2008, Ouagadougou, Burkina Faso

Transcription

2008, Ouagadougou, Burkina Faso
Improving Sustainability of Cotton Production in Africa
Papers Presented at the Technical Seminar at the 67th Plenary Meeting of the
INTERNATIONAL COTTON ADVISORY COMMITTEE
Discover
natural
fibres
2 0 0 9
Ouagadougou, Burkina Faso November 2008
Contents
Introduction
Positive developments in integrated pest control for cotton in West Africa
Ouola Traoré, Institute of the Environment and Agricultural Research (INERA), Cotton Program, Bobo-Dioulasso,
Burkina Faso
Developing a Sustainable Production and Marketing System for
the Cotton Industry in Kenya
Edwin Caleb Ikitoo, Kenya Agricultural Research Institute, Nairobi, Kenya,
Waweru Gitonga, Kenya Agricultural Research Institute, Kerugoya, Kenya
2
3
9
Enhancing the Value of Cotton
Peter Kapingu, Agricultural Research Institute Ukiriguru, Mwanza, Tanzania
18
Economically Viable Cotton Production Systems
Bouré Ouéyé Gaouna, Cotton Breeder, Chadian Institute of Agricultural Research for Development, Chad
21
Components of a Sustainable Cotton Production System: Perspectives From the Organic
Cotton Experience
26
Simon Ferrigno and Alfonso Lizarraga, Organic Exchange, UK
Environmental Risks Associated with Cotton Growing in Francophone Africa:
Assessment and Current Developments
M. Vaissayre and M. Cretenet, CIRAD, Annual Cropping Systems Research Unit, France
34
Review of a Few Agricultural and Managerial Ways and Means for Minimizing Cotton Production Costs in West and Central Africa
36
Amadou Aly Yattara, Cotton Program Manager, Institute of Rural Economy, Sikasso, Mali.
Balancing Yield and Quality for Higher Profitability in Egypt
Mohamed A. Aziz, Cotton Research Institute, Egypt
Osama Ahmed Momtaz, Agricultural Genetic Engineering Institute, Egypt
39
Rapports en Français
Les succès de la lutte intégrée contre les ravageurs du cotonnier en
Afrique de l’Ouest
Ouola Traoré, Institut de l’Environnement et de recherches agricoles (INERA),
Programme Coton, Bobo-Dioulasso, Burkina Faso
Systèmes de production de coton économiquement viables Bouré Ouéyé Gaouna, Cotton Breeder, Institut Tchadien de Recherche Agricole pour le Développement, Chad
Risques environnementaux liés à la culture du cotonnier en
Afrique francophone : Bilan et évolutions en cours
M. Vaissayre et M. Cretenet, CIRAD, Unité de Recherche; Systèmes de Culture Annuels, France
Réduire les coûts de production Amadou Aly Yattara, Chef du programme coton, Institut d’Economie Rurale, Sikasso, Mali.
43
50
55
57
2
Introduction
The Technical Seminar at the 67th Plenary Meeting of the
ICAC held in Ouagadougou, Burkina Faso, from November
17-21, 2008, was on the topic ‘”Improving Sustainability of
Cotton Production in Africa.” Six papers were presented in
the Technical Seminar on November 20, 2008.
According to Dr. Ouola Traore of INERA, Burkina Faso,
the cotton producing countries in the region have suffered
from resistance developed by insects to a variety of insecticides. Insecticides were commonly used in mixtures,
pyrethroid+organophosphate or sometimes even one pyrethroid mixed with two organophosphates. A new calendarbased windows program for insecticide use was developed
and popularized. The main difference was in the startup date
and the chemicals used with two or three windows. Recently,
a threshold-based program was introduced but it is not popular yet because of farmers’ limitations in identifying insects
and assessing damage in fields.
In Kenya, cotton production has suffered due to poor institutional management, price controls, and poor water supplies
among other problems. Recently, the Government of Kenya
has taken steps to revitalize the industry by improving seed
production and input supply, and cotton production has just
started to improve. According to Dr. Edwin Ikitoo of the Kenya Agricultural Research Institute (KARI), the cotton classification system also needs to be improved in Kenya.
Mr. Peter Kapingu of Tanzania could not attend the meeting to
make his presentation. However, his paper is included in the
publication. His paper is focused on improving sustainability
by producing quality cotton. Instrument testing optimizes cotton quality use and provides better returns to producers. The
data from the International Textile Manufacturers Federation
(ITMF) emphasizes the need to produce least-contaminated
cotton. The paper also states that elimination of subsidies
could improve sustainability through higher prices and incentives for growers to produce quality cotton.
Mr. Bouré Ouéyé Gaouna of the Chadian Institute of Agricultural Research for Development (ITRAD) could not attend
the meeting either. According to his paper, cotton production
in the region has suffered from under use of organic manure,
poor weed control, insufficient rains and lower prices offered
by cotton companies. Cotton is one of the few commodities
that puts African cotton growers in direct competition with
producers in developed countries. Lower international prices
have harmed cotton growers in the region.
It is estimated by the Organic Exchange that about 150,000
metric tons of organic cotton was produced in the world in
2007/08. According to Mr. Simon Ferrigno of the Organic
Exchange, organic production is also one way of improving
the sustainability of cotton production, not only at the production level but also throughout the value chain. But, for organic
production to be sustainable, it needs to be more than “environmentally friendly.” Organic production must bring higher
yields, lower costs, and better prices and should be efficient in
terms of land use. Organic production is as technical as conventional production and requires strong training and farmers’
organization in groups for negotiating better prices.
According to CIRAD, herbicide use is at a minimum, defoliants are not used at all, fertilizers are used below recommended doses and insecticide use has been reduced since the
late 1990s in Central and West African countries. This makes
the African cotton production system one of the most environmentally friendly cotton production system in the world.
While West African countries have made significant progress
in terms of managing resistance and reducing insecticide use,
the soil fertility problem is getting worse. Farmyard manure
is not commonly used, and cropping intensity continues to
increase. The other threat to cotton production in the Francophone countries is stagnation in yields.
The paper from Dr. Amadou Aly Yattara of Mali warns that the
cotton sector in the region could collapse if the current trend
of continued increases in cost of production and stagnation in
yield is not reversed. The options for growers to improve profitability are to adopt newer technologies, improve fiber quality and produce least-contaminated cotton, and optimize labor
use. There is a need for quality ginning, but ginning losses
should also be reduced to improve lint recovery.
According to a paper from Egypt, Egyptian cotton growers
are at an advantage in producing extra long and long staple
cotton. The paper compares yield data, price and gross income data from four West African countries and Tanzania,
and shows that it is more profitable to produce long and extra
long staple cotton in Egypt mainly because of a higher price
for better quality cotton.
The 2009 Technical Seminar will be on the topic of “Biosafety
Regulations, Implementations and Consumer Acceptance.”
3
Positive Developments in Integrated Pest Control
for Cotton in West Africa
Ouola Traoré, Institute of the Environment and Agricultural Research (INERA), Cotton Program,
Bobo-Dioulasso, Burkina Faso
Introduction
Cotton is one of the leading cash crops in the West African
subregion. It employs more than 10 million growers. In 2007,
total output came to 1.2 million metric tons of seedcotton
on approximately 1.5 million hectares, for an average yield
of 800 kg/ha. Lint exports from these countries account for
less than 15 percent of world exports but are second highest
worldwide, trailing the USA.
Yields recorded significant growth of 6 percent annually between 1960 and 1980, versus 2 percent worldwide. Beginning
in the 1980s, though, yields virtually stagnated, or even declined. This situation is due to a number of factors:
- dismantling of the extension system;
- declining soil fertility;
- declining world prices for cotton lint;
- difficulties with pest control.
Cotton is one of the most highly attacked plants in the world.
There are more than 1,300 insect and acarid species recorded
on cotton plants, and this does not include nematodes and
mammals. In the absence of pest and disease control, average
harvest losses in the West African subregion range between
40 and 70 percent, depending on the agro-ecological zone and
the year.
This paper reviews integrated pest control efforts undertaken
in the West African cotton sector. the young plantlet are attacked by diplopods (millipedes). The
most harmful species belong to the genera Peridontopyge and
Tibiomus. These species are dark in color, with alternating
lighter-colored bands and blackish-brown bands. Their crosssection is round, and they range from 2 to 8 cm in length.
Diplopods attack and hollow out the seed. They feed on it
during germination.
Principal root pests
These primarily consist of insects and nematodes.
• Insects
Syagrus calcaratus: A small, shiny blue-black beetle with
a tawny orange thorax and lower legs. The orange-headed
adults feed on the leaves, where they leave elongated perforations. The larvae live in the soil, where they feed on the
roots, which they decorticate by making rings around these
organs, leading to a characteristic wilting of the plant.
• Nematodes
Noxious nematodes belonging to the Nemathelminths family have been identified in root ectoparasites and endoparasites. They fall mainly within the genera Pratylenchus,
Rotylenchus, Meloidogyne, Scutellonema, and Helicotylenchus.
Principal Leaf Pests and Their Damage
Phyllophagous caterpillars
According to the International Organization for Biological
Control (IOBC), integrated control is “a system for controlling noxious organisms that uses a set of methods meeting
economic, ecological, and toxicological requirements, with
priority given to the deliberate implementation of natural limiting factors and respect for tolerance thresholds.” In cotton,
integrated pest control requires full knowledge of the plant’s
main pests and diseases and their natural enemies.
• Syllepte derogata
This is the cigarette-shape “leaf-rolling” caterpillar. It is
light green in color, often translucent with a black head. It
attacks leaves at all stages of the plant’s development by
spinning silky threads. Black excrement can be seen inside
the leaf. Infestations of this pest are often localized within
the field and may result in spectacular defoliation. It also
attacks okra.
Cotton Pests in West Africa
• Spodoptera littoralis
The caterpillar may be brown, yellowish, or gray. It is characterized by two rows of black triangles on the back and a
light line on each side. But these triangles may be present
only at the front or rear of the body. The eggs are deposited
in a pile on the underside of the leaves, where the young caterpillars are born and then begin to feed on the supporting
leaves. Older caterpillars perforate the leaves and also attack the reproductive organs. Spodoptera also causes damage to cowpeas, groundnuts, etc.
Cotton pests are classified according to the types of organs attacked on the plant. All parts of the plant are attacked (seeds,
roots, vegetative and fruit-bearing organs). The principal pests
and diseases of the vegetative and fruit-bearing organs of the
cotton plant can be divided into three groups, according to the
phenological stage of the plant:
Principal Seed and Root Pests
Principal seed pests
Insects of the Tenebrionidae family (Tribolium castaneum)
attack the seed during storage. The seed also harbors Pectinophora gossypiella and Cryptophlebia leucotreta caterpillars
in areas where these pests proliferate. At sowing, the seed and
• Anomis flava
This is the “surveyor caterpillar,” so called because of its
highly characteristic motion. The caterpillar is yellow, with
a yellow or greenish-yellow head. It has five, very fine white
4
lines on its back. It attacks leaves only. Damage from these
caterpillars consists of circular perforations measuring 1 to
3 cm in diameter in the leaves.
Phyllophagous beetles
• Flea beetles
These small, highly mobile insects are of several colors.
They make lots of holes in the leaves of young glandless
cotton plants.
- Nisotra dilecta: blue
- Nisotra uniformis: brown
- Podagrica decolorata: yellow-orange
They are also found on okra, the various Hibiscus spp. (jutes,
kenaf, etc.), and sometimes on glanded cotton plants.
Acarids
There are two genera that are cotton pests in the subregion:
Tetranychus or red spider mites and Tarsonemus mites, which
are the most important. They are tiny, almost invisible to the
naked eye, and live on the underside of the leaf.
• Tetranychus
All the species encountered belong to the genus Tetranychus. They include T. urticae, T. neocaledonicus, and T.
falcaratus. They are red in color, hence the name of red
spiders. They are not very mobile. They feed on the underside of leaves with a necrosed appearance. They are usually
unimportant.
• Tarsonemus
The most important species is Polyphagotarsonemus latus,
which is yellow-white in color and highly mobile. It appears on cotton plants in humid zones (rainfall above 1000
mm/year), especially Benin, Côte d’Ivoire, and Togo. It has
a very short biological cycle, multiplies every five days, and
causes substantial damage, particularly in damp, overcast
conditions. Affected leaves show a number of successive
symptoms, depending on the level of gravity:
- the underside is dark green, glazed, oily, and shiny;
- the sides of the limb roll downward;
- the leaves look chapped and torn as if cut by a knife.
The plant takes on a spindly appearance with few or no
fruit-bearing organs. Early or severe attacks result in heavy
declines in output.
Piercing and sucking insects
These include the Homoptera and the Heteroptera. The former are the most dangerous. Among the Homoptera, aphids,
white flies, and jassids are of concern, while the Heteroptera
include, in particular, mirids (Dysdercus sp. and Helopeltis
schoutedeni).
Homoptera
• Aphids: Aphis gossypii
These are yellow, yellow-green, or black-green in color,
may be either winged or apterous, and have a very short biological cycle. They are polyphagous. They live in colonies
on the underside of leaves that become arched and tense and
shrivel downward. The waste matter, consisting of a sweet
substance (honeydew), falls on the leaves and gives them a
shiny appearance. Microorganisms (mushrooms) may develop on the honeydew and produce a black discoloration
on the leaves and the seedcotton: this is called sooty mold.
• Whiteflies: Bemisia tabaci
The larvae are oval in shape, flattened, and green when they
are young but yellowish when they are older. They are attached to the underside of the leaves. The adults are very
small insects with two pairs of white wings. They are very
mobile and flit around the plant. Large populations cause
the leaves to yellow and disturb the plant’s development.
As in the case of aphids, they also produce a honeydew that
spoils cotton in open bolls. This pest is also highly polyphagous: it can be found on many other cultivated plants, particularly vegetable crops such as tomatoes.
• Jassids: Jacobiella fascialis
These are tiny green insects with a characteristic, oblique
type of motion. They pierce the leaves, which then take on
a reddish appearance around the edges.
Heteroptera
The genera and species that attack the cotton plant are very
numerous in the subregion and particularly in the most humid
zones. The main concern is:
• Helopeltis schoutedeni
This is a mirid with an elongated form and orange-yellow
or bright red coloring. It is found mainly in the most humid zones. It attacks the leaves, branches, stems, and bolls
and produces brown or black cankers. In the case of early
and severe attacks, the leaves become waffled and cracked,
taking on the appearance of “claws.” The plant’s growth is
slowed as a result. Other Heteroptera of lesser economic
importance also bear mention: Anoplocnomus curvipes,
Campyloma spp., etc.
Principal Reproductive Organ Pests
These include both insects and mammals.
Insects
These are classified as carpophagous insects with exocarpal
and endocarpal diets.
Carpophagous insects with an exocarpal diet
• Helicoverpa armigera
The caterpillars are of variable color, with two light lateral
lines and small hairs on the body. They attack and cause
major damage to the flower buds, flowers, and bolls. The
larvae are highly voracious. A single larva can destroy in
one day between five and ten reproductive organs, specifically the squares, flower buds, and flowers. The excrement
on flower buds and bolls that have been attacked is often
abundant and expelled from the organ. In certain cases (second-generation infestation and shortage of the abovementioned organs), the caterpillar may attack young leaves and
5
branches. H. armigera is highly polyphagous (cultivated
plants: maize, sorghum, tomatoes, sunflowers, etc., as well
as wild plants: Cleome viscosa, etc.).
• Diparopsis watersi
The young, yellowish caterpillar later becomes pale green
and squat, with horizontal red lines that grow closer together toward the head. It reaches full growth at 2.5 to 3
cm in length. It is not very mobile and it attacks flower
buds, flowers, and bolls by perforating them so that they
sometimes remain hanging from the plant by threads. It is
much less voracious than H. armigera. After nearly having disappeared from the West African subregion due to the
introduction of pyrethroids in the late 1970s, this pest has
reappeared at relatively high levels since the reintroduction
of endosulfan. This active matter, designed to manage the
resistance to pyrethroids acquired by H. armigera, is in fact
very inadequate on Diparopsis.
• Earias insulana and E. biplaga
The squat caterpillars are easy to recognize because they
have numerous spines, hence their popular name of “spiny”
caterpillars. They attack the terminal buds (topping) and the
flower buds, flowers, and bolls. The entry holes are quite
large and easily visible.
Carpophagous insects with an endocarpal diet
• Pectinophora gossypiella (pink bollworm)
Called the pink bollworm because of its color, this caterpillar has segments marked with bands and horizontal lines.
Fully grown, it reaches a length of 1 to 1.5 cm. It is sometimes confused with Cryptophlebia. It attacks the flowers
and causes a specific symptom: “rosette flowers.” At birth,
the caterpillar enters directly into the attacked organ and
feeds by preference on boll seeds, causing damage that is
often followed by secondary rot. P. gossypiella lives solely
on plants of the same family as cotton.
• Cryptophlebia leucotreta
The caterpillar is pale gray at full growth and resembles a
pink bollworm. It has the same mode of attack and causes
the same damage as P. gossypiella (deteriorated seedcotton,
orange segment, etc.). The caterpillar’s entry hole into the
boll produces a curl. C. leucotreta is highly polyphagous
and also attacks maize, guava, citrus fruit, etc.
Carpophagous Heteroptera
• Dysdercus vöelkeri
This is a large, red and black mirid, 1 to 1.5 cm in length.
The larvae are apterous, while the adults have front wings
characterized by two black dots centered on a light brown
background and ending in a black band. They are all bright
red in color and live in colonies. D. vöelkeri pierces green
bolls or those that are already open in order to feed on the
seeds. It depreciates the germinative value of the seed and
the fiber discolors.
Mammals
The arrival and spread of glandless cotton varieties in the mid
1980s caused mammals (particularly monkeys and rodents) to
develop an interest in this plant and inflict damage of major
economic importance. At the same time, the very high pressure on ophidians, particularly the family of Boidae (Phyton
regius), exacerbated the phenomenon with a very high proliferation of rodents on glanded cotton varieties. These rodents
belong to the following families, genera, and species: Muridae
Mastomys natalensis Myomis dybowskii M. deroii Rattus rattus Arvicanthis niloticus Cricetomidae Cricetomys gambianus
C. emini Sciuridae Funisciurus anerythrus F. leucogenys Xerus erythropus Gabillidae Tatera guinae T. kempii
They attack all reproductive and sometimes the vegetative organs, which they then consume either within the cotton field
or in the surrounding bush. The damage is sometimes very
high and may cause growers to lose harvests.
Principal Cotton Plant Diseases and
Deficiencies in West Africa
Cotton Plant Diseases
Cotton plants are attacked by certain diseases, often of minor
importance but which can become major in the case of severe
attacks. They include, in particular:
• Bacteriosis: The new form that has developed is called
“black arm.” All the aerial organs of the plant (leaves,
branches, stems, bolls, etc.) are attacked from the beginning to the end of the cotton plant’s growth cycle. The foliar
symptoms are angular, oily blotches, while cankers appear
on the stems and rot on the bolls. In varying degrees, depending on location, bacteriosis has attacked virtually all
the varieties grown in the subregion for nearly 15 years
now.
• Floral virescence: This disease leads to a yellowing of the
leaves and stems, transformation of floral organs into foliated organs, a greening of the corolla and the stamens, and,
finally, a proliferation of branches at the internodes, resulting in spectacular sterility. It is transmitted by an infectious
agent akin to the Mycoplasma. The vector is a Homoptera,
and the main species is Orosius cellulosus.
• Blue disease: Plant growth is slowed if the attack comes
early. The internodes become shorter, the plant takes on
a bush-like, sometimes creeping appearance, and the leaf
blades become thicker and take on a bluish-green appearance, darker than normal and brittle in texture, with the
edges rolled downward; the leaf blades themselves tend
to become vertical. In the beginning, the flower-bearing
organs are scrawny, and they cease to appear if the attack
continues. But if the attack comes late, then the symptoms
are confined to the vegetative extremities.
Mineral Deficiencies and Growth Accidents
• Potassium deficiency: This can be recognized by the presence of yellowish blotches between veins of the leaves, the
edges of which turn brown. At an advanced stage, the leaves
dry completely but still hang on to the plant, looking rather
like bats. The cotton lint yield and quality both diminish.
6
• Growth accidents: Lightning strikes
may cause damage of a natural origin
in certain countries and locations. The
affected area is always circular (roughly 12 meters in diameter), equivalent
to the area covered by 15 ridges spaced
0.8 meters apart. The leaves of the affected cotton plants dry and fall off
the plant, leaving brown, seemingly
burned stems. The damage is different from phytotoxicity. Damage from
lightning strikes is sometimes wrongly
confused with damage caused by insects.
Table 1: Doses of the Principal Insecticides and Fungicides Used in West Africa
Active substances
Benfuracarb
Carbosulfan
Imidacloprid
Thiamethoxam
Chlorpyriphos ethyl
Carbendazime
Chlorothalonil
Metalaxyl
Propiconazole
TMTD - Thirame
Principal Components
of Integrated Control in West Africa
Seed disinfection
Seed is one of the most important inputs in the cotton production chain. It must be protected against all forms of aggression
that could affect its quality. To achieve good sprouting, the
seed must first of all have good germinative capacity. Unfortunately, cotton growers often run into problems of poor sprouting on their farms.
Minimum dose
(g/kg seed)
Insecticides
1
1.25
2.5
0.15
0.5
Fungicides
0.7
1
0.35
0.15
0.75
Maximum dose
(g/kg seed)
4
2.5
3.5
1
4
4
1.6
3.2
tacks by diseases and pests. The principal insecticides and
fungicides used in West Africa and their doses are shown in
table 1.
Varietal control
The objective of seed disinfection is to preserve seed quality.
The method of varietal control encompasses all the qualities
induced in the cotton plant, through traditional selection or
modern biotechnology, for the purpose of reducing the impact
of certain pests on seedcotton yields. These qualities may involve the production of excrescences on the organs of the cotton plant so as to prevent movements by pests (pilosity) or the
production of toxins harmful to pests (VIP and Bt proteins).
The principal causes of poor sprouting are:
A few examples of varietal control and their implementation:
- Abiotic factors: The seed handling and storage
conditions must take into account any excessive heat or
humidity in order to avoid seed deterioration.
- Biotic factors: These include diseases and pests.
• Diseases
Damping off is by far the most important. This is caused by
a complex of pathogenic mushrooms that are either agents
carried by seeds (Colletotrichum gossypii, Fusarium spp)
or agents found in the soil (Rhizoctonia solani, Pythium
spp, Macrophomina phaseoli).
Attacks may occur either before or after sprouting. If before,
the seeds rot in the soil and do not germinate. By contrast, in
the case of damage after sprouting, the seeds germinate but
the young plantlets wither and soon die.
• Seed and plantlet pests
Many insects may cause non-germination or poor sprouting
of the cotton seed. Some destroy the seed by consuming
the kernel. Others attack the plantlets when they are in the
cotyledonary stage. This latter category of seed and plantlet
pests includes julids, which hollow out the seeds in the soil
or gnaw on the cotyledons or the tigelle of the plantlets.
Insects whose larvae live in the soil also attack the plantlets,
typically the small roots (Syagrus, crickets, ants, aphids,
and even some caterpillars).
Seed treatment
To obtain good sprouting, the seed must first of all have good
germinative capacity, but it must also be protected from at-
• Glanded cotton plants
Classic cotton plants contain phenolic yellow pigments
called gossypol. This gossypol is present in small glands
found in the various organs of the plant. The gossypol is
used to fight against infestations of beetles that produce
small holes in the leaves. The varieties without gossypol
(i.e. glandless varieties) are useful for animal feed, through
their seeds, but they are strongly attacked by beetles. That
is the reason why this type of variety is not widely grown
in the subregion.
• Cotton plants with hairiness to combat jassids
Jassids are small leafhoppers that move around on various
organs of the cotton plant. They pierce and suck the sap,
often transmitting diseases to cotton plants, as in the case of
Orosius cellulosus which transmits a mycoplasmal disease
called floral virescence or phyllody. The typical diagonal
movement of jassids is greatly obstructed by the presence
of hairs on the organs of the cotton plant. This simple fact
reduces the presence of this pest on the cotton plant; in such
a case, the pest prefers to look for other plants where it can
move around more easily.
Today, the impact of jassids (O. cellulosus, which transmits
phyllody to the cotton plant) is greatly controlled by the
use of systemic seed treatment chemicals such as neonicotinoids (imidaclopride, thiamethoxam, acetamipride), carbamates (carbosulfan), etc. The use of hairy varieties is no
longer in fashion, all the more so because infestations of
the whitefly Bemisia tabaci – a leading cotton plant pest in
7
the subregion since the late 1990s – are greatly encouraged
by thairy varieties. In fact, the larvae of B. tabaci, once attached to the leaf, become inaccessible to their natural enemies and are only slightly reached by the insecticides used
against them.
Research on varietal selection in the subregion should now
focus on non-hairy varieties that make access to B. tabaci
larvae easier for natural enemies and insecticides. In Burkina Faso, for example, the FK37 variety is considerably less
hairy than FK290, which is being phased out. Researchers’
efforts to improve varieties in the West African subregion
should continue in the same direction.
• Genetically modified cotton (GMC) to combat boll and
leaf caterpillars
A GMC is a conventional cotton plant that has received a
gene enabling it to acquire an additional characteristic. The
insertion or transgenesis can be accomplished by physical
or biological methods. To protect the cotton plant against
pests, the inserted genes come from Bacillus thuringiensis,
which is a soil bacterium. The GMCs currently available
are effective against most larvae of carpophagous and phyllophagous moths. The toxins produced by the GMCs have
no direct effect on piercing and sucking Homoptera including aphids, whiteflies, and jassids. If necessary, treatments
targeting these piercing and sucking insects are warranted.
The fact of not using insecticides to control moth larvae
encourages the presence of natural enemies.
Agronomic control
Agronomic control of cotton plant pests includes the whole
range of farming techniques used to disturb the development
of pests at a given stage of their biological cycle. These techniques run all the way from preparing the field to performing
post-harvest operations.
A few examples of agronomic control and their implementation :
• Early sowing to control second-generation H. armigera
Conventional cotton growing depends greatly on the period
when the crop is started. Early sowing is recommended in
order to avoid rainfall cessation at the time of cotton plant
fructification, which would cause a decline in productivity.
In regard to phytosanitary protection, early sowing is also
recommended, as soon as the rains have begun, to prevent
the most sensitive period for the cotton plant from coinciding with second-generation H. armigera, which causes very
serious damage at this phase.
Two to three generations of H. armigera have been found on
cotton plants, depending on the length of the rainy season.
This pest’s first phase of proliferation takes place between
mid-July and mid-August in the West African subregion
and matches the development of the first fruit-bearing organs. Very often, this phase is not especially dangerous because the individual pests are few in number and are more
highly sensitive to insecticides. The second generation is
observed between mid-September and mid-October. This
is the most dangerous generation because the individuals
resulting from parents that survived the first generation develop some tolerance to the insecticides, which makes them
harder to control.
• Plowing
Deep plowing is a way to bring the chrysalises of pests to
the surface before the butterflies emerge. These chrysalises
are either gathered by birds or dried out by the climate, thus
diminishing the number of butterflies to emerge.
• Hoeing
This operation serves to eliminate weeds in the vicinity of
the cotton plant, and thus potential hosts for pests. A well
aerated field receives better penetration of insecticide treatments in the various organs of the cotton plant.
• Early and staggered harvests
Insecticide applications cease several days before the start
of the harvest. Piercing and sucking insects such as the
aphid Aphis gossypii and the white fly Bemisia tabaci feed
on the young buds and produce sweet substances that result
in sticky cotton. To avoid this, it is recommended that growers harvest their crop as the bolls gradually open.
• Destruction of old cotton plants to control Diparopsis,
Syagrus, pink bollworm, and diseases
If the cotton stems are left in the field after the harvest, some
regrowth occurs after the first rainfall. This regrowth provides a refuge for certain pests such as Syagrus calcaratus
before the new cotton plants emerge. Once the new field has
abundant vegetation, pests easily migrate to it and thus inflict damage. It is therefore recommended that growers pull
up the cotton plants or cut their stems after the harvest.
Biological control
Biological control is defined as the use of living organisms or
their products to combat other organisms that are considered
harmful. The living organisms typically used are predators,
parasites, parasitoids, and entomopathogens.
A number of projects have been started in West Africa concerning the biological control of cotton pests, but they have
not been continued due to practical and financial difficulties.
The efforts made in this area tend to protect indigenous natural enemies by using active substances that spare them.
Chemical control
Despite implementation of other components of integrated
control (excluding GMC), in West Africa chemical control
remains the principal tool for combating cotton pests, particularly boll caterpillars. The chemical treatment programs
currently under way for cotton growing in West Africa are
based on the results of large-scale experimentation, repeated
over several crop years in various agro-ecological zones. The
design takes into account the principal issues, namely the
biological cycle of the cotton plant and the dynamics of pest
populations.
Two main methods of intervention have been developed on
the basis of the research results:
8
- calendar-based treatment programs,
- threshold-based intervention programs.
Calendar-based treatment program
The principal objective in developing a calendar-based treatment program, or predefined treatment program, was to ensure that cotton plants are protected during the entire period
from the start of flowering until the majority of formed bolls
have reached maturity. It took into account the very low level
of expertise of growers, who did not know how to recognize
the pests or manage their supplies of different products.
