Elle ne s’attaque qu’aux feuilles. Les dégâts des chenilles sont constitués de perforations circulaires de 1 à 3 cm de diamètre dans ces feuilles. Coléoptères phyllophages Altises Ces petits insectes très mobiles ont plusieurs couleurs. Ils font de nombreux trous dans les feuilles des jeunes cotonniers sans glandes à gossypol (glandless). - Nisotra dilecta : couleur bleue - Nisotra uniformis : couleur brune - Podagrica decolorata : couleur jaune orangée On les rencontre également sur le gombo, les Hibiscus spp. (jutes, kenaf…) et parfois sur les cotonniers à glandes à gossypol. Acariens Il existe deux genres qui sont des ravageurs du cotonnier dans la sous-région : Les tétranyques ou araignées rouges et les tarsonèmes qui sont les plus importants. Ils sont minuscules, presque invisibles à l’œil nu et vivent tous à la face inférieure des feuilles. Tétranyques Les espèces rencontrées appartiennent toutes au genre Tetranychus. Il s’agit de T. urticae ; T. neocaledonicus et T. falcaratus. Ils sont de couleur rouge d’où leur nom d’araignées rouges. Ils sont peu mobiles. Ils rongent la face inférieure des feuilles qui présentent un aspect nécrosé. Ils sont généralement peu importants. Tarsonèmes L’espèce la plus importante est Polyphagotarsonemus latus qui est blanc jaunâtre et très mobile. On le rencontre sur cotonnier dans les zones humides (pluviométrie supérieure à 1000 mm/an) surtout au Bénin, en Côte d’Ivoire, au Togo… Il a un cycle biologique très court, se multiplie tous les cinq jours et cause beaucoup de dégâts surtout par temps couvert et humide. Les feuilles attaquées présentent plusieurs symptômes successifs selon la gravité : - la face inférieure a un aspect vert foncé, glacé, huileux et brillant ; - les bords du limbe s’enroulent vers le bas ; - les feuilles se fendillent, se déchirent comme si elles avaient reçu des « coups de couteau ». Le plant prend un aspect « filant » avec peu ou pas d’organes fructifères. De fortes chutes de production sont enregistrées si les attaques sont précoces et sévères. Piqueurs suceurs Ils comprennent les Homoptères et les Hétéroptères. Les premiers sont les plus dangereux. Parmi les Homoptères, on considère les pucerons, les aleurodes et les jassides tandis qu’au niveau des Hétéroptères, on prend en compte les punaises (Dysdercus sp. Et Helopeltis schoutedeni). Les Homoptères Pucerons : Aphis gossypii Ils sont de couleur jaune, jaune vert ou vert noir, peuvent être ailés ou aptères et ont un cycle biologique très court. Ils sont polyphages. Ils vivent en colonies à la face inférieure des feuilles qui deviennent voûtées, crispées en se recroquevillant vers le bas. Les déchets qui sont des substances sucrées (miellats) tombent sur les feuilles qui prennent un aspect luisant (brillant). Des microorganismes (champignons) peuvent se développer sur ce miellat en donnant une coloration noire sur les feuilles et le coton graine : c’est la fumagine. Aleurodes : Bemisia tabaci (mouche blanche) Les larves ont une forme ovoïde, aplatie et sont vertes lorsqu’elles sont jeunes tandis que les plus âgées sont jaunâtres. Elles sont fixées à la face inférieure des feuilles. Les adultes sont de tout petits insectes avec deux paires d’ailes blanches. Ils sont très mobiles et voltigent autour des plants. De fortes populations provoquent un jaunissement des feuilles et perturbent le développement des plants. Comme les pucerons, ils produisent aussi du miellat qui souille le coton des capsules ouvertes. Ce ravageur est également très polyphage : on le trouve donc sur de nombreuses autres plantes cultivées en particulier des cultures maraîchères comme la tomate. Jassides : Jacobiella fascialis Ce sont des insectes minuscules de couleur verte ayant un déplacement caractéristique en oblique. Ils piquent les feuilles dont les bords prennent un aspect rougeâtre caractéristique. Les Hétéroptères Les genres et espèces qui attaquent le cotonnier sont très nombreux dans la sous-région et particulièrement dans les zones les plus humides. Nous retiendrons essentiellement : Helopeltis schoutedeni C’est une punaise de forme allongée, de coloration jaune orange ou rouge vif. On la rencontre surtout dans les zones les plus humides. Elle attaque les feuilles, les rameaux, les tiges et les capsules, avec une production de chancres bruns ou noirs. En cas d’attaques précoces et sévères, les feuilles sont gaufrées, craquelées avec un aspect de « griffes ». La 45 croissance du plant est ralentie. D’autres Hétéroptères de moindre importance économique peuvent être cités : Anoplocnomus curvipes, Campyloma spp… Les principaux ravageurs des organes reproducteurs Ils comprennent des insectes et des mammifères. Les insectes Ils sont classés en carpophages à régimes exocarpique et endocarpique. Carpophages à régime exocarpique Helicoverpa armigera Chenilles sont de couleur variable, avec 2 lignes latérales claires et de petits poils sur le corps. Elles attaquent et font des dégâts importants sur les boutons floraux, les fleurs et les capsules. Les larves sont très voraces. Une seule larve peut détruire par jour 5 à 10 organes reproducteurs notamment les squares, les boutons floraux et les fleurs. Les excréments sur les boutons floraux et capsules attaqués sont souvent nombreux et rejetés en dehors de l’organe. Dans certains cas (2ème génération d’infestation et de pénurie des organes ci-dessus cités), la chenille peut attaquer les jeunes feuilles et rameaux. H. armigera est très polyphage (plantes cultivées : maïs, sorgho, tomate, tournesol…et sauvages : Cleome viscosa…). Diparopsis watersi La jeune chenille, jaunâtre, devient ensuite vert pâle, trapue avec des traits transversaux rouges, plus rapprochés vert la tête. Elle atteint à son complet développement 2,5 à 3 cm. Elle est peu mobile et attaque, en les perforant, boutons floraux, fleurs et capsules, qui restent parfois suspendus aux plants par des fils. Elle est beaucoup moins vorace que H. armigera. Ce ravageur après avoir quasiment disparu avec l’introduction des pyréthrinoïdes à la fin des années 70 dans la sous-région ouest africaine a réapparu à des niveaux relativement élevés depuis la réintroduction de l’endosulfan. En effet, cette matière active destinée à gérer la résistance acquise par H. armigera vis-à-vis des pyréthrinoïdes est très insuffisante sur Diparopsis. Earias insulana et E. biplaga Les chenilles de forme trapue sont faciles à reconnaître car elles portent de nombreuses épines d’où leur nom de chenilles « épineuses ». Elles attaquent les bourgeons terminaux (écimage) et boutons floraux, fleurs et capsules. Les trous d’entrée sont assez grands et bien visibles. Carpophages à régime endocarpique Pectinophora gossypiella (ver rose) Connue sur le nom de « ver rose » à cause de sa couleur, cette chenille présente des segments marqués de bandes et traits transversaux. Elle mesure 1 à 1,5 cm à son complet développement. On peut la confondre à Cryptophlebia. Elle attaque les fleurs et provoque un symptôme spécifique : « fleurs en rosette ». La chenille à sa naissance rentre directe- ment dans l’organe attaqué et se nourrit préférentiellement des graines des capsules, dégâts souvent suivis de pourritures secondaires. P. gossypiella ne vit que sur les plants de la même famille que le cotonnier. Cryptophlebia leucotreta La chenille est gris pâle à son complet développement et ressemble au ver rose. Elle a le même mode d’attaque et de dégâts que P. gossypiella (coton graine déprécié, quartier d’orange ...). Le trou d’entrée de la chenille dans la capsule présente un tortillon. C. leucotreta est très polyphage. Ainsi, il attaque en outre le maïs, le goyavier, les agrumes… Hétéroptères carpophages Dysdercus vöelkeri C’est une grosse punaise de 1 à 1,5 cm, rouge et noire. Les larves sont aptères tandis que les adultes ont des ailes antérieures caractérisées par deux points noirs au milieu sur un fond brun clair et terminées par une plage noire. Ils sont tous de couleur rouge vif et vivent en colonies. D. völkeri pique les capsules vertes ou celles ouvertes pour se nourrir de graines. Il déprécie la valeur germinative des semences et la fibre qu’il colore. Les mammifères L’avènement et la vulgarisation au milieu des années 80 des variétés de cotonniers sans glande à gossypol « glandless » ont conduit les mammifères (singes et rongeurs notamment) à s’intéresser et devenir des déprédateurs d’importance économique majeure sur cette plante. Parallèlement, les très fortes pressions sur les ophidiens particulièrement la famille des Boidae (Phyton regius) a exacerbé le phénomène avec de très fortes pullulations notamment des rongeurs sur les variétés de cotonniers à glandes à gossypol. Ces rongeurs appartiennent aux familles, genres et espèces ci-dessous : Muridae Mastomys natalensis Myomis dybowskii M. deroii Rattus rattus Arvicanthis niloticus Cricetomidae Cricetomys gambianus C. emini Sciuridae Funisciurus anerythrus F. leucogenys Xerus erythropus Gabillidae Tatera guinae T. kempii Ils attaquent tous les organes reproducteurs voire végétatifs qu’ils consomment à l’intérieur des parcelles de cotonniers ou dans la brousse avoisinante. Les dégâts parfois très importants conduisent les producteurs à manquer de récoltes. Principales maladies et déficiences du cotonnier en Afrique de l’Ouest Maladies du cotonnier Le cotonnier est attaqué par certaines maladies souvent d’importance mineure qui peut devenir majeure en cas de sévères attaques. Nous pouvons citer : La bactériose : la nouvelle race développée est le « Black arm ». Les attaques portent sur tous les organes aériens de la plante (feuilles, branches, tiges, capsules…) du début à la fin du cycle du cotonnier. Les symptômes foliaires sont des taches anguleuses et huileuses, ceux sur les tiges sont des chancres, puis des pourritures sur les capsules. La bactéri- 46 ose attaque à des degrés divers selon les localités, la quasitotalité des variétés cultivées dans la sous-région depuis bientôt une quinzaine d’année. La virescence florale : elle se manifeste par un jaunissement des feuilles et des tiges, la transformation des organes floraux en organes foliacés, le verdissement de la corolle et des étamines puis la prolifération des branches aux entre-noeuds. Il s’en suit une stérilité spectaculaire. Elle est transmise par un agent infectieux proche des Mycoplasmes. L’agent vecteur est un Homoptère dont le principal est Orosius cellulosus. La maladie bleue : La croissance du plant est ralentie quant l’attaque est précoce, les entre-nœuds se raccourcissent, le plant a un aspect buissonnant, quelquefois rampant, les limbes des feuilles s’épaississent et prennent un aspect vert bleuâtre, plus foncé que la normale et de texture cassante avec des