Types of calendar-based programs
In West Africa, since its conception, the principle of protecting the cotton crop through a calendar-based program has involved two variants: the standard program and the windows
program.
• Standard program
The standard program has fallen into disuse by the great
majority of cotton growers. It was mostly aimed at protecting the fructiferous phase of cotton plants. The interventions began as soon as the first flowers appeared, roughly
45 to 50 days after sprouting. In general, the recommended
treatment schedule was every 14 days. The number of treatments typically came to five or six for growers who adhered
to the research recommendations. All the applications were
done solely with mixtures (pyrethroid + organophosphorus)
or occasionally three products (one pyrethroid + two organophosphorus) throughout the period of protection. Unfortunately, this unvaried approach resulted in the development of resistance on the part of certain pests, particularly
Helicoverpa armigera.
• Windows program
Development of the new calendar-based program, known as
the windows program, was motivated by the appearance and
then expansion of the problem of resistance to pyrethroids
on the part of the Helicoverpa armigera boll caterpillar.
The principle of calendar-based interventions at 14-day intervals was maintained. Modifications were made in terms
of the start-up date for treatments and the products used.
The timing of the initial treatment was moved up to 30-35
days after sprouting, i.e. when the floral buds appear. The
goal is to target young and fragile Helicoverpa armigera
caterpillars. Based on the notion of six treatments to be carried out in order to protect a cotton field, the main innovation of this program was to create intervention “windows.”
The six treatments were grouped into two or four successive
interventions to form one window. Two- and three-window
programs thus emerged.
- Two-window program: This program is based on the
principle that the first and second treatments form the first
window, while the second window consists of the remaining four (third, fourth, fifth, and sixth treatments).
- Three-window program: The first and second treatments form the first window; the third and fourth treatments form the second window; and the fifth and sixth
treatments form the third window. It is important to note
that the choice of products to be applied is made with great
care. Thus:
For both types of window program, the treatments of the
first window are always performed with a product that does
not belong to the pyrethroid family, as the objective is to
reduce the duration of use of the molecules of this family, to
which H. armigera has developed a resistance. A few examples include profenofos, indoxacarb, spinosad, malathion,
flubendiamide-spirotetramate association, etc.
During the second window (two-window program) or the
last two windows (three-window program), the treatments
are performed with binary products containing a pyrethroid
in association with a product from a different family.
In the case of the three-window program, the second window may involve the use of acaricides, followed by aphicides and/or aleurodicides during the third window. Examples of such products include:
- acaricides: cypermethrine/profenofos, deltamethrine/
triazophos
- aphicides/aleurodicides: lambdacyhalothrine/acetamiprid, alphamethrine/imidacloprid
This new strategy has been widely adopted in the subregion. It has helped stop the growing problem of caterpillar
resistance to pyrethroids. In addition, it has led to greater
awareness in regard to the necessity of avoiding the emergence of the same problem with other cotton crop pests.
Threshold-based program
Programs of threshold-based interventions represent a very
recent innovation in the subregion. Their expansion remains
slow for a number of reasons related to insufficient knowledge
concerning cotton pests, indisputably the determining factor
in the success of this program.
Design
This technique is based on determining infestation thresholds
for the principal pests. The assortment of cotton pests in the
West African subregion is rich and varied, and any strategy
to protect the crop must be designed with this in mind. Using
an approach rooted in research results on the cotton plant and
other crops coming from other regions of the world, a priority
is placed on assessing the amount of damage caused by harmful insects. The results of these assessments are used to make
the decision to initiate treatments and control infestations after
the treatments have been performed.
Knowledge of insects and the damage they cause
Assessing the level of infestation of insect populations requires knowledge of the various species harmful to the cotton
plant and the damage they cause. To that end, samples need
to be taken.
Sampling and decision-making
The purpose of sampling is to assess populations or damage in
the cotton field and then make an informed decision.
9
The samples should be taken diagonally, in a homogeneous,
large, and fairly representative portion of the cotton field in
question. The size of the sample varies from one country to
another, and the intervention threshold is related to the sample
size.
Readings are taken once a week, starting on the 30th day after
sprouting and continuing until a majority of bolls in the cotton field have reached maturity. The basic principle is that the
sampled plants must be carefully and systematically examined. In the subregion, mainly three groups of pests are taken
into account in the assessments of populations and damage:
carpophagous pests, phyllophagous pests, and piercing and
sucking insects. While threshold-based interventions are easy
with exocarpal caterpillars, the task is more complicated with
endocarpal ones. The treatments are generally performed with
specific products in the event that intervention thresholds are
reached, or with mixtures when necessary. This requires managing supplies of products of several different chemical fami-
lies, a task that is not very easy for growers of the subregion.
Conclusion
In the case of cotton, integrated pest control in West Africa remains highly dependent on chemical controls, without which
productivity cannot be assured. In the face of globalization,
fluctuations in world prices for cotton lint, and the subsidies
granted to cotton growers in the North, the West African subregion needs to make efforts to increase field productivity in
order to secure a better living for the more than 20 million
persons involved in the subregion’s cotton industry. Increased
productivity will require the establishment of a more favorable institutional framework, the adoption of more effective
technical approaches, and better organized growers. New
technologies such as the production and use of organic fertilizer with the help of activators, the protection of intervention
thresholds, and genetically modified cotton may well be part
of the solution.
Developing a Sustainable Production and Marketing
System for the Cotton Industry in Kenya
Edwin Caleb Ikitoo, Kenya Agricultural Research Institute, Nairobi, Kenya, and Waweru Gitonga,
Kenya Agricultural Research Institute, Kerugoya, Kenya
(Presented by Edwin Caleb Ikitoo)
Abstract
The East African upland cottons (Gossypium hirsutum, L.)
were introduced into Kenya at the turn of the 20th century.
However, early attempts to establish the crop in the country,
i.e. 1912-1923, were hampered by poor cultivars, wide ranging dates of planting and high incidences of pests and diseases. Following research initiative in the 1950s by the Cotton
Research Corporation (CRC) in collaboration with the Cotton
Board (CB) formerly Cotton Lint and Seed Marketing Board
(CL & SMB), it was possible to establish the crop, first in the
Lake Victoria and coastal regions and later in the 1960s, in
the central/eastern region. Improved varieties from Tanzania
and Uganda, i.e. UK, UKA, IL, BP and BPA lines with strong
resistance to bacterial blight [Xanthomonas malvacearum (EF
Smith), Dowson], verticilium wilt and pests, in particular, the
Jassid (Empoasca spp), were introduced. Thus, by using the
improved varieties and suitable agronomic practices, cotton
production in the country increased from 23,000 bales (4,255
tons) in 1965/66 to 70,000 bales (12,950 tons) in 1984/85.
However, in 1997/98, production reached an all time low of
20,000 bales (3,700 tons). A number of constraints were cited
for the drastic decline in production, including (a) competition for resources, i.e. inputs and labor, between cotton and
food crops, (b) lack of finance and credit support to farmers,
(c) collapse of Hola and Bura irrigation schemes, which accounted for 20 – 40% total production, (d) lack of a system for
certified seed production, hence, poor quality seed resulting in
low yields and ginning outturn, (e) delayed payments to farm-
ers for seedcotton deliveries and (f) negative impact of market
liberalization. Research to address the agronomic constraints
has been conducted with new and improved varieties. However, location-specific technology packages on manure, fertilizer use and cropping systems are required. Thus, by repealing
the cotton Act of 1988 and replacing it with the revised cotton
Act of 2006 that formed the legal and institutional framework
for the creation of the Cotton Development Authority, The
Kenya Cotton Growers Association and the Cotton Ginners
Association,the Government is making it possible to revitalize
the cotton industry in Kenya. The revitalization process should
address research issues of low yields and lint quality, increasing pest and disease problems, certified seed production and
increasing crop production under irrigation. These aspects are
discussed in the paper and the way forward is proposed.
Introduction
Cotton (Gossypium spp) is a weak perennial plant grown annually for economic reasons. The economic species of cotton
originated from Africa; however, they were first domesticated
in the Indus Valley in Pakistan/India (Leakey, 1970; Purseglove, 1992). The East African upland cottons (G. hirsutum
L) were introduced into Kenya from Tanzania at the turn of
the 20th century, with initial crops being cultivated around the
shores of Lake Victoria (Ackland, 1971). However, the initial
attempts to establish the crop in the country, i.e. 1912 -1923,
were hampered by poor cultivars, a wide range of planting
dates and high incidences of pests and diseases resulting in
10
Figure 1: Cotton Production in Kenya for the Period 1965/66
to 2006/07
Metric Tones of Seedcotton
80 000
Bales of Lint (one bale =185 kg)
Production in metric tones/bales
70 000
60 000
50 000
40 000
30 000
20 000
10 000
19
65
/6
19 6
67
/6
19 8
69
/7
19 0
71
/7
19 2
73
/7
19 4
75
/7
19 6
77
/7
19 8
79
/8
19 0
81
/8
19 2
83
/8
19 4
85
/8
19 6
87
/8
19 8
89
/9
19 0
91
/9
19 2
93
/9
19 4
95
/9
19 6
97
/9
19 8
99
/0
20 0
01
/0
20 2
03
/0
20 4
05
/0
6
0
Year of production
low and variable yields (Leakey, 1970; Ackland, 1971; Kenya
Ministry of Agriculture, 1999). Nevertheless, in 1950, the Cotton Research Corporation (CRC), a British organization established to undertake cotton research in its colonies and protectorates in Africa, initiated research on cotton at the Cotton
Research Station (CRS), Kibos near the City of Kisumu. The
research commenced with the testing of varieties introduced
from Tanzania and Uganda and suitable agronomic practices.
Thus, by applying selected varieties and suitable agronomic
practices, it was possible to establish the crop in western Kenya and the coastal region. Later in the 1960s, the crop was
extended to central/eastern Kenya. The CRC worked in collaboration with the Cotton Lint and Seed Marketing Board
(CL&SMD), a statutory body established by an Act of Parliament in 1955, to intervene in activities pertaining to cotton
production, processing and marketing. The CRC had major
breeding programs at Ukiriguru and Ilonga in Tanzania and
Bukalasa and Serere in Uganda (Ikitoo, 1997; Kenya Ministry
of Agriculture, 1999).
After overcoming the initial establishment problems, cotton production in the country increased consistently, and in
1984/85, the highest level of 39,000 metric tones of seedcotton (70,000 bales of lint), was produced (Figure, 1). Soon after,
cotton production consistently declined attaining the lowest
level in 20 years, i.e. 11,000 MT of seedcotton, 13 years later
in 1997/98. Various factors were sited as being responsible for
the decline in production. These included inadequate on-farm
tillage capacity, competition for resources, i.e. inputs and labor, between cotton and more favorable food crops, low gross
margins, unrealistic price controls by the Cotton Board (CB),
formerly CL & SMB, and delayed cash payments to farmers
for seedcotton deliveries (Muturi, 1976; Djikstra, 1990).
In spite of the decline in production, cotton remains an important industrial crop in Kenya. Potentially, the country has
approximately 350,000 hectares that could be put under cotton annually compared to the current annual cultivation of
30,000 hectares. With an estimated population of 38 million,
the country has a domestic demand for cotton raw materials in
excess of 120,000 bales (22,200 tons) of lint per annum (pa),
while current production is below 30,000 bales (5,550 tons) of
lint pa. Cotton is also important for food security in marginal
rainfall areas, i.e. 500 -950 mm pa, since it is the most assured crop, increasing local people’s purchasing power. Thus,
to address the demand-supply gap, the cotton industry was
liberalized in the 1990s overriding the role of the CB; yet,
encouraging private sector participation. However, the liberalization was ushered in with problems including a weakening
of institutional support services, i.e. research and extension,
and market linkages between the cotton farmers and the ginners (Ministry of Agriculture, 1999; Kariuki et al., 2008).
In order to give legal legitimacy to the liberalization process,
the Government in keeping with the Session Paper No. 1 of
1986 on Economic Management for Renewed Growth and
Session Paper No. 2 of 1997 and Industrial Transformation
to the Year 2020, had to repeal the 1988 Act Cap 335 (No
3) revised in 1990, which replaced the 1955 CL&SMB Act
and created the CB as a regulatory and not a facilitative organ
and put in place a new Cotton Amendment Act 2006. This
paved the way for the formation of the Cotton Development
Authority (CODA), whose principle object under the revised
legal framework shall be to promote, co-ordinate, monitor and
direct the cotton industry in Kenya (Ministry of Agriculture,
1999; Kariuki et al., 2008). It is hoped that under the direction
of the newly formed CODA, in collaboration with relevant
government institutions, i.e. Ministry of Agriculture (MoA),
Kenya Agricultural Research Institute (KARI) and Kenya
Plant Health Inspection Services (KEPHIS) and other stakeholders among them, the Kenya Cotton Ginners Association
(KCGA) and the Cotton Manufacturers Association, the cotton industry in Kenya will grow and thrive once again.
Crop Improvement
The initial crop improvement activities at the CRS, Kibos focused on evaluation of varieties developed in Tanzania and
Uganda for high yields and resistance to pests and diseases.
The varieties included the American upland types mainly
Acala and Deltapine series, the UK and UKA series from
Ukiriguru consisting of crosses from the East African upland
cultivars and West and Central African cultivars derived from
Allen variety with Albar gene. Other varieties included BP,
BPA and SATU lines from Uganda and accessions from Russia, Malawi, Swaziland, South Africa, India and Pakistan.
Table, 1 shows some of the varieties evaluated by the breeding program in Kenya. The Ukiriguru, Ilonga and Bukalasa
varieties with Albar gene showed strong resistance to bacterial blight (black arm), caused by Xanthomonas malvacearum
and verticillium wilt. Further, the varieties were resistant to
leaf sucking pests, in particular the jassid (Empoasca spp),
due to their hairy leaves (Leakey, 1970; Leakey, 1973; Ikitoo,
1997). The varieties UK 68 and UKA 59/240 from Ukiriguru,
IL 62 from Ilonga and BPA 75 from Bukalasa, were recommended for cultivation in the country. UKA 59/240, a drought
tolerant late maturing variety with ginning outturn of about
32% and ≥ 2,000 kg/ha seedcotton yield, was recommended
for cultivation in western, central, eastern and coastal regions
(CGR, 1971; Ministry of Agriculture, 1999). on the other
11
Table 1: Some Varieties and Strains Evaluated in the Cotton Breeding Program
PERIOD
Before
1970
&
Under
Irrigation
1970/71
to
SOURCE
VARIETY / STRAIN TESTED
Acala 4-42
Acala 4-42 A
Acala 4-42-77
Acala 1517 C
Acala 4447
Ashimoni A 34
Austin blight master
Auburn M
Bar 14/25
Bar XL1
Bar XL3
Coker 100 AWR
Coker 124
Deltapine 15
Deltapine SL
Deltapine 45
Ukiriguru
(Tanzania)
UK 64
UK 68
UK 69
UK70
UKA K 76
UKA 59/240
UKA (63) 712
UKA (63) 720
Ilonga (Tanzania)
IL 62
IL 66
Bukalasa
(Uganda)
ALA 960 (65) 1
Albar XSR
BPA
BPA C
BPA 68
BPA 75
American
Upland
Acala 1517
Acala 15 17 D
Acala 15 17 V
Acala 3080
Acala SJ - 1
Acala 4 – 42
West/Central
Africa
ASA (65) 38
BJA 592
BSA (67) 15
BTK 12
L 142.9
L 299.10
Russia via Malawi
K 3400 K 3400 -7 K 3811
K 4219
South Africa
/Swaziland
Albacal
Cape Acala
Egypt,
Sudan &
Upland American
1979/80
Deltapine Smooth leaf-Rex
Dixie King – Rex SL
Domains sakel
Gregg – Stoneville 213
Lanket 57 – Stoneville 213
Lockett 88A
UKA (6) 736
UKA (63) 750
UKA (63) 763
UKA (63) 769
CA (68) 36
CA (7) 43
CA (7) 43
UKA (63) 771
UKA HM
UKA (63) A1/66/275 UKA HMB
UKA B2 (67) 380
UKA (71) MO 1
PB (70) 5
PB (70) 13
Atlas 67
Deltapine 45 A
Deltapine 5826
L 379.12
L 433.15
L 470.16
K 4245
K 255
M 327.4
Reba B 50
Samaru 71
K 4371
Del Cerro
Stoneville 7A
SA (66) 44
K 4614
SR 1054 – 2
59/240, which was recommended
for growing in both the SRs and
LRs. The variety UKA 59/240 was
planted at the on-set of the SRs, i.e.
mid-October and harvested at the
end of the LRs, i.e. mid-August September in the following year.
The unusual cultural practice was
necessitated by the bi-modal rainfall pattern in the region and inadequacy of any single season in the
region to sustain an economical cotton crop. However, the prolonged
growing period in the two seasons
increases weeding and pest control
regimes, hence, costs of production
(CGR, 1971). The varieties evaluated included the early maturing
types from Russia, Pakistan and
India and late maturing types from
West and Central Africa (IRCT germplasm).
Results indicated that the SRs, i.e.
250 - 450 mm, could sustain reasonable yields in early maturing varietIndia
C 1998,
BG (68) 16,
PRS 72, P 108F, HARNA (73) 5
HARNA (73) 44,
Krishna
ies, i.e. 400 to 800 kg of seedcotton
Source: Ikitoo, 1997. Coast Province (CGR, 1971; Ikitoo, 1997).
per hectare, within three months.
However, the SRs were inadequate
hand, BPA 75 had a better ginning percentage, i.e. 35%, and
lint quality, but was more determinate in growth and highly for cotton fiber maturation. With regard to the LRs, which was
sensitive to drought conditions. BPA 75 was recommended a cooler period compared to the SRs, the early maturing varifor production in Kerio Valley, Rift Valley Province and un- eties performed less satisfactorily compared to UKA 59/240,
der irrigation in the Hola and Bura irrigation schemes in the most likely due to their poor adaptation to the cooler weather
Tana River district. However, with time under production, the conditions. At the same time, the late maturing varieties from
commercial varieties started declining in yield and lint qual- West and Central Africa consisting of mainly the L and M
ity due to segregation of the economic plant components into lines from IRCT, which had genetic elements of G. arborium
original parental types. At the same time, ad-mixture of seed and G. raimondii Ulbr were evaluated in the region starting
materials for planting with seed from neighboring countries from the early 1980s through the 1990s. The late maturing
due to cross-border movement of seedcotton for ginning and varieties had high ginning outturn and more mature and stronlack of a certified seed production and distribution system in ger fiber compared to the UKA 59/240 (Fielding et al., 1984).
the country affected crop performance. Further, although the Selection, back crossing and evaluation within the IRCT vavarieties grown in Kenya were bred in Tanzania and Uganda, rieties culminated in the development of a multiline variety
none were grown in their mother countries. Thus, no further HART 89M, which proved superior to UKA 59/240 and is
breeding work or seed production for the varieties was con- now recommended for cultivation in central/eastern Kenya
ducted in the countries of origin. This necessitated initiation and the coast region (Ikitoo, 1997; Waturu et al., 2002).
of a complete breeding program in Kenya. Thus, line selec- Varietal evaluations for irrigated cotton were conducted in the
tions in UKA 59/240 and UK series and back crossing work Hola and Bura irrigation schemes in the 1980s. The evaluawas started at Kibos in the early 1980s. Over 50 lines from tions aimed at finding a better alternative to the variety BPA
UKA 59/240 were evaluated from which a multi-line, KSA 75, recommended for growing under irrigation. BPA 75 was
81M, was found superior to UKA 59/240 in both yield and lint more sensitive to soil moisture stress, and also more determiquality and recommended for growing in western Kenya as a nate in its growth habit compared to UKA 59/240. However,
replacement for UKA 59/240 (Ikitoo, 1997).
under irrigation, it performed better than UKA 59/240, having
The crop improvement work in central/eastern Kenya was an average seedcotton yield of 4,000 kg/ha compared to UKA
started at the CRS Mwea Tebere in the late 1970s and early 59/240’s 3,500 kg/ha, with superior fiber quality of 1-1/8 to
1980s. The work emphasized the evaluation of early maturing 1-½ inch, 22 grams per tex and micronaire of 4.4 (Ikitoo and
varieties to be grown one season, i.e. long rains (LRs) or short Ngigi, 1989). In the mainly American upland varieties evalurains (SRs), with the aim of getting a replacement for UKA ations, results indicated that all varieties had mature or very
Albacala 70
12
mature fibers. However, all the American upland varieties
were shorter and early maturing with fewer and larger bolls
compared to BPA 75 and only a few out yielded BPA 75. Nevertheless, all the promising varieties, including Stoneville 817
F, Stoneville 7a, Acala 1517D, Acala 3080, Deltapine 16 and
Albacala 70, out yielded BPA 75 by 7 - 20% and had ginning outturns of 35 - 41% compared to 32% for BPA 75, with
yields ranging from 4,000 to 5,500 kg seedcotton per hectare. The yield was, however, negatively correlated with the
ginning outturn. Acala 3080 ranked highest in fiber quality
(Fielding and Baraza, 1985; 1986).
In spite of all the crop improvement work done, the challenge
to increased cotton production in Kenya still remains, namely,
increasing profitability. The profitability in cotton production
could be increased either by cutting down costs of production and/or increasing yields. Cotton production under irrigation offers the best opportunity for increasing yields and
stabilizing production against high fluctuations in production
frequently observed under rainfed conditions due to uncertain
weather conditions in cotton growing areas.
Agronomic Practices
choices depended on convenience for efficient management,
i.e. weeding, spraying and harvesting (Mwea Tebere, 1988;
1989; Ikitoo, 2003).
Date of planting
Manning (1950) developed a method for estimating expected
rainfall and its reliability. Thus, based on our knowledge of
crop water requirements (Hutchinson et al., 1958), the expected rainfall could be related to crop water requirements,
hence, theoretically determining the optimal planting dates for
cotton in the different Agro-ecological zones. However, studies on optimal planting dates started in the 1950s showed optimal planting dates vary with regions. Planting was optimal in
mid-March for most of western Kenya, optimal in early-May
for the coastal region and Kerio valley and optimal in midOctober for most of the central/eastern region. The common
factor for all regions though was that any delay in planting after the optimal date of planting resulted in a significant decline
in yields. Thus, timely seedbed preparation and planting are
critical factors in achieving high yields in cotton.
Table 2: Some Cotton Spatial Arrangements and
Plant Population Tested
Tillage
In cotton, standard conventional tillage practices consisting of
one or two disc ploughs followed by harrowing before planting is recommended (Munro, 1970; Acland, 1971; CGR, 1971;
Waturu et al., 2002;). However, in Kenya, most cotton farmers
use oxen for ploughing and for economic reasons normally
plough only once before planting. This method of ploughing, rather shallow and repeated over years, could result in
compaction of lower soil layers, especially in clay soils such
as Vertisols (black cotton soils) and where fields are grazed
after the crop is harvested. Modern approaches in tillage, e.g.
minimum tillage, should be adopted in cotton alongside crop/
livestock management systems that involve controlled grazing and use manure combined with crop residues (Munro,
1970; Ikitoo, 1997).
Plant population, spatial arrangement
A wide range of spatial arrangements and plant populations
was tested for over 40 years from the 1950s to the 1990s in
the western, coastal and central/eastern regions of the country.
Treatments consisted of inter-row spacing of 60 to 120 cm
and intra-row spacing of 15 to 60 cm with 1 or 2 plants per
hill. This resulted in a wide range of plant populations from
13,888 to 222,222 plants per hectare. Generally, yields per
hectare increased with increasing plant population. However,
the number of bolls per plant and yield per plant declined with
increasing plant population, indicating complex physiological response mechanisms for yield with population change.
(Ikitoo, 1985; Ikitoo, 1997; Ikitoo and Macharia, 2003). Table
2 gives some of the spatial arrangements and plant populations used in the studies. Results indicated that with good
management, yields were optimal and remained fairly stable
within a range of 33,333 to 74,074 plants per hectare. Thus,
within the range, the plant population and spatial arrangement
COTTON SPACING
Between row
(cm)
Within row
(cm)
60
60
75
75
80
80
80
80
90
90
90
90
90
90
100
100
100
100
120
120
120
120
15
15
30
30
20
20
50
50
15
15
30
30
45
45
30
30
60
60
30
30
60
60
NO OF
PLANTS PER
HILL
PLANT
POPULATION
PER
HECTARE
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
111,111
222,222
44,444
88,888
62,.500
125
25
50
74,074
148,148
37,037
74,074
24,691
49,383
33,333
66,666
16,666
33,333
27,777
55,554
13,888
27,777
Source: Ikitoo, 1997
Water management
Water is a major factor in cotton production. Thus, on heavy
clay soils, in particular Vertisols, water logging could be a major problem, while in dry areas, moisture stress is often a problem. Studies on drainage in western Kenya and water harvesting in central/eastern Kenya indicated that use of broad bed
and furrow (BBF) for surface water drainage and tied ridges
(TR) for water harvesting, are necessary for increased cotton
13
yields (Ikitoo, 1997). Thus, detailed studies on drainage, water harvesting and irrigation are proposed as major options for
increasing cotton yields.
a wide range of natural vegetation that forms diverse habitats
for a large number of cotton pests. Thus, cotton production in
Kenya is confronted by a greater pest challenge compared to
neighboring countries, i.e. Tanzania and Uganda. However,
with good management, high yields of up to 3,000 kg/ha can
be obtained under rainfed condition (Mwea Tebere, 1988;
1989; 1990; 1991; 1992).
Soil fertility and fertilizer use
Cotton is grown on wide ranging soil types in Kenya including sandy soils (coast province), highly weathered acid loams
(western Kenya), heavy clay soils (Kano plains and Mwea),
and poorly developed loamy soils (Mwea, Meru, Machakos
and Kitui). The sandy and loamy soils tend to be low in nitrogen (N) and phosphorus (P), while the heavy clay soils tend to
be low in N and moderate to high in P (Tveitnes and Nyaas
The major cotton pests in Kenya are leaf sucking and cut
worms, mainly the aphids (Aphis gossypii) and jassids (Empoasca spp), bollworms including the American bollworm
spp) and false codling moth (Cryptophlebia luecotreta Meyr);
and Cotton stainer (Dysdercus spp). However, in the recent
past, possibly due to increased use of pesticides that decimate
natural enemies or predators, some cotton pests that were formally minor, including the red spider mites (Tetranychus telarius) and tobacco white fly (Bemisia tabaci) have become
major pests with significant economic implications for cotton
production in the country (Leakey, 1970; Acland, 1971; CGR,
1971; Ikitoo, 1997; Waturu et al., 2002).
Aakerbakkern, 1973; Michieka and Oswaggo, 1970).
Considerable studies on the application of manure and fertilizer have been done in cotton in the country. Results indicated that the use of manure enhanced soil water status and N
availability. However, fertilizer application, in particular N,
tended to enhance the pest status. Thus, proper and effective
pest control was critical to achieve the full impact of fertilizer
applications (Ikitoo, 1997). Thus, there is a need to undertake
location-specific studies on fertilizer requirements with specific attention to the soil types and climatic conditions, i.e.
rainfall and temperature, for better crop responses and high
yields to be achieved.
Pest management
Cotton intercropping with food crops
Since its introduction into the country, cotton has been intercropped with cereals, legumes and some other crops. In the
coastal region, it is intercropped with either cereals, in particular maize, or groundnut. In western Kenya, it is intercropped
with maize, sorghum or legumes including groundnuts, beans
and green grams. In central/eastern Kenya, cotton is intercropped with beans, pigeon peas, green grams, chickpeas,
cowpeas or sunflower. Results from the experiments indicated
higher reduction in cotton yields due to cereals, i.e. maize/sorghum, shading effect compared to the legumes shading effect.
However, combined monetary returns from intercropped land
units were in most cases greater than those obtained from their
respective pure stands. Further, land equivalent ratios of the
intercrops were greater than those of the pure stands, confirming the intrinsic and monetary values of inter cropping (Ikitoo,
1997; 2008).
However, the cost of application was prohibitive for most
farmers because conventional formulations of Carbaryl/DDT
consisted mainly of wettable powders (WP) and emulsifiable
Table 3: Major Cotton Pests in Kenya*
Cotton Pest and their
Management
TYPE OF PEST
Cotton pests
The cotton growing areas in Kenya cover a wide
range of agro-ecological zones (AEZ) namely L1,
L2, L3, L4, LM1, LM2, LM3 and LM4, derived from
two temperature zones, i.e. lowlands (L): 0 - 500 m
above sea level (asl) and lower mid-lands (LM): 510
to 1,250 m asl, combined with various rainfall regimes categorized as zones 1, 2, 3 and 4 within 500
to 1,500 mm per annum rainfall bracket (Jaetzold and
Schmidt, 1982a; 1982b and 1982c). Abrupt changes
in the AEZs within very short distances accommodate
Pest control is a major factor in the management of cotton for
increased production. Poor pest control results in yield loss
of 20 to 100%, and pesticide applications are the most important method of pest control for cotton in Kenya (Ikitoo,
1997; Waturu et al., 2002). However, a number of factors influence pesticide use in cotton, including (a) cost of pesticide,
(b) availability of water for conventional spraying, (c) cost
and frequency of application, (d) stage of plant growth, (e)
application skills and (f) safety considerations. Nonetheless,
because of the high incidence of pests and diseases that characterized early establishment of the cotton in the country, the
entomology program at the CRS Kibos initiated in the 1950s
commenced by evaluating organo-chlorine and organo-phosphorus pesticides for controlling cotton pests. Results indicated that seven applications of 3% y-BHC and 5% DDT at
7-day intervals staring at squaring were effective on most of
the pests.