bords enroulés vers le bas ; le limbe tend à devenir vertical. Au début, les organes florifères sont rachitiques puis n’apparaissent plus quand l’attaque se prolonge. Mais quand l’attaque est tardive, les symptômes ne se limitent qu’aux extrémités végétatives. Déficiences minérales et accidents de végétation Déficience en potassium : On la reconnaît par la présence de taches jaunâtres entre les nervures des feuilles dont les bords prennent une couleur brune. À un stade plus avancé, les feuilles se dessèchent complètement mais restent accrochées comme des « chauves-souris » aux plants. Le rendement et la qualité de la fibre de coton diminuent. Accidents de végétation : Attaque de foudre : il s’agit de dégâts d’origine naturelle qui se rencontrent dans certains pays et localités. Les attaques sont toujours circulaires (environ 12 m de diamètre) soit la surface couverte par 15 billons à 0,80 m d’écartement. Les feuilles de cotonniers attaquées se dessèchent et tombent, laissant des tiges brunes apparemment brûlées. Ces dégâts sont différents de la phytotoxicité. Les attaques de foudre sont confondues à tort à des dégâts d’insectes. Les principales composantes de la lutte intégrée en Afrique de l’Ouest La désinfection de semences La semence constitue l’un des intrants les plus importants dans la chaîne de production cotonnière. Il est indispensable qu’elle soit protégée contre toute agression pouvant affecter sa qualité. En effet, pour obtenir une bonne levée, il faut d’abord employer des semences ayant un bon pouvoir germinatif. Malheureusement, les producteurs de coton rencontrent souvent des problèmes de levée dans leurs exploitations. L’objectif visé à travers la désinfection des semences est préserver la qualité de la semence. Les principales causes des mauvaises levées sont : - Les facteurs abiotiques : Les conditions de manipulation et de stockage des semences doivent tenir compte de l’excès de chaleur et d’humidité pour éviter la détérioration de ces semences. - Les facteurs biotiques qui sont les maladies et les ravageurs : • Les maladies La fonte des semis est de loin la plus importante. Elle est causée par un complexe de champignons pathogènes qui sont soit des agents portés par les graines (Colletotrichum gossypii, Fusarium spp) soit des agents se trouvant dans le sol (Rhizoctonia solani, Pythium spp, Macrophomina phaseoli). Les attaques peuvent avoir lieu avant ou après la levée. En cas de pré-levée, les graines pourrissent dans le sol et ne germent pas. Par contre en cas de dégâts de post-levée, les graines germent, mais les plantules flétrissent et meurent rapidement. • Les ravageurs des semences et des plantules De nombreux insectes peuvent causer la non germination ou les mauvaises levées des graines de coton. Certains détruisent la semence en consommant l’amande. D’autres s’attaquent aux plantules lorsqu’elles sont au stade cotylédonaire. Cette dernière catégorie de nuisibles des semences et des plantules compte les iules qui évident les graines dans le sol, ou rongent les cotylédons ou la tigelle des plantules. Les insectes dont les larves sont terricoles s’attaquent aux plantules, le plus souvent aux petites racines (Syagrus, grillons, fourmis, pucerons et même certaines chenilles). Le traitement de semences Pour obtenir une bonne levée il faut d’abord employer des semences ayant un bon pouvoir germinatif mais aussi la protéger contre les attaques des maladies et des ravageurs. Les principaux insecticides et fongicides utilisés en Afrique de l’Ouest et les doses d’utilisation sont donnés par le tableau 1. Lutte variétale La méthode de lutte variétale est l’ensemble des caractères induits dans le cotonnier, par la sélection classique ou par les biotechnologies modernes, en vue de réduire l’impact de certains ravageurs sur le rendement de coton graine. Les caractères peuvent être la production d’excroissances sur les organes du cotonnier à même d’empêcher les déplacements des ravageurs (pilosité) ou la production de toxines nocives aux ravageurs (protéines Bt et VIP)… Quelques exemples de lutte variétale et leur mise en œuvre : - Cotonniers avec glandes à gossypol Les cotonniers classiques contiennent des pigments jaunes phénoliques appelés gossypol. Ce gossypol est présent dans de petites glandes qu’on retrouve dans les différents organes de la plante. Le gossypol est utilisé pour lutter contre les infestations des altises qui provoquent de petits trous dans des feuilles. Les variétés sans gossypol (glandless) présentent un intérêt dans l’alimentation animale par les graines, mais elles sont fortement attaquées par les altises. C’est ce qui explique 47 Tableau 1 : Doses des Principaux Fongicides Utilisés en Afrique de l’Ouest Substances actives Benfuracarb Carbosulfan Imidacloprid Thiaméthoxam Chlorpyriphos éthyl Carbendazime Chlorothalonil Métalaxyl Propiconazole TMTD - Thirame Dose minimale (g/kg semences) Insecticides 1 1,25 2,5 0,15 0,5 Fongicides 0,7 1 0,35 0,15 0,75 la non vulgarisation de ce type de variété dans la sous-région. - Cotonniers avec une pilosité contre les jassides Les jassides sont des cicadelles de petite taille se déplaçant sur les différents organes du cotonnier. Ils piquent et sucent la sève, transmettant souvent des maladies aux cotonniers. C’est le cas d’Orosius cellulosus qui transmet une maladie mycoplasmique appelée virescence florale ou phyllodie. Le déplacement caractéristique des jassides en diagonale est fortement entravé par la présence de pilosité sur les organes du cotonnier. Cet état de fait réduit la présence de ce ravageur sur le cotonnier ; il préfère dans ce cas trouver d’autres plantes où il peut facilement se déplacer. De nos jours, l’impact des jassides (O. cellulosus qui transmet la phyllodie au cotonnier) est fortement contrôlé par les produits insecticides de traitements de semences systémiques comme les néonicotinoïdes (imidaclopride, thiaméthoxam, acétamipride), les carbamates (carbosulfan)… L’utilisation des variétés pileuses n’est plus d’actualité d’autant plus que les infestations de l’aleurode Bemisia tabaci qui est devenu un ravageur dominant sur cotonnier dans la sous-région à partir de la fin des années 1990, sont fortement favorisées par ce type de variété. En effet, les larves de B. tabaci, une fois fixées sur la feuille, deviennent inaccessibles à leurs ennemis naturels et sont peu atteintes par les insecticides utilisés contre elles. Les activités de recherche en matière de sélection variétale dans la sous-région doivent s’orienter à présent vers des variétés glabres qui facilitent l’accès des larves de B. tabaci aux ennemis naturels et aux insecticides. Au Burkina Faso par exemple, la variété FK37 a une pilosité nettement inférieure à celle de FK290 qui est en voie de retrait. Les efforts des chercheurs en amélioration variétale de la sous-région ouest africaine doivent continuer dans ce sens. - Cotonnier génétiquement modifié (CGM) contre les chenilles des capsules et des feuilles Le CGM est un cotonnier conventionnel ayant reçu un gène lui permettant d’acquérir un caractère supplémentaire. Cette insertion ou transgénèse peut se faire par des méthodes physiques ou biologiques. Dans le cas de la protection du cotonnier contre les ravageurs, les gènes insérés sont issus de Bacillus thuringiensis qui est une bactérie du sol. Les CGM actuelle- Dose maximale (g/kg semences) 4 2,5 3,5 1 4 4 1,6 3,2 ment disponibles sont efficaces contre la plupart des larves de lépidoptères carpophages et phyllophages. Les toxines produites par les CGM n’ont aucun effet direct sur les Homoptères piqueurs suceurs que sont les pucerons, les aleurodes et les jassides. En cas de nécessité, il faut faire des traitements dirigés contre ces piqueurs suceurs. La non-utilisation de produits insecticides contre les larves de lépidoptères favorise l’installation des ennemis naturels. Lutte agronomique La lutte agronomique contre les déprédateurs du cotonnier comprend l’ensemble des pratiques culturales mises en œuvre pour perturber le développement des ravageurs à une étape donnée de leur cycle biologique. Ces pratiques vont de la mise en place de la culture aux opérations effectuées après la récolte du coton graine. Quelques exemples de lutte agronomique et leur mise en œuvre : - Précocité des semis pour lutter contre la 2ème génération de H. armigera La production conventionnelle de coton est fortement tributaire de la période de mise en place de la culture. Il est conseillé de semer à bonne date pour éviter les arrêts de pluies au moment de la fructification du cotonnier, ce qui a pour conséquence la baisse de la productivité. En matière de protection phytosanitaire, il est aussi conseillé de semer tôt dès l’installation des pluies pour éviter que la période la plus sensible pour le cotonnier ne tombe dans la deuxième génération de H. armigera qui provoque des dommages très importants à cette phase. On a observé deux à trois générations de H. armigera sur cotonnier en fonction de la durée de la saison des pluies. La première phase de pullulation de ce ravageur intervient dans la sous-région ouest africaine entre mi-juillet et mi-août et correspond à la mise en place des premiers organes fructifères. Très souvent, cette phase est peu dangereuse car les individus sont peu nombreux et ont une plus grande sensibilité aux insecticides. La seconde génération est observée entre mi-septembre et mi-octobre. Elle se trouve être la plus dangereuse car les individus issus des parents ayant survécu à la première génération développent une certaine accoutumance aux produits, ce qui les rend plus difficiles à contrôler. - Labour Les labours profonds permettent de mettre en surface les chrysalides des ravageurs avant la sortie des papillons. Ces chrysalides sont soit ramassées par les oiseaux, soit séchées sous l’effet du climat, ce qui diminue ainsi le nombre de papillons devant émerger. - Sarclage Cette opération permet l’élimination des mauvaises herbes au voisinage du cotonnier. Ceci permet ainsi d’éliminer les plan- 48 tes pouvant servir d’hôtes aux ravageurs. Une parcelle bien aérée reçoit une meilleure pénétration des traitements insecticides dans les différents organes du cotonnier. - Récoltes précoces et échelonnées Les applications d’insecticides se terminent plusieurs jours avant le début des récoltes. Les piqueurs suceurs comme le puceron Aphis gossypii et l’aleurode Bemisia tabaci s’alimentent sur les jeunes bourgeons et produisent des substances sucrées qui provoquent le coton collant. Pour éviter cela, il est conseillé aux producteurs de récolter au fur et à mesure de l’ouverture des capsules. - Destruction des vieux cotonniers contre Diparopsis, Syagrus, ver rose et maladies. Lorsqu’on laisse