COMMON AND SCIENTIFIC NAMES
Bollworm
American boll worm (Helicoverpa armigera);
Pink bollworm (Pectinophora gossypiella)
Spiny bollworm (Earias spp).
Leaf cutting and
sucking pest
Red spider mite (Tetranychus telarius).
Cotton aphid (Aphis gossypii).
Tobacco white flies (Bemisia tabaci).
Stainer
Cotton stainer (Dysdercus spp).
* The Red spider mite, Cotton aphid and Tobacco white fly have become major
cotton pests recently due increased use of synthetic pyrethroids.
14
concentrates (EC) applied in either high or low volume by
knapsack sprayers. Further, the y-BHC and DDT combination was found to have toxic side effects on plants including
malformation and shedding of leaves and flowers, and the
need to replace the y-BHC/ DDT combination was apparent.
Thus, studies initiated in the late 1960s to early 1970s aimed
at developing a system of pesticide application based on
pest counts, plant spatial arrangement and plant population,
thereby, reducing the costs of application. Results indicated
that considerable improvement in yield and grade was realized with scouting methods compared to a fixed spray regime.
However, disappointing results could be obtained if the scouting was not properly done. From the 1980s however, emphasis was placed on evaluation of low cost synthetic pyrethroids,
and currently over 40 individual and mixed compounds are
recommended for use against cotton pests, with the most popular including permethrin 10% (Ambush), alpha-cypermethrin
10% EC (Fastac), endosulpfan 350 g (Thiodan 35 EC) and
cybolt ME 10% EC (Flucythrinate). Various mixtures are also
in use (Ikitoo, 1997; Waturu et al., 2002). However, continuous use of synthetic pyrethroids destroys the pests’ natural enemies and predators. Thus, formerly minor pests including red
spider mite, white fly and aphids have become major pests. It
is proposed that future research should focus on IPM for effective and economical results, and environmental safety.
Pesticide application
Since the 1950s pest control in cotton was done by conventional spraying using knapsack sprayers with either high or
low volume water usage. The method worked well in humid
areas where water was readily available. However, in the
1980s, as emphasis in cotton production shifted from the humid to semi-arid areas, water availability became a major issue because of the large volumes required for spraying at peak
periods of plant growth, i.e. 250 – 300 lof water per hectare
per spray could not be readily found. Thus, ultra low volume
(ULV) chemical formulations and applicators were evaluated
and recommended for use in the marginal areas (Ikitoo, 1997).
Nevertheless, the ULV technology was not readily adopted in
cotton due to the cost implications of using 4 to 6 dry cells
to operate the ULV applicator. Most farmers were not able
to sustain the cash requirement for the ULV operation in the
spray period. It is proposed here that solar technology should
be developed for ULV applicators in cotton because solar energy is readily available in most parts of the country through
out the year.
Certified Cotton Seed Production
and Distribution
Production and Certification
It is always necessary to use good quality seed for planting,
which is obtained through the process of seed certification because it ensures that:
• The superior characteristics of the recommended commercial variety are maintained against deterioration by periodic
recycling of the breeder’s seed.
• The good qualities of the improved variety including (i)
high germination percentage, (ii) high plant vigor, (iii) high
growth rate and (iv) high yield and lint quality, are maintained through good crop management, field inspection and
certification.
In Kenya, the Cotton Lint and Seed Marketing Board / Cotton
board in conjunction with ginners operated a cotton seed supply system whereby seed from commercial seedcotton, ginned
basically for its lint, was dressed with fungicides, packaged
and re-distributed to farmers for planting. With time, the varieties deteriorated considerably in yield and lint quality due to
segregation of the economic plant characteristics into original
parental types. Thus, in order to maintain the superior qualities of the recommended varieties, a system of certified cotton
seed production is proposed. In that regard, the certified seed
will be patterned in accordance with the well known ‘wave
system’ of seed production that is in use in many cotton growing countries worldwide. In the system, seed renewal is a continuous process with routine progression through successive
stages of foundation, certified and registered seed from the
breeder’s seed (nucleus stock) (Lewis, 1970). The major objectives of the system will be:
• To ensure sustenance of high seedcotton yield and lint
quality through constant supply of certified seed to farmers.
• To establish and maintain an economically viable system
of seed production, certification and distribution for the recommended commercial varieties.
• To develop guidelines and procedures for application to
regulate the cotton seed certification process in order to ensure high quality standards.
Figure 2 indicates the first cycle of the certified seed production, which is repeated with the release of the breeder’s seed
for foundation seed production every three years. Thus, farmers will grow certified seed from breeder’s seed issued after
every three years. However, in the interim three years, they
will be issued with regenerated certified seed. That way it will
be possible to sustain a system of clean planting seed that is
true to type. Further, the seed is expected to be high yielding
and of good lint quality. Figure 3 indicates how the responsibility for seed production and certification is shared among
the production partners or stakeholders. KARI provides pure
seed, or breeder’s seed, to the foundation seed stock farms,
which could be commercial KARI farms of appointed production agencies overseen by the Cotton Development Authority
(CODA) and inspected by the Kenya Plant Health Inspectorate Services (KEPHIS). The seed is advanced to the registered stage the following season, which could be produced
on KARI farms, appointed agencies such as the National Irrigation Board (NIB) under their irrigation schemes or the
Kenya Volunteer development Association (KVDA) farms on
behalf of a registered seed company, overseen by CODA and
inspected by KEPHIS. All ginning of certified seed will have
15
to be done by selected ginneries in collaboration the Cotton
Ginners Association (CGA). The management of selected ginneries jointly with the CGA will ensure adherence to seed certification protocol, including high standards of ginning, seed
dressing and packaging.
Distribution
b) The collapse of the Hola and Bura irrigation schemes,
which accounted for 20 and 38% of total national seedcotton production.
c) Lack of a system for certified seed production and distribution, hence, poor quality planting materials, thus, low
yields and ginning outturn.
Cotton is grown solely by smallholder farmers in well over 20 d) Delayed payment to farmers for seedcotton deliveries.
districts in Western, Nyanza, Rift Valley, Central and Coast e) The negative impact of market liberalization. The CB
Provinces. Thus, distribution of seed for planting is a chalwas disabled from its market operations without putting
lenge. Traditionally, seed was distributed by over 38 ginneries
in place alternative mechanisms for running the cotton
overseen by the Cotton Board (CB). However, most of the
industry.
ginneries are now dysfunctional and in the absence of CB,
In view of the above, the Government had to intervene through
seed distribution was taken over by the Ministry of Agriculan appropriate policy and legal framework that could address
ture (MoA). Because only a few ginneries are functional, cotthe needs of the cotton industry under a liberalized economic
ton seed has to be moved over long distances and distributed
environment. This included establishment of institutions to
through the District Agriculture Officers in the cotton produccoordinate and facilitate the activities of the industry. A key
ing districts. Further, ginneries and farmers must agree on
institution formed under the 1998 Cotton Act is CODA, which
how to share the costs of the seed and transportation. Such a
in collaboration with the KCGA, will promote standards for
scenario is not sustainable. Thus, it is proposed to establish a
assessing/grading seedcotton and classifying lint and promote
seed company that will collaborate with CODA
and KCGA under the provisions of the Cotton
Figure 2: A Schematic Presentation of the
Act to ensure high standards of seed production,
Wave System of Seed Multiplication
processing, packaging and distribution.
Marketing
Up until the market liberalization of the early
1990s, the CB (formerly CL&SMB) directly or
indirectly through licensed agents; purchased,
transported, ginned and sold cotton seed and lint.
Under the CB initiative, cotton cooperative societies and unions were formed to handle primary
cotton activities, namely production through
supply of inputs and processing and payments
for seedcotton deliveries through establishment
and management of ginneries. A few private ginneries were also established to undertake cotton
ginning.
Thus, between 1965/66 and 1978/79 seedcotton production rose from 13,600 to 35,000 MT.
However, due to payment problems by the cooperatives, production fell to 23,500 MT of seedcotton by 1982/83 and to a much lower 16,300
MT seedcotton in 1983/84, due to the combined
effects of delayed payments and severe drought.
However, in the 1984/85, the CB intervened by
taking over farmer payments in the worst affected areas, supply of inputs and seed distribution.
Seedcotton production for the season recovered
to 39,300 MT (Ministry of Agriculture, 1999).
The decline in production since the mid-1980s
and associated poor crop performance could be
summarized as having been caused by:
a) Lack of finance and credit for seedbed preparation and procurement of inputs.
YEAR - 1 (2009)
YEAR - 2 (2010)
YEAR - 3 (2011)
YEAR - 4 (2012)
YEAR – 5 (2013)
BREEDER’S
SEED
2 – 4 Hectares:
Grown by the plant
breeder at the
Research Centre.
FOUNDATION
SEED
20 – 40 Hectares:
Grown under the
supervision of the
plant breeder in a
government farm.
REGISTERED SEED
CERTIFIED SEED
FARMER’S SEED
500 Hectares:
grown by
government
institutions and
selected farmers
under supervision
of KEPHIS.
1,000 Hectares:
Grown by many
farmers and public
institutional farms
under the
supervision of
KEPHIS.
1,000 – 6,000
Tons: New seed
released to
cotton farmers.
Organizational
structure for the seed
16
Figure 3: Organizational Structure for
the Seed Multiplication
MULTIPLICATION
STAGE:
RESPONSIBILITY:
COTTON
BREEDER (KARI).
COTTON
DEVELOPMENT
AUTHORITY.
FOUNDATION
SEED
KEPHIS
NIB
ADC
LBDA
KVDA
SELECTED
FARMERS
KEY:
REGISTERED
SEED
CERTIFIED SEED
Under plant breeder.
Seed inspection.
Seed certification.
Seed production.
local and export markets, among its many functions (Ministry
of Agriculture, 1999).
Currently, cotton marketing in Kenya is fully liberalized.
However, the marketing system faces difficulties, in particular, weak cooperative societies/unions and farmer groups, resulting in poor farmers’ bargaining power and no economies
of scale. In that regard, farmers are encouraged to form organizations to undertake their marketing activities. Further,
the government has written off non-performing loans owed
to the Cooperative Bank by cotton farmers’ cooperatives, and
since 2007/08 a cotton pricing model (CPM) has been put in
place to inform the industry on pricing based on world cotton prices. The lint price is used as a benchmark upon which
freight charges, local transport and ginning costs and profit
margin are incorporated to determine the farm gate price for
seedcotton. The CPM is used by the Cotton Apex Committee
comprising of the Kenya Cotton Growers Association, Kenya
Cotton Ginners Association and the Textile Manufacturers. It
is expected that with the involvement of CODA and KCGA,
it will be possible to operate an open market with CODA op-
Way Forwad
Strengthening cotton research and extension
NUCLEOUS
STAGE
PUBLIC
INSTITUTIONS
erating as a market regulator in the same way the
Cotton Corporation of India (CCI) operates in the
Indian market (Echessa et al., 1996).
Human resource development: There is limited
staffing for the cotton programs both in research
and extension. For a long period the cotton program did not attract adequate funding from either
the exchequer (Government of Kenya) or development partners, hence the low levels of staff establishment. Thus, considerable capacity building
(recruitment and training) is required.
Strengthening the research agenda: There is adequate scientific information and a resource base
for developing a strong cotton research program in
the country to address emerging concerns of poor
yield, drought, increasing pests and diseases, declining ginning outturn and lint quality, provision
of location specific agronomic packages based on
ecological conditions (soils/climate), application
of IPM approaches for more economical results/
environmental safety and the need for increased
production under irrigation.
Strengthening the extension system: The cotton extension services should be strengthened by
reviving cotton specialists in all cotton growing
areas and re-establishment of the cotton district
development programs operated through the District Development Committees and District Agricultural Committees.
Strengthening institutional framework
Policy framework: The Government through the MoA,
KARI, CODA and KEPHIS, should ensure that an appropriate policy and legal framework for efficient cotton production under the liberalized economic environment is upheld.
Certified seed production: The MoA, KARI and CODA
in collaboration with other stakeholders should develop and
maintain an economically viable system of certified cotton
seed production.
Strengthening crop development
Finance and credit: Finance and special credit arrangement for farm inputs (seed, fertilizer and pesticides), should
be provided through selected banks with protection of farmer interest.
Irrigated cotton production: The collapsed irrigation
schemes should be revived and new potential area for irrigated crop production should be identified and developed
for cotton production.
17
References
Ackland, J.D. 1971. East African Crops. Longman Group Ltd, London, UK: 94 – 111.
CGR, 1971. Cotton growing recommendations for Kenya. The Cotton Research Corporation, Kenya. 1971.
Da Costa, V.P.F.X (1973). Characterization and interpretation of the
soils of the Kano plains for irrigation agriculture. Thesis submitted
in partial fulfillment of the requirements for the degree of Msc (Agriculture) in the University of East Africa, 1973, Nairobi/Kampala.
Djikstra, T. 1990. Marketing policies and economic interests in the
cotton sector of Kenya. African Studies Centre, Leiden, The Netherlands:
Echessa, J.E., Ikitoo, E.C. and Pathack, R.S. 1996. A study report
on cotton research and development in India, 19th March – 15th April
1996. Ministry of Agriculture, Livestock Development and Marketing, Nairobi, Kenya: 1 – 21.
Fielding, J. Ngigi, R.G. and Olungotie, P.S. 1984. Cotton breeding.
In: Annual Report, 1984, Mwea Tebere Agricultural Research Station, SRD, Ministry of Agriculture, Kerugoya, Kirinyaga.
Governement of Kenya (GoK) Ministry of Agriculture, 1999. Sessional Paper No. 1 of 1999 on the Revitalization of the Cotton Industry. Ministry of Agriculture, Government of Kenya, Nairobi, Kenya.
Hastie, M.S. 1953. Progress report from experimental stations, season 1952/53, Kenya: The Empire Cotton growing Corporation.
mation: Part A (West Kenya - Nyanza and Western Provinces):13
- 80; 127 - 265.
Jaetzold, R. and Schmidt, H. (1982b). Farm Management Handbook
of Kenya. Vol II: Natural Conditions and Farm Management Information: Part B (Central Kenya - Rift Valley and Central Provinces):
683 - 731.
Jaetzold, R. and Schmidt, H. (1982c). Farm Management Handbook
of Kenya. Vol II: Natural conditions and farm management information: Part C (Eastern Kenya -Eastern and Coast Provinces): 21 - 78;
367 - 411.
Kariuki, J., Munoko, G. and Kuloba, P. (2008). Revitalizing Cotton
Industry in Kenya: study of cotton sector in Kenya. CODA/Ministry
of Agriculture (FAO Support), Nairobi, Kenya.
Leakey, C.L.A, 1970. Crop improvement in East Africa. Commonwealth Agricultural Bureaux, Farnham Royal, England: 1- 206.
Leakey, C.L.A, 1973. A note on Xanthomonas blight of beans
[Phaseolus vulgaris (L) Savi] and properties for its control by breeding for tolerance. Euphytica, 22: 132 – 140.
Lewis, C.F. 1970. Concepts of varietal maintenance in cotton. Cott.
Gr Rev. 47: 272 – 284.
Michieka, D.O, and Oswaggo, O. 1970. Soils of Mwea Tebere Cotton Research Station. Soil Survey Unit, National Agricultural Laboratories, Nairobi.
Hastie, M.S. 1956. Progress report from experimental stations, season 1955/56, Kenya: The Empire Cotton growing Corporation.
Muchena, F. N. 1987. Soils and irrigation of three areas in the lower
Tana region, Kenya. Wagengen Landbouw Universitert, Wageningen, The Netherlands. (In Dutch).
Hastie, M.S. 1959. Progress report from experimental stations, season 19557/58, Kenya: The Empire Cotton growing Corporation.
Munro, 1970. Cotton in the Tropics. Longman Group Ltd., London
UK.
Hastie, M.S. 1960. Progress report from experimental stations, season 1958/59, Kenya: The Empire Cotton growing Corporation.
Muturi, S. 1975. Constraints in cotton production. Ministry of agriculture, SRD, Paper No. 2, Nairobi, Kenya.
Hastie, M.S. 1966. Progress report from experimental stations, season 1964/65, Kenya: The Empire Cotton growing Corporation.
Mwea Tebere, 1988. Annual report, 1988. National Fiber Research
Centre, Mwea Tebere, KARI, Kerugoya, Kenya.
Ikitoo, E.C. 1985. Effect of nitrogen, phosphorus and organic manure on growth and development of cotton (Gossypium hirsutum, L.)
at Tebere, Kenya. A Thesis submitted to the University of Nairobi
in partial fulfillment of the requirements for the degree of Master of
Science in Agronomy. University of Nairobi, Nairobi, Kenya.
Mwea Tebere, 1989. Annual report, 1989. National Fiber Research
Centre, Mwea Tebere, KARI, Kerugoya, Kenya.
Ikitoo, E.C. and Ngigi, R.G. 1989. Guidelines and strategy for certified cotton seed production in Kenya. National Fiber Research Centre, Mwea Tebere, Kirinyaga, Kenya.
Ikitoo, E.C. 1997. Review of Kenyan Agriculture, Vol. 19, Fiber
Crops. KARI , Nairobi, Kenya/CAZS university of Wales. Bangor,
Gwynedd, UK: 1 – 40.
Ikitoo, E.C. 2003. Effect of plant spacing and plant population on
cotton yield in central and eastern Kenya. E. Afr. Agric. For. J, 69
(3): 229 – 243.
Ikitoo, E.C. 2008. Intercropping cotton with common bean (Phaseolus vulgaris L.) and cowpeas (Vigna unguiculata L) in central and
eastern Kenya. E. Afr. Agric. For. J. (In Press)
Jaetzold, R. and Schmidt, H. (1982a). Farm Management Handbook
of Kenya. Vol II: Natural Conditions and Farm Management Infor-
Mwea Tebere, 1990. Annual report, 1990. National Fiber Research
Centre, Mwea Tebere, KARI, Kerugoya, Kenya.
Mwea Tebere, 1991. Annual report, 1991. National Fiber Research
Centre, Mwea Tebere, KARI, Kerugoya, Kenya.
Mwea Tebere, 1992. Annual report, 1992. National Fiber Research
Centre, Mwea Tebere, KARI, Kerugoya, Kenya.
Purseglove, J.W. 1992. Tropical crops: Monocotyledons 1. Longman
Group Ltd., London UK:
Tveitnes, N. and Nyaas Aakerbakken, O. 1973. Fertilizer experiments on small cotton farms in Kenya. E. Afri. Agric. For J., Vol. 38,
No 3: 282 – 297.
Waturu, C.N., Opondo, R.M., Macharia, J.M.K., Onzere, B.B. and
Wasike, V.W. 2002. Recommendations for growing cotton in Kenya.
KARI, Nairobi, Kenya.
18
Enhancing the Value of Cotton
Peter Kapingu, Agricultural Research Institute Ukiriguru, Mwanza, Tanzania
Abstract
Cotton is grown in over 80 countries, providing a significant
source of income to millions of people each year. Exports of
cotton lint account for a significant portion of the foreign exchange earnings of many counties, especially the developing
and least developed countries in the world. However activities
associated with the growing, handling and trade have a bearing in the way they influence the value of cotton. This paper
examines some of these issues, with a view to enhancing the
value of this commodity.
Introduction
Although cotton is produced in over 80 countries in the world,
only five of them, China (Mainland), India, Pakistan, USA and
Uzbekistan, share 75% of production, 71% of area and 70% of
consumption. The five large producers have been the same for
decades, although production and consumption have shifted a
lot among them. The most significant changes have been reduced consumption in the USA, expanded production and use
in China (Mainland), high local consumption in Pakistan and
more than a 50% increase in yields in India. Production in Uzbekistan has experienced different changes but with minimum
or no impact at an international level. So, in general terms,
most international scenarios can be attributed to the changes
in the four countries.
On average 33-34 million hectares are planted to cotton every
year, almost 90% in the Northern Hemisphere and 10% in the
Southern Hemisphere. It is estimated that cotton was planted
on 34.5 million hectares in 2006/07, as against 34.2 million
hectares the previous year. In almost all producing countries
the value of cotton is influenced by activities related with the
production, handling, trade and marketing of this commodity.
This paper examines some of the issues that need to be addressed in order to enhance the value of cotton.
Improving Quality
Cotton, like all commodities, is differentiated by quality
parameters for the purposes of trade. Although many types
of cotton can substitute for each other in various products,
their distinct characteristics prevent them from being perfect
substitutes. Buyers may value various attributes differently,
depending on the final product and the production technology being used. There is a direct correlation between specific
quality characteristics of the fiber and those of the yarn. Raw
material is the most important factor influencing yarn quality, and represents about 50% of the cost of yarn. Better fiber
quality translates to better yarn quality and higher processing
efficiency. Cotton is a natural product, and therefore lint characteristics vary greatly according to environmental and genetic factors, as well as with picking and ginning conditions.
Spinners are more interested in the fiber properties that affect the quality of their yarns and the efficiency at which they
produce those yarns. The textile industry has been striving to
improve quality and efficiency through automatic high-speed
machinery. New technologies place increasingly severe technical demands on textile fibers, raising the importance of other
properties of cotton: strength, uniformity, maturity, fineness,
elongation, neps, short fiber content, spinning performance
and dyeing ability. Consumers also want uniform consignments which are consistent from the first bale of a sale to the
last, with even-running cotton in all its characteristics, free
from contamination and wrapped in cotton. At the moment,
foreign matter, stickiness and seed cotton fragments continue
to be among the most serious problems affecting the cotton
industry worldwide.
Modern high-speed machinery requires more exacting fiber
characteristics to operate at maximum efficiency as follows:
Middling, or preferably Strict Middling white
Staple length 2.5% span length should be a minimum of
1.08” or 27.4 mm (1-3/32”), preferably 1-1/8”
Micronaire minimum 3.8 maximum 4.4
Color reflectance Rd >75
Yellowness < 10
Nep content < 200 per gram
Strength > 28 g/tex
Length uniformity ratio >83%
Maturity > 80%
Elongation >6%
Short fiber content < 5% index
Seed coat fragments < 15 per gram
For cotton which does not meet those criteria, export customers should expect discounts. Regardless of the spinning system in use, longer and finer fibers result in longer and finer
yarns. In spite of that, the order of importance of the fiber
properties varies from one system to the other, for example
length is ranked first, before strength and micronaire in ring
spinning, while rotor spinning ranks strength first, before micronaire and length. Therefore producing countries need to
keep track of the technological changes taking place in the
spinning industry in order for making required improvements
in fiber quality that would make their cotton receive premium
prices from consuming countries.
Use of Instrument Testing
Improvements in cotton quality and quality measurement are
components of an overall strategy of improved cotton industry competitiveness. There is an international consensus that
instrument-based quality evaluation systems are superior to
traditional hand-classing methods for cotton. However these
systems are expensive and involve the operation of complex
instruments in specialized environments with trained person-
19
nel, which are lacking in most developing countries. Fortunately the ICAC is working to assist developing countries
with the adoption of new cotton classing technologies to enable them to compete in the international marketing of cotton.
For example the ICAC and the Task Force on Commercial
Standardization of Instrument Testing of cotton is conducting
a CFC project hosted by the Tanzania Bureau of Standards
whose aim is to assist producing countries in the Southern and
Eastern Africa region to meet the emerging quality assessment demands of the global market so as to strengthen or at
least maintain their competitive position in the world market
by keeping up with modern developments from end-markets.
The project will study the within-bale variability in order to
ensure no claims due to cotton quality characterization.
sian. In the ITMF survey, the most contaminated cotton came
from India, Togo, Turkey, Mali, and Uzbekistan. On the other
hand, very clean cotton came from the USA, Australia, Israel,
Brazil and Cameroon.
Although the contamination survey for 2005 showed that
stickiness had fallen to 17%, it had risen to 21% in the 2007
survey, and the problem continued to be of concern to spinning mills. Cotton from Benin, Cameroon, and the medium
staple descriptions from Uzbekistan was affected most, as
well as some from the USA. Cotton from Greece, some descriptions from India, Egypt and the USA were least affected
by stickiness.
Table I a
The underlying force pushing the world cotton indusAll Countries/All Growths
try toward instrument testing systems is competition
Source of contamination
with polyester. The world textile economy is consumer-driven, and competitive pressures force spinners to
1 Fabrics made of
woven plastic
2
plastic film
meet consumer preferences for reductions in real prices
3
jute/Hessian
and improvements in product quality. Success for the
4
cotton
5 Strings made of
woven plastic
cotton industry in competition with chemical fibers de6
plastic film
pends on meeting consumer demands. Instrument test7
jute/Hessian
8
cotton
ing systems facilitate improved competitiveness with
9 Organic matter
leaves, feathers, paper,
polyester in two ways. First, spinners can optimize the
leather etc.
use of cotton only through the use of instrument testing
10 Inorganic matter
sand/dust
11
rust
systems. Equally important, instrument testing systems
12
metal/wire
implemented at the producer level, if combined with
13 Oily substances/chemicals grease/oil
14
rubber
an economically rational system of pricing cotton, can
15
stamp color
provide incentives to breeders, producers and ginners
16
tar
for improvements in cotton quality as defined by the inAverage of 1-16
trinsic characteristics of cotton valued by the spinning
industry. The implementation of spinning-oriented fiber
No (%) Yes (%)
Stickiness
79
21
evaluation systems can enable market forces to provide rational incentives to the entire cotton production,
ginning and sales pipeline, to produce cotton with the
characteristics that better enable cotton spinners to
Table I b
meet the demands of quality and price-conscious
consumers.
The Most Contaminated Descriptions
Elimination of Contamination
As stated earlier, customers also want shipments
uniform and consistent from the first bale of a sale
to the last, with even-running cotton in all its characteristics, free of contamination and wrapped in
cotton. The Cotton Contamination survey 2007
conducted by the International Textile Manufacturers Federation (ITMF) in which 114 spinning mills
located in 23 countries evaluated 72 different cotton growths concluded that foreign matter, stickiness and seed coat fragments continue to be among
the most serious problems affecting the cotton industry worldwide.
Most contaminants are composed of organic matter,
including paper, leaves, feathers, and leather. Other
serious contaminants are fabrics made of plastic
film or cotton, strings made of plastic or jute/ Hes-
Ranking
Description
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
India
India
India
India
India
India
Togo
Turkey
Mali
Uzbekistan
11.
12.
13.
14.
15.
16.
Ivory coast
Greece
USA
Burkina Faso
Egypt
Turkmenistan
LRA
MCU-5
J-34
Shankar-4/6
H-4
India-Others
Togo
Izmir
Mali
Medium
Staples
Ivory coast
Greece
Arizona
Burkina Faso
Giza
Medium
Staples
Number of Samples: 715
Degree of contamination (%)
Non-existent/ Moderate Serious
insignificant
77
17
6
70
20
10
73
17
10
70
19
11
75
16
9
71
18
11
71
17
12
74
14
12
60
75
87
83
27
18
9
13
13
7
4
4
78
15
7
Seed-coat
fragments
No (%) Yes (%)
63
37
Degree of contamination (%)*
Non-existent/
Moderate
insignificant
Serious
45
54
56
58
58
60
67
68
69
69
31
23
19
26
29
22
28
15
22
23
24
23
25
16
13
18
5
17
9
8
Number
of
samples*
*
5
13
13
24
12
12
6
6
18
20
74
76
77
79
79
80
18
19
19
9
14
18
8
5
4
12
7
2
10
17
5
8
41
8
* Average degree of contamination by each of the 16 pre-indicated contaminants
** Minimum: 5 samples
20
Table I c
The Least Contaminated Descriptions
Ranking
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Description
USA
USA
Australia
USA
USA
Israel
USA
Brazil
Cameroon
USA
Zimbabwe
Chad
Spain
Benin
Tajikistan
Syria
Memphis Territory
Texas High Plains
Australia
USA-Others
South Eastern
Pima
California
Brazil
Cameroon
Pima
Zimbabwe
Chad
Spain
Benin
Medium Staples
Syria
ings (from an initial level of
US$963 million).
Degree of contamination (%)*
Non-existent/
Moderat Serious
insignificant
e
94
5
1
93
7
0
93
6
1
93
6
1
92
7
1
91
9
0
88
11
1
88
10
2
88
6
6
85
14
1
85
10
5
84
16
0
84
13
3
84
12
4
84
12
4
83
15
2
Number of
samples**
29
21
19
9
12
7
18
34
8
25
11
8
8
10
10
9
Estimates by the ICAC Secretariat indicate that in the
absence of government support for the cotton industry
in 2001/02, market prices
would have been approximately 70% higher than they
were. For 2002/03, the ICAC
Secretariat estimated that
cotton prices would have
been about 15% higher than
the actual result if government measures had not supported production in some
countries.
For sub-Saharan African
producers alone, the losses
* Average degree of contamination by each of the 16 pre-indicated contaminants
in income linked to subsidies
** Minimum: 5 samples
to cotton production were
estimated at $920 million in
Seed-coat fragments also remained an issue with 37% of spinners reporting to have come across the problem, the same 2001/02 and $230 million in 2002/03. The impact of these
level as in 2005. The following tables, taken from the 2007 loses to individual countries with high cotton dependency,
ITMF survey, summarize some of the results obtained from such as Benin, Burkina Faso, Chad, Mali and Sudan was substantial.
that survey.
Main Results
It is clear from those tables that concerted efforts are required
in all producing countries to eliminate contamination in their
cotton. The elimination of contamination is of vital importance for the future of the global cotton sector. For example
in Zimbabwe and Zambia, the systematic pursuit of quality is
reflected in a premium of at least one percent over the selling
prices achieved by other African origins.
Elimination of Government
Measures
The Northern Hemisphere accounts for over 90% of global
cotton production, the major producers being China, the USA,
India, Pakistan, Uzbekistan, Francophone Africa, Turkey, Brazil, Australia, and Greece. One-third of cotton is traded internationally. Cotton is subject to numerous marketing and trade
distortions, with some of the major cotton producers giving
direct production support to their farmers. For example, direct production support given by the USA, China, European
Union, Turkey, Brazil, Mexico, and Egypt over a period of
eight seasons between 1997/98 and 2001/02 ranged from US$
3.8 to US$5.3 billion.
Studies predict that a removal of support subsidies would result in an increase in the world price of cotton of 11-28%.
These studies suggest that cotton earnings could increase for
all developing countries by US$610 million to US$3,250 million. West and Central African countries could gain between
US$94 million and US$360 million in cotton production earn-
Producing countries need to respond to the declines in cotton prices with strategies that expand the demand for cotton,
facilitate the adoption of competitive technologies and reduce
or eliminate government measures that distort production and
trade. In the ongoing “Doha Round” of WTO negotiations,
Mali, Burkina Faso, Benin and Chad have succeeded in bringing the issue of cotton subsidies and their effects as a special
case in the Doha Round of WTO negotiations. As a result of
the case that they have made, it was agreed in one of the meetings that there would be considerable reductions in the level
of distortions in international cotton markets. But since the
nature of WTO negotiations is that nothing is agreed until everything is agreed, this agreement cannot take effect until the
negotiations are completed.
The ICAC strongly supports a successful outcome to the talks
on agriculture and other topics being conducted under the
auspices of the WTO. The overwhelming majority of member government reaffirm the negative impacts of subsides and
other government measures on cotton production and trade affecting cotton farmers, especially in the developing and least
developed countries, and urge that all government measures
and subsidies on cotton be removed. International organizations can advance the interests of agricultural trade liberalization by articulating a positive program of mutual benefit
within the talks on agriculture being conducted under the
auspices of the WTO. Given the importance of cotton to the
livelihoods of hundreds of millions of cotton producers, the
specific concerns of the cotton industry regarding production
subsidies deserve the full attention of governments and the
international community.
21
Improving the Share of Cotton in
Total Fiber Consumption
In order to strengthen the market for cotton, the ICAC has
been encouraging all countries to require fiber content labels
in all textile products sold at retail. There is abundant research
showing that when consumers are aware of fiber content, they
consistently choose cotton products. However, by 2003 only
59 out of 166 countries surveyed have laws requiring that fiber content be labeled in products sold at retail. Consequently,
many consumers are not able to readily identify the fiber content of products offered for sale in their countries, thus inhibiting efforts to boost retail level demand for cotton. At the 62nd
Plenary Meeting of the ICAC in September 2003 in Gdansk,
Poland a consensus was reached that countries should encourage fiber content labeling of products sold at retail. The support of UNCTAD and other international organizations for
this initiative by helping the ICAC to communicate this need
to governments would be appreciated.
Summary
Cotton is differentiated by quality parameters for purposes of
trade. A direct relationship exists between the quality characteristics of fiber and those of the yarn. Cotton which does not
meet the quality criteria of the export markets should expect
discounts. Foreign matter, stickiness and seed-coat fragments
continue to be among the most serious problems affecting the
cotton industry and concerted efforts to eliminate them must
be made. Adoption of new technologies for classing cotton
is important especially for developing countries in order for
them to be able to compete in the international marketing of
cotton. The success of the cotton industry in competing with
chemical fibers depends on meeting consumer demand. Negative impacts of subsidies and other government measures on
cotton production and trade affecting cotton farmers especial-
ly in developing countries must be removed. Fiber content labeling should be encouraged because when consumers know
the fiber content they choose cotton products.
References
Tanzania Gatsby Trust. 2007. “The Cotton and Textiles Sector
in Tanzania: Issues and Opportunities”. Report to the Government of Tanzania supported by the Tanzania Gatsby Trust and
the Gatsby Charitable Foundation.
Chaudhry, Rafiq. 2006. “Cotton Research: World Situation”.
Paper presented to the 50th Anniversary of the National Cotton
Project, Saenz Peira, Argentina,18th Sept.
Estur, Gerald. 2005. “The competitiveness of African Cotton
in the World Market”. Paper published in Cotton Outlook,
Special Feature March 2005 “Cotton in Africa”.
Estur, Gerald. 2004. “Quality Requirements on Export Markets for US Cotton”. Paper presented at the Quality Measurements Conference, Beltwide Cotton Conferences, San Antonio, Texas, 8th Jan .
Townsend, Terry. 2004. “Competitiveness in World Cotton Industry”. Paper presented to the 36th World Farmers Congress,
Washington DC, 29th May - 4th June.
Townsend, Terry. 2003, “Commercial Standardization of
Instrument Testing of Cotton: How soon a Reality?” at
http://www.icac.org/cotton_info/speeches/Townsend/2005/
csitc_2005.pdf
Townsend, Terry. 2003, Impacts of Government Measures on
African Cotton Producers”. Statement delivered before the
session of Trade and Development Board, United Nations
Conference on Trade and Development.
ITMF. 2005 and 2007. “Cotton Contamination Survey Reports”. International Textile manufacturers Federation.
Economically Viable Cotton Production Systems
Bouré Ouéyé Gaouna, Cotton Breeder, Chadian Institute of Agricultural Research for Development, Chad
Summary
Cotton is the only crop for which there is an organized industry in Chad, while in other countries of Francophone Africa it
is not the sole organized industry, although better organized
than others in relative terms. Putto (1992) noted that the success of the cotton crop depends not only on the growers, but
also on upstream organization and control, the development
of technical approaches, the creation of new varieties, pest
and disease control in accordance with timetables validated
by research, and other factors. Downstream, success involves
seedcotton collection by cotton companies, the processing of
cotton products, and marketing. Cotton is a relatively important source of income for growers.
Berout (1994) calculated that cotton is grown on 50 to 60 percent of official farms in Chad, for example; he noted further
that the cotton industry plays a vital role in Chad’s economy
since cotton production accounts for 60 percent of operating
income and no other agricultural product is currently in a position to take its place. From a social perspective, the cotton
industry contributes to development through the jobs it creates
and its activities, which include purchasing and ginning the
seedcotton, transporting the lint, and crushing the seed. The
cotton industry crisis in Chad, a consequence of the dramatic
fluctuation of world prices for cotton, has had negative repercussions on cotton production, with serious related effects
both upstream and downstream; surveys have been conducted
to better understand the situation and, based on a comparative analysis of farms in Cameroon and Chad, these surveys
have pointed to a number of conclusions while also raising
quite pertinent questions about the role that agricultural research can play in containing Chad’s cotton crisis. The work
was carried out by selecting lands in physical settings that are
similar in terms of their potential. It was found that Chadian
cotton growers are increasingly abandoning cotton in favor
of groundnuts, and the reasons given appear to be clear and
22
logical. This study underscores the precarious circumstances
faced by many farms where the production system is dominated by cotton.
Key words: Cotton industry crisis, Chad, Cameroon, agricultural research, production systems, surveys, farms, economic
viability
Introduction
In most cotton growing areas of the continent, and particularly in the countries of West and Central Africa, small family farms typically operate under rainfed conditions. In many
cases, the level of intensification is low: the techniques for
working the soil are often inappropriate, the use of organic or
mineral fertilizers is rare, and weeding is inadequate. Such is
the description, in short, of family farms that maintain a production system dominated by the cotton crop.
A review of the yields obtained between 1992 and 2005 suggests that, on most of these farms, average seedcotton yields
under rainfed conditions showed no improvement, contrary to
what occurred in places where cotton is grown as an irrigated
crop, as in Egypt or South Africa. It is easy to say that climate
constraints and an inappropriate technical approach to rainfed cotton appear to have blunted the gains in yields expected
from the adoption of new varieties. There are many causes
for this situation: the uncertainty of rainfall is the dominant
factor driving the cotton crop (Crétenet et al., 2006). A review
of the rainfall statistics for Mali and Benin (Crétenet, Guibert, unpublished data), for example, reveals two types of frequent climate events in cotton growing areas: irregular onset
of the rains, and periods of drought during flowering. In the
latter case, the effect of the gaps in rainfall is to create water
stress, which can result in the loss of some of the fruit-bearing
organs (Cognée, 1968; 1974). These observations also apply
to other countries where cotton production remains relatively
important. In addition to the climate-related and agro-technical causes, the cotton industry crisis in African countries, a
consequence of the dramatic fluctuation of world prices for
cotton, has had negative repercussions on cotton production,
with serious related effects both upstream and downstream.
Under these conditions, only farms that are relatively well
equipped with agricultural equipment (animal or mechanical
traction) or in a position to rent such equipment appear capable of achieving economic viability.
This study draws on a variety of information and data and attempts to answer the question, “Which production systems are
economically viable?”
Materials and Methods
This study is based mainly on surveys and inventories:
For the first and second parts of this paper, open surveys
were conducted at the Ministry of Agriculture, the Ministry of Commerce and Industry, the Chadian cotton company
COTONTCHAD, and the Chadian Institute of Agricultural
Research for Development (ITRAD). These open surveys resembled meetings and served to verify a number of points of
information and identify possible causes of the cotton industry
crisis in Chad;
For the third part of this paper, the study took place within
the framework of the Regional Pole of Applied Research for
the Development of the Central African Savanna (PRASAC).
The surveys took the form of comprehensive inventories and
covered, in 2001, 791 farms in six different communities of
Southern Chad and 922 farms in five communities of Northern Cameroon. All the farms covered by the survey were analyzed.
Results: a Few Discussion Points
The following tables describe the environment in which different cotton-dominated production systems have evolved.
Table 1: Cultivated Area, Output, and Yield of Seedcotton
in Certain West and Central African Countries in 2001/02
Country
Benin
Burkina-Faso
Cameroon
Côte d’Ivoire
Mali
Togo
Chad
Cultivated
area (ha)
330,400
355,900
210,400
285,000
516 300
150,000
306,110
Yield
(kg/ha)
1,196
1,054
1,141
1,298
1,143
1,033
538
Output
(metric tons)
415,000
378,000
240,000
370,000
575,000
155,000
164,546
Lint output
(metric tons)
175,130
158,179
99,577
160,505
248,111
63,395
67,363
Source Cotontchad – Dagris
Table 2: Evolution of Lint Output in Certain West and
Central African Countries in 2004 and 2006
In thousand tons
Benin
Burina Faso
Côte d’Ivoire
Guinea
Mali
Senegal
Togo
Cameroon
Central African Republic
Chad
2004/05
171
264
145
3
239
17
74
125
3
84
2005/06
82
302
108
3
244
18
32
100
2
82
Difference in %
-52.05
+14.39
-25.52
0.00
+2.09
+5.88
-56.76
-20.00
-33.33
-2.38
Source: Dagris
Table 3: Evolution of Producer Prices in Certain West
and Central African Countries in 2004 and 2006
In FCFA/kg of
seedcotton
Benin
Burkina Faso
Côte d’Ivoire
Mali
Senegal
Togo
Cameroon
Chad
2004/05
2005/06
200
210
140
210
195
175
190
190
170
175
140
160
195
160
170
160
Reduction
in %
15
17
0
24
0
09
11
16
23
The status of cotton on the world market is exacerbated by
the fact that it is one of the rare products that place African
producers in direct competition with producers in the North,
Selling prices
2005/06 (/Kg of fiber)
%
although the status of cotton is also enhanced by its strategic
2004-2005
610FCFA
0.93 67.78
role on the world market. It is estimated that between 12 and
2005-2006
670FCFA
1.02
74.48
16 million households benefit directly or indirectly from cotAverage for the last 25 years
900FCFA
1.37
100.00
ton growing in West Africa. The CFA zone produces some 80
Source: Dagris
percent of the region’s total output and cotton accounts for 5 to
10 percent of GDP in the main producing countries. Furthermore, in 2001, cotton accounted
Table 5: Estimated Declines in Cotton Growers’ Income
for 51.4 percent of export earnings in Burkina
Estimated income of cotton
2004/05
2005/06
Decline in
Change
Faso, 37.6 percent in Benin, and 25 percent in
growers (million metric ton) (CFAF billion)
(CFAF billion)
income
(%)
Mali (SWAC, 2004). Still, despite the fact that
Benin
81.429
33.190
-48.238
-59
its production costs are among the world’s lowBurkina Faso
132.000
125.833
-6.167
-5
est, West African cotton is in crisis because of
Côte d’Ivoire
48.333
36.000
-12.333
-26
the particularly low level of cotton prices.
Table 4: Evolution of Cotton Prices from 2004 to 2005
in the Cotton Industries of West and Central Africa
Mali
Senegal
Togo
Cameroon
Chad
119.500
7.893
30.833
56.548
38.000
92.952
8.357
12.190
40.476
31.238
-26.548
464
-18.643
-16.071
-6.762
Except in Togo and Benin where production has collapsed,
and despite declining revenues in recent years, cotton growers
have in general maintained their output. They have few viable
alternatives to cotton available to them (Table 2).
Table 3 summarizes the evolution of the seedcotton purchase
price paid to growers in the 2004/05 and 2005/06 crop years.
It shows the decline between these two crop years only.
In fact, the decline in the producer price has been spread over
several crop years and, overall, exceeds 15 percent. In 2003/04,
the average price was CFAF 200 per kg in the region. This
leveling effect partly explains the moderate impact of falling
output prices. In addition, the drop in producer income would
have been even more severe without rebates from the previous
crop year or the subsidies granted by several countries. The
Burkina Faso price of CFAF 210 in 2004/05 corresponded
to a purchase price of CFAF 175 and a rebate of CFAF 35
from 2003/04 profits. Similarly, the Mali price of CFAF 210 in
2004-2005 corresponded to a purchase price of CFAF 200 and
a rebate of CFAF 10 from 2003/04 profits. The Benin price
of CFAF 200 in 2004/05 included a government subsidy of
CFAF 43. In Cameroon in 2005/06, the producer price of CFAF 170 included CFAF 150
paid by the cotton company and CFAF 20
from OPCC (Organization of Cotton Produc- Description
ers of Cameroon).
Even though lint prices recovered slightly
in 2005/06, they remain too low to restabilize the cotton industries of West and Central
Africa. They are still well below the average
for the last 25 crop years, which works out to
CFAF 900 per kg of lint. This drop in prices coincides with a drop in the selling price
for cottonseed, an important by-product; the
price per kg of cottonseed has fallen from
CFAF 30 to CFAF 20 in West African markets (Table 4).
-22
+6
-60
-28
-18
Table 5 presents an evaluation of the declines
in cotton growers’ gross income resulting from
the lower prices paid and production trends. It
shows the shrinkage of cotton growers’ gross
income between 2004/05 and 2005/06 only.
The cotton companies’ losses are calculated on
the basis of an estimated fixed cost for processing and bringing the product to market of CFAF 295 per kg of lint produced, plus the purchase price of seedcotton converted into
the inferred lint equivalent (using a ginning ratio of 42 percent) at the selling price of the crop year in question.
Table 5 shows only the impact of cotton production trends on
the balance of payments. Cotton plays an essential role in stabilizing the balance of payments in countries such as Burkina
Faso and Benin where, in normal years, it accounts for more
than two-thirds of export earnings. In addition, the losses in
fiscal revenue, estimated at between 4 and 7 percent of total
revenue, should be noted (cf. Les dossiers de FARM, Nicolas
Gergely, Le coton: quels enjeux?).
Different types of farms/production systems inventoried in a comparative study of Chad versus
Cameroon
Figures 1, 2, 3, 4: Comparative Typologies of Cotton-dominated Farms/Production Systems, Chad versus Cameroon
Figure 1. Costs of Production and
revenu per hectare in Mali for 4 types of farm
Cost of protection ($US/ha)
Cost of Pyréthrinoïde ($US/ha)
Total cost ($SD/ha)
RDT (kg/ha)
Gross revenu ($US/ha)
Benefit ($US/ha)
Type I
47,47
28,48
452,70
1 127
467
14,30
Type of farm
Type II
Type III
39,04
23,42
423,93
1 109
448
23,70
A = farm with more than 2 units of animal or mechanical traction
B = farm with one unit of animal traction
C = farm with an incomplete unit of animal traction
D = Manually (Nabukpo, Keita, 2006)
42,71
25,63
314,32
859
339
24,80
Type IV
14,64
14,64
257,08
621
262
4,40
Women,
I Tenants
Tequally
y p eof
II farm
1. One samplehead
shared
Women,
head of farm
Owners
Non-users
Non-users
Non-users
Owners
Tenants
The value
of in
an Kg
area is increased by the accessibility to animal traction
Quantity
used
Areas are larger in Chad than in Cameroon
Urea
Cotton
1. One sample equally distributed
Sorghum
2. An analog repartition of farms dominated by rentals of animal tractions
Tenants
Cameroon
Farms type II
Bag of Urea / 50 K
Bag of NPKSB/50Kg
Use of fertilizer is always
higher in Cameroon
Urea
Quantity used in Kg
Corn
Groundnut
Sorghum
Cotton
Non-users
Cameroon
Farms type I
Farms type IIPlanting areas
Farms type III
Farms type IV
Areas in hectares
2 5 0 0 type I
Farms
Non-users C
am ero u n
Cameroon
Areas
Farms
I
Farms
type IIof an area
Farms
type III
The value
is increased
The
of Planting
an
area areas
is increased
by in
thehectares
accessibility
totype
animal
traction
2 0 0value
0
Chad
T
ch ad
Areas are larger in Chad than in C
Areas are larger
in
Chad
than
in
Cameroon
Tenants
Chad
Women,
Chad
Areas
in hectares
Farms
type I
Farms
typeof
II an areaFarms
type III by theFarms
type IV
The
value
is
increased
accessibility
Women,
head
of
farm
1 500
head of farm
Women,
Areas are larger in Chad than in Cameroon
Owners
Farms
type
I
Farms
type
II
Farms
type
III
Farms
type
IV
head
of farmof an area is increased by the
Non-users head ofThe
accessibility
farm
Yields
in Kg/ha to animal traction
Yields in Kg/ha Women,
Non-users
YieldsAreas
invalue
Kg/ha
1 000
are larger in Chad than in Cameroon
Non-users
Tenants
The
value
of
an
area
is
increased
by
the
accessibility
to
animal
Cotton traction
Cotton
Yields in Kg/ha
1.
One sample
equally
distributed
Tenants
Sorghum
Non-users
Areas
are larger in Chad than in Cameroon
500
Yields in Kg/ha
Women,
head of farm
Rendements des cultures
Rendements en Kg / Ha
31%
Women,
head of farm
Tenants
2.
An analogOwners
repartition
ofYields
farms
dominated
by rentals of Sorghum
animal tractions
Cotton
in Kg/ha
Sorghum
Cotton
Owners
T yp e
T yNon-users
p e III
T Tenants
y p e IV
Tenants
head
of farm
2. An analog repartition
of farms
dominated by rentals of animal tractions
Femmes
Non utilisateurs
Locataires de
Propriétaires
de
Women, chefs
Non-users
Owners
Tenants
d’exploitation
de TA
TA
TA
Owners
head of farm Owners
Tenants
Yields are always higher in Cameroon, whatever the crop co
The value of an area is increased by the accessibility to ani
Areas are larger in Chad than in Cameroon
Fa
Farms type III
Farms type II
35%
Farms type I
8%
Owners
7%
Non-users
Women,
Tenants
Owners
Non-users
Tenants
9%
Non-users
Farms type
typeinIICameroon,
Farms whatever
type III
IV
Yields
areI always Farms
higher
theFarms
croptype
considered
Farms type IV
Non-users
an area is increased by the accessibility to animal traction
Areas are larger in Chad than in Cameroon
10%
Women,
head of farm
head of farm
Women,
head of farm
Non-users
Women,
30%
Women,
1. One sample equally distributed
2. An analog repartition of farms dominated by rentals of animal tractions
48%
Chad
Chad
Women, head of farm
40%
20%
Women, head
headof
of farm
farm
11%
0
Groundnut
Tenants
1. One sample equallyOwners
shared
Groundnut
Cotton
Yields
in Kg/ha
Groundnut
Sorghum
1.ofOne
equally
distributed
2. An analog
repartition
farmssample
dominated
by rentals
of animal tractions
Bag of Urea / 50 K
Bag of NPKSB/50Kg
Use of fertilizer is always
higher in Cameroon
Utilisation des engrais
Quantity
used
in Kgen kg
Quantités
utilisées
Groundnut
Bag
of Urea / 50 K
Sorghum
Bag
of NPKSB/50Kg
Yields in Kg/ha
Farms type III
Farms type II
Use of fertilizer is always
higher
Cotton in Cameroon
Corn
Areas in hectares
Planting areas
Groundnut
Owners
Tenants
Yields
in Kg/ha
Non-users
Women,
The
headvalue
of farmof
Farms type I
Areas in hectares
Planting areas
1,5
Caractéristiques de surface
Yields are always higher in Cameroon, whatever the crop considered
I
II
III
IV
I
II
III
IV
I
II
III
IV
I
II
III
IV
Planting areas
An
analog repartition
by rentals of animal traction
One
equally
COwners
o to n
S1.
o2.
rg
h o sample
A ra cdistributed
h idof
e farms dominated
M a ïs
Cotton
Sorghum
Corn
Corn
Groundnut
2. An
analog repartition of
farms dominated by
rentals of animal tractions
1. One sample equally distributed
1.Non-users
Women,
Women,
Women,
Women,
Fig.
2:
Characteristics
Areas
in
hectares
1. One sample1.equally
distributed
One sample
equally
shared
Owners
Owners
head of farm
headtractions
of
farm
of farm
head
ofCorn
farm supérieurs
2. Anpar
analog repartition of Des
farms
dominated
rentals
animal
rendements
toujours
au
Cameroun
que soitYields
la headare
Groundnut
Planting
areas
1. by
One
sample
equally
shared
Sorghum
2.2. AnUne
répartition
analogue
des exploitations
dominée
Corn
Planting
areas
always higher in Came
Yields
are always
higher
inofCameroon,
whatever
the quelle
crop considered
analog
repartition
ofOwners
farms
dominated
by
rentals
of
animal
tractions
2.
An analog
repartition
of
farms
dominated
by
rentals
of
animal
tractions
Tenants
Non-users
Planting
areas
culture considérée
Non-users
Non-users
Planting
areas
Tenants
des locataires de traction
animale1. One sample equally distributed
2.
An
analog
repartition
of farms
dominated
by rentals
ofNon-users
animal
Farms
type
I
Farms
type
II
Farms
type
III
Farms
type
IVtractions
Areas in hectares Yields are always higher
2. An analog repartition
of
farms
dominated
by
rentals
of
animal
tractions
Groundnut
Cameroon
Corn
1. One sample equally shared
Quantity
used
in Kg whatever the
in
Cameroon,
Quantity
used
in
Kg
Tenants
Tenants
Tenants
Tenants
One sample
sample equally
distributed
1. 1.One
equally
sharedPlanting areas
Cameroon
Areas in hectares
Planting
Owners areas
Yields
are
always
higher
Cameroon
2. An analog repartitionFig.
of farms
by rentalsof of
animal
tractions
Owners
Owners
2.dominated
AnOwners
analog repartition
farms
dominated
by rentals of animal The
tractions
Owners
Farms
type
I the accessibility
Farms
type in
II to
FarmsOwners
type
III whatever
typethe
IV
Chad
Corn
an
areatractions
is increased
byalways
traction
Yields
are
higher
in
Cameroon,
whatever
the cropFarms
considered
2:2.
Characteristics
Urea
Urea value
Quantity
used
in Kganimal
An
analog
repartition
by rentals
of of
animal
Areas indominated
hectares
Chad 2: Characteristics
Planting areasof farms
Farms
type I
Farms 1.
type
Farms
type
III
Farms type IV
Fig.
Areas
in hectares
OneIIsample equally
distributed
1. One sample equally distributed
1. One sample equally distributed
1. One
sample
equally
distributed
1. One
sample equally distributed
Areas
are
larger
in
Chad
than
in
Cameroon
Areas in hectares
The
value
of
an
isfarms
by
the
accessibility
toalways
animal
traction
2.animal
An
analog
repartition
of
by
rentals
of
animal
trac
An
analog
ofwhatever
dominated
bycrop
rentals
of
animal
tractions
2.
An dominated
analog
of farms
dominat
2. Anare
analog
repartition
of 2.
farms
dominated
byarea
rentals
ofincreased
tractions
Yields
always
higher
in
the
Quantity
used
inrepartition
Kg
Useconsidered
offarms
fertilizer
isrepartition
is always
Urea
2. An analog repartition
of
farmsareas
dominated
by rentals
of animal
tractions
Planting
Farms
type I
Farms typeUse
II of fertilizer
Farms
type
Farms
type
IVCameroon,
Areas
inIII
hectares
Areas
hectares
Planting
sample
The
value
an area
is increased
thehigher
accessibility
to animal traction
Areas
areoflarger
in Chad
than inby
Cameroon
Farms type I
Farmsareas
type II1. One
Farms
type
IIIinequally
Farmsdistributed
type IV
inobtained
Cameroon
higher in Cameroon
Planting
areas Areas
Fig.1:
Typology
of
4 classes
Farms type I
Farms type II
Farms type III
Farms type IV
Planting
areas
Planting
areas
Planting areas
Fig. 2: Characteristics
Planting areas
are
larger
in
Chad
than
in
Cameroon
Fig.1:
Typology
of
4
classes
obtained
Quantity
used
in Kgtractions
Urea
Use
of fertilizer
An analog
repartition
ofvalue
farms
dominated
rentals
oftype
animal
Farms
type
Farms
type II
Farms
type
III is always
Farms type IV
Areas2.
in hectares
The
area Farms
is increased
the
accessibility
traction
Farms
type I
Farms
typeofIIan
typeby
III by
Farms
IVI to animal
by
segmentation
Women,
Women,
by segmentation
Women,
of
Fertilizers
Women,
Women,
Planting
areas
in hectares
Areas in
hectares
in hectares
Yields
inWomen,
Kg/ha Areas inFig.
Cameroon
hectares 4: Use
The
value
ofWomen,
an
area
isFig.
by
theFig.1:
accessibility
to
animal
traction
Fig.1:
Typology
of
4are
classes
Bag ofAreas
NPKSB/50Kg
NPKSB/50Kg
higher Areas
in Cameroon
Women,
2:is increased
Characteristics
The
ofincreased
an area
by the
accessibility
animal
traction
Typology
of 4toclasses
obtained
Areas
larger inobtained
Chad thanBag
in of
Cameroon
head
ofvalue
head
farm
Yields
in by
Kg/ha
head
offarm
farm
head
of
farm
headof
of
farm
Cameroon
head
of
farm
head
of
farm
Urea
The
value
of
an
area
is
increased
the
accessibility
to
animal
traction
Use
of
fertilizer
is
always
head
of farm
Areas
are larger in Chad than
Cameroon
Farmsintype
I
Farms
II by segmentation
Farms type III
Farms type IV to animalFarms
I IV type III
Farms type
II type
Farms type
III type IIFarms type
Farms
I Farms type
Farms
Farms
Farms
typeIIV
Farms
Farms
FarI
type I
Farms
type
IIintype
III type IIFarms
Farmstype
type
bytype
segmentation
Planting areas
Yields
Kg/ha
Areas in hectaresLarger areas in Chad than in CameroonThe value of an area is increased by the accessibility
Bag of Urea / 50 K
Bag2 0of0 Urea / 50 K traction
higher
in
Cameroon
Bag
of
NPKSB/50Kg
Cameroon
Chad SU PERPlanting
Cotton
Non-users
Non-users
Non-users
Non-users
Theby
value
of an area is to
increased
by the
to animal
Areas are larger in Chad than in Cameroon Cotton Non-users
Non-users
The
value
of an
area is increased
the accessibility
animal
traction
The value
of accessibility
an area is increased
bytractio
the a
The
value
ofinanChad
is
increased
by the
accessibility
to animal
traction
Non-users
Larger
areas
than
in Cameroon
FIC IES C Uareas
LT IVEES
Use
of
fertilizer
isarea
always
Non-users
Chad
C
a
m
e
r
o
u
n
Cameroon
The
value
of
an
area
is
increased
by
the
accessibility
to
animal
traction
used
inin Kg
Planting
areas
Cotton
are larger in Chad than
in Cameroon
Areas
are larger
Chad than Areas
Cameroon
in Kg/ha
Areas
are larger in Chad than in Cameroo
AreasQuantity
are larger in Chad
than
in
Cameroon
180
4,1
4,5type I
Farms
Farms
type II
Farms type III
FarmsYields
type IV
Bag
of
NPKSB/50Kg
Bag of inUrea
/ 50 K
higher
Cameroon
inTenants
Kg/haTenants
Cameroon Yields
T
c h in
a dCameroon
Chad
Sorghum
Areas
Tenants
Tenants
Tenants
1 6 0 Tenants
Sorghum
Tenants
Fig. 3: Cameroon
Crops
Yieldsare larger in Chad than in Cameroon
C
Areas
inameroun
hectares
Tenants4,0
Sorghum
3,6
Yields
in
Kg/ha
Cotton
Yields
in
Kg/ha
Fig.