les tiges de coton dans le champ après la récolte, on observe des repousses avec l’installation des premières pluies. Ces repousses constituent des refuges pour certains ravageurs comme Syagrus calcaratus avant la levée des nouveaux cotonniers. Une fois que ces nouveaux champs ont une végétation abondante, ces ravageurs y migrent facilement, provoquant ainsi des dégâts. Il est donc conseillé aux producteurs d’arracher ou de couper les tiges de cotonnier après les récoltes. Lutte biologique La lutte biologique se définit comme étant «l’utilisation d’organismes vivants ou de leurs produits pour lutter contre d’autres organismes jugés nuisibles». Les organismes vivants habituellement utilisés sont des prédateurs, des parasites, des parasitoïdes ou des entomopathogènes. Plusieurs projets ont été initiés en Afrique de l’Ouest dans le domaine de la lutte biologique contre les ravageurs du cotonnier mais ils n’ont pas été poursuivis à cause des difficultés d’ordre pratique et financier. Les efforts consentis dans ce domaine tendent à préserver les ennemis naturels indigènes par l’utilisation de substances actives qui les épargnent. Lutte chimique Malgré la conduite des autres composantes de la lutte intégrée (excepté le CGM), la lutte chimique demeure encore en Afrique de l’Ouest le principal moyen de lutte contre les ravageurs du cotonnier, notamment les chenilles des capsules. Les programmes de traitements chimiques qui sont actuellement appliqués en culture cotonnière en Afrique de l’Ouest proviennent des résultats d’une expérimentation menée à grande échelle et répétée sur plusieurs campagnes agricoles dans différentes zones agro-écologiques. La conception a tenu compte des principaux qui sont le cycle du cotonnier et la dynamique des populations de ces ravageurs. Deux modes d’interventions, issus des résultats de recherche sont principalement développés : • des programmes de traitements calendaires, • des programmes d’interventions sur seuil Le programme de traitement calendaire L’objectif visé dans l’élaboration du programme de traitement sur calendrier, ou programme de traitement prédéfini, était surtout d’assurer la protection des cotonniers durant la période allant du début de la floraison jusqu’à la maturation de la majorité des capsules formées. Il tenait compte du très bas niveau de technicité des producteurs qui ne savaient pas reconnaître les ravageurs et gérer les stocks de produits différents. Types de programmes calendaires En Afrique de l’Ouest, depuis sa conception, le principe de la protection de la culture du coton selon le programme calendaire a connu deux variantes. Il s’agit de : Le programme standard C’est le programme classique qui est pratiquement abandonné par la grande majorité des producteurs de coton. Il visait surtout la protection de la phase fructifère des cotonniers. Les interventions démarraient dès l’apparition des premières fleurs, soit 45 à 50 jours après la levée. En général, la cadence de traitement recommandée était de 14 jours. Le nombre de traitements se chiffrait en général à 5 - 6 interventions pour les producteurs qui respectaient la recommandation de la recherche. Toutes les applications étaient réalisées uniquement avec un mélande de deux produits (pyréthrinoïde + organophosphoré) ou parfois trois (un pyréthrinoïde + deux organophosphorés) tout le long de la période de protection. Malheureusement, cette monotonie s’est soldée par l’apparition de la résistance de certains ravageurs, notamment Helicoverpa armigera. Le programme fenêtres L’élaboration du nouveau programme calendaire dit « programme fenêtres » a été motivée par l’apparition puis le développement du problème de la résistance de la chenille des capsules Helicoverpa armigera aux pyréthrinoïdes. Le principe des interventions sur calendrier à des intervalles de 14 jours a été maintenu. Les modifications ont été apportées au niveau de la date de démarrage des traitements et produits appliqués. C’est ainsi que la date de démarrage des traitements a été ramenée à 30-35 jours après la levée, ce qui correspond à l’apparition des boutons floraux. Le but étant le ciblage des jeunes et fragiles chenilles de ce ravageur. Partant sur la base de 6 traitements à réaliser pour la protection des champs de coton, la grande nouveauté a été la création des « fenêtres » d’intervention. Les 6 traitements ont été regroupés en 2 ou 4 interventions successives pour former une fenêtre. Ainsi sont apparus les programmes 2 fenêtres et 3 fenêtres. - Programme à 2 fenêtres : selon le principe de ce programme, le 1er et le 2èem traitement forment la première fenêtre tandis que la seconde fenêtre est constituée par les 4 autres (3 ème, 4 ème, 5 ème et 6 ème traitements). - Programme à 3 fenêtres : si le 1er et le 2 è traitement forment la première fenêtre, les 3 è et 4 ème traitements donnent la seconde fenêtre et les 5 è et 6 è traitements constituent la troisième fenêtre. Il est important de signaler que le choix des produits à appliquer est fait avec beaucoup de discernement. C’est ainsi que : 49 En première fenêtre, pour les deux types de programme fenêtre, les traitements de la première fenêtre sont toujours réalisés avec un produit n’appartenant pas à la famille des pyréthrinoïdes, l’objectif étant la réduction du temps d’utilisation des molécules de cette famille contre laquelle H. armigera a développé de la résistance. On peut prendre comme exemples : le profenofos, l’indoxacarb, le spinosad, le malathion, l’association flubendiamide-spirotétramate… En seconde fenêtre (programme 2 fenêtres) ou aux deux autres fenêtres (programme 3 fenêtres), les traitements sont réalisés avec des produits binaires contenant un pyréthrinoïde en association avec un produit d’autres familles. Dans le cas du programme 3 fenêtres, on peut intervenir avec des produits acaricides au niveau de la deuxième fenêtre puis des produits aphicides et/ou aleurodicides en troisième fenêtre. Comme exemples de produits on peut citer : - acaricides : cyperméthrine/ profenofos, deltaméthrine/ triazophos - aphicides/aleurodicides : lambdacyhalothrine/acétamiprid, alphaméthrine/imidacloprid. Cette nouvelle stratégie a été largement adoptée dans la sous-région. Elle a permis de freiner l’aggravation de la résistance de la chenille aux pyréthrinoïdes. En plus, elle a permis une prise de conscience pour évider l’apparition du même problème chez d’autres nuisibles de la culture cotonnière. Le programme sur seuils Les programmes d’interventions sur seuils constituent une nouveauté pour la sous-région. Ils sont tout à fait récents. Leur expansion est encore lente pour plusieurs raisons liées à l’insuffisance de la connaissance des ravageurs qui constituent, sans aucun doute, l’élément déterminant pour la réussite de ce programme. Conception La détermination des seuils d’infestation des principaux ravageurs est la base de cette technique. En effet le cortège des ravageurs du cotonnier dans la sous-région ouest africaine est très riche et varié et la conception de toute stratégie de protection de la culture doit obligatoirement en tenir compte. Partant d’une approche des résultats de recherche sur le cotonnier et d’autres cultures provenant d’autres régions du monde, les investigations ont été prioritairement basées sur l’évaluation de l’importance des dégâts dus aux insectes nuisibles. Les résultats de ces évaluations permettent de prendre la décision de déclencher les traitements et de contrôler les infestations après la réalisation des traitements. Connaissance des insectes et de leurs dégâts L’évaluation des niveaux d’infestation des populations d’insectes requiert la connaissance des différentes espèces inféodées au cotonnier et celle de leurs dégâts. Pour cela, il faut procéder à des prélèvements d’échantillons. Echantillonnage et prise de décision Le but de la prise d’échantillons est l’évaluation des populations ou des dégâts dans le champ de coton et par la suite, la prise de décision. Les échantillons doivent être prélevés sur les diagonales, dans une portion homogène, grande et assez représentative du champ de coton concerné. La taille de l’échantillon varie d’un pays à un autre et le seuil d’intervention est lié à la taille de l’échantillon. Les relevés sont réalisés une fois par semaine à partir du 30è jour après la levée et se poursuivent jusqu’à la maturation de la majorité des capsules du champ de coton. Comme principe de base, il faut effectuer un bon examen systématique des plants échantillonnés. Dans la sous-région, principalement trois groupes de ravageurs sont pris en compte dans les évaluations de niveau de populations et des dégâts. Ce sont les ravageurs carpophages, les ravageurs phyllophages et les piqueurs-suceurs. Il faut noter que si les interventions sur seuils sont faciles avec les chenilles exocarpiques, la tâche est par contre plus compliquée avec les endocarpiques. Les traitements sont faits généralement avec des produits spécifiques en cas d’atteinte des seuils d’intervention, ou avec des produits binaires quand la nécessité s’impose. Cela implique une gestion de stocks de produits de plusieurs familles chimiques, chose qui n’est pas très aisée pour les producteurs de la sous-région. Conclusion La lutte intégrée en Afrique de l’Ouest contre les ravageurs du cotonnier reste fortement tributaire de la lutte chimique sans laquelle la productivité ne peut être assurée. Face à la mondialisation, au cours mondial trop fluctuant de la fibre de coton et aux subventions accordées aux cotonculteurs du nord, la sous-région ouest africaine doit fournir les efforts pour accroître la productivité au champ en vue de garantir un mieux être à plus de 20 millions de personnes qui sont concernées par les filières cotonnières de cette sous-région. Cet accroissement de la productivité passe par la mise en place de cadre institutionnel plus favorable, l’adoption d’itinéraires techniques plus performants et une meilleure organisation des producteurs. De nouvelles technologies comme la production et l’utilisation de la fumure organique à l’aide d’activeurs, la protection sur seuils d’intervention et le coton génétiquement modifié peuvent bien rentrer dans ce cadre. 