3:
Crops
Yields
Yields
in
Kg/ha
Yields
in
Kg/ha
Areas
in
hectares
Areas
inhead
hectares
Chad
Yields in Kg/ha
Bag of Urea / 50 K
Bag
of NPKSB/50Kg
The 3,5
value of an areaChad
is increased by the accessibility
to animal traction
140
Women,
of farm
Cotton
Tchad
Groundnut
Owners
Owners
Owners
Owners
Owners
CameroonCameroon
Owners CottonUrea
Owners
Cotton
Cotton
Cotton
Chad
Owners
Areas
are
larger
in
Chad
than
in
Cameroon
Groundnut
120
Groundnut
FarmsChad
typeYields
Ihead inof Kg/ha
Farms Cotton
type II
Farms
type III
Farms type IV Bag
Cameroon
Sorghum
3,0
of Urea
/ 50
Women,
farm
Non-users
Sorghum
Farms
type
I Ktype
Farms type II Sorghum Farms typeSorghum
III
Farms type IV
Women,
head
ofCorn
farm
Sorghum
Sorghum
1 0 0 III
Farms
type I
Farms type
Farms
IV
2,4 Farms type II
1.1.Chad
One
sample
equally
distributed
1.1.One
sample
equally
distributed
One
sample
equally
distributed
1.
sample
equally
distributed
One
sample
equally
distributed
1.One
One
sample
equally
distributed
1.
One
sample
equally
distributed
Corn
1. One2,5sample
equally
distributed
Chad
Cotton
Groundnut
Corn
8
0
Groundnutdominated by Groundnut
Groundnut
Groundnut
Non-users
Sorghum
2.2.
An
analog
repartition
ofoffarm
farms
dominated
by
rentals
ofofanimal
tractions
Areas in hectares
Tenants
2.Kg/ha
An
analog
repartition
ofoffarms
dominated
by
rentals
ofofanimal
tractions
The
value
of
an
area
is
increased
by
the
accessibility
to
animal
traction
An
analog
repartition
farms
dominated
by
rentals
animal
tractions
2.
An
analog
repartition
of
farms
rentals
of
animal
tractions
2.
An
analog
repartition
farms
dominated
by
rentals
animal
tractions
Women,
head
of
Chad
2.
An
analog
repartition
of
farms
dominated
by
rentals
of
animal
tractions
2.
An
analog
repartition
of
farms
dominated
by
rentals
of
animal
tractions
2,0
Groundnut
Yields
in
Yields
are always
higher
in Cameroon,
whatever
the
crop considered
Yields in Kg/ha
2. An analog repartition
of farms dominated by rentals
of animal tractions
1,6
The
value
of an area
is increased
by
theinaccessibility
to animal
traction
Fertilizer
used
is always
higherwhatever
in
Cameroon
Non-users
1,4
60
Corn are always higher Corn
Corn the crop considered
Corn in Kg/ha
Yields
Cameroon,
Yields
Non-users
Fig. 2: Characteristics
Tenants
Un échantillon
également
réparti Owners
Superficies en hectare
1,3
The value
of
an area is Corn
increased by the accessibility toOwners
animal traction
Groundnut
Sorghum
Tenants
1,0
Urea
Yields Planting
are always
higher in Quantity
Cameroon,
whatever
the
crophigher
considered
Corn
used
in Kg
Cotton
0,9
Larger
areasIIin Chad than
in Cameroon
Yields
arewhatever
always
inYields
Cameroon,
whatever
the in
crop
considered
Non-users
are
always
higher
Cameroon,
the crop
considered
Planting
are always
higher
Cameroon,
w
Yields are always higher inYields
Cameroon,
whatever
theincrop
considered
areas
Planting
areas
areas
Planting
areasareas
Farms typePlanting
ICotton
Farms
type
Farms
type in
IIIChad than
Farms
IV
Planting
areas
1,0 Planting
Planting
areas
Quantity
usedininCameroon
Kg
Cotton
Areas
are
larger
in type
Cameroon
areas
Larger
areas equally
in Chad
than
Tenants
20
Areas
in hectares
Owners
Groundnut
1. One sample
shared
Corn
Owners
53%
T
chad
Chad
Areas in hectares
C am ero u n
Planting areas
Cameroon
60%
Non-users0 %
head of farm
Women,
head of farm
The value of an area is increasedTenants
by the accessibility to
Tenants
areas in Chad
than in Cameroon
Non-users
Tenants
Owners
1. One sample equally distributed
1. One sample
equally Larger
distributed
Fig.1: Typology of 4 classes
obtained
2. An analog repartition of farms
2. An analog repartition of farms
dominated by rentals of animal tractions
Owners
Tenants
1. One sample equally distributed
by segmentation
2. An analog repartition of farms dominated by renta
Fig.1:
Typology
of
4 classes obtained
Fig.1: Typology
4 classes
obtained
Typologie
en
4ofTypology
classes
obtenues
Planting
areas
Fig.1:
of 4 classes
obtained
Planting areas Owners
1. One sample
distributed
Fig.1: equally
Typology
of 4 classes
obtained
Fig.1:
TypologyYields
of 4 classes obtained
Fig.
3:
Crops
by segmentation
by segmentation
2.
An
analog
repartition
of farms dominated by rentals of animal tractio
by
segmentation
Women,
by
segmentation
by
segmentation
par segmentation
Areas in hectares
Areas in hectares
1. One sample equally distributed Planting areas
head of farm
Cameroon
2. An analog repartition of farms dominated by rentals of animal tractions
Cameroon
Cameroon5 0 %
Chad
1. One sample equally distributed
2. An analog repartition of farms dominated by rentals of an
24
Non-users
40
Yields are always higher in Cameroon, whatever
Corn
Quantity used in Kg
Quantity used in Kg
Quantity used in Kg
Quantitythe
used crop
in Kg considered
0,5 are always higher in Cameroon, whatever
Urea
Sorghum
Yields
the crop considered
0 Areas
2.
An analog repartition
of farms dominated by rentals of animal tractions
Areas
ininhectares
Quantity
usedin
inhectares
Kg
Areas
in
Areas
hectares
Areas
inhectares
hectares
Areas
in
hectares
Areas
in
hectares
UreaUrea
Tenants
Areas
hectares
Urea
Urea
Urea
1. OneCorn
sample
equally
shared
NPKSB
Ur
ée
NPKSB
Ur é e
NPKSB
Ur
ée
NPKSB
Ur
ée
The value of
anin0,0
area
is increased
by
the
accessibility
to
animal
traction
Quantity
used
in
Kg
Owners
Yields
are
always
higher
in
Cameroon,
whatever
the
crop
considered
Use nofs fertilizer isEalways
Exploitations
Exploitations
de
Exploitations
Fig.
3:
Yields
Groundnut
E xp lo itatio n s
E xp lo itatio
xp lo itatio n s
E xp lo itatio n s
2. An
analogExploitations
repartition
of II
farms
dominated
by
rentals
animal
tractions
Quantity
used
in
Kg
Farms
ICrops
Farms
Farms
type
III
Farms
type
Use
of fertilizer isFarms
always
Use
of
fertilizer isisalways
Farms
type
Itype
type
IItype
type
III
type
Farms
Farms
type
II Farms
Farms
type
IIIofFarms
typeIV
IV
UseIV
of
Use
isFarms
always
Farms
type
IIIof3:fertilizer
type
II
Farms
type
III
type
Farms
type
Itype
Farms
type
Farms
type
III
Farms
typeIV
IV
Farms
type
Farms
type
Farms
type
III
Farms
type
IVfertilizer is always
Use
of
fertilizer
always
Farms
type
Farms
type
IIIIin
Farms
type
III
Farms
type
IV
Fig.
Crops
Yields
deFarms
type
I ItypeFarms
de
typeFarms
IIII
type
III Farms
de
typeFarms
IV
Urea
higher
Cameroon
d
e
typ
e
I
d
e
typ
e
II
d
e
typ
e
III
d
e
typ
e
IV
Farms type I
II
type
III
type
IV
higher in Cameroon
higher in Cameroon
Fig.
higher in Cameroon
Yields
in Kg/ha
higher2:in Characteristics
Cameroon
Owners
Yields
are always
higher
in used
Cameroon,
whatever the crop considered
higher in Cameroon
Quantity
in Kg Urea
Corn
1.BagOne
sample equally
shared Cameroun
Larger areasUrea
in Chad
than
in
Cameroon
Bag of NPKSB/50Kg
Cameroon
Tchad
Bag
of
NPKSB/50Kg
The
value
of
an
area
is
increased
by
the
accessibility
to
animal
traction
Bag
of
NPKSB/50Kg
of
NPKSB/50Kg
The
value
of
an
area
is
increased
by
the
accessibility
to
animal
traction
The
value
of
an
area
is
increased
by
the
accessibility
to
animal
traction
The
The
value
value
of
of
an
an
area
area
is
is
increased
increased
by
by
the
the
accessibility
accessibility
to
to
animal
animal
traction
traction
The
value
of
an
area
is
increased
by
the
accessibility
to
animal
traction
The value
of an
area is increased
by the accessibility to animal traction
Bag of NPKSB/50Kg
Une
d’engrais
2: Characteristics
Une
superficie
valeur
fonction
l’accessibilité
à la traction
animale
Planting
areas
The value
of anmise
area en
isFig.
increased
byused
theinde
accessibility
to animal
traction
Useutilisation
of fertilizer
is An
always
Cameroon
2.
analog
repartition
of
farms dominated
by rentals Frs
ofofanimal
tractions
Bag
of NPKSB/50Kg
NPKSB
sac/50
Use of fertilizer is always
Areas
are
inin
Chad
than
ininshared
Cameroon
BagFrs
of Urea / 50 K 15 540 Bag
Areas
are
larger
inQuantity
Chad
than
in
Cameroon
Bag of
Urea
/ 50 K kg 12 000
Areas
are
larger
Chad
than
Cameroon
Urea / 50 K
Urea
1. larger
One
sample
equally
Areas
Areas
are
larger
larger
in
Chad
than
than
in
in
Cameroon
Cameroon
Bag
of Urea /in
50
Areas
are
larger
in
Chad
than
inKg
Cameroon
Areasare
are
larger
inKChad
Chad
than
in
Cameroon
Cotton
mhigher
inéral in
toujours
Yields
are
always
higher
in
Cameroon,
whatever
the
crop
considered
Use
ofare
fertilizer
isin
always
Areas
larger
Chad
than
in
Cameroon
Cameroon
UREE
sac/50
12 340 Frs
Bag of Urea
/ 50kgK 8 500 Frs
higher
in Cameroon
Des superficiesChad
par exploitation
importantes
au Tchad
qu’au
Cameroun
Plantinganalog
areasplus
Cameroon
repartition
of farms
dominated
by
rentals of animal supérieure
tractions au Cam
eroun
Bag of Urea / 50 K
higher in Cameroon 2. AnUrea
Chad
Use of fertilizer is always
Quantity
used in Kg Cameroon
Fig. 3: Crops
Yields
Chad
Yields
ininKg/ha
Sorghum higher in Cameroon Bag of NPKSB/50Kg
Yields
ininKg/ha
Yields
Kg/ha
Bag of NPKSB/50Kg
Yields
Kg/ha
Yields
Kg/ha
Yieldsin
inFig.
Kg/ha
Yields
in
Kg/ha
2: Characteristics
Bag ofinNPKSB/50Kg
Yields
Kg/ha Yields in Kg/ha
Use of fertilizer is always
Urea
Yields
Kg/ha
Chad higher
in Cameroon Bag of NPKSB/50KgBag of Urea / 50 K
Areas ininhectares
Cotton
Fig.
2:
Characteristics
Cotton
Cotton
Cotton
Cotton
Cotton
Cotton
Bag of Urea / 50Planting
K
Bag of Urea / 50 K
Cameroon Cotton
areas
Groundnut
Cotton
Use of fertilizer is always
Areas Bag
in hectares
Farms type I
Farms type II
Farms type III
Farms type IV
of NPKSB/50Kg Bag of Urea / 50 K
Cotton
Sorghum
Sorghum
Sorghum
Sorghum
Sorghum
Sorghum
Sorghum
higher
in
Cameroon
Planting
areas
Sorghum
Chad
Cameroon
Farms Bag
type of
ICorn
Farms
type II
Farms type III
Farms type IV
The value of an area is increased by the accessibility to animal traction
Urea
/
50
K
Groundnut
Groundnut
Groundnut
Groundnut
Groundnut
Groundnut
Groundnut
Bag of NPKSB/50Kg
Groundnut
1
Farms type I
2
3
Farms type II
4
Bag of NPKSB/50Kg
Farms type III
Farms type IV
Gab of Urea / 50 Kg
The value of an area is increased by the accessibility to animal traction
Larger areas in Chad than in Cameroon
Conclusions
Fig.that
3: Crops
Yields
1)In physical settings
are similar
in terms
Cameroon
The value
of an
area is increased by the accessibility to animal traction
of
their
potential,
one
finds:
Larger areas in Chad than in Cameroon
Chad
Yields in Kg/ha
Corn
Corn
Corn
Corn
Corn crop considered
Corn
Bag of Urea
/ Corn
50
K
Corn
Yields
are
always
higher
in
Cameroon,
whatever
the
Cameroon
Table
6:
Farm
Performance Based on Size
Larger areas in Chad than in Cameroon
Chad
-A
larger
cultivated
area
per
farm
in the
Yields
are
higher
ininCameroon,
whatever
the
considered
Fig.
3: Crops
Yields
Yields
are
always
higher
ininCameroon,
whatever
considered
Yields
arealways
always
higher
Cameroon,
whatever
thecrop
crop
considered
Yields
Yields
are
are
always
higher
higher
in
in
Cameroon,
whatever
whatever
the
the
crop
considered
considered
Areas
in hectares
Yields
are
always
higher
Cameroon,
whatever
thecrop
crop
considered
Yields
arealways
always
higher
inCameroon,
Cameroon,
whatever
thecrop
cropMali
considered
and
Level
of
Mechanization,
CMDT
Zone,
Yields
are
always
higher
in
Cameroon,
whatever
the
crop
considered
Cotton
Chad;
Quantity
used
in
Kg
Fig.
3:
Crops
Yields
Chad
Cameroon
Quantity
used
ininin
Kg
Quantity
used
in
Quantity
used
Kghectares
Quantity
used
in
Kg
Quantity
usedAreas
inKg
Kg
Quantity
used
in
Kg
Quantity
used
in
Kg
Quantity- used
in Kg yields and income in Chad;
Farms type I
Farms type II
Farms type III
Farms type IV
Lower
Labor
A single
At least
Cameroon
Chad
Urea
Urea
Urea Farms type
Urea
UreaUrea
Urea IV
I in Cameroon.
Farms type II
Farms type III
FarmsUrea
type
Urea - Better food
force
pair
of
two
pairs
A
single
security
Yields in Kg/ha
The
value of an area is increased by the accessibility to animal traction
Chad
Yields in Kg/ha
ofoffertilizer
isisalways
oxen
of oxen
tractor
Use
fertilizer
isisalways
Use
fertilizer
always
Use
UseofUse
of
fertilizer
always
Useof
offertilizer
fertilizerisisisalways
always
Use
of
fertilizer
always
Use of fertilizer higher
is always
The
value
of
an
area
is
increased
by
the
accessibility
to
animal
traction
Use
of
fertilizer
is
always
in
Cameroon
2)higher
Chadian
growers
are
increasingly turning
higher
ininCameroon
higher
inYields
Cameroon
higher
Cameroon
higher
Cameroon
higherin
inLarger
Cameroon
higher
in
Cameroon
in Kg/ha
Cotton
areas in Chad than in Cameroon
in Cameroon
highersuch
in Cameroon
Cotton
from Bag
cotton
to
other
crops
as ground- Number of cases studied Bag
15
15
17
Bag
ofof
NPKSB/50Kg
NPKSB/50Kg
Bag
NPKSB/50Kg
Bagof
of
NPKSB/50Kg
Cotton areas in Chad than in Cameroon
Bagof
ofNPKSB/50Kg
NPKSB/50Kg25
Bag
of
NPKSB/50Kg
Bag of NPKSB/50Kg Larger
nuts. Bag
Bag
ofofUrea
Urea
/ Urea
50
Bag
50KK Bag of NPKSB/50Kg
Bag
Bag
of
of
Urea
Urea
/
/
50
50
K
K
Bagof
of
Urea
/ 50K/K/50
Bag of Urea / 50 K
Bag of Urea / 50 K
3) It can be said Fig.
with3:some
that:
Cropsconfidence
Yields
Bag of Urea / 50 K
- Type I and
II farms appear to be falterCameroon
ing in both Chad and Cameroon, particChad
ularly in view
of the less and less favorable economic
for African
Yields environment
in Kg/ha
cotton;
Cotton
- The farms/production systems that
appear to be faring reasonably well are
Types III and IV, i.e. those that are in a
position to use the full range of agricultural resources and equipment (animal
Number of persons/farm
Total cultivated area (ha)
Cultivated area/person (are)
Total workdays/person
Total workdays/ha
Financial income from agriculture
(CFAF)
Financial income from agriculture
(CFAF/ha)
Financial income from agriculture
(CFAF/person)
Financial income from agriculture
(CFAF/workday)
Fig. 3: Crops
31.2 Yields 15.3
15.9
104
89
86
436,000
9.9
9.2
93
77
83
312,000
7.9
3.8
48
40
84
71,000
29,000
27,000
34,000
19,000
33,000
29,000
32,000
9,000
372
320
407
223
34.8
112
88
Chad
79
Yields 1,018,000
in Kg/ha
Cameroon
Cotton
25
or mechanical traction, use of agricultural inputs, etc.).
The table below confirms this trend to some extent.
Other factors have also had an impact on the evolution of family farms over the last four decades. First of all, steady population growth (roughly 2.8 percent per year) has had the effect
of increasing the demand for land (in Ghana, for example,
the total cultivated area increased from 14.5 percent to 25.5
percent of all lands between 1961 and 1999, while in Côte
d’Ivoire over the same period it increased from 8.5 percent to
23.5 percent [Mortimore, 2003]), which has resulted, in some
cases, in migrations which have not only increased pressure
on land but also, too often, led to conflicts. In addition, this
pressure has led to a decline in per-person cultivated area. In
the Office du Niger zone, for rainy season rice, per-person
cultivated area fell from 0.38 ha to 0.22 ha between 1987 and
1999 (Bélières et al., 2002).
Environmental challenges pose a potential threat to the continued growth of agricultural output, especially in regard to
cotton, and family farms (Type I and Type II farms according to the study typology) will clearly face many difficulties
in terms of their survival, particularly when the adoption of
biotechnologies is considered (the much-vaunted genetically
modified cotton). It is quite logical to expect that large farms,
i.e. those that have the means to obtain agricultural equipment
or possibly to rent such equipment, are the ones that will be
economically viable. These large farms correspond to Types
III and IV of the typology.
les Agronomes ? Le cas des systèmes de culture en zone cotonnière
du Cameroun. Entretien du Pradel, 2004, Agronome et Innovations.
Montpellier, France.
Rapports d’activités de la Cotontchad : Campagnes Agricoles
2000/2001, 2002/2003, 2003/2004 ; 2002/2005.
Bara Guèye. 2006. L’agriculture familiale en Afrique de l’Ouest :
concepts et enjeux actuels.ACB (2005).
A profile of Monsanto in South Africa. African Centre for Biosafety
[online]. <http://www.biosafetyafrica.net/_DOCS/ABC_Monsanto_
Southafrica.pdf> on April 2005, 26 p.
AfricaBio (2005). Tanzania conducts GM field trials. Biolines [online]. http://www.africabio.com/biolines/71.pdf, on [04/03/05], 5 p.
Brévault, T. and J. Achaleke. 2005. Status of pyrethroïd resistance
in the cotton bollworm, Helicoverpa armigera, in Cameroon. Resist.
Pest Manage. Newsl. 15 (1), p. 4–7.
Cognée, M. 1974. Modalité de l’abscission post-florale chez le cotonnier. Liaison avec quelques facteurs internes. Cot. Fib. Trop. 29
(4), p. 447–462.
Elbehri A. and S. MacDonald, 2004. Estimating the impact of transgenic Bt cotton on West and Central Africa: A general equilibrium
approach. World Dev. 32 (12), p. 2049–2064.
Estur, G. 2006. Le marché mondial du coton : évolution et perspectives. Cah. Agric. 15 (1), p. 9–16.
Fok ACM., W. Liang , J. Wang and NY. Xu. 2006. Production cotonnière familiale en chine : forces et faiblesses d’une intégration à
l’économie de marché. Cah. Agric. 15 (1), p. 42–52.
Grain. 2004. GM cotton set to invade West Africa. Time to act!
Grain Francophone Africa. [online]. <htpp://www.grain.org/
briefings/?id=184> on June 2004, 21 p.
Green, W.M., M.C. De Billot, T. Joffe, L. Van Staden, A. BennettNel, Du Toit CLN., L. Van der Westhuizen. 2003. Indigenous plants
and weeds on the Makhathini Flats as refuge hosts to maintain bollworm population susceptibility to transgenic cotton. Afric. Entomol.
11, p. 21–30.
Hake, K. 2004. Cotton biotechnology: beyond Bt and herbicide tolerance. In Swanepoel A. (ed.). Proceedings of the world cotton research
conference-3: cotton production for the new millennium. Cape Town,
South Africa, 9–13 March 2003. Pretoria : ARC-IIC, p. 9–13.
Reference
Olina Bassala JP, 2002. Innovations techniques et changements socioéconomiques. Cas du semis ou « labour chimique » au sud du bassin
cotonnier au nord Cameroun. DEA, Université de Toulouse(France),
74p.
Vall, E., M. Cathala, P. Marnotte, R. Pirot, J.P. Olina, B. Mathieu, H.
Guibert, K. Naudin, Aboubakary and I. Pabamé Tchinsahbé, 2002.
Pourquoi inciter les les agriculteurs à innover dans les techniques
de désherbage ? in Jamin JY et L Seiny Boukar éds., 2002. Savanes
africaines : des espaces en mutation, des acteurs face à de nouveaux
défis. Mai 2002, Garoua, Cameroun, Ndjaména-Tchad, PRASAC.
Dugue, Patrick, Vall Eric, Cathala Magalie, Mathieu Bertrand, Olina
Jean Paul and Seugue Caroline, 2004. Les paysans innovent, que font
Hofs, J.L. and D. Marais. 2004. Effect of basic fertilization on transgenic Bt cotton yields in small-scale dryland farming systems: an
experience in the Makhathini flats, Kwazulu-Natal, South Africa.
Abstract. In CIEC. 15th International symposium of the International
Scientific Centre of Fertilizers, 27-30 September 2004, Pretoria,
South Africa, 22 p.
ICAC. 2002. Cotton world statistics. Washington, DC: ICAC,
140 p.
Ismael, Y., R. Bennett and S. Morse. 2002. Farm-level economic impact of biotechnology : smallholder bt cotton farmers in South Africa. Outlook Agric. 31, p. 107–111.
James, C. (2005 a). Preview: Global status of commercialized Biotech/GM crops: 2004. ISAAA Briefs 32. New York: International
Service for the Acquisition of Agri-Biotech Applications, 12 p.
James, C. (2005 b). Executive summary of global status of commercialized Biotech/GM crops: 2005. ISAAA Briefs 34. New York: International Service for the Acquisition of Agri-Biotech Applications,
12 p.
26
Mendez, del Villar P., L.R.A. Alvez and M.S. Keita. 2006. Facteurs
de performance et de compétitivité des exploitations cotonnières au
Brésil, aux états-Unis et au Mali. Cah. Agric. 15 (1), p. 23–34.
Nubukpo, K. and M.S. Keita. 2006. Prix mondiaux, prix au producteur et avenir de la filière coton au Mali. Cah. Agric. 15 (1),
p. 35–41.
Vaissayre, M., G.O. Ochou , O.S.A. Hema and M. Togola. 2006.
Quelles stratégies pour une gestion durable des ravageurs du cotonnier en Afrique subsaharienne ? Cah. Agric. 15 (1), p. 80–84.
Zhang, H., C. He, G. Shen, J. Yan, D. Auld and E. Blumwald. 2005.
Analysis of transgenic cotton engineered for higher drought and
salt-tolerance in greenhouse and in the field. In Proceedings of the
beltwide cotton conferences, New Orleans, Louisiana, January 4–7,
p. 871–875.
Hofs, Jean-Luc et Fabio Berti, «Les cotonniers (Gossypium hirsutum
L.) génétiquement modifiés, Bt : quel avenir pour la petite agriculture
familiale en Afrique francophone ?». Biotechnol. Agron. Soc. Environ., volume 10 (2006) numéro 4 : Biotechnol. Agron. Soc. Environ.
2006 10(4), p. 335–343. http://popups.ulg.ac.be/Base/document.
php?id=615
Components of a Sustainable Cotton Production System: Perspectives From the Organic Cotton Experience
Simon Ferrigno and Alfonso Lizarraga1, Organic Exchange, UK
Introduction
Organic cotton is attracting a lot of attention at present following some impressive growth in recent years. This situation
raises questions and challenges, which the industry must attempt to answer (Organic Exchange 2008). One of the central
ones is how to guarantee the sustainability of the system in a
time of growth (Ferrigno 2008), which in turn means identifying and analyzing what the components of a sustainable
organic cotton system are. This analysis will have implications for the organic cotton sector itself, but also for the wider
cotton sector and sustainable development debate.
The Farm Development Program of Organic Exchange (OE)
has been working for the past three years both to promote the
production of organic cotton, and to understand and shape
how it is produced and what are the key components of an
organic cotton system.
This paper talks about the current status of organic cotton production worldwide, and the necessary components to ensure
production is sustainable, drawing on our work in India, Africa, Latin America, Turkey and United States. The paper concludes with some recommendations for the sector, for policy
makers and for the cotton industry more generally.
Current Status of Organic Cotton
Organic cotton contributes 0.55% of global cotton production as of the latest estimates. Textiles made from organically
grown cotton fiber have also achieved significant penetration
in some markets, such as the UK, Germany, Switzerland, Japan, and the United States.
Organic cotton production in the 2007/08 season was esti-
mated at 145,872 metric tons of fiber. The data has been confirmed for most regions although some uncertainties remain,
where data has been estimated based on past reports and trends
(Turkey) or where it is difficult to verify and cross-reference
reports (e.g., China). Total production was 152% higher than
in 2006/07, partly due to better data gathering and more reliable information, although 60% of the additional production
is from increased production by existing known projects. Production currently takes place in 22 countries, covering the
same regions as conventional cotton. However, the vast majority (87%) of production takes place in just three countries:
India, Turkey and Syria.
The total area globally confirmed by research is 161,000 hectares. We extrapolate that total area in organic cotton production is close to 200,000 hectares. At least 177,678 confirmed
farmers (with 70% of projects reporting data) are involved,
of whom nearly 18% are women. Total organic cotton farmer
numbers are estimated at 217,000 (Organic Exchange, 2008).
Growth in production has been ad-hoc until recently, meaning that, while organic certification is generally to one of the
EU (2092/91) or US (NOP) legal standards, the organization
of production and farmers is not to any recommended or accepted set of practices. Recent growth has led to questions and
discussion over the meaning and definition of what an organic
cotton system needs to be sustainable and over the integrity of
organic cotton.
Africa is a region with much potential in organic cotton, some
success stories and some challenges. Experiences in Africa
have many valuable lessons in the definition of a sustainable
production system (see Box 1 and Ferrigno et al., 2005).
1) With contributions from other Farm Development Programme team members Prabha Nagarajan, Silvere Tovignan, Phil Monday, Doraliz
Aranda. Simon Ferrigno is Director of the Organic Exchange Farm Development Program andAlfonso Lizarraga its Director for LatinAmerica.
27
Organic cotton production in Africa 2007/08: trends and analysis2
Organic cotton production continues to increase in Africa. During the 2007/08 season, Africa produced a total of 6,531
MT of organic cotton fiber, 43 percent more than the 3,716 MT harvested in 2006/07.
Eight countries (Benin, Burkina Faso, Mali, Senegal, South Africa, Tanzania, Uganda and Zambia) continue to lead the
production of organic cotton on the continent. Pilot production began in South Africa in conjunction with a collaborative
research project with Cotton South Africa, South Africa Agricultural Research Center in Rustenburg, and Woolworths
South Africa.
Tanzania and Uganda are Africa’s largest producers of organic cotton, contributing 83 percent of Africa’s total production
of the fiber. Tanzania alone produced 44 percent of the continent’s total organic cotton fiber, taking over the lead from
Uganda.