50 Systèmes de production de coton économiquement viables Bouré Ouéyé Gaouna Cotton Breeder, Institut Tchadien de Recherche Agricole pour le Développement, Tchad Résumé La culture du cotonnier est la seule dont la filière est organisée au Tchad et dans d’autres pays de l’Afrique Francophone où elle relativement mieux organisée, mais n’est pas la seule. Putto (1992) notait que la réussite de la culture cotonnière, c’est non seulement les paysans producteurs, mais c’est aussi une organisation et une maîtrise en amont, de la définition des itinéraires techniques, de la création variétale, de la protection phytosanitaire sur calendrier recommandée par la recherche… En aval cela concerne la collecte du coton graine par les sociétés cotonnières, la transformation des produits du cotonnier et la commercialisation. Ainsi, le coton est une source de revenu monétaire relativement importante pour les cotonculteurs. Berout (1994) a chiffré de 50 à 60 le pourcentage de coton dans les exploitations officielles du Tchad par exemple ; il a précisé que la filière cotonnière est un enjeu vital pour l’économie du Tchad car la production représente 60% de la recette d’exploitation et aucun produit agricole n’est aujourd’hui susceptible de prendre la relève. Sur le plan social, la société cotonnière contribue au développement par les emplois qu’elle crée, ses activités d’achat de coton graine, d’égrenage, de transport de fibres et de trituration des graines. La crise de la filière coton au Tchad, conséquence d’une fluctuation dramatique du cours mondial du coton, a eu des répercutions négatives sur la production cotonnière avec des éléments d’accompagnement en amont comme en aval très affectés : des enquêtes menées pour comprendre cette situation ont permis, sur la base d’une analyse comparatives des exploitations du Cameroun et du Tchad, de tirer un certain nombre de conclusions et de se poser des questions relativement pertinentes sur le rôle que peut jouer la Recherche Agronomique dans le contrôle de cette crise cotonnière au Tchad. Le travail s’est déroulé en prenant pour terrains des milieux physiques aux potentialités analogues. On en arrive à constater que les cotonculteurs tchadiens abandonnent de plus en plus le coton au bénéfice de l’arachide et les raisons données semblent claires et logiques. Cette étude met en évidence la précarité dans laquelle se trouvent de nombreuses exploitations, des systèmes de production à dominance coton. Mots clés : Crise de la Filière coton, Tchad, Cameroun, Recherche Agronomique, Systèmes de Production, Enquêtes, Exploitations agricoles, Viabilité économique. Introduction Dans la plupart des zones cotonnières du continent, la petite agriculture familiale dans les Pays d’Afrique de l’Ouest et du Centre se pratique très habituellement en système pluvial. Dans de nombreux cas, le niveau d’intensification est faible : le travail du sol est souvent inadapté, l’usage de la fumure organique ou minérale est rare et la maîtrise de l’enherbement est défaillante. Telle est la description sommaire des exploitations familiales avec un système de production dominé par la culture du cotonnier. L’examen de l’historique des rendements de 1992 à 2005 suggère que dans la plus part de ces exploitations les rendements moyens de coton-graine en agriculture pluviale ne se sont pas améliorés, contrairement à ce qu’il est observé en culture irriguée, comme en Egypte ou en Afrique du Sud. Il est assez aisé de noter que les contraintes climatiques et un itinéraire technique inadapté en système pluvial semblent avoir estompé les gains de rendement espérés par l’adoption des nouvelles variétés. Il existe de nombreuses causes à cette situation : l’aléa pluviométrique est prépondérant dans la conduite de la culture cotonnière (Crétenet et al., 2006). L’examen des statistiques pluviométriques au Mali et au Bénin (Crétenet, Guibert, données non publiées) par exemple, révèle 2 types d’incident climatique fréquents en zone cotonnière : l’irrégularité dans le démarrage des pluies et la manifestation de périodes de sécheresse en cours de floraison. Dans ce dernier cas, ces trous pluviométriques ont pour effet d’induire un stress hydrique pouvant provoquer la perte d’une partie des organes fructifères (Cognée 1968 ; 1974). On peut facilement étendre ces constats à d’autres pays où la production cotonnière reste relativement importante. En plus de ces causes climatiques et agrotechniques, la crise des filières coton dans les pays d’Afriques, conséquence d’une fluctuation dramatique du cours mondial du coton, a eu des répercutions négatives sur la production cotonnière avec des éléments d’accompagnement en amont comme en aval très affectés. Dans toutes conditions, seules les exploitations relativement équipées en matériels agricoles Traction animale ou mécanique) ou qui ont la possibilité de les louer, semblent capable d’être économiquement viables. Cette étude qui rassemble un certain nombre d’informations et de données, tente de donner une réponse à la question ˝Quels systèmes de production économiquement viable ?˝ Matériels et méthodes Ce travail est essentiellement basé sur des enquêtes et recensements : • Dans les première et deuxième parties nous avons mené des enquêtes ouvertes auprès des ministères de l’Agriculture, du Commerce et de l’Industrie, de la Société cotonnière du Tchad (COTONTCHAD), de l’Institut Tchadien de Recherche Agronomique pour le Développement (ITRAD). Ces enquêtes ouvertes avaient l’allure d’entretiens permettant de vérifier un certain nombre d’informations et de situer les causes éventuelles de la crise de la filière cotonnière au Tchad ; 51 Sauf au Togo et au Bénin où la production s’effondre (voir tableau 2), malgré la baisse des revenus ces dernières années, les producteurs de coton ont, en général, maintenu leur production. Ils disposent de peu de productions alternatives viables au coton. • Dans la troisième partie de cette communication, l’étude s’est déroulée dans le cadre du Pôle Recherche Agronomique des Savanes d’Afrique Centrale (PRASAC). Les enquêtes, sous forme de recensements exhaustifs, ont concerné, en 2001, 791 exploitations agricoles du Sud Tchad dans 6 terroirs et 922 exploitations agricoles au Nord Cameroun dans 5 terroirs. Toutes ces exploitations recensées ont été analysées. Le tableau 3 récapitule l’évolution du prix d’achat du coton graine aux producteurs pour les campagnes 2004-2005 et 2005-2006. Il ne montre que la réduction entre les deux dernières campagnes. Résultats : Quelques éléments de discussion En fait la baisse de prix aux producteurs a été étalée sur plusieurs campagnes et est supérieure à 15 %. En 2003-2004, L’environnement dans lequel évoluent les différents systèmes le prix était en moyenne à 200 F. CFA le kg dans la région. de production à dominance coton est décrits par les différents Cet effet de lissage explique, en partie, l’impact modéré de tableaux ci-dessous. la baisse des prix sur la production. Par ailleurs, la réduction du revenu des producteurs aurait été encore plus Tableau 1 : La superficie, la production et rendement en coton graine de certains sévère sans les ristournes de la campagne paspays d’Afrique de l’Ouest et du centre pour 2001/02. sée ou les subventions accordées par plusieurs Pays Superficie (ha) Rendement (kg/ha) Production (tonnes) Production coton pays. Le prix au Burkina Faso de 210 F. CFA en fibre (tonnes) 2004-2005 correspondait à un prix d’achat de 175 130 415 000 1 196 330 400 Bénin 175 F. CFA et à une ristourne de 35 F. CFA liée 158 179 378 000 1 054 355 900 Burkina-Faso au bénéfice de 2003-2004. Au Mali de même, les 99 577 240 000 1 141 210 400 Cameroun 210 F. CFA en 2004-2005 correspondaient à un prix d’achat de 200 F. CFA et à une ristourne de 160 505 370 000 1 298 285 000 Côte d’Ivoire 10 F. CFA liée au bénéfice de 2003—2004. Au 248 111 575 000 1 143 516 300 Mali Bénin, le prix de 200 F. CFA en 2004-2005 in63 395 155 000 1 033 150 000 Togo tègre une subvention de l’Etat de 43 F. CFA. Au 67 363 164 546 538 306 110 Tchad Cameroun en 2005-2006, les 170 F. CFA payés Source Cotontchad – DAGRIS au producteur comprennent 150 F payés par la société cotonnière et 20 F de l’OPCC (OrganisaTableau 2 — Évolution de la production de coton Fibre de certains pays tion des producteurs de coton du Cameroun). d’Afrique de l’Ouest et du centre de 2004 à -2006. En million de tonnes Bénin Burina Faso Côte d’Ivoire Guinée Mali Sénégal Togo Cameroun République Centrafricaine Tchad 2004/05 2005/06 Ecart en % 171 264 145 3 239 17 74 125 3 84 82 302 108 3 244 18 32 100 2 82 -52,05 +14,39 -25,52 0,00 +2,09 5,88 -56,76 -20,00 -33,33 -2,38 Source : DAGRIS Tableau 3 — Évolution des prix aux producteurs de certains pays d’Afrique de l’Ouest et du centre de 2004 à -2006. En FCFA/Kg de coton graine Bénin Burkina Faso Côte d’Ivoire Mali Sénégal Togo Cameroun Tchad 2004/05 2005/06 Réduction en % 200 210 140 210 195 175 190 190 170 175 140 160 195 160 170 160 15 17 0 24 0 09 11 16 Bien que les cours de la fibre se soient légèrement redressés en 2005/06, leur niveau reste insuffisant pour rééquilibrer les filières cotonnières de l’Afrique de l’Ouest et du Centre. Ils restent bien inférieurs à la moyenne des 25 dernières campagnes qui s’établit à 900 Francs CFA par kg de fibre (voir tableau 4). Cette baisse des cours s’accompagne d’une baisse du prix de vente du sous-produit qu’est la graine de coton. Le Kg passe de 30 F. CFA/Kg à 20 F. CFA/Kg sur les marchés Ouest-africains. La situation du coton sur le marché mondial est exacerbé par le fait qu’il fait partie des rares produits qui mettent les producteurs africains en compétition directe avec les producteurs du Nord; situation toutefois renforcé par le rôle stratégique du coton sur le marché mondial. On estime qu’entre 12 et 16 millions de ménages bénéficient directement ou indirectement de la culture du coton en Afrique de l’ouest. La zone CFA produit environ 80% de toute la production de la région et le coton contribue pour 5 à 10% du PIB des principaux pays producteurs. En outre, en 2001, le coton a contribué pour 51,4% dans les recettes d’exportations du Burkina Faso, 37,6% pour le Bénin et 25% pour le Mali (SWAC 2004). Toutefois malgré le fait que ses coûts de production sont parmi les plus bas au monde, le 52 la production cotonnière. Exportation essentielle à l’équilibre de la balance des paiements des pays comme le Burkina Faso et le Bénin pour lesquels le coton constitue, en année normale, plus des 2/3 des recettes d’exportation. Il faudrait aussi prendre en compte les pertes de recettes fiscales évaluées entre 4 et 7 % des recettes totales. (cf. Les dossiers de FARM, Nicolas Gergely, Le coton : quels enjeux ?). Tableau 4 — Évolution des cours du coton de 2004 à 2005 dans les filières cotonnières de l’Afrique de l’Ouest et du Centre Prix des réalisations des ventes 2005/06 (/Kg de fibre) % 2004/2005 610FCFA 0.93 67.78 2005/2006 670FCFA 1.02 74.48 Moyenne des 25 dernières années 900FCFA 1.37 100.00 Source : DAGRIS Tableau 5 — Estimation des baisses de recettes des producteurs de coton Estimation des revenus des cotonculteurs million de tonnes Bénin Burkina Faso Côte d’Ivoire Mali Sénégal Togo Cameroun Tchad 2004/05 (en milliards de FCFA) 2005/06 (en milliards de FCFA) Baisse des revenus Conclusions 81,429 132,000 48,333 119,500 7,893 30,833 56,548 38,000 33,190 125,833 36,000 92,952 8,357 12,190 40,476 31,238 -48,238 -6,167 -12,333 -26,548 464 -18,643 -16,071 -6,762 I 47,47 28,48 452,70 1 127 467 14,30 II III 39,04 23,42 423,93 1 109 448 23,70 42,71 25,63 314,32 859 339 24,80 A = exploitation disposant de plus de 2 unités d'attelage et d'équipement B = exploitation disposant d'une unité d'attelage C = exploitation disposant d'une unité d'attelade incomplète D = culture manuelle (Nabukpo, Keita, 2006) 1) Au sein d’un milieu physique aux potentialités analogues, on notera : • Une superficie travaillée par exploitation plus importante au Tchad ; • Des rendements, des revenus moins importants au Tchad ; • Une sécurité alimentaire mieux assurée au Cameroun. 