The greatest increase in organic cotton production in Africa over the past season was in Zambia, followed by Burkina Faso.
Zambia’s production increased as a result of trial acreage being scaled up, while Burkina Faso’s strong growth is in large
part due to having secured a 5-year contract with a major buyer.
Growth has continued across Africa despite late rains and subsequent flooding, especially in September 2007. Production
growth may have been higher with more regular rainfall, but better market access and advance contracts, which many
African countries now enjoy, is just as important a factor as weather in the growth figures. Reports from African farming
projects are mostly optimistic, with new farmers joining existing projects, production scaling up in South Africa, and a new
project beginning in 2007/08 in Benin.
OE had expected organic cotton production to increase approximately 40 percent throughout Africa in 2007/08. However,
as a result of the poor organic cotton seed supply (seed may be delivered late, of poor quality, and/or in insufficient quantities) and organic farmers being abandoned by potential buyers due to DDT concerns, production may fall or stagnate in
the years to come.
Africa CFA Region
(Benin, Burkina Faso, Mali, Senegal)
In the Africa CFA region, Burkina Faso has been surging ahead in terms of production, having secured high priced longterm contracts for the next five years. Next in order of production are Mali, Benin, and Senegal. All countries are seeing
production increase, although the increases are occurring more slowly in countries such as Benin where sales remain uncertain and long-term commitments are unclear. In Benin, new certified organic cotton production will come on board in
2008/09, with a new project in Pendjari, developing organic cotton as a buffer around a national park to protect the national
park from chemical contamination. Production on a significant scale will not occur for another 2-3 years.
Organic Cotton and the General
Cotton Sector
Organic cotton has not evolved in a vacuum. It was introduced
in response to social and environmental challenges, many of
which have changed over time. As such, the organic cotton
sector needs to evolve and respond to new challenges. It must
also be seen, and see itself, as part of a global system in which
lessons must be shared.
In West Africa, some of the challenges that have motivated
trials with organic cotton include the macroeconomic environment, such as impacts from subsidies. Various factors in
recent years have left many cotton farmers on the margins of
economic viability (PAN 2003, Ton 2002a).
However, in many ways organic cotton’s main focus is to lift
the entire cotton sector, not replace it. Natural fibers may need
to stick together.
2) Extract from Organic Exchange Farm and Fibre Report 2008
3) www.organicexchange.org
Sustainable Organic Cotton?
Organic cotton, to be a sustainable method of producing fiber, needs to be more than just ‘environmentally friendly’. It
needs to be productive, offer decent returns to farmers, and
in a growing world with limited returns, needs to be efficient
in terms of land use and offer opportunities to be more than
just a fiber production system, i.e., it needs to be an efficient
system for producing other crops and offering other benefits
to its farmers and to the wider world, such as ‘clean’ air and
water and reduced carbon footprints, for example.
To be productive, organic cotton production needs to take
place on fertile soils and in ‘perfect’ conditions where yields
can easily match those from other production methods.
In cases where organic cotton plays the role of a social safety
net, ‘capturing’ farmers who can no longer afford to produce
using other methods, this may be modified slightly. There are
several ‘sustainability’ sides to the organic cotton story, which
are visible behind some of the yield reports (See Organic Exchange Farm and Fiber Report 20083).
28
story is far from simple. For example, lower yields
may be more related to the socio-economic status
of the farmers or to areas where all yields are low
because of water shortages, climatic conditions
and change or general environmental degradation.
With regards to water, most organic cotton is produced in rain-fed systems, while projects in areas
with irrigation have often invested heavily in efficient technologies such as drip irrigation.
Table 1: Organic cotton production in Africa
(in metric tons of fiber), Organic Exchange 2008
Countries
Production
Production
Contribution
2006-2007
2007-2008
per country
(Tons of fiber) (Tons of fiber) (%)
Growth as
compared to
2007 (%)
Benin
200
223
3%
10,31 %
Burkina
140
436
7%
67,89 %
Kenya
3
-
-
-
Malawi
0
-
-
-
Mali
250
335
5%
25,37 %
Senegal
65
83
1%
21,69 %
South Africa
0
7
0,1 %
100 %
Tanzania
1 662
2 852
44 %
41,73 %
Uganda
1 378
2 545
39 %
45,86 %
Zambia
18
50
1%
64 %
Total
3 716
6 531
100 %
In general, we must note that organic cotton is
most frequently produced by smallholder farmers
in many developing countries, especially in Africa
and India and parts of Latin America. Even in more
developed economies such as the US and Turkey,
organic farmers generally plant smaller area than
their neighbors.
However, on a global level, we can point towards
some ingredients of a sustainable system, despite
43,10 %
the diversity of production environments globally.
These can be divided between the system within
the farm (soil, land availability, inputs, water availability, labor, and so on) and the wider farm environment (market conditions, prices, regulatory issues, support services, organization and logistics and infrastructure, policy). We will cover
both here.
A Farm Systems Approach
Cotton is grown in a farm system. In organic cotton, this is
an essential basis for successful, productive organic cotton
growing – other crops provide green manure, tools for pest
management (by creating traps, providing ingredients, etc.).
The farm system includes crops grown in rotation, livestock,
and other products both farmed and wild. It is a systems approach that does not lend itself well to a monoculture (Van
Elzakker 1999).
Illustration 1: Example of an organic
cotton farming system
Beneficial and harmful organisms
(fungus, mites, insect, birds, mammals and others)
What is Organic?
The IFOAM basic standards state that ‘Organic agriculture
[also known as “Biological” or “Ecological” agriculture or
protected equivalent forms of these words (in other languages)] is a whole system approach based upon a set of processes
resulting in a sustainable ecosystem, safe food, good nutrition, animal welfare and social justice. Organic production
therefore is more than a system of production that includes or
excludes certain inputs (IFOAM 2008).’
Organic cotton has been criticized for offering lower yields and
being water intensive, although both these points are far from
borne out by the reality. Even where some evidence exists, the
Association
Food
- Beans
- Maize
Cash
- Sesame
Animals
Bees and Honey
Cows and goats
Crop Rotation
Food
- Maize
- Beans
- Lentil
- Vegetables
COTTON
Border
(useful plants)
- Carob
- Sunflower
4) Both quoted in vanLoon et al, Agricultural Sustainability, Strategies for Assessment, 2005
Cash
- Sesame
- Groundnut
- Soya
- Sweet
potato
Periphery
Food
- Cassava
Soil
(fungus, lichens, mites, insects, and others)
Cash
- Coffee
- Banana
- Mango
29
Illustration 2: The external environment
of organic cotton farming
Farmer services
Primary
processing
Value chain
Farmers
Community
Development
Logistics,
transport
Marketing
Managing/protecting
landscapes
and biodiversity
Van Elzakker (1999) suggests the following quick formula
for the organic farming system: ‘The use of locally adapted
varieties + the reduction of nutrient losses + the use of locally
available organic material and green manuring + a wide rotation + fostering natural balances + mechanical and manual
weed control = no need for synthetic inputs’.
In the years since this formula was suggested, growers have
learned and refined this systems approach. Seed selection is
clearly critical, but experiments have shown that hybrid seeds
can be bred and adapted (e.g., Paraguay, Roa 2008) and native, resistant varieties improved (e.g., India). Different soil
fertility management approaches can be used depending on
resources and finance, and water has become a critical issue, if
only as a potential tool used to criticize organic cotton production. Pest control is also an important factor in some agro-ecosystems. Input substitutions and externally purchased organic
inputs have also been used, although to what extent these are
sustainable in a narrow sense is questionable.
The farm in the wider environment
In a more recent research review of experiences with organic
cotton, Eyhorn (2007) identifies the following factors as some
of those necessary to support a sustainable organic cotton system:
• Trade relations between farmers and the value chain
• The need for purchase guarantees to give security of production over time
• The need for a good Internal Control System, involving
farmers in certification and training and extension
• The need to work with the right farmers – organic is ideal
for small and marginal farmers, and farmers must be motivated to work in an organic cotton system
• The need for pre-financing of the crop and the organizational set-up.
The work of the OE during the past three years in looking at
how to create a sustainable foundation for growth of organic
cotton and drawing from other experiences is given below.
Definitions of Sustainable Production Systems and Organic Basic
Standards
In looking at sustainability within the organic cotton system,
The Organic Exchange has used two main definitions of sustainable agriculture:
Sustainable agriculture is:
…“the ability of an agroecosystem to maintain
production through time, in the face of long-term ecological constraints and socio-economic pressures”
(Altieri, 1987)
and
... “involves a system for food and fibre production
that can maintain high levels of production with minimal environmental impact and can support viable
rural communities”
(Mellon et al., 1995)4
Organic cotton production requires the involvement of many
different actors, and often, partnerships between public and
private actors, NGOs and business stakeholders as well as
farmers (See Illustration 3 for an example). This makes it a
very complex sector, more so because of the diversity of ecological, environmental, cultural, social, economic and political
contexts in which farming takes place. Making sense of this
complexity to understand what makes production sustainable
requires some understanding of the production systems and
farmers’ profiles (e.g., marginal systems, population pressure,
fragmentation, smallholders, resource poor, etc.) and some
analysis of successful business models and their objectives,
reports, indicators, and factors influencing these from outside,
such as markets and policy. Illustration 4 shows an example of
a business model in Latin America.
The components OE is looking at include the following components (illustration 3), grouped under four headings to distinguish them. The paper will discuss these using examples
from different organic cotton production systems within our
experience.
Social components of sustainable organic cotton
production systems.
“Training the farmers to develop leadership qualities,
marketing skills for collective bargaining and educating
them to strengthen their farmer organizations to execute
their plans and internal control systems so that over a
period of time they become independent. Alongside the
training of farmers and strengthening their associations,
creating the producer company with tangible assets which
can process and trade multiple agro-commodities.”
Zameen, India (Quoted in Truscott, 2008)
The social aspects of organic cotton production were very important in most early organic cotton projects and continue to
be promoted in many new ones. Investments were made in
how farmers are organized among themselves for production
30
Illustration 3: Business model example from Latin America
Business model in Latin America
Finance
(Bank / alternative financial)
Organic
Companies
(other countries)
Certification
Individuals
Transformer
services
Organic
Company
Organic
Farmers
Small groups
Associations
Research
(Universities )
Export &
Local Markets
(consumers)
Consumers
Technical
assistance &
Educati on
(NGOs)
as well as marketing of their crops, and how they relate to
those aspects of the value chain and wider cotton sector nearest to them.
Strong farmer organizations and participation can benefit
production by helping motivate farmers and drawing on their
experience and knowledge. Most successful projects OE has
studied involve some form of formal or semi-formal farmer
structure and/or a strong element of social/community/family
cohesion among farmers. In Peru and Uganda, the APAEM
and LOFP groups are farmer owned/managed structures who
are closely involved in the extension, certification, research
and sometimes trading activities (OE find other examples of
this model in India, Zambia and Senegal), while in countries
such as Turkey, production is often based around farmers
bonded by strong social and family ties. Strong groups can
have a better influence on the supply chain when it comes to
negotiating prices and contracts. While this may sometimes
be uncomfortable for buyers, it gives a solid foundation to
maintaining production over time.
An example of social cohesion and farmer organization is also
offered by the Texas Organic Cotton Marketing Cooperative,
where a group of farmers founded their own marketing cooperative, and set prices based on real costs of production, trading directly with mills, bypassing traders and commanding a
higher direct return as a result. Successful producer groups
have often incorporated social goals in their programs, for
example, around integration of women or building farmers’
organizations and capacity (Ferrigno et al., 2005).
Farmers who are fully involved and cohesive will generate
ideas and help sustain production. In cases where the social
foundation is weak, organic cotton production many require
more external support, in terms of finance, technical assistance
and managing conflicts or weaknesses in self-management.
In any case, in the early days of organic cotton production with
a new group of farmers, a strong training program is required.
This can be costly and is a major
reason why sponsors of new production need to pay attention to ensuring farmers understand and adopt the
concepts of organic cotton production
and support some of the training, integrated cropping system management
and research of the farming system as
soon as possible, as this will help manage costs, especially after any initial
grants or support for conversion has
finished. A full-cost system to capture
these expenses must be put in place so
that the project, over time will be able
to be self-sustaining.
Tensions may occur within a group of
farmers, between farmers’ groups, or
between farmers and external agents.
Externally driven initiatives where
farmers are contracted are the most
vulnerable, as farmers will constantly
wonder whether they are getting fair returns and will be comparing themselves to other groups and organic returns against
other production methods. Thus, transparency, negotiation
and trust are key components of social sustainability, which
can be built up through institutions, investments by producer
partners and project organizers, and fair and transparent pricing mechanisms and a balance of benefits given to producers
as part of the system.
Government
&
International
NGOs
Ecosystem-Environment
Understanding and working with the ecosystem and natural
environment is critical for organic farming that is sustainable
over time.
Soil and soil fertility management are essential foundations
for this. To be productive, organic farming requires fertile
soils, and management of that fertility over time. In many
cases where organic farming is introduced in areas where soil
fertility is depleted, big efforts are required to repair this. It is
noticeable as OE studies organic cotton yields that the lowest averages are recorded in areas where either soil fertility
in general is poor or degraded (i.e., West Africa) or in areas
where farmers are resource poor and unable to use the best
available organic technologies and approaches to manage
their soil (for example, Uganda).
Soil fertility is the foundation of sustainable and productive organic farming. When soil is well managed, pest
pressure is reduced, water use is optimized and yields
will improve for all crops grown in the rotation. To be
sustainable and to enable organic cotton production to
grow to meet demand, soil fertility has to be a priority for
farmers and farming projects.
Soil fertility and its management require specific approaches in organic production, including:
1. using natural fertilization methods
31
2. practices such as crop rotation and association
3. elimination of chemical fertilizers
Organic soil fertility management thus emphasizes the
use of practices that systematically introduce nutrients
into the system in natural ways
Illustration 4: making the most
of other crops in the production
system can work for food security,
local markets as well as export
markets
Extract from Monday and Lizarraga (2008)
Seed selection is also important, and farmers need to have access to varieties that are resistant or less susceptible to common pests and diseases. Being able to choose an adapted variety for organic cotton can substantially improve productivity.
Many examples from Latin America highlight the value of
this approach, for example, organic cotton farmers in Paraguay obtain very good yields despite the common presence
of the boll weevil, as do farmers in Nicaragua and Brazil. A
similar situation with regards to damage caused by Heliothis
/ Helicoverpa exists in some parts of Africa. However, having
to use the same varieties as in conventional cotton is a major
problem for many producers, especially in Africa. Good compromises need to be found between the agronomic needs of
farmers and the quality requirements of spinners for certain fiber characteristics. Specific organic cotton breeding programs
are needed on a wider scale than the existing small experiments such as those in Paraguay (Roa 2007).
Price is a critical point in this discussion – in the context of
the return from the production system and not cotton alone
(unless cotton is the only crop available).
Illustration 5: Relationship between price
and other factors in organic cotton
production system
Other important environmental factors to consider in a sustainable program are:
• Biodiversity – a balanced agro-ecosystem helps reduce
pest pressures and provides tools and ingredients for managing soil (green manures) and pests and diseases (botanical pesticide ingredients, trap and refuge crops).
• Managing the rotation crops and other crops (farmed and
wild) to maximize the total returns from the farm as far as
possible, both in cash terms and in terms of food security.
• Managing risks, for example, planning for climatic variation in the short term and the possible long term effects of
climate change on the farm.
• Managing and improving water consumption and retention. Improving water management is critical for improving
productivity and sustainability over time. This is particularly true in dryland farming areas such as Senegal, Gujarat
in India and Northern Peru, but in rainfed areas, being able
to manage the impacts of variations in rainfall is also important.
Economic components
Several interrelated factors need to be discussed in looking
at the economic sustainability of organic cotton production.
These factors are both internal to the farms (socio-economic
status of the farmers, their access to resources and finance,
for example) and external. The latter components include the
access to finance of the project donors or investors, availability of any local, national or international financial and technical support, and the willingness of fiber buyers to support the
transition process and the necessary fiber costs over time, such
as paying premiums.
Variables such as changes in
interest rates, oil prices and
currency exchange rates can
be important factors and
sustainable organic cotton
production requires an ability to absorb short term impacts and manage risk over
time. Similarly, organic
cotton systems need to be
resilient in the face of global economic slowdowns.
Partly, ensuring long term
purchase agreements as discussed previously can help
manage some of the risks.
Productivity
Variables:
Currency
exchange, etc
Price
Whole Farm
Output
Demand/Quality
Staple
In a system where service costs are internalized and the current final retail value of processed organic textiles is higher,
there can be a strong temptation to try and squeeze the final
returns to farmers to reduce the overall cost and make products more competitive against conventional garments. This
is an error in several ways. First, the farm-level costs of organic cotton are a very small proportion of total costs of garments, and more attention should be on managing value chain
costs. Second, the system depends on the farmers and requires
that a range of services and costs not covered by the market
price in conventional cotton be internalized in organic, such
as training, extension, research and capacity building. Also,
organic cotton depends in the market on its perceived solutions on a range of environmental and development problems,
and squeezing prices threatens this. There are two aspects to
this discussion: the internal farm level costs and the costs of
the system, i.e., training, extension, certification, research and
capacity building.
The organic cotton value chain needs to support the following
triangle at the farm level (i.e., for seed cotton):
32
1. Cost of production (inputs, soil fertility, seed research, water management),
2. Cost of basic needs (food, education, health, and
shelter),
3. Cost of development/maintaining a healthy rural
economy and landscape (infrastructure development
and maintenance, human development, landscape and
biodiversity management and preservation, a healthy
rural economy…)’ (Ferrigno et al 2007).
Illustration 6: Different pricing mechanisms in organic cotton,
workshop report from Organic Exchange Annual Farm
Development Meeting 2008
Overview of the current pricing
mechanisms
• Different from a context to an other:
– Direct negotiation between organic farmers`
leaders and company (Brazil). The organic
premium is quite satisfying and sustainable
for all involved actors since five years;
– Linking organic price to conventional price
with fixed or varying organic premium (Benin,
USA, Zambia, India);
– Agreement on a floor price taking into account
the production cost (Paraguay).
The system itself requires that extension, training, capacity
building, certification and other normal costs of cotton trade
be covered by the fiber price. Generally speaking this might
lead to fiber prices for organic cotton being 20-50% higher
than conventional cotton.
A further necessity in organic cotton is the availability of services such as finance (crop and other business finance), and
insurance. Innovative examples of financing in organic cotton
exist already with the activities of the U.S. based ethical group
Root Capital, who support crop financing for many organic
cotton projects and in a new pilot program between the Dutch
Cooperative Bank Rabobank, and the NGOs Solidaridad and
Organic Exchange.
Technology and Policy
Ensuring sustainability over time with sufficient returns means
that organic farming needs to invest in improving productivity
of the cotton crop and of the whole farm. An ideal scenario
would see organic farming totally independent of the need
for premiums or even a specific organic market. To attain this
ideal requires that organic yields and returns factored against
production and management costs are sufficient to make a
compelling economic case for farmers to adopt this system.
Improving the technological package available in organic cotIllustration 7: The role of pricing in the sustainability
of the organic cotton system
ton by, for example, managing costs and improving knowledge on agronomic approaches while offering adapted seeds
will make the system more attractive. Making sure farmers are
recruited who are motivated and have access to good land or
resources for the organic system is important.
Development of technologies requires a system that supports
research and extensions services to develop new approaches
to managing organic cotton production, to develop seed varieties and seed banks, and to improve the overall sectoral sustainability.
This means that organic production needs to gain (and earn)
broad acceptance among the general cotton sector and with
policy makers as another, valid method of cotton production
to generate more research support – and to share the valuable lessons from organic systems with others. Policy support
is also required to manage the interactions between different
cotton production systems.
Good progress is being made in India with regards to policy
and cotton sector acceptance of organic cotton
production, and the sector has recently started to
incorporate perspectives from the organic sector in
policy initiatives and boards.
Conclusions
Sustainable Pricing/
Business Model
Maintaining/Improving rural incomes
guarantees
social and economic sustainability
Investment in other crops and/or
Value addition will make farmers more
Competitive and reduce the pressure
On cotton alone to meet costs
‘Fair’ Farm gate prices
Fibre prices that support the
System: extension, support,
Research, seed breeding
Organisational development,
Business development and
Market access, ICS,
Certification, transparency
1) competitive productivity
2) making the most of all the systems'
output
3) recognising a concept
of a sustainable farming income
Low prices threaten sustainability of
the system and reduce productivity,
Which in turn will lead to higher prices
itself
..'involves a system for food and fibre
production that can maintain high
levels of production with
minimal environmental impact
and can support
viable rural communities
' (Mellon et al., 1995)
The organic cotton farming system relies on strong
support and training structures. To succeed, groups
need “price structures and income distribution that
cover the costs of internal control systems, training and education, capacity building and business
growth” (Ferrigno 2008). A successful business
model moves farmers away from reliance/dependence on the market price to sharing in the efficiency and success of the whole chain (Organic
Exchange 2007).
Organic cotton is a complex system that is still being analyzed, understood and codified following
the past two decades of experimentation and development. This is likely to result eventually in a
Code of Conduct for Good Relationships to maintain the balance between social and developmental
33
goals, environmental responses and the market (see illustration 9 below).
The production of organic cotton must be viewed in a comprehensive or holistic way, as the management of a system
that integrates various elements together, including social, environmental, economic, and technological aspects. There are
risks and real challenges, but with the right tools and planning,
organic cotton production can be sustainable and productive
and deliver real benefits. In a growth situation, such aspects as
participatory processes, transparency, fair returns, and good
relations in the supply chain are necessary.
Lessons for the wider
cotton sector
The positive impacts on farmers of many organic cotton initiatives show that there is value in supporting organizational
development of farmers’ groups and participation by farmers
in marketing, extension and research. The capacity of organic
cotton to internalize many costs of such a model might also
point the way for more attempts to improve other forms of
cotton production using market mechanisms and recognition.
This might be a useful way forward for such programs as the
Better Cotton Initiative. Surely improved practices deserve
market rewards for producers who implement them.
Similarly, organic cotton shows that much can be achieved
with relatively low investments and without encouraging dependency on expensive inputs and technology, while supporting poor and resource poor farmers. For developing economies, a large and productive organic farming sector could
have a positive impact on the balance of payments by reducing the imports of technology.
Policy recommendations
In organic cotton:
1. Finalize analysis of best practice in organization, agronomic practices, and service provision and make adoption
of these a requirement in the sector.
2. Allow farmers to access adapted seed and develop research and breeding programs.
3. Allow farmers to save and replant seed.
4. Analyze cotton sectors and offer support to organic
where appropriate, e.g., where certain socio-economic
groups would benefit (resource poor, smallholders, women,
minorities).
5. Invest more in organic cotton research itself and in sharing lessons between different production systems.
References
Eyhorn, F. Organic Farming for Sustainable Livelihoods in Developing Countries? The Case of Cotton in India vdf Hochschulverlag AG
2007.
Ferrigno S., et al., Price Discussion Document, Internal Working Paper, Organic Exchange: O’Donnell 2007, Unpublished.
Ferrigno, S. “The worldwide development of organic cotton cultivation: progress and future challenges” paper presented at IFOAM
Congress on Fiber and Textiles, 16th and 17th of June 2008, Carpi,
Italy
Ferrigno, S., G. Ratter, Peter Ton, Davo Simplice Vodouhê, Stéphanie
Williamson and John Wilson, Organic Cotton: A new development
path for African smallholders, Gatekeeper Series 120, IIED: London
2005.
IFOAM. IFOAM Basic Standards for Organic Production and Processing, Online, http://www.uni-kassel.de/fb11/
fnt/download/frei/dII/IFOAM%20Standards.
potential organic
pdf
Illustration 8: Areas to be considered in a
cotton Code of 'Relationships'
Challenges to
Growth
Monday, P. and A. Lizarraga, Soil Fertility
Management in Organic Cotton: an overview,
Forthcoming, Organic Exchange: O’Donnell
2008.
Maintaining
Values/Ethical Approaches?
Market access
Cotton and other farm crops
Myers, D. and S. Stolton, (Eds.) Organic Cotton: From Field to Final Product, Intermediate
Technology Publications Ltd: London 1999.
Monitoring/Traceability
Price mechanisms
Organic Exchange Farm and Fibre Report 2007
Organic Exchange: Berkeley 2007.
Productivity/Access to
on-farm inputs
Sustainable Farming system
Extension/Training/
Technical assistance
Access to (appropriate
and adapted) seed
Finance and
Capital
Pesticide Action Network, UK, The Dependency Syndrome: pesticides use by African smallholders, PAN, UK, London 2003.
Forecasts and
planning
Capacity building
In Management and Business
Access to value addition/
Premium certification/
Fairtrade -Organic
Roa, C. Selecting Genetic Material, Presentation at Organic Exchange Regional Meeting,
Asunción, Paraguay, April 2007.
Markets for transition crops
Ton, P. Organic cotton production in sub-Saharan Africa: the need for scaling-up PAN UK:
London August 2002.
Organic Exchange Farm and Fibre Report 2008
Organic Exchange: O’Donnell 2008.
Organic Exchange Fibre Report 2006 Organic
Exchange: Berkeley 2006.
34
Truscott, L. Organic Cotton Farm System Crops, Draft report, Organic Exchange: O’Donnell, 2008.
Van Elzakker, B. Organic Cotton Production, Chapter in Myers,
D.,and Stolton, S. (Eds.) Organic Cotton: From Field to Final Prod-
uct Intermediate Technology Publications Ltd: London 1999.
VanLoom, Gary W., S. G. Patil and L. B. Hugar: Agricultural Sustainability, Strategies for Assessment, Sage Publications, India Pvt.,
2005.
Environmental Risks Associated with
Cotton Growing in Francophone Africa:
Assessment and Current Developments
M. Vaissayre and M. Cretenet, CIRAD, Annual Cropping Systems Research Unit, France
(Presented by Alain Renou, CIRAD)
With few exceptions, cotton is grown on small family farms
in Sub-Saharan Africa. Cotton is a rainfed crop here, and it
is produced as part of a cropping system that includes food
crops, grown either for commercial purposes (maize, cowpeas) or for home consumption (millet, sorghum).
The amount of land currently planted to cotton in the CFA zone
is between 2.2 and 2.5 million hectares. In 2006/07, output in
the CFA zone was the lowest since the start of the century,
yielding less than 800,000 metric tons of lint (versus a record
output of 1,126,000 metric tons in 2004/05), while in East and
Southern Africa, output totaled approximately 460,000 metric
tons of lint on a cultivated area estimated at 2 million hectares
(ICAC, 2007).
Since the bulk of the West African output is exported, this
group of countries now ranks fourth worldwide, recently dislodged from its position as third largest exporter by India, and
furthermore threatened by Brazil (ICAC, 2008). Nevertheless,
cotton production remains a key sector in the subregion’s development programs.
Cotton growing requires the use of fertilizers (organic and
mineral) and also pesticides, for the most part insecticides. In
Mali, for example, more than 2.6 million liters of formulated
emulsible concentrate products were needed in 1999. In Benin and Burkina Faso, the figures are likely similar or even
higher.
At the current stage of development of the cotton growing areas, the use of inputs is essential to increase productivity, but
for agriculture to be sustainable, environmental protection is
of critical importance. This paper will therefore examine the
sources of risks to the environment and human health, and
look at a number of measures for limiting the impact of such
factors.
A Changing Landscape
The natural vegetation of the cotton belt that runs across Africa from Senegal to Chad is that of the Sahelo-Sudanian savannah, with Vitellaria paradoxa (shea), Lannea spp., Sclerocarya birrea, Daniellia oliveri, Parkia biglobosa, Terminalia
macroptera, Khaya senegalensis, Vitex spp., and Prosopis af-
ricana. But as a result of the clearing done to accommodate
a strong human presence, this vegetation is today scarcely
visible. The principal cultivated species are millet, sorghum,
and cotton. The agricultural landscape reproduces the structural elements that make up an “Africa of granaries” (Pourtier,
2003): cultivated fields alternating with bush; rings of village
lands; wooded parks; a more or less well regulated division
between farming and livestock. Farmers are faced with population pressures and the increasingly scarce availability of
land: sustainable development now requires moving toward
production systems that are more intensive and more in tune
with less abundant land resources than in the past.
Soil Fertility
Savannah soils are fragile, and their mineral and organic content is often low. The cultivation of new areas is but a shortterm solution. The maintenance of soil fertility is thus a critical challenge for agriculture in these areas.
The integration of farming and livestock varies tremendously
within the cotton belt, and the type of relationship that different populations have with stockraising explains the different
ways in which cotton is grown and fertilized. Animal traction
has served to spread the practice of stockraising, and it seems
clear that the integration of farming and livestock contributes
to intensification of the system. This technical innovation has
made it possible to increase the cultivated area, control weeds
more effectively, and improve soil fertility. But the presence
of trypanosomiasis makes it difficult and sometimes impossible to engage in stockraising and thus to rely on organic fertilization.
Minimum doses of chemical fertilizers have been advocated
in order to offset losses of mineral elements necessary for
crops included in the traditional cropping pattern. In view of
their purchase price, the quantities used rarely meet the recommended minimum dosage, and the mineral balance often
remains negative, even though, due to crop rotations and
cropping systems, such inputs are beneficial not only to cotton growing but also to the food crops that are part of the
cropping pattern.