3) On peut sans trop de crainte dire la chose suivante : Type d'exploitation Description -59 -5 -26 -22 +6 -60 -28 -18 2) Une désaffection croissante des producteurs tchadiens envers le coton à l’avantage d’autres cultures comme l’arachide. Figure 1. Coûts de production et revenus à l'hectare au Mali de 4 types d'exploitation cotonnière Coût de protection (USD/ha) Coût Pyréthrinoïde (USD/ha) Coût total (USD/ha) RDT (kg/ha) Revenu brut (USD/ha) Profit (USD/ha) Variation en % Figures 1, 2, 3, 4 : typologies comparatives des exploitations/Systèmes de production à dominance cotonnières Tchad vs Cameroun IV 14,64 14,64 257,08 621 262 4,40 • Les exploitations de type I et II semblent s’essouffler aussi bien au Tchad qu’au Cameroun, surtout si on tien compte d’un environnement économique de moins en moins favorable pour le coton africain ; • Les exploitations/systèmes de production qui semblent tirer leurs épingles du jeu sont les types III et IV, c’est à dires celles qui ont la possibilité d’utiliser les maximum de moyens et matériels agricoles (traction animale ou mécanique, utilisation d’intrants agricoles, ...). Le tableau 6 confirme, dans une certaine mesure, cette tendance coton ouest africain est en crise à cause du niveau particulièrement bas des prix.Le tableau 5 présente une évaluation des baisses de revenus bruts des producteurs de coton résultant de la baisse des prix payés et de l’évolution Tableau 6 : performances des exploitations selon leur taille de la production. Il ne présente que la conet niveau de mécanisation, zone de la CMDT, Mali traction du revenu brut des producteurs de Un seul tracteur Au moins 2 paires Une seule paire coton entre 2004/05 et 2005/06. L’estimation des pertes des sociétés cotonnières est faite à partir d’un coût forfaitaire de transformation et de mise à marché (FOB) estimé à 295 F. CFA par kg de fibre produite auquel on ajoute le prix d’achat du coton graine converti en équivalent fibre déduit (taux d’égrenage retenu 42 %) du prix de vente de la campagne considérée. Le tableau 5 ne présente que l’impact sur la balance des paiements de l’évolution de Nombre de cas étudiés Nombre de personnes/exploitation Superficie agricole totale (ha) Superficie agricole/personne (are) Total de jours de travail/personne Total de jours de travail/ha Revenus financiers de l’agriculture en FCFA Revenus financiers de l’agriculture : FCFA/ha Revenus financiers de l’agriculture : FCFA/personne Revenus financiers de l’agriculture : FCFA/travail journalier Main-d’œuvre de bœufs de bœufs 25 15 15 17 31,2 34,8 112 88 79 1 018 000 15,3 15,9 104 89 86 436 000 9,9 9,2 93 77 83 312 000 7,9 3,8 48 40 84 71 000 29 000 27 000 34 000 19 000 33 000 29 000 32 000 9 000 372 320 407 223 53 Typologie en 4 classes obtenues par segmentation C am ero u n 2 500 53% Fig. 1 48% T chad 50% Fig.Fig. 1 2 35% 40% 31% 30% 20% 11% 10% 9% 7% 8% C am ero u n Fig. 2Fig. 3 Fig. 3 Fig. 4 Fig. 4 T ch ad 2 000 Rendements en Kg / Ha 60% Rendements des cultures 1 500 1 000 500 0% T yp e I T y p e II Femmes chefs d’exploitation 1. 2. Non utilisateurs de TA T y p e III Locataires de TA T y p e IV 0 Propriétaires de TA Un échantillon également réparti Une répartition analogue des exploitations dominée par des locataires de traction animale I Superficies en hectare Fig. 2 4,0 C ameroun 3,5 Tchad Fig. 3 4,1 Fig. 1 3,6 3,0 2,4 2,5 2,0 1,4 1,5 1,0 0,9 1,0 1,3 1,6 I II III IV S o rg h o I II III IV I II A ra c h id e III IV M a ïs Fig. 4 C a m e r o u n Fig. 2 Fig. 3 Tcha d 200 Fig. 4 180 160 140 120 100 80 60 40 20 0,5 0,0 IV Utilisation des engrais Quantités utilisées en kg Fig. 1 SU PER FIC IES C U LT IVEES III Des rendements toujours supérieurs au Cameroun quelle que soit la culture considérée Caractéristiques de surface 4,5 II C o to n 0 1 Exploitations de type I 2 Exploitations de type II 3 Exploitations de type III 4 Exploitations de type IV Une superficie mise en valeur fonction de l’accessibilité à la traction animale Des superficies par exploitation plus importantes au Tchad qu’au Cameroun D’autres facteurs ont aussi eu des incidences sur l’évolution de l’agriculture familiale au cours des 4 dernières décennies. Premièrement, l’accroissement constant de la population (environ 2,8% par an) a eu pour conséquence une augmentation de la demande en terres (au Ghana les superficies cultivées sont passées de 14,5% à 25,5% du territoire national entre 1961 et 1999 alors qu’en Côte, durant la même période les taux sont respectivement 8,5% et 23,5% (Mortimore2003), ce qui s’est traduit dans certains, cas par des migrations qui, en plus d’augmenter la pression foncière se sont souvent traduites par des conflits. Par ailleurs cette pression a conduit à une diminution de la superficie cultivée par tête. Dans la zone de l’office du Niger la superficie par personne cultivée en riz d’hivernage est passée de 0,38 ha à 0,22 ha entre 1987 et 1999 (Bélières et al . 2002) Les défis liés à l’environnement constituent une menace potentielle pour une croissance continue de la production agricole, surtout cotonnière et les exploitations familiales, les exploitations du type I et II, dans nôtre typologie, auront certainement beaucoup de difficultés pour tenir, vivre, surtout si l’on considère l’adoption des biotechnologies (les fameux Coton Génétiquement modifié, CGM). On peut logiquement s’attendre à ce que ce soient les « Grandes exploitations », celles qui ont des moyens pour se procurer des matériels agricoles ou NPKSB Ur é e E xp lo itatio n s d e typ e I Une utilisation d’engrais minéral toujours supérieure au Cameroun NPKSB Ur é e E xp lo itatio n s d e typ e II NPKSB Ur é e E xp lo itatio n s d e typ e III Cameroun NPKSB sac/50 kg 12 000 Frs UREE sac/50 kg 8 500 Frs NPKSB Ur é e E xp lo itatio n s d e typ e IV Tchad 15 540 Frs 12 340 Frs les louer éventuellement, qui soient économiquement viables. Ces « grandes exploitations correspondraient aux types III et IV de notre typologie. Référence Olina Bassala JP, 2002. Innovations techniques et changements socioéconomiques. Cas du semis ou « labour chimique » au sud du bassin cotonnier au nord Cameroun. DEA, Université de Toulouse(France), 74p. 54 Vall, E., M. Cathala, P. Marnotte, R. Pirot, J.P. Olina, B. Mathieu, H. Guibert, K. Naudin, Aboubakary et I. Pabamé Tchinsahbé, 2002. Pourquoi inciter les les agriculteurs à innover dans les techniques de désherbage ? in Jamin JY et L Seiny Boukar éds., 2002. Savanes africaines : des espaces en mutation, des acteurs face à de nouveaux défis. Mai 2002, Garoua, Cameroun, Ndjaména-Tchad, PRASAC. Dugue, Patrick, Vall Eric, Cathala Magalie, Mathieu Bertrand, Olina Jean Paul et Seugue Caroline, 2004. Les paysans innovent, que font les Agronomes ? Le cas des systèmes de culture en zone cotonnière du Cameroun. Entretien du Pradel, 2004, Agronome et Innovations. Montpellier, France. Rapports d’activités de la Cotontchad : Campagnes Agricoles 2000/2001, 2002/2003, 2003/2004 ; 2002/2005. Hake, K. 2004. Cotton biotechnology: beyond Bt and herbicide tolerance. In Swanepoel A. (ed.). Proceedings of the world cotton research conference-3: cotton production for the new millennium. Cape Town, South Africa, 9–13 March 2003. Pretoria : ARC-IIC, p. 9–13. Hofs, J.L. et D. Marais. 2004. Effect of basic fertilization on transgenic Bt cotton yields in small-scale dryland farming systems: an experience in the Makhathini flats, Kwazulu-Natal, South Africa. Abstract. In CIEC. 15th International symposium of the International Scientific Centre of Fertilizers, 27-30 September 2004, Pretoria, South Africa, 22 p. ICAC. 2002. Cotton world statistics. Washington, DC: ICAC, 140 p. Bara Guèye. 2006. L’agriculture familiale en Afrique de l’Ouest : concepts et enjeux actuels.ACB (2005). Ismael, Y., R. Bennett et S. Morse. 2002. Farm-level economic impact of biotechnology : smallholder bt cotton farmers in South Africa. Outlook Agric. 31, p. 107–111. A profile of Monsanto in South Africa. African Centre for Biosafety [online]. <http://www.biosafetyafrica.net/_DOCS/ABC_Monsanto_ Southafrica.pdf> on April 2005, 26 p. James, C. (2005 a). Preview: Global status of commercialized Biotech/GM crops: 2004. ISAAA Briefs 32. New York: International Service for the Acquisition of Agri-Biotech Applications, 12 p. AfricaBio (2005). Tanzania conducts GM field trials. Biolines [online]. http://www.africabio.com/biolines/71.pdf, on [04/03/05], 5 p. James, C. (2005 b). Executive summary of global status of commercialized Biotech/GM crops: 2005. ISAAA Briefs 34. New York: International Service for the Acquisition of Agri-Biotech Applications, 12 p. Brévault, T. et J. Achaleke. 2005. Status of pyrethroïd resistance in the cotton bollworm, Helicoverpa armigera, in Cameroon. Resist. Pest Manage. Newsl. 15 (1), p. 4–7. Cognée, M. 1974. Modalité de l’abscission post-florale chez le cotonnier. Liaison avec quelques facteurs internes. Cot. Fib. Trop. 29 (4), p. 447–462. Elbehri A. et S. MacDonald, 2004. Estimating the impact of transgenic Bt cotton on West and Central Africa: A general equilibrium approach. World Dev. 32 (12), p. 2049–2064. Estur, G. 2006. Le marché mondial du coton : évolution et perspectives. Cah. Agric. 15 (1), p. 9–16. Fok ACM., W. Liang , J. Wang et NY. Xu. 2006. Production cotonnière familiale en chine : forces et faiblesses d’une intégration à l’économie de marché. Cah. Agric. 15 (1), p. 42–52. Grain. 2004. GM cotton set to invade West Africa. Time to act! Grain Francophone Africa. [online]. <htpp://www.grain.org/ briefings/?id=184> on June 2004, 21 p. Green, W.M., M.C. De Billot, T. Joffe, L. Van Staden, A. BennettNel, Du Toit CLN., L. Van der Westhuizen. 2003. Indigenous plants and weeds on the Makhathini Flats as refuge hosts to maintain bollworm population susceptibility to transgenic cotton. Afric. Entomol. 11, p. 21–30. Mendez, del Villar P., L.R.A. Alvez et M.S. Keita. 