35
Repeated plowing and the exclusive use of mineral fertilizers
have a tendency, in the long term, to break down the soil structure and acidify the soil. To protect soil fertility and address
these major drawbacks, innovative techniques, especially
involving plant-shaded beds, have been proposed and developed, mainly in the cotton growing area of Northern Cameroon and, to a lesser extent, in Burkina Faso.
The development of threshold-based interventions in several
countries, particularly Mali and Cameroon, following the development of targeted, staged pest and disease control in Benin, demonstrates that it is possible to reduce the quantities
of pesticides needed for effective production, provided that
farmers accept the related risks and are ready to commit the
necessary time.
Pesticides
Lastly, the recent introduction of the Bt cotton plant in Burkina Faso could demonstrate that there are other approaches for
reducing the use of insecticides, with treatments then being
limited to infestations of sucking insects.
As a result of an exclusively manual harvest, cotton growing
in Africa does not rely on the chemical products needed for
a mechanical harvest. This situation avoids major factors of
pollution.
In addition, the use of herbicides is relatively rare in Africa,
where weeding is a purely manual operation on many farms.
The bulk of the pesticides used by small African farmers consist of insecticides. All the families of insecticides (organochlorines, organophosphates, carbamates, and pyrethroids)
have been used on cotton in Africa, but today the products
targeted by the Rotterdam Convention have disappeared or
are being phased out (such as endosulfan).
The climate conditions, and the parasite pressure encountered
in Sub-Saharan Africa all make it unrealistic to contemplate
the prospect of growing cotton without any treatments. In
regard to cotton pests, attacks by certain insects can greatly
reduce or even wipe out production. Accordingly, to protect
productivity and guarantee a minimum income level for farmers, a carefully thought-out system of pest and disease control
has been set in place, based on the use of active ingredients
that meet international standards and a reduced number of
treatments, averaging roughly 4.5 applications per year. The
treatments end prior to boll opening. As a result, the lint produced is free of any trace of pesticides. In addition, the manual
harvest is much gentler on the lint than a mechanical harvest
and, in particular, does not require the use of defoliants which,
because of the stage at which they are applied, pollute the lint.
African lint offered on the market is thus free of all traces of
pesticides and other products used to assist the harvest.
This moderate use of insecticides may have slowed, but did
not prevent, the development of resistances by certain pests
such as the aphid Aphis gossypii, the white fly Bemisia tabaci, and, above all, the bollworm Helicoverpa armigera. The
emergence of these resistances in the late 1990s in the oldest cotton basin of West Africa (Mali-Burkina Faso-Northern
Côte d’Ivoire) (Martin et al., 2002) and in the early 2000s
in Central Africa (Brevault & Achaleke, 2005), mobilized the
entire industry, and the rapid implementation of management
measures did not engender the overuse of insecticides typically occurring in such a situation (Martin et al., 2005). Nevertheless, the cost of chemical protection has risen as a result
of the use of alternative molecules, and health concerns have
momentarily increased, due to the return of endosulfan, thus
sparking interest in research on new molecules and innovative
approaches.
Conclusion
Stagnant yields in the CFA zone over the past two decades,
hovering around 450 kg/ha (under strictly rainfed conditions)
– versus a world average of 730 kg/ha (mainly under irrigated
conditions) – threaten the competitiveness of African cotton.
A number of factors are involved : varying degrees of mastery
of technical procedures, the arrival of new, less productive
farmers who grow cotton on the fringes of the family farm, a
decline in intensification due to the drop in world prices, and
soil fertility problems in certain areas.
Better management of agricultural inputs and the introduction
of innovative cropping techniques would no doubt provide
a substantial boost in yields. In a world context of abundant
supply, efforts in Africa should focus on the promotion of
high-quality cotton, which would of course require specific
incentives (quality bonuses).
From this perspective, the cropping and harvesting methods
used in Africa place African cottons among those that are least
risky for growers and their environment, as well as for lint
consumers. While continuing to implement the intensification programs needed to ensure the crop’s competitiveness
and sustainability, Africa’s cotton industries have been able to
define technical approaches that take environmental requirements into effect and, despite the difficult economic conditions faced by producing countries, they continue even today
to develop new techniques in this regard. Furthermore, the
cotton crop in Sub-Saharan Africa is strictly rainfed and does
not draw on any surface waters or aquifers, even as back-up.
Combined with the manual harvest and the resulting absence
of defoliants, the development of threshold-based intervention techniques, and the introduction of Bt cotton plants that
require fewer chemical treatments, this cluster of practices
helps make African cotton one of the most environmentally
friendly crops.
Reference:
Dejoux, C. (1988). La pollution des eaux continentales africaines
: experience acquise, situation actuelle et perspectives. Collection
travaux et documents n° 123, éditions de l’ORSTOM, Paris : 513
pp.
Djibril, R.B. (2002). Contribution à l’étude d’impacts de l’utilisation
des engrais chimiques et des pesticides sur la qualité des eaux de
surface dans la reserve de biosphere de la Pendjari. Mémoire de fin
de formation pour l’obtention du Diplôme d’Ingénieur des Travaux
36
(DIT), Département des techniques d’aménagement et protection de
l’environnement (APE, Collège Polytechnique Universitaire (CPU),
Université d’Abomey Calavi, Bénin : 106 pp.
Santé, Décembre 2000 : 75 pp.
Floquet, A. et R. Mongbo (2004). Etude des effets et des impacts de
la lutte étagée ciblée sur les producteurs – Résultats d’une enquête
socio économique conduite en octobre et novembre 2004 dans 4 communes du centre et nord Bénin à la demande du PADSE. Documents
du PADSE, MAEP/AFD/SOFRECO, Cotonou, Bénin : 74 pp.
M’Biandoun M., H. Guibert and J.P. Olina (2006). Caractérisation de
la fertilité du sol en fonction des mauvaises herbes présentes. Tropicultura, 24 (4) : 247-252.
Hadonou-Yovo, B. (2000). Bilan et caractéristiques des cas
d’intoxication lies aux produits phytosanitaires en république du Bénin Durant la campagne cotonnière 2000/2001 – Rapport de l’enquête
initiée par les sociétés Calliope S.A. et Aventis en collaboration avec
le Ministère du Développement Rural (MDR) et du Ministère de la
Matthews, G.A. (1981). Improved systems of pesticide application.
Phil. Trans. R. Soc. Lond., 8 : 163-173.
Pourtier, R. (2003) �������������������������������������������������
Les savanes africaines entre local et global: milieux, sociétés, espaces. Cahiers/Agricultures, 12 (4) : 213-218 Prudent, P., A. Katary and A.C. Djihinto (2003b). La LEC confirme
ses avantages comparatives sur le traitement calendaire. Les échos
du PADSE (MAEP/AFD/SOFRECO) n° 11 : 1-6.
Review of a Few Agricultural and Managerial Ways and
Means for Minimizing Cotton Production Costs in West
and Central Africa
Amadou Aly Yattara, Cotton Program Manager, Institute of Rural Economy, Sikasso, Mali.
Introduction
In most countries of West and Central Africa, the economy is
based primarily on the rural sector and, in particular, cotton
growing, which is the main source of revenue in rural areas.
The cotton output of these countries has shown strong growth
in recent years, largely due to an increase in the number of
producers and a doubling of the cultivated area on which cotton is grown, but today these countries face stagnant or even
declining yields. The current status of cotton production needs
to be turned around in order to avoid a collapse of the cotton
industry, one of the pillars of the economy in these countries.
The situation has grown all the more urgent because the drastic decline in world prices has had a major impact on the economy of African cotton-producing countries of the CFA franc
zone, which are already penalized in terms of costs by the expense of delivering the product to the customer, and where the
farm gate cost of lint represents two-thirds of the factory cost,
and the selling price for lint has fallen well below the production cost. Under these conditions, there is an urgent need to
take any and all measures likely to help contain production
costs or even generate profits.
A Few General Points in Regard to
Production Costs
Definitions
The production cost of a product means the sum of all financial and nonfinancial expenses involved in the process of producing one unit of this product. In the case of seedcotton, the
production cost includes two types of expenses:
• unavoidable costs, corresponding to monetary outflows,
and
• the cost of operations performed by the producer, assisted by family members.
The unavoidable costs are all the expenses involving an outflow of cash. This includes the cost of inputs, the cost of
maintaining and repairing equipment, expenses associated
with livestock feed and veterinary treatments, the cost of paid
labor, and the cost of minor equipment purchases (batteries,
hoes, etc.).
Operations performed by the producer also involve a cost,
which may be higher or lower, depending on the value attached to family labor.
Thus, in calculating production costs, there are a number of
hurdles to surmount, due not only to the difficulty in assessing
the value of family labor, but also the difficulty in determining
the amount of time spent working (particularly the amount of
time spent in the field at the start and end of operations included in the profile of farm activities).
Ultimately, seed cotton production costs vary by production
zone and by type of farm.
Production cost
Seed cotton production costs, as calculated by a number of
authors, are based on unavoidable expenses plus compensation of family labor.
The study conducted by HORUS/SERNES in 2002 lists unavoidable expenses in the order of CFAF 93 per kg, to which
105 days of family labor must be added. According to these
authors, the seedcotton production cost thus ranges between
CFAF 141 and CFAF 190 per kg, depending on whether the
value of family labor is assessed at CFAF 500 or CFAF 1,000
per day.
Diakité and Djouara in 2003 gave a production cost for organic cotton of CFAF 247 or CFAF 301 per kg by setting the
value of family labor at CFAF 500 or CFAF 750 per day respectively. As part of the same study, the authors cited a production cost for conventional cotton of CFAF 148 or CFAF
37
172 per kg, once again setting the value of family labor at
CFAF 500 or CFAF 750 per day respectively.
Review of the Key Determinants of
Production Cost and Their Impacts
A study1 conducted in 1994 by the Production System and
Natural Resources Management Team of Sikasso showed
that, from an agronomic perspective, good farm management
plays a meaningful role in boosting productivity. through successful adoption of cropping techniques. The implementation
of other institutional and policy measures could of course also
help to improve cotton industry performance.
In a number of studies carried out specifically on the situation
in Mali, but clearly valid for other producing countries of the
subregion as well, it turned out that, to generate profits or, at
the very least, contain production costs, the following paths
warrant exploration:
• improve field yields by adopting high performance plant
material and innovative and efficient technologies,
• improve the quality of the lint,
• minimize production costs via labor and inputs.
In addition to these directly impacting measures, other accompanying measures can help maximize or at least improve
profits, particularly in the following areas:
• make farmer organizations more dynamic,
• increase the involvement of the private sector, producers, and decentralized local government,
• improve producers’ participation in managing the cotton
industry,
• liberalize the cotton and oilseed sectors.
Improvement of Field Productivity
Boosting field productivity is a central and essential element
of cost containment. Indeed, it is well known that the production cost of cotton amounts to a ratio between all production
expenses and actual yield. Inasmuch as the issue of yields is
of central importance in determining the production cost, it
clearly deserves special attention. Boosting productivity requires first of all optimizing all the farming practices that are
part of the overall work.2 The above mentioned study found
that the dates of sowing, thinning, first weeding, and first insecticide treatment have a significant impact in terms of meeting the plant’s productive potential. In addition, it was found
that efforts to improve the currently very low planting densities (40 to 50,000 plants) have a major impact and should be
significantly increased.
While maximization of the productive potential that exists
can be sought through better implementation of the technical
approaches already available, this in no sense diminishes the
need to continue to develop technical innovations in order to
reverse the decline in both yields and income. More specifically, this involves the development of true threshold-based
pest and disease control interventions that are more economical and less harmful to the environment; better adapted varieties that offer a high ginning yield; technical reference systems
on soil fertility management; and regionalized fertilization
schemes that are cost-effective and inexpensive. It is important, on the one hand, to make better use of fertilizers so as
to lower the production costs, but it is also important to give
extension workers and farmer organizations clear information
on the medium and long-term consequences of different approaches to soil fertility management.
Improvement of Lint Quality
Another path, and hardly the least important, toward the goal
of improving the profitability of the cotton industry as a whole
is to improve the quality of lint produced.
This lint, in terms of both its quantity and quality, reflects not
only all the costs generated at the farm level (producers and
extension services) and at the mill level, but also virtually all
the increased value that cotton companies and even countries
can expect from their cotton output. It is easy to understand
that the greater the quantity of lint, the lower the fixed costs
per metric ton. To achieve optimal value from the lint, interventions need to be optimized on two very distinct, yet complementary levels.
First, there is a need to minimize contaminants of all sorts, if
not eliminate them entirely, in seed cotton. The input of growers is of critical importance in this area.
A recent study3 on this subject in Mali showed that, by implementing a few very simple harvest management practices, it
was possible to reduce the rate of contaminants very significantly (by at least 77 percent). Even though these contaminants consist largely of organic or inorganic matter (plant matter, sand, etc.), and thus are not greatly feared, the monetary
loss incurred by producers at the point of purchase because of
the contaminants’ presence in the seedcotton, based on a total
output of some 450,000 metric tons of seedcotton, came to
nearly CFAF 1,200,000,000.
The second level of intervention, also critically important,
concerns the industrial facilities.
At the present time, the average ginning yield for varieties
developed by researchers in the subregion is roughly 43 to 44
percent. Under industrial conditions, these varieties provide
an average yield of 42 percent and very infrequently as high
as 43 percent, whereas the tolerated deviation should almost
never exceed 0.5 percentage point. It is easy to see that poor
ginning can wipe out, in one fell swoop, any possible gains
in ginning yield, as well as the length of the fiber, two key
elements of the varietal improvement programs of the last decade.
1. Brons, J.; Bagayoko, S.; Diarra, S.; Djouara, H. Diversity in farm management. Study on factors of agricultural intensification in Southern
Mali. CRRA, Sikasso, October 1994.
2. Fok, M.A.C.; Djouara, H.; Koné, M.; Ballo, D. 1999. Diversity of farming practices in cotton growing areas of Mali; scope and management limitations of different technical approaches. Proceedings of the seminar on the role and place of research to develop the evolving
cotton industries in Africa, Montpellier, September 1-2, 1999, CIRAD-CA.
3. ICAC, 2008. Production and marketing of uncontaminated cotton in Mali.
38
These losses are all the more harmful because the lint yield
at ginning is a critical component of output and productivity, while length is one of the bases for setting the lint price.
In addition to these two characteristics, all the technological
characteristics of the lint, except for micronaire, are negatively affected by inadequate ginning by the mills, thus resulting
in a lower market value for the lint.4
It thus appears that proper management of the ginning operation (including efficient energy use) is a way to maximize the
productive potential of the varieties and generate profits or, at
the very least, lower the production costs.
Labor and Inputs
The costs of the equipment used, the labor force (paid workers
and family labor), and inputs all affect the production cost of
cotton.
To determine the cost of inputs (chemical fertilizers and pesticides), a value is attached to the doses actually declared by
producers, using short-term credit prices. While there is virtually no way to influence the cost of the inputs, which are already expensive and typically under-dosed (with the exception
of urea), it is however possible to use them more efficiently
through localized and timely applications as recommended.
Use of the seed-spreader5 developed by the Production Systems and Natural Resources Management Team of Sikasso
(Mali) is an example of this. In addition, studies have been
conducted by the Cotton Program on the subject of adjusting
fertilizer doses in line with area conditions, timing, or stated
economic objectives6 and these have also produced convincing results.
With respect to labor, there are different types and variable
rates of compensation depending on the period and the type of
work. Paid workers are recruited for certain operations as part
of the technical approach to cotton growing. Surveys conducted in Mali have shown that more than 79 percent of labor utilization occurs during the harvest. Although the value of labor
can be assessed in various ways, it seems unlikely that savings
can be obtained in this area. However, the socioeconomic and
technical organization of cotton farms (management of family
labor, level of equipment, rapid crop planting, use of chemical
weed-killers, etc.) allows for minimization of the constraints
associated with the use of paid labor, and can thus reduce the
total production cost, if only slightly.
Other Organizational and Accompanying Measures
In these times of privatization, such measures include, first
and foremost, the transfer of skills and the training of new actors to assume full responsibility for all necessary actions to
ensure the sustainability of the cotton industry. This involves,
first of all, producer organizations that require training and
capacity building in order to better negotiate and implement
institutional change within the industry. The producer organizations will need to take on certain industry functions, particularly by encouraging the emergence of well managed trade
organizations built on solid technical and economic foundations.
Consultative frameworks should be set in place to share information jointly with industry actors. Such frameworks will
make it possible to gather, compare, and validate available
data from producer organizations, researchers, funding organizations, cotton companies, all economic operators active in
the cotton growing area, and the rural development supervisory authorities so as to monitor technical and economic trends
and provide food for thought regarding future development
actions. Apart from producer organizations, other actors with
a substantial impact on cotton production clearly include private sector operators such as input suppliers (fertilizers and
pesticides), haulers, and financial and credit institutions.
All these actors are involved in input supply, which is one
of the most critical functions of agricultural production. Crop
year results depend to a large extent on input supply.
Conclusions and Recommendations
Cotton is truly a strategic product on which our countries’
economies greatly depend. It is therefore important to maintain cotton growing at all costs, by constantly seeking to improve its competitiveness. This means ensuring the sustainability of production, by guaranteeing the required level of
all technical inputs, which should nevertheless be used much
more efficiently in order to minimize production costs. In this
regard, great hope is placed in research. The challenge is to
move beyond recommendations for one-size-fits-all technologies, advocated throughout the entire region, to recommendations that focus on carefully targeted technologies for specific
agro-climatic and even socioeconomic conditions, with fairly
precise expectations in regard to output. In addition, the effective participation of all partners is essential.
To enhance cotton production, another very important factor
is to steadily improve the quality of the output, essentially lint.
Most of the characteristics on which lint sales are based are
genetic in nature, despite the very substantial effect of environmental conditions. As a result, it is very important to place
on the market lint that is recognized for the consistency of
these technological characteristics. To reach this objective, a
concerted effort by all industry actors is necessary. Also, there
is a need to move toward widespread adoption of the measurements on the Standardized Instrument Testing of Cotton
(SITC) to enhance the value of the lint produced.
4. Alidou Amadou Soule. The use of technological analyses to monitor ginning: the experience of Benin. Presentation at the gin operators
training workshop for the C4 countries and Senegal, Ségou, Mali. October 13-18, 2008.
5. Sanogo J.L. Zana, Djouara Hamady, Doucouré Aminata, 2005. Development of a seeder-fertilizer spreader. Research report. IER/CRRA/
ESPGRN – Sikasso, Mali.
6. CRRA, Sikasso. 2006. Study of soil fertility trends and management strategies in cotton-based cropping systems. 59 pages.
39
References
Dejoux, C. (1988). La pollution des eaux continentales africaines
: experience acquise, situation actuelle et perspectives. Collection
travaux et documents n° 123, éditions de l’ORSTOM, Paris : 513
pp.
Djibril, R.B. (2002). Contribution à l’étude d’impacts de l’utilisation
des engrais chimiques et des pesticides sur la qualité des eaux de
surface dans la reserve de biosphere de la Pendjari. Mémoire de fin
de formation pour l’obtention du Diplôme d’Ingénieur des Travaux
(DIT), Département des techniques d’aménagement et protection de
l’environnement (APE, Collège Polytechnique Universitaire (CPU),
Université d’Abomey Calavi, Bénin : 106 pp.
Floquet, A. and R. Mongbo (2004). Etude des effets et des impacts
de la lutte étagée ciblée sur les producteurs – Résultats d’une enquête
socio économique conduite en octobre et novembre 2004 dans 4 communes du centre et nord Bénin à la demande du PADSE. Documents
du PADSE, MAEP/AFD/SOFRECO, Cotonou, Bénin : 74 pp.
Hadonou-Yovo, B. (2000). Bilan et caractéristiques des cas
d’intoxication lies aux produits phytosanitaires en république du Bénin Durant la campagne cotonnière 2000/2001 – Rapport de l’enquête
initiée par les sociétés Calliope S.A. et Aventis en collaboration avec
le Ministère du Développement Rural (MDR) et du Ministère de la
Santé, Décembre 2000 : 75 pp.
Matthews, G.A. (1981). Improved systems of pesticide application.
Phil. Trans. R. Soc. Lond., 8 : 163-173.
M’Biandoun M., H. Guibert and J.P. Olina, 2006. Caractérisation de
la fertilité du sol en fonction des mauvaises herbes présentes. Tropicultura, 24 (4) : 247-252.
Pourtier, R. (2003) Les savanes africaines entre local et global: milieux, sociétés, espaces. Cahiers/Agricultures, 12 (4)
: 213-218.
Prudent, P., A. Katary et A.C. Djihinto (2003b). La LEC confirme ses avantages comparatives sur le traitement calendaire.
Les échos du PADSE (MAEP/AFD/SOFRECO) n° 11 : 1-6.
Balancing Yield and Quality for Higher Profitability in
Egypt
Mohamed A. Aziz, Cotton Research Institute, Egypt
and Osama Ahmed Momtaz, Agricultural Genetic Engineering Institute, Egypt
(Presented by Osama Ahmed Momtaz)
Introduction
Egyptian cotton is known all over the world for its superiority and quality. Egypt is one of the 11 countries
in the Common Market of Eastern and Southern Africa (COMESA), the East African Community (EAC)
and the Southern African Development Community
(SADC) targeted for the regional baseline study on
cotton and textiles.
These countries account for over 90% of the cotton
and textiles traded in Africa. Egyptian cotton is one
of the best cottons in the world; including extra long
staple (ELS) and long staple (LS) varieties. Egyptian
LS and ELS cotton production represent 43% of the
world production in this category. ELS and LS cotton
represent 3-5% of world cotton consumption. Productivity of cotton has been on the decline in the past
10 years.
In African countries, adequate management of the
cotton sector can have a strong multiplier effect on
the economy. Many African countries depend on cotton as their main export commodity, providing valuable foreign currency earnings and rural incomes and
employment. A structured sector approach, backed by medium to long term strategic planning by leading businesses, is
necessary if these countries are to revitalize their cotton cultivation and processing in order to adapt to international market
challenges and requirements.
In Egypt, a trend of steady improvement in yield and fiber
quality continued for decades. Several factors contributed to
improvements in productivity and fiber quality. The measures
taken by the Ministry of Agriculture from the early era of cotton production in Egypt have been maintained. Among these
measures are: (i) A single variety zoning and the assignment
40
of varieties to zones on the basis of their responses with respect to both yield and quality, (ii) an improved system of maintenance
of cotton varieties and renewal of planting
seed starting from the breeder seed, which
resulted in the whole cotton area being annually planted with registered and certified seed,
and (iii) more importantly, the release of new
Egypt
high-yielding varieties that replaced the earlier ageing ones. Once a set of varietal traits
is selected, it takes about ten years for breeders to place a variety with those traits in the
marketplace. This process resulted in superior
varieties such as Giza 88: 35.5 mm or better
staple; mike, below 4.0; strength, better than 44 g/tex with a
minimum of 43; uniformity 86-88 percent.
The composition of the cotton crop is divided between two
quality categories (LS and ELS). Originally, farmers used to
grow the varieties they felt were more profitable to them depending on the yield and price, i.e., quality. However, price
was dependent on foreign spinners demand. Therefore, Giza
45 was popular in the 1990s because the extra- long staple
variety Giza 45 was of a much higher price, although it has a
lower yield than competing varieties, mainly the Long Staple
variety Giza 86.
Table 1 presents the percentages of the area cultivated with the
two categories:
Table 1. Cotton Area in Egypt
Year
ELS
LS
1984-87
26%
74%
1994-1997
18%
82%
2004-2007
22%
78%
Table 2. Profitability Return/ Hectare
in Egyptian High Quality Cottons
Years
01/02-03/04
04/05-06/07
01/02-03/04
04/05-06/07
01/02-03/04
04/05-06/07
Yield
Price
(Kgs/ha)
(cents/lb)
Giza 45
528
131
473
200
Giza 88
1081
108
997
120
Giza 86
1104
100
1010
110
Profitability
(US$/ha)
1521
2081
2568
2632
2429
2444
cheapest five quotations (price offers), CIF Far East, in U.S.
cents per pound, as determined by Cotlook Ltd.
Egyptian ELS and LS cottons always get price premiums over
upland cottons, which differ from year to year according to
world market conditions. Table 3 shows world market prices
of MLS 1-3/32 inches (27-8 mm) upland cottons in Tanzania,
African Franc zone (Benin, Burkina Faso, Côte d’Ivoire and
Mali) and Egyptian LS (Giza 86) and ELS (Giza 88 and Giza
45) cottons, during two periods.
Tables 2 emphasize the profitability return/hectare in high
quality cotton grown in Egypt. Concerning this table, the high
quality Egyptian cotton has high profitability for the Egyptian
cotton growers.
Egyptian LS and ELS cottons obtained a price about 416%
and 443% over 1-3/32 inches (27-8 mm) cottons. The premium for Egyptian cotton varies from year to year but remains
always substantially higher, reflecting the quality superiority
of Egyptian cottons.
The challenge for Cotton Research in Egypt is to provide cotton consumers with the qualities they need to compete in the
market and couple that with high yield.
Egyptian cotton growers need to plant varieties that give them
the best overall return. A grower might plant a high-quality
variety because it’s the vogue thing to do,
Table 3. Profitability return/Hectare in some African countries
without really looking at the tradeoff with a
“low quality cottons”
higher yielding but lower quality cotton.
During the contemporary era, the cultivated
area, and consequently the size of the crop,
of each category was determined by governmental decrees based, largely, on the expected
demand for each category. The changes in the
composition of the crop during this era, revealed two interesting phenomena; the small
differences in yield among the two categories,
i.e. long-staple and extra long staple, and the
substantial decrease in the proportion of the
ELS as from the 1990s.
The Cotlook A index is the widely-used indicator of the competitive level of international
prices for cotton classed as internationally
middling 1-3/32 inches (27-8 mm), and is cal,
culated by taking a simple average of the day s
Tanzania
Years
Yield
(Kgs/Ha)
Price C/P
Profitability
$/Ha
01/02-03/04
156
57.4
197
04/05-06/07
232
58.8
300
African franc zone
Benin
Burkina
Faso
Cote
D’Ivoire
Mali
01/02-03/04
331
73.5
535.2
04/05-06/07
254
57.7
322.4
01/02-03/04
408
72.0
646.2
04/05-06/07
643
58.0
820.4
01/02-03/04
482
65.0
689.2
04/05-06/07
409
57.0
512.8
01/02-03/04
434
65.0
620.6
04/05-06/07
435
57
545.5
41
Soule, Alidou Amadou. L’utilisation des analyses technologiques
pour le suivi de l’égrenage : expérience du Bénin. Présentation à
l’atelier de formation des égreneurs des pays C4 et du Sénégal, Ségou, Mali. 13 – 18 octobre 2008
Fok, M.A.C., H. Djouara, M. Koné and D. Ballo. 1999. Diversité des
pratiques paysannes en zones cotonnières du Mali ; portée et limites
des gestions d’itinéraires techniques observés. Actes du séminaire
« Rôle et place de la recherche pour le développement des filières
cotonnières en évolution en Afrique », Montpellier, 01-02 Septembre
1999, CIRAD-CA.
Brons, J, S. Bagayoko, S. Diarra and H. Djouara. Diversité de gestion de l’exploitation agricole. Etude sur les facteurs d’intensification
agricole au Mali Sud. CRRA, Sikasso, octobre 1994.
HORUS-Entreprise, SERNES. 2002. Etude d’un mécanisme de détermination du prix du coton graine aux producteurs. Rapport Final.
115p.
CRRA, Sikasso. 2006. Etude de l’évolution et stratégies de gestion
de la fertilité des sols sous systèmes de culture à base de cotonnier.
59 pages.
ICAC, 2008. Production et commercialisation de coton non contaminé au Mali.
Reference :
Diakité, Lamissa and Hamady Djouara. 2003. Etude socioéconomique de la production du coton biologique au Mali. Ministère
de l’Agriculture de l’Elevage et de Pêche, IER, ECOFIL, HELVETAS. 61p.
Sanogo J.L. Zana, Hamady Djouara and Aminata Doucouré, 2005.
Mise au point d’un semoir-épandeur d’engrais. Rapport de recherche. IER/CRRA/ESPGRN – Sikasso, Mali.
Discover
natural
fibres
2 0 0 9
Version française
des rapports présentés lors du séminaire technique
de la 67ème Réunion plénière sur le thème :
Améliorer la durabilité de la production
cotonnière en Afrique
Table des matières
Les succès de la lutte intégrée contre les ravageurs du cotonnier en
Afrique de l’Ouest
Ouola Traoré, Institut de l’Environnement et de recherches agricoles (INERA) Programme Coton,
Bobo-Dioulasso, Burkina Faso
Systèmes de production de coton économiquement viables Bouré Ouéyé Gaouna, Cotton Breeder, Institut Tchadien de Recherche Agricole pour le Développement, Chad
Risques environnementaux liés à la culture du cotonnier
en Afrique francophone : Bilan et évolutions en cours
M. Vaissayre et M. Cretenet, CIRAD, Unité de Recherche; Systèmes de Culture Annuels, France
Réduire les coûts de production Amadou Aly Yattara, Chef du programme coton, Sikasso, Institut d’Economie Rurale, Mali.