2006. Facteurs de performance et de compétitivité des exploitations cotonnières au Brésil, aux états-Unis et au Mali. Cah. Agric. 15 (1), p. 23–34. Nubukpo, K. et M.S. Keita. 2006. Prix mondiaux, prix au producteur et avenir de la filière coton au Mali. Cah. Agric. 15 (1), p. 35–41. Vaissayre, M., G.O. Ochou , O.S.A. Hema et M. Togola. 2006. Quelles stratégies pour une gestion durable des ravageurs du cotonnier en Afrique subsaharienne ? Cah. Agric. 15 (1), p. 80–84. Zhang, H., C. He, G. Shen, J. Yan, D. Auld et E. Blumwald. 2005. Analysis of transgenic cotton engineered for higher drought and salt-tolerance in greenhouse and in the field. In Proceedings of the beltwide cotton conferences, New Orleans, Louisiana, January 4–7, p. 871–875. Hofs, Jean-Luc et Fabio Berti, «Les cotonniers (Gossypium hirsutum L.) génétiquement modifiés, Bt : quel avenir pour la petite agriculture familiale en Afrique francophone ?». Biotechnol. Agron. Soc. Environ., volume 10 (2006) numéro 4 : Biotechnol. Agron. Soc. Environ. 2006 10(4), p. 335–343. http://popups.ulg.ac.be/Base/document. php?id=615 55 Risques environnementaux liés à la culture du cotonnier en Afrique francophone : Bilan et évolutions en cours M. Vaissayre et M. Cretenet, CIRAD, Unité de Recherche; Systèmes de Culture Annuels (Présenté Par Alain Renou, CIRAD) La production cotonnière de l’Afrique sub-saharienne est, à quelques exceptions près, le fait de petites exploitations familiales. Le cotonnier y est cultivé sous régime pluvial, dans des systèmes où il est associé avec des cultures vivrières, produites à des fins commerciales (Maïs, Niébé) ou pour l’autosubsistance (Mil, Sorgho). La surface consacrée à la culture du cotonnier dans la zone CFA est actuellement comprise entre 2.2 et 2.5 millions d’hectares. En 2006/07 la production y a atteint son plus bas niveau depuis le début du siècle, en s’établissant à moins de 800 000 tonnes de fibre (contre une production record de 1.126.000 t en 2004/05), tandis qu’en Afrique de l’Est et Australe, la production était de l’ordre de 460 000 tonnes de fibre pour une surface estimée à 2 millions d’hectares (ICAC, 2007). La plus grande partie de la production Ouest Africaine étant exportée, ce groupe de pays se place aujourd’hui au 4eme rang mondial, délogé depuis peu du troisième rang des pays exportateurs par l’Inde, et menacé par le Brésil (ICAC, 2008). La production de coton reste cependant un secteur clé dans les programmes de développement de la sous-région. La culture cotonnière nécessite à la fois l’apport d’engrais (organiques et minéraux) et celui de pesticides, parmi lesquels les insecticides occupent une bonne place. Au Mali par exemple, c’est plus de 2,6 millions de litres de produits formulés en concentré émulsifiable qui ont été nécessaires en 1999. Au Bénin comme au Burkina Faso, les chiffres devraient être proches ou même supérieurs. A l’étape actuelle du développement des zones cotonnières, l’utilisation d’intrants est incontournable pour accroître la productivité, mais pour conserver à l’agriculture un caractère durable, la préservation de l’environnement est un enjeu déterminant. Nous allons donc examiner dans ce papier quelles sont les sources d’atteinte à l’environnement et à la santé humaine, et envisager un certain nombre de mesures pour en limiter l’impact. La transformation du paysage La végétation naturelle de la cotton belt qui travers l’Afrique du Sénégal au Tchad celui de la savane sahélo-soudanienne avec Vitellaria paradoxa (karité), Lannea spp., Sclerocarya birrea, Daniellia oliveri, Parkia biglobosa, Terminalia macroptera, Khaya senegalensis, Vitex spp., et Prosopis africana. Cette végétation, de part les défrichements dus à une forte présence humaine, n’est plus guère visible à l’heure actuelle. Les espèces cultivées comprennent principalement le mil, le sorgho et le coton. Le paysage agricole reproduit les éléments structuraux constitutifs de l’»Afrique des greniers» (Pourtier, 2003): alternance champs cultivés/brousse; terroirs en auréoles; parcs arborés; articulation plus ou moins bien régulée entre agriculture et élevage. Les paysans y sont confrontés au défi démographique et à la raréfaction des terres: un développement durable impose désormais le passage à des systèmes de production plus intensifs et attentifs à un capital foncier moins abondant qu’autrefois. La fertilité des sols Les sols de savanes sont fragiles, et leur teneur en éléments minéraux et en matière organique et organique souvent faible. La mise en culture de zones nouvelles n’est qu’une solution à court terme et le maintien de la fertilité est par conséquent un défi incontournable pour l’agriculture de ces zones. L’intégration agriculture-élevage est extrêmement variable dans la ceinture cotonnière et le rapport des différentes populations à l’élevage permet d’expliquer les différents modes de culture et de fertilisation du cotonnier. La culture attelée a permis la diffusion de l’élevage, et il paraît évident que les pratiques d’élevage intégrées à l’agriculture sont un facteur d’intensification du système Cette innovation technique a permis d’accroître les surfaces cultivées, de mieux lutter contre l’enherbement et d’améliorer la fertilité des sols. Mais la présence de trypanosomiase rend difficile et parfois impossible la pratique de l’élevage et par conséquent de la fumure organique. Des doses minima d’engrais chimiques ont été préconisées pour compenser les exportations des éléments minéraux nécessaires aux cultures qui entrent dans l’assolement traditionnel. Compte tenu de leur prix d’acquisition, les quantités épandues n’atteignent que rarement ces doses minimales, et le bilan minéral reste souvent négatif, d’autant que, du fait des rotations et des systèmes culturaux, ces apports bénéficient non seulement à la culture du coton mais également aux productions vivrières entrant dans l’assolement. Les labours répétés et l’usage exclusif des engrais minéraux ont tendance, à long terme, à déstructurer et à acidifier le sol. Aussi, afin de préserver la fertilité et de palier ces inconvénients majeurs, des techniques innovantes et notamment les « semis sous couvert végétal » ont été proposées et développées, principalement sur la zone cotonnière du Nord Cameroun et dans une moindre mesure au Burkina Faso. Les pesticides Du fait d’une récolte exclusivement manuelle, la culture cotonnière africaine n’a pas recours aux produits chimiques nécessaires à une récolte mécanique. Elle s’évite ainsi d’importants 56 facteurs de pollution. D’autre part, l’utilisation d’herbicides est assez peu répandue en Afrique, où le désherbage sur de nombreuses exploitations est pratiqué manuellement. L’essentiel des pesticides utilisés par les petits paysans africains est donc constitué par des insecticides. Toutes les familles d’insecticides (organochlorés, organophosphorés, carbamates et pyréthrinoïdes) ont été utilisées sur cotonnier en Afrique, mais aujourd’hui les produits ciblés par la Convention de Rotterdam ont disparu ou sont en phase d’élimination (comme l’endosulfan). Les conditions climatiques, le faciès et la pression parasitaires qui prévalent en Afrique subsaharienne ne permettent pas d’envisager raisonnablement une culture cotonnière sans aucun traitement. Les attaques de certains insectes, ravageurs du cotonnier, peuvent réduire, purement et simplement à néant une production. Aussi, afin de préserver la productivité et garantir un revenu minimum aux agriculteurs, une protection phytosanitaire raisonnée a été mise en place sur la base de matières actives répondant aux normes internationales et d’un nombre réduit de traitements dont la moyenne se situe aux alentours de 4,5 applications par an. Les traitements cessent avant la déhiscence des capsules. De ce fait la fibre produite est exempte de toute trace de pesticides. Par ailleurs, la récolte manuelle agresse beaucoup moins la fibre qu’une récolte mécanique et surtout ne nécessite pas l’usage de défoliants qui, compte tenu du stade auquel ils sont appliqués, polluent la fibre. La fibre africaine proposée sur le marché est donc exempte de toutes traces de pesticides et autres produits d’aide à la récolte. Cette utilisation modérée des insecticides, même si elle en a retardé l’échéance, n’a pas empêché le développement de résistances chez quelques ravageurs tels que le puceron Aphis gossypii, l’aleurode Bemisia tabaci et surtout la noctuelle Helicoverpa armigera. L’apparition de ces résistances, à la fin des années 90’ dans le bassin cotonnier le plus ancien d’Afrique de l’Ouest (Mali-Burkina Faso-Nord Côte d’Ivoire) (Martin et al., 2002), et au début des années 2000 en Afrique Centrale (Brevault & Achaleke, 2005), a mobilisé les acteurs de la filière et la rapide mise en place de mesures de gestion n’a pas entraîné la surconsommation d’insecticide observée habituellement dans une telle situation (Martin et al. 2005). Néanmoins, le coût de la protection chimique a augmenté du fait de l’usage de molécules alternatives, et les problèmes sanitaires se sont trouvés momentanément accrus, du fait du retour de l’endoculfan, redonnant ainsi un intérêt à la recherche de molécules nouvelles et d’approches innovantes. Le développement de pratiques d’interventions sur seuil dans plusieurs pays, en particulier au Mali et au Cameroun, après les développements de la lutte étagée ciblée au Bénin, démontre qu’il est possible de réduire les quantités de pesticides nécessaires à une production de qualité, pour peu que les paysans en acceptent les risques et y consacrent de leur temps... Enfin, l’introduction récente du cotonnier Bt au Burkina Faso pourrait démontrer qu’il existe d’autres approches pour rédu- ire la consommation d’insecticides, les interventions étant alors limitées aux infestations d’insectes piqueurs. Conclusion La stagnation des rendements dans la zone franc depuis une vingtaine d’années, autour de 450kg/ha (en culture pluviale stricte) - contre une moyenne mondiale de 730 kg/ha (en culture à dominante irriguée) - menace la compétitivité du coton africain. Elle est liée à plusieurs facteurs : une maîtrise différenciée des itinéraires techniques, l’arrivée de nouveaux cultivateurs moins performants qui produisent en marge de l’exploitation familiale, une diminution de l’intensification motivée par la chute des cours mondiaux, et des problèmes de fertilité des sols dans certaines zones. Une meilleure gestion des intrants agricoles et une vulgarisation d’itinéraires culturaux innovants permettraient sans doute d’augmenter sensiblement les rendements. Dans un contexte mondial d’abondance de l’offre, les efforts de l’Afrique devraient porter sur la promotion d’un coton de qualité, qui nécessiterait sans doute des incitations spécifiques (prime à la qualité). De ce point de vue, les modes de culture et de récolte pratiqués en Afrique placent les cotons africains parmi ceux qui présentent le moins de risques pour le producteur et son environnement ainsi que pour le consommateur de fibres. En effet, tout en maintenant des programmes d’intensification nécessaires à la compétitivité et à la durabilité de la culture, les filières africaines ont été en mesure de définir des itinéraires techniques qui tiennent compte des exigences en matière d’environnement, et, malgré les conditions économiques difficiles que traversent les pays producteurs, développent encore aujourd’hui de nouvelles techniques dans ce sens. D’autre part, la culture cotonnière d’Afrique subsaharienne est strictement pluviale et ne fait nullement appel aux eaux de surface ou aux nappes fossiles, même d’appoint. Si l’on ajoute à cela la récolte manuelle, et par conséquent l’absence de défoliant, le développement de techniques d’interventions sur seuil, et celui de cotonniers Bt qui nécessitent moins d’interventions chimiques, cet ensemble de pratiques contribue à faire du coton africain l’une des cultures les plus respectueuses de l’environnement. Références Dejoux, C. (1988). La pollution des eaux continentales africaines : experience acquise, situation actuelle et perspectives. Collection travaux et documents n° 123, éditions de l’ORSTOM, Paris : 513 pp. Djibril, R.B. (2002). Contribution à l’étude d’impacts de l’utilisation des engrais chimiques et des pesticides sur la qualité des eaux de surface dans la reserve de biosphere de la Pendjari. Mémoire de fin de formation pour l’obtention du Diplôme d’Ingénieur des Travaux (DIT), Département des techniques d’aménagement et protection de l’environnement (APE, Collège Polytechnique Universitaire (CPU), Université d’Abomey Calavi, Bénin : 106 pp. Floquet, A. et R. Mongbo (2004). Etude des effets et des impacts de la lutte étagée ciblée sur les producteurs – Résultats d’une enquête socio économique conduite en octobre et novembre 2004 dans 4 com- 57 munes du centre et nord Bénin à la demande du PADSE. Documents du PADSE, MAEP/AFD/SOFRECO, Cotonou, Bénin : 74 pp. Hadonou-Yovo, B. (2000). Bilan et caractéristiques des cas d’intoxication lies aux produits phytosanitaires en république du Bénin Durant la campagne cotonnière 2000/2001 – Rapport de l’enquête initiée par les sociétés Calliope S.A. et Aventis en collaboration avec le Ministère du Développement Rural (MDR) et du Ministère de la Santé, Décembre 2000 : 75 pp. Matthews, G.A. (1981). Improved systems of pesticide application. Phil. Trans. R. Soc. Lond., 8 : 163-173. M’Biandoun M., H. Guibert, J.P. Olina, 2006. Caractérisation de la fertilité du sol en fonction des mauvaises herbes présentes. Tropicultura, 24 (4) : 247-252. Pourtier, R. (2003) Les savanes africaines entre local et global: milieux, sociétés, espaces. Cahiers/Agricultures, 12 (4) : 213-218. Prudent, P., A. Katary et A.C. Djihinto (2003b). La LEC confirme ses avantages comparatives sur le traitement calendaire. Les échos du PADSE (MAEP/AFD/SOFRECO) n° 11 : 1-6. Réduire les coûts de production Amadou Aly Yattara, Chef du programme coton, Sikasso, Mali. Introduction Dans la plupart des pays de l’Afrique de l’Ouest et du centre, l’économie repose essentiellement sur le secteur rural, et en particulier sur la culture du coton, principale source de redistribution de revenus dans le monde rural. La production cotonnière de ces pays qui a fortement augmenté ces dernières années grâce essentiellement l’augmentation du nombre de producteurs et par le doublement des superficies cultivées en coton, connaît aujourd’hui une stagnation, voire la baisse des rendements. L’état actuel de la production cotonnière mérite un renversement de situation devant le danger d’effondrement des filières cotonnières, un des piliers de l’économie de nos pays. Cela est d’autant plus urgent que l’effondrement des prix mondiaux a eu un effet majeur sur l’économie des pays africains de la zone franc producteurs de coton. Ces pays déjà pénalisés dans les coûts de revient par les frais d’acheminement du produit vers le client, et dont le prix «bord champ» de la fibre représente les 2/3 du coût carreau d’usine, et que le prix de vente de la fibre est devenu largement inférieur au prix de production. Dans ces conditions, il urge de mettre en route toute mesure susceptible de permettre une maîtrise des coûts de production, voire générer des profits. Quelques généralités sur le coût de production Définitions Le coût de production d’un produit signifie l’ensemble des charges financières ou non qui rentrent dans le processus de production d’une unité de ce produit. Pour ce qui concerne le coton graine, son coût de production se compose de 2 types de charges : • les charges incompressibles, qui correspondent à des sorties monétaires, et • le coût des opérations effectuées par le producteur luimême, assisté des membres de sa famille. Les charges incompressibles correspondent à l’ensemble des charges impliquant une sortie d’argent. Il s’agit du coût des intrants ; du coût d’entretien et de réparation du matériel ; des dépenses liées à l’aliment du bétail et aux traitements vétérinaires ; du coût de la main d’œuvre salariée ; du coût correspondant à l’achat du petit outillage : piles, dabas... Les opérations effectuées par le producteur ont un coût, plus ou moins élevé selon le niveau auquel la main d’œuvre familiale est valorisée. Il faut donc en retenir que pour la détermination des coûts de production, un certain nombre de difficultés sont enregistrées découlant non seulement des difficultés de la valorisation de la main d’œuvre familiale, mais aussi de la détermination du temps des travaux (difficile appréhension au champ des débuts et des fins des opérations du profil des activités agricoles). En définitive, le coût de production du coton graine varie selon les zones de production et les types d’exploitations. Coût de production Les coûts de production du coton graine au Mali, calculés par plusieurs auteurs, se basent sur les charges incompressibles et la rémunération de la main d’œuvre familiale. L’étude menée par HORUS/SERNES en 2002 donne des charges incompressibles de l’ordre de 93 FCFA/kg auxquels s’ajoutent 105 journées de travail de la main d’œuvre familiale. Selon ces auteurs, le coût de production du coton graine varie entre 141 et 190 FCFA/kg selon que la main d’œuvre familiale est valorisée à 500 ou 1 000 FCFA/j. Diakité et Djouara, en 2003, donnent comme coût de production du coton biologique 247 FCFA/kg et 301 FCFA/kg lorsque la main d’œuvre familiale est valorisée respectivement à 500 FCFA/j et 750 FCFA/j. Les mêmes auteurs, lors de la même étude, donnent comme coût de production du coton conventionnel 148 et 172 FCFA/kg selon que la main d’œuvre familiale est valorisée à 500 ou 750 FCFA/j. Revue des principaux déterminants du coût de production et leur impact Une étude1 menée en 1994 par l’Equipe Système de Production et Gestion des Ressources Naturelle de Sikasso a mon- 1) Brons, J ; Bagayoko, S ; Diarra, S ; Djouara, H. Diversité de gestion de l’exploitation agricole. Etude sur les facteurs d’intensification agricole au Mali Sud. CRRA, Sikasso, octobre 1994. 58 tré que, dans le seul domaine agronomique, la bonne gestion des exploitations agricoles joue un rôle pertinent dans l’amélioration de la productivité à travers la maîtrise des techniques culturales. L’application d’autres mesures institutionnelles et politiques pourrait certainement améliorer le bilan de production cotonnière. Dans plusieurs études conduites dans le cas particulier du Mali, et certainement valables pour les autres pays producteurs de la sous-région, il est apparu que, pour engendrer des profits, du moins, assurer une maîtrise les coûts de production, les pistes suivantes sont à explorer : • l’amélioration des rendements au champ à travers l’adoption de matériels végétaux performants et de technologies innovantes et efficientes, • l’amélioration de la qualité de la fibre, • la minimisation des coûts de production à travers la main d’œuvre et les intrants. En plus de ces mesures d’impacts directs, d’autres mesures d’accompagnement peuvent maximiser les profits, voire les améliorer. Il s’agit en particulier de : • dynamiser les organisations paysannes, • renforcer la participation du secteur privé, des producteurs et des collectivités locales décentralisées, • une meilleure participation des producteurs dans la gestion de la filière coton, • la libéralisation des secteurs coton et oléagineux. L’amélioration des rendements au champ L’amélioration de la productivité au champ est un élément essentiel et central de la maîtrise des coûts. En effet, il est bien connu que le coût de production du coton correspond au rapport de l’ensemble des charges de production sur le rendement observé. La question du rendement étant centrale dans la détermination du coût de production, il conviendrait donc de s’y intéresser particulièrement. Cette amélioration de la productivité passe tout d’abord et nécessairement par l’optimisation de l’ensemble des pratiques culturales qui concourent à la réalisation2. Il est apparu dans l’étude ci-dessus référenciée que les dates de semis, de démariage, du 1er sarclage, du 1er traitement insecticide ont un impact significatif pour la réalisation du potentiel productif en question. Par ailleurs, l’amélioration des densités de plantation très faibles actuellement (40 à 50 000 plants/ha) s’est avérée avoir un impact important et devrait être sensiblement améliorée. Si la maximisation du potentiel de productivité déjà existant peut être recherchée à travers une meilleure application des itinéraires techniques déjà disponibles, il n’en demeure pas moins le besoin de la poursuite de la mise au point d’innovations techniques pour inverser la baisse des rendements et des revenues. Il s’agit en particulier de la mise au point de programmes phytosanitaires d’interventions sur seuils sensu stricto plus économiques et moins polluantes pour l’environnement ; de variétés mieux adaptées et à fort rendement égrenage ; de référentiels techniques de gestion de fertilité des sols et la mise au point des modes de fumures régionalisées, rentables et de coût réduit. Il est, en effet important d’une part de mieux valoriser les engrais pour diminuer les coûts de production, mais aussi de donner à la vulgarisation et aux organisations paysannes des éléments clairs sur les conséquences à moyen et long terme des différents modes de gestion de la fertilité. L’amélioration de la qualité de la fibre Un autre levier et non des moindres pour améliorer les rentabilités des filières cotonnières dans leur globalité, est l’amélioration de la qualité de la fibre produite. La fibre produite, aussi bien pour ce qui concerne sa quantité que sa qualité, représente non seulement tous les coûts engendrés tant au niveau du développement rural (producteurs et services d’encadrement) que des unités industrielles, mais aussi le potentiel quasi-total de valorisation que les sociétés cotonnières et même les pays peuvent attendre de leur production cotonnière. Il est aisé de comprendre que plus la quantité de fibre est grande, plus les charges fixes ramenées à la tonne de fibre produite sont faibles. Aussi, pour espérer une valorisation optimale de la fibre, il conviendrait d’optimiser les interventions à deux niveaux bien distincts, mais complémentaires. Tout d’abord, il importe de minimiser les contaminants de tous ordres, voire les éliminer dans le coton graine. L’apport des producteurs est de très haute importance à ce niveau. Une étude3 récente conduite au Mali dans ce sens a montré que grâce à l’application de certaines pratiques très simples de gestion de la récolte, il était possible de réduire très sensiblement (77 % au moins) le taux des contaminants. Même si ces contaminants sont pour l’essentiel d’origine organique et inorganique (végétaux, sables, etc.), donc peu redoutés, la perte monétaire consentie à l’achat du fait de leur présence dans le coton graine, au niveau des producteurs, dans une production de 450 000 T environ de coton graine s’élevait cependant à près de 1 200 000 000 F CFA. Le deuxième niveau d’intervention, mais très critique, est les unités industrielles. Au jour d’aujourd’hui le rendement égrenage moyen des variétés qui sont mises au point par la recherche dans la sous-région est de 43 à 44 % environ. Ces mêmes variétés, dans les conditions industrielles donnent en moyenne 42 % et atteignent très rarement 43 % alors que les écarts tolérés ne devraient guère dépasser 0,5 point. On peut se rendre aisément compte qu’un mauvais égrenage peut anéantir du coup l’ensemble du gain de rendement à l’égrenage, en même temps que la longueur de la fibre, deux apports essentiels des programmes d’amélioration variétale de cette dernière décennie. 2) Fok, M.A.C. ; Djouara, H. ; Koné, M. ; Ballo, D. 1999. Diversité des pratiques paysannes en zones cotonnières du Mali ; portée et limites des gestions d’itinéraires techniques observés. Actes du séminaire « Rôle et place de la recherche pour le développement des filières cotonnières en évolution en Afrique », Montpellier, 01-02 Septembre 1999, CIRAD-CA. 3) ICAC, 2008. Production et commercialisation de coton non contaminé au Mali. 59 Ces pertes seront d’autant plus dommageables que le rendement de fibre à l’égrenage est une composante essentielle de la production et de la productivité, alors que la longueur est une des bases de la tarification de la fibre. En plus de ces deux caractéristiques, toutes les caractéristiques technologiques de la fibre, à l’exception du micronaire, sont négativement affectées par un égrenage non adéquat des usines, entraînant ainsi une baisse de la valeur marchande de la fibre4. Ainsi, il apparaît que la bonne gestion de l’égrenage (y compris l’efficience de l’énergie utilisée) permet de maximiser les potentiels des variétés, donc de générer des profits, du moins de baisser les coûts de production. Main d’œuvre et intrants Les coûts du matériel utilisé, de la main d’œuvre (salariée et familiale) et des intrants sont déterminants sur le coût de production du coton. Pour la détermination du coût des intrants (engrais et pesticides chimiques), on valorise les doses effectivement déclarées par les producteurs en utilisant les prix de crédit court terme. S’il est quasiment impossible d’agir sur les coûts des intrants déjà chers et en général sous dosés (sauf l’urée), on peut cependant rendre leur utilisation plus efficiente à travers un apport localisée et en temps opportun, au semis comme recommandé. L’utilisation du semoir épandeur5 mis au point par l’Equipe Systèmes de Production et de Gestion des Ressources Naturelles, Sikasso (Mali) en est une illustration. Les études sur la modulation des doses d’engrais selon les conditions de la zone, de l’époque ou de l’objectif économique fixé6 conduites par le programme coton ont également donné des résultats probants. S’agissant de la main d’œuvre, il en existe différents types et de taux variables de rémunération suivant la période et le type du travail. La main d’œuvre salariée est sollicitée pour quelques opérations dans la conduite des itinéraires techniques du coton. Des enquêtes conduites au Mali ont montré que plus de 79 % d’utilisation de la main d’œuvre est faite sur la récolte. Même si la main d’œuvre peut être valorisée diversement, il semble peu évident de réaliser des économies de ce côté-là. Cependant, l’organisation socio-économique et technique des exploitations cotonnières (gestion de la main d’œuvre familiale, niveau d’équipement, installation rapide de la culture, utilisation des désherbants chimiques etc.) permet de minimiser les contraintes d’utilisation de la main d’œuvre salariée, donc de réduire tant peu soit-il le coût de production. Les autres mesures organisationnelles et d’accompagnement Au nombre de ces mesures, en ces temps de privatisation, il y a tout d’abord le transfert des compétences et la formation des nouveaux acteurs pour assurer en toute responsabilité l’ensemble des actions nécessaires à la pérennité de la filière. Sont concernées en tout premier lieu les organisations de producteurs qui doivent être formées et dont les capacités doivent être renforcées afin de mieux négocier et mettre en œuvre les évolutions institutionnelles de la filière. Les organisations de producteurs devront assumer certaines fonctions de la filière, notamment en encourageant l’émergence de structures professionnelles bien gérées reposant sur des bases techniques et économiques solides. Des cadres de concertation doivent être mis en place pour partager l’information conjointement aux acteurs de la filière. Ces cadres de concertation permettront de rassembler, confronter et valider les données disponibles provenant des organisations de producteurs, de la recherche, des organismes de financements, des compagnies cotonnières, de tous les opérateurs économiques évoluant dans la zone cotonnière et des autorités de tutelle du développement rural afin de suivre les évolutions techniques et économiques et alimenter les réflexions sur les actions à mener pour leur développement. En plus des organisations de producteurs, au nombre les autres acteurs dont l’incidence est prépondérante sur la production cotonnière, il y a sans nul doute les opérateurs du secteur privé dont les fournisseurs d’intrants (engrais et pesticide), les transporteurs et les organismes de financement et de crédit. Tous ces acteurs se retrouvent autour de l’approvisionnement en intrants qui est une des fonctions les plus critiques de la production agricole. Des résultats de cet approvisionnement dépendent en grande partie les résultats de la campagne agricole. Conclusions et recommandations Le coton est réellement un produit stratégique dont dépendent très fortement les économies de nos pays. Dès lors, il faut à tout prix maintenir la production cotonnière en songeant à améliorer constamment sa compétitivité. Pour ce faire, il faut assurer la pérennité de la production en garantissant le niveau requis de tous les facteurs techniques de production qui méritent cependant d’être utilisés avec beaucoup plus d’efficience afin de minimiser les coûts de production. Dans ce domaine, les espoirs sont grands vis-à-vis de la recherche. L’enjeu étant de passer des recommandations de technologies passe-partout qui sont prônées à toute une zone, à des recommandations de technologies pour des conditions agro climatiques et même socio-économiques bien ciblées avec en plus des espérances de productions assez précises. Il faut en plus, la participation effective de tous les partenaires. Un autre pan très important pour mieux valoriser le produit coton est l’amélioration continue de la qualité des produits attendus, la fibre essentiellement. En effet, la plupart des caractéristiques sur la base desquelles sont vendues la fibre sont d’ordre génétique en dépit d’une très grande incidence des 4) Alidou Amadou SOULE. L’utilisation des analyses technologiques pour le suivi de l’égrenage : expérience du Bénin. Présentation à l’atelier de formation des égreneurs des pays C4 et du Sénégal, Ségou, Mali. 13 – 18 octobre 2008 5) Sanogo J.L. Zana, Djouara Hamady, Doucouré Aminata, 2005. Mise au point d’un semoir-épandeur d’engrais. Rapport de recherche. IER/ CRRA/ESPGRN – Sikasso, Mali. 6) CRRA, Sikasso. 2006. Etude de l’évolution et stratégies de gestion de la fertilité des sols sous systèmes de culture à base de cotonnier. 59 pages. 60 conditions du milieu sur elles. De ce fait, il est très important de mettre sur le marché une fibre reconnue pour la constance de ces caractéristiques technologiques. Pour atteindre cet objectif, une action concertée de tous les acteurs de la filière est nécessaire. Aussi, il est nécessaire de tendre vers la généralisation des mesures sur chaîne de mesures intégrées pour une meilleure valorisation de la fibre produite. Référence : Soule, Alidou Amadou. L’utilisation des analyses technologiques pour le suivi de l’égrenage : expérience du Bénin. Présentation à l’atelier de formation des égreneurs des pays C4 et du Sénégal, Ségou, Mali. 13 – 18 octobre 2008 Brons, J, S. Bagayoko, S. Diarra et H. Djouara. Diversité de gestion de l’exploitation agricole. Etude sur les facteurs d’intensification agricole au Mali Sud. CRRA, Sikasso, octobre 1994. CRRA, Sikasso. 2006. Etude de l’évolution et stratégies de gestion de la fertilité des sols sous systèmes de culture à base de cotonnier. 59 pages. Diakité, Lamissa et Hamady Djouara. 2003. Etude socio-économique de la production du coton biologique au Mali. Ministère de l’Agriculture de l’Elevage et de Pêche, IER, ECOFIL, HELVETAS. 61p. Fok, M.A.C., H. Djouara, M. Koné et D. Ballo. 1999. Diversité des pratiques paysannes en zones cotonnières du Mali ; portée et limites des gestions d’itinéraires techniques observés. Actes du séminaire « Rôle et place de la recherche pour le développement des filières cotonnières en évolution en Afrique », Montpellier, 01-02 Septembre 1999, CIRAD-CA. HORUS-Entreprise, SERNES. 2002. Etude d’un mécanisme de détermination du prix du coton graine aux producteurs. Rapport Final. 115p. ICAC, 2008. Production et commercialisation de coton non contaminé au Mali. Sanogo J.L. Zana, Hamady Djouara et Aminata Doucouré, 2005. Mise au point d’un semoir-épandeur d’engrais. Rapport de recherche. IER/CRRA/ESPGRN – Sikasso, Mali.