43
50
55
57
43
Les succès de la lutte intégrée contre les ravageurs
du cotonnier en Afrique de l’Ouest
Ouola Traoré, Institut de l’Environnement et de recherches agricoles (INERA) Programme Coton,
Bobo-Dioulasso, Burkina Faso
Introduction
Le coton constitue l’une des principales cultures de rente dans
la sous-région ouest africaine. Il occupe plus de 10 millions de
producteurs. En 2007 la production totale était de 1,2 millions
de tonnes sur une superficie d’environ 1,5 millions d’ha, soit
un rendement moyen de 800 kg/ha. Les exportations de fibres
de ces pays représentent moins de 15% des exportations mondiales et occupent le 2è rang mondial après les USA.
Les rendements ont augmenté significativement de 6% par an
entre 1960 et 1980 contre 2% sur le plan mondial. À partir des
années 1980, les rendements ont pratiquement stagné voire
baissé. Plusieurs raisons expliquent cette situation :
• le démantèlement du système d’encadrement ;
• la baisse de la fertilité des sols ;
• la baisse des cours mondiaux de la fibre de coton ;
• les difficultés de contrôle des nuisibles :
Le cotonnier est l’une des plantes les plus attaquées au monde.
Il y a plus de 1300 espèces recensées d’insectes et d’acariens
auxquels s’ajoutent des nématodes et mammifères sur cette
culture. En l’absence de protection phytosanitaire, les pertes
de récolte varient en moyenne de 40 à 70% selon les zones
agro écologiques et les années dans la sous-région de l’Afrique
de l’Ouest.
Ce document fait le point sur les efforts consentis par les filières cotonnières ouest africaines dans le domaine de la lutte
intégrée contre les ravageurs. Selon l’Organisation Internationale de Lutte Biologique
(OILB), la lutte intégrée est un « Système de lutte contre les
organismes nuisibles qui utilise un ensemble de méthodes
satisfaisant les exigences à la fois économique, écologique et
toxicologique, en réservant la priorité à la mise en œuvre délibérée des éléments naturels de limitation et en respectant les
seuils de tolérance ». La lutte intégrée contre les ravageurs du
cotonnier nécessite une connaissance parfaite des principaux
ravageurs et maladies de la plante ainsi que de leurs ennemis
naturels.
Les Ravageurs du Cotonnier en
Afrique de l’Ouest
Les ravageurs du cotonnier sont classé selon les types
d’organes attaqués sur la plante. Toutes les parties de la plante
sont attaquées (graines, racines, organes végétatifs et fructifères). Les principaux ravageurs et maladies des organes
végétatifs et fructifères du cotonnier peuvent être répartis en
trois groupes selon le stade phénologique de la plante :
Principaux Ravageurs de la Semence
et des Racines
Principaux ravageurs de la semence
Des insectes de la famille des Tenebrionidae (Tribolium castaneum) attaquent la semence au stockage. La semence héberge
également des chenilles de Pectinophora gossypiella et de
Cryptophlebia leucotreta dans les zones où ces ravageurs pullulent. Au semis, la graine et la jeune plantule sont attaquées
par des diplopodes (mille pattes). Les espèces les plus nuisibles appartiennent aux genres Peridontopyge et Tibiomus. Les
espèces sont de couleur sombre avec une alternance de zones
plus claires et de zones brunes noirâtres. Leur section transversale est ronde. Leur taille varie de 2 à 8 cm. Les diplopodes
attaquent et évident les semences, les rongent pour s’en nourrir lors de la germination.
Principaux ravageurs des racines
Ils sont essentiellement composés d’insectes et de nématodes.
• Les insectes
Syagrus calcaratus : Petit coléoptère bleu-noir brillant, le
thorax et la base des pattes sont orange fauve. Les adultes,
à tête orangée, consomment le feuillage dans lequel ils provoquent des perforations de forme allongée. Les larves sont
terricoles (vivent dans le sol) où elles s’alimentent sur les
racines qu’elles décortiquent en faisant des anneaux sur ces
organes, d’où le flétrissement caractéristique des plants.
• les nématodes
Des nuisibles appartenant à la famille des Némathelmintes
ont été identifiés en ecto et endoparasites de racines. Il s’agit
principalement des genres Pratylenchus, Rotylenchus, Meloidogyne, Scutellonema et Helicotylenchus.
Les Principaux Ravageurs du Feuillage et leurs
Dégâts
Chenilles phyllophages
Syllepte derogata
C’est la chenille « enrouleuse » des feuilles sous forme
de cigarettes. Elle est vert clair, souvent translucide avec
une tête noire. Elle s’attaque aux feuilles à tous les stades
de développement de la plante à l’aide de fils soyeux. On
remarque à l’intérieur de la feuille des excréments noirs.
Les attaques de ce ravageur sont souvent localisées dans le
champ et peuvent entraîner une défoliation spectaculaire. Il
attaque aussi le gombo.
44
Spodoptera littoralis
La chenille peut être brune, jaunâtre ou grise. Elle est caractérisée par deux rangées de triangles noirs sur le dos et
une ligne claire sur chaque côté. Mais ces triangles peuvent seulement être présents à l’avant ou à l’arrière du
corps. Les œufs sont pondus en amas à la face inférieure
des feuilles où naissent les jeunes chenilles qui rongent
d’abord ces feuilles de support. Les chenilles âgées perforent les feuilles et s’attaquent également aux organes reproducteurs. Spodoptera cause aussi des dégâts sur le niébé,
l’arachide…
Anomis flava
C’est la chenille « arpenteuse » ainsi dénommée à cause
de son déplacement très caractéristique. Elle est de couleur
verte à tête jaune ou vert-jaune. Elle porte cinq lignes
blanches très fines sur le dos. Elle ne s’attaque qu’aux
feuilles. Les dégâts des chenilles sont constitués de perforations circulaires de 1 à 3 cm de diamètre dans ces feuilles.
Coléoptères phyllophages
Altises
Ces petits insectes très mobiles ont plusieurs couleurs. Ils
font de nombreux trous dans les feuilles des jeunes cotonniers sans glandes à gossypol (glandless).
- Nisotra dilecta : couleur bleue
- Nisotra uniformis : couleur brune
- Podagrica decolorata : couleur jaune orangée
On les rencontre également sur le gombo, les Hibiscus spp.
(jutes, kenaf…) et parfois sur les cotonniers à glandes à gossypol.
Acariens
Il existe deux genres qui sont des ravageurs du cotonnier dans
la sous-région : Les tétranyques ou araignées rouges et les
tarsonèmes qui sont les plus importants. Ils sont minuscules,
presque invisibles à l’œil nu et vivent tous à la face inférieure
des feuilles.
Tétranyques
Les espèces rencontrées appartiennent toutes au genre Tetranychus. Il s’agit de T. urticae ; T. neocaledonicus et T. falcaratus. Ils sont de couleur rouge d’où leur nom d’araignées
rouges. Ils sont peu mobiles. Ils rongent la face inférieure
des feuilles qui présentent un aspect nécrosé. Ils sont généralement peu importants.
Tarsonèmes
L’espèce la plus importante est Polyphagotarsonemus latus
qui est blanc jaunâtre et très mobile. On le rencontre sur cotonnier dans les zones humides (pluviométrie supérieure à
1000 mm/an) surtout au Bénin, en Côte d’Ivoire, au Togo…
Il a un cycle biologique très court, se multiplie tous les cinq
jours et cause beaucoup de dégâts surtout par temps couvert et humide. Les feuilles attaquées présentent plusieurs
symptômes successifs selon la gravité :
- la face inférieure a un aspect vert foncé, glacé, huileux et
brillant ;
- les bords du limbe s’enroulent vers le bas ;
- les feuilles se fendillent, se déchirent comme si elles
avaient reçu des « coups de couteau ».
Le plant prend un aspect « filant » avec peu ou pas d’organes
fructifères. De fortes chutes de production sont enregistrées
si les attaques sont précoces et sévères.
Piqueurs suceurs
Ils comprennent les Homoptères et les Hétéroptères. Les premiers sont les plus dangereux. Parmi les Homoptères, on considère les pucerons, les aleurodes et les jassides tandis qu’au
niveau des Hétéroptères, on prend en compte les punaises
(Dysdercus sp. Et Helopeltis schoutedeni).
Les Homoptères
Pucerons : Aphis gossypii
Ils sont de couleur jaune, jaune vert ou vert noir, peuvent
être ailés ou aptères et ont un cycle biologique très court. Ils
sont polyphages. Ils vivent en colonies à la face inférieure
des feuilles qui deviennent voûtées, crispées en se recroquevillant vers le bas. Les déchets qui sont des substances
sucrées (miellats) tombent sur les feuilles qui prennent un
aspect luisant (brillant). Des microorganismes (champignons) peuvent se développer sur ce miellat en donnant une
coloration noire sur les feuilles et le coton graine : c’est la
fumagine.
Aleurodes : Bemisia tabaci (mouche blanche)
Les larves ont une forme ovoïde, aplatie et sont vertes
lorsqu’elles sont jeunes tandis que les plus âgées sont
jaunâtres. Elles sont fixées à la face inférieure des feuilles.
Les adultes sont de tout petits insectes avec deux paires
d’ailes blanches. Ils sont très mobiles et voltigent autour
des plants. De fortes populations provoquent un jaunissement des feuilles et perturbent le développement des plants.
Comme les pucerons, ils produisent aussi du miellat qui
souille le coton des capsules ouvertes. Ce ravageur est
également très polyphage : on le trouve donc sur de nombreuses autres plantes cultivées en particulier des cultures
maraîchères comme la tomate.
Jassides : Jacobiella fascialis
Ce sont des insectes minuscules de couleur verte ayant
un déplacement caractéristique en oblique. Ils piquent les
feuilles dont les bords prennent un aspect rougeâtre caractéristique.
Les Hétéroptères
Les genres et espèces qui attaquent le cotonnier sont très nombreux dans la sous-région et particulièrement dans les zones
les plus humides. Nous retiendrons essentiellement :
Helopeltis schoutedeni
C’est une punaise de forme allongée, de coloration jaune
orange ou rouge vif. On la rencontre surtout dans les zones
les plus humides. Elle attaque les feuilles, les rameaux, les
tiges et les capsules, avec une production de chancres bruns
ou noirs. En cas d’attaques précoces et sévères, les feuilles
sont gaufrées, craquelées avec un aspect de « griffes ». La
45
croissance du plant est ralentie. D’autres Hétéroptères de
moindre importance économique peuvent être cités : Anoplocnomus curvipes, Campyloma spp…
Les principaux ravageurs des organes
reproducteurs
Ils comprennent des insectes et des mammifères.
Les insectes
Ils sont classés en carpophages à régimes exocarpique et endocarpique.
Carpophages à régime exocarpique
Helicoverpa armigera
Chenilles sont de couleur variable, avec 2 lignes latérales
claires et de petits poils sur le corps. Elles attaquent et font
des dégâts importants sur les boutons floraux, les fleurs et
les capsules. Les larves sont très voraces. Une seule larve
peut détruire par jour 5 à 10 organes reproducteurs notamment les squares, les boutons floraux et les fleurs. Les excréments sur les boutons floraux et capsules attaqués sont
souvent nombreux et rejetés en dehors de l’organe. Dans
certains cas (2ème génération d’infestation et de pénurie des
organes ci-dessus cités), la chenille peut attaquer les jeunes
feuilles et rameaux. H. armigera est très polyphage (plantes
cultivées : maïs, sorgho, tomate, tournesol…et sauvages :
Cleome viscosa…).
Diparopsis watersi
La jeune chenille, jaunâtre, devient ensuite vert pâle, trapue
avec des traits transversaux rouges, plus rapprochés vert la
tête. Elle atteint à son complet développement 2,5 à 3 cm.
Elle est peu mobile et attaque, en les perforant, boutons floraux, fleurs et capsules, qui restent parfois suspendus aux
plants par des fils. Elle est beaucoup moins vorace que H.
armigera. Ce ravageur après avoir quasiment disparu avec
l’introduction des pyréthrinoïdes à la fin des années 70 dans
la sous-région ouest africaine a réapparu à des niveaux relativement élevés depuis la réintroduction de l’endosulfan.
En effet, cette matière active destinée à gérer la résistance
acquise par H. armigera vis-à-vis des pyréthrinoïdes est très
insuffisante sur Diparopsis.
Earias insulana et E. biplaga
Les chenilles de forme trapue sont faciles à reconnaître
car elles portent de nombreuses épines d’où leur nom de
chenilles « épineuses ». Elles attaquent les bourgeons terminaux (écimage) et boutons floraux, fleurs et capsules. Les
trous d’entrée sont assez grands et bien visibles.
Carpophages à régime endocarpique
Pectinophora gossypiella (ver rose)
Connue sur le nom de « ver rose » à cause de sa couleur,
cette chenille présente des segments marqués de bandes et
traits transversaux. Elle mesure 1 à 1,5 cm à son complet
développement. On peut la confondre à Cryptophlebia. Elle
attaque les fleurs et provoque un symptôme spécifique : «
fleurs en rosette ». La chenille à sa naissance rentre directe-
ment dans l’organe attaqué et se nourrit préférentiellement
des graines des capsules, dégâts souvent suivis de pourritures secondaires. P. gossypiella ne vit que sur les plants de
la même famille que le cotonnier.
Cryptophlebia leucotreta
La chenille est gris pâle à son complet développement et
ressemble au ver rose. Elle a le même mode d’attaque et de
dégâts que P. gossypiella (coton graine déprécié, quartier
d’orange ...). Le trou d’entrée de la chenille dans la capsule
présente un tortillon. C. leucotreta est très polyphage. Ainsi,
il attaque en outre le maïs, le goyavier, les agrumes…
Hétéroptères carpophages
Dysdercus vöelkeri
C’est une grosse punaise de 1 à 1,5 cm, rouge et noire. Les
larves sont aptères tandis que les adultes ont des ailes antérieures caractérisées par deux points noirs au milieu sur
un fond brun clair et terminées par une plage noire. Ils sont
tous de couleur rouge vif et vivent en colonies. D. völkeri
pique les capsules vertes ou celles ouvertes pour se nourrir
de graines. Il déprécie la valeur germinative des semences
et la fibre qu’il colore.
Les mammifères
L’avènement et la vulgarisation au milieu des années 80 des
variétés de cotonniers sans glande à gossypol « glandless »
ont conduit les mammifères (singes et rongeurs notamment)
à s’intéresser et devenir des déprédateurs d’importance
économique majeure sur cette plante. Parallèlement, les très
fortes pressions sur les ophidiens particulièrement la famille
des Boidae (Phyton regius) a exacerbé le phénomène avec de
très fortes pullulations notamment des rongeurs sur les variétés de cotonniers à glandes à gossypol. Ces rongeurs appartiennent aux familles, genres et espèces ci-dessous : Muridae
Mastomys natalensis Myomis dybowskii M. deroii Rattus rattus Arvicanthis niloticus Cricetomidae Cricetomys gambianus
C. emini Sciuridae Funisciurus anerythrus F. leucogenys Xerus erythropus Gabillidae Tatera guinae T. kempii
Ils attaquent tous les organes reproducteurs voire végétatifs
qu’ils consomment à l’intérieur des parcelles de cotonniers ou
dans la brousse avoisinante. Les dégâts parfois très importants
conduisent les producteurs à manquer de récoltes.
Principales maladies et déficiences du
cotonnier en Afrique de l’Ouest
Maladies du cotonnier
Le cotonnier est attaqué par certaines maladies souvent
d’importance mineure qui peut devenir majeure en cas de
sévères attaques. Nous pouvons citer :
La bactériose : la nouvelle race développée est le « Black
arm ». Les attaques portent sur tous les organes aériens de
la plante (feuilles, branches, tiges, capsules…) du début à la
fin du cycle du cotonnier. Les symptômes foliaires sont des
taches anguleuses et huileuses, ceux sur les tiges sont des
chancres, puis des pourritures sur les capsules. La bactéri-
46
ose attaque à des degrés divers selon les localités, la quasitotalité des variétés cultivées dans la sous-région depuis
bientôt une quinzaine d’année.
La virescence florale : elle se manifeste par un jaunissement des feuilles et des tiges, la transformation des organes
floraux en organes foliacés, le verdissement de la corolle
et des étamines puis la prolifération des branches aux entre-noeuds. Il s’en suit une stérilité spectaculaire. Elle est
transmise par un agent infectieux proche des Mycoplasmes.
L’agent vecteur est un Homoptère dont le principal est Orosius cellulosus.
La maladie bleue : La croissance du plant est ralentie quant
l’attaque est précoce, les entre-nœuds se raccourcissent, le
plant a un aspect buissonnant, quelquefois rampant, les
limbes des feuilles s’épaississent et prennent un aspect vert
bleuâtre, plus foncé que la normale et de texture cassante
avec des bords enroulés vers le bas ; le limbe tend à devenir vertical. Au début, les organes florifères sont rachitiques
puis n’apparaissent plus quand l’attaque se prolonge. Mais
quand l’attaque est tardive, les symptômes ne se limitent
qu’aux extrémités végétatives.
Déficiences minérales et accidents de végétation
Déficience en potassium : On la reconnaît par la présence
de taches jaunâtres entre les nervures des feuilles dont les
bords prennent une couleur brune. À un stade plus avancé,
les feuilles se dessèchent complètement mais restent accrochées comme des « chauves-souris » aux plants. Le rendement et la qualité de la fibre de coton diminuent.
Accidents de végétation : Attaque de foudre : il s’agit de
dégâts d’origine naturelle qui se rencontrent dans certains
pays et localités. Les attaques sont toujours circulaires (environ 12 m de diamètre) soit la surface couverte par 15 billons à 0,80 m d’écartement. Les feuilles de cotonniers attaquées se dessèchent et tombent, laissant des tiges brunes
apparemment brûlées. Ces dégâts sont différents de la phytotoxicité. Les attaques de foudre sont confondues à tort à
des dégâts d’insectes.
Les principales composantes de la
lutte intégrée en Afrique de l’Ouest
La désinfection de semences
La semence constitue l’un des intrants les plus importants
dans la chaîne de production cotonnière. Il est indispensable
qu’elle soit protégée contre toute agression pouvant affecter sa qualité. En effet, pour obtenir une bonne levée, il faut
d’abord employer des semences ayant un bon pouvoir germinatif. Malheureusement, les producteurs de coton rencontrent
souvent des problèmes de levée dans leurs exploitations.
L’objectif visé à travers la désinfection des semences est
préserver la qualité de la semence.
Les principales causes des mauvaises levées sont :
- Les facteurs abiotiques : Les conditions de manipulation et de stockage des semences doivent tenir compte de
l’excès de chaleur et d’humidité pour éviter la détérioration de ces semences.
- Les facteurs biotiques qui sont les maladies et les
ravageurs :
• Les maladies
La fonte des semis est de loin la plus importante. Elle est
causée par un complexe de champignons pathogènes qui
sont soit des agents portés par les graines (Colletotrichum
gossypii, Fusarium spp) soit des agents se trouvant dans
le sol (Rhizoctonia solani, Pythium spp, Macrophomina
phaseoli).
Les attaques peuvent avoir lieu avant ou après la levée. En
cas de pré-levée, les graines pourrissent dans le sol et ne
germent pas. Par contre en cas de dégâts de post-levée, les
graines germent, mais les plantules flétrissent et meurent
rapidement.
• Les ravageurs des semences et des plantules
De nombreux insectes peuvent causer la non germination
ou les mauvaises levées des graines de coton. Certains détruisent la semence en consommant l’amande. D’autres
s’attaquent aux plantules lorsqu’elles sont au stade cotylédonaire. Cette dernière catégorie de nuisibles des semences
et des plantules compte les iules qui évident les graines dans
le sol, ou rongent les cotylédons ou la tigelle des plantules.
Les insectes dont les larves sont terricoles s’attaquent aux
plantules, le plus souvent aux petites racines (Syagrus, grillons, fourmis, pucerons et même certaines chenilles).
Le traitement de semences
Pour obtenir une bonne levée il faut d’abord employer des
semences ayant un bon pouvoir germinatif mais aussi la protéger contre les attaques des maladies et des ravageurs. Les
principaux insecticides et fongicides utilisés en Afrique de
l’Ouest et les doses d’utilisation sont donnés par le tableau 1.
Lutte variétale
La méthode de lutte variétale est l’ensemble des caractères
induits dans le cotonnier, par la sélection classique ou par
les biotechnologies modernes, en vue de réduire l’impact de
certains ravageurs sur le rendement de coton graine. Les caractères peuvent être la production d’excroissances sur les organes du cotonnier à même d’empêcher les déplacements des
ravageurs (pilosité) ou la production de toxines nocives aux
ravageurs (protéines Bt et VIP)…
Quelques exemples de lutte variétale et leur mise en
œuvre :
- Cotonniers avec glandes à gossypol
Les cotonniers classiques contiennent des pigments jaunes
phénoliques appelés gossypol. Ce gossypol est présent dans
de petites glandes qu’on retrouve dans les différents organes
de la plante. Le gossypol est utilisé pour lutter contre les infestations des altises qui provoquent de petits trous dans des
feuilles. Les variétés sans gossypol (glandless) présentent un
intérêt dans l’alimentation animale par les graines, mais elles
sont fortement attaquées par les altises. C’est ce qui explique
47
Tableau 1 : Doses des Principaux Fongicides Utilisés en Afrique de l’Ouest
Substances actives
Benfuracarb
Carbosulfan
Imidacloprid
Thiaméthoxam
Chlorpyriphos éthyl
Carbendazime
Chlorothalonil
Métalaxyl
Propiconazole
TMTD - Thirame
Dose minimale
(g/kg semences)
Insecticides
1
1,25
2,5
0,15
0,5
Fongicides
0,7
1
0,35
0,15
0,75
la non vulgarisation de ce type de variété dans la sous-région.
- Cotonniers avec une pilosité contre les jassides
Les jassides sont des cicadelles de petite taille se déplaçant
sur les différents organes du cotonnier. Ils piquent et sucent
la sève, transmettant souvent des maladies aux cotonniers.
C’est le cas d’Orosius cellulosus qui transmet une maladie
mycoplasmique appelée virescence florale ou phyllodie. Le
déplacement caractéristique des jassides en diagonale est fortement entravé par la présence de pilosité sur les organes du
cotonnier. Cet état de fait réduit la présence de ce ravageur sur
le cotonnier ; il préfère dans ce cas trouver d’autres plantes où
il peut facilement se déplacer.
De nos jours, l’impact des jassides (O. cellulosus qui transmet la phyllodie au cotonnier) est fortement contrôlé par les
produits insecticides de traitements de semences systémiques
comme les néonicotinoïdes (imidaclopride, thiaméthoxam,
acétamipride), les carbamates (carbosulfan)… L’utilisation
des variétés pileuses n’est plus d’actualité d’autant plus que
les infestations de l’aleurode Bemisia tabaci qui est devenu un
ravageur dominant sur cotonnier dans la sous-région à partir
de la fin des années 1990, sont fortement favorisées par ce type
de variété. En effet, les larves de B. tabaci, une fois fixées sur
la feuille, deviennent inaccessibles à leurs ennemis naturels et
sont peu atteintes par les insecticides utilisés contre elles.
Les activités de recherche en matière de sélection variétale
dans la sous-région doivent s’orienter à présent vers des variétés glabres qui facilitent l’accès des larves de B. tabaci aux
ennemis naturels et aux insecticides. Au Burkina Faso par
exemple, la variété FK37 a une pilosité nettement inférieure
à celle de FK290 qui est en voie de retrait. Les efforts des
chercheurs en amélioration variétale de la sous-région ouest
africaine doivent continuer dans ce sens.
- Cotonnier génétiquement modifié (CGM) contre les chenilles des capsules et des feuilles
Le CGM est un cotonnier conventionnel ayant reçu un gène
lui permettant d’acquérir un caractère supplémentaire. Cette
insertion ou transgénèse peut se faire par des méthodes physiques ou biologiques. Dans le cas de la protection du cotonnier contre les ravageurs, les gènes insérés sont issus de Bacillus
thuringiensis qui est une bactérie du sol. Les CGM actuelle-
Dose maximale
(g/kg semences)
4
2,5
3,5
1
4
4
1,6
3,2
ment disponibles sont efficaces contre
la plupart des larves de lépidoptères
carpophages et phyllophages. Les toxines produites par les CGM n’ont aucun effet direct sur les Homoptères piqueurs suceurs que sont les pucerons,
les aleurodes et les jassides. En cas de
nécessité, il faut faire des traitements
dirigés contre ces piqueurs suceurs.
La non-utilisation de produits insecticides contre les larves de lépidoptères
favorise l’installation des ennemis naturels.
Lutte agronomique
La lutte agronomique contre les déprédateurs du cotonnier comprend l’ensemble des pratiques culturales mises en œuvre pour perturber le développement des
ravageurs à une étape donnée de leur cycle biologique. Ces
pratiques vont de la mise en place de la culture aux opérations
effectuées après la récolte du coton graine.
Quelques exemples de lutte agronomique et leur mise en
œuvre :
- Précocité des semis pour lutter contre la 2ème génération
de H. armigera
La production conventionnelle de coton est fortement tributaire
de la période de mise en place de la culture. Il est conseillé de
semer à bonne date pour éviter les arrêts de pluies au moment
de la fructification du cotonnier, ce qui a pour conséquence la
baisse de la productivité. En matière de protection phytosanitaire, il est aussi conseillé de semer tôt dès l’installation des
pluies pour éviter que la période la plus sensible pour le cotonnier ne tombe dans la deuxième génération de H. armigera qui
provoque des dommages très importants à cette phase.
On a observé deux à trois générations de H. armigera sur cotonnier en fonction de la durée de la saison des pluies. La première phase de pullulation de ce ravageur intervient dans la
sous-région ouest africaine entre mi-juillet et mi-août et correspond à la mise en place des premiers organes fructifères. Très
souvent, cette phase est peu dangereuse car les individus sont
peu nombreux et ont une plus grande sensibilité aux insecticides. La seconde génération est observée entre mi-septembre
et mi-octobre. Elle se trouve être la plus dangereuse car les individus issus des parents ayant survécu à la première génération développent une certaine accoutumance aux produits, ce
qui les rend plus difficiles à contrôler.
- Labour
Les labours profonds permettent de mettre en surface les chrysalides des ravageurs avant la sortie des papillons. Ces chrysalides sont soit ramassées par les oiseaux, soit séchées sous
l’effet du climat, ce qui diminue ainsi le nombre de papillons
devant émerger.
- Sarclage
Cette opération permet l’élimination des mauvaises herbes au
voisinage du cotonnier. Ceci permet ainsi d’éliminer les plan-
48
tes pouvant servir d’hôtes aux ravageurs. Une parcelle bien
aérée reçoit une meilleure pénétration des traitements insecticides dans les différents organes du cotonnier.
- Récoltes précoces et échelonnées
Les applications d’insecticides se terminent plusieurs jours
avant le début des récoltes. Les piqueurs suceurs comme
le puceron Aphis gossypii et l’aleurode Bemisia tabaci
s’alimentent sur les jeunes bourgeons et produisent des substances sucrées qui provoquent le coton collant. Pour éviter
cela, il est conseillé aux producteurs de récolter au fur et à
mesure de l’ouverture des capsules.
- Destruction des vieux cotonniers contre Diparopsis,
Syagrus, ver rose et maladies.
Lorsqu’on laisse les tiges de coton dans le champ après la
récolte, on observe des repousses avec l’installation des premières pluies. Ces repousses constituent des refuges pour
certains ravageurs comme Syagrus calcaratus avant la levée
des nouveaux cotonniers. Une fois que ces nouveaux champs
ont une végétation abondante, ces ravageurs y migrent facilement, provoquant ainsi des dégâts. Il est donc conseillé aux
producteurs d’arracher ou de couper les tiges de cotonnier
après les récoltes.
Lutte biologique
La lutte biologique se définit comme étant «l’utilisation
d’organismes vivants ou de leurs produits pour lutter contre
d’autres organismes jugés nuisibles». Les organismes vivants
habituellement utilisés sont des prédateurs, des parasites, des
parasitoïdes ou des entomopathogènes.
Plusieurs projets ont été initiés en Afrique de l’Ouest dans le
domaine de la lutte biologique contre les ravageurs du cotonnier mais ils n’ont pas été poursuivis à cause des difficultés
d’ordre pratique et financier. Les efforts consentis dans ce domaine tendent à préserver les ennemis naturels indigènes par
l’utilisation de substances actives qui les épargnent.
Lutte chimique
Malgré la conduite des autres composantes de la lutte intégrée (excepté le CGM), la lutte chimique demeure encore en
Afrique de l’Ouest le principal moyen de lutte contre les ravageurs du cotonnier, notamment les chenilles des capsules. Les
programmes de traitements chimiques qui sont actuellement
appliqués en culture cotonnière en Afrique de l’Ouest proviennent des résultats d’une expérimentation menée à grande
échelle et répétée sur plusieurs campagnes agricoles dans différentes zones agro-écologiques. La conception a tenu compte
des principaux qui sont le cycle du cotonnier et la dynamique
des populations de ces ravageurs.
Deux modes d’interventions, issus des résultats de recherche
sont principalement développés :
• des programmes de traitements calendaires,
• des programmes d’interventions sur seuil
Le programme de traitement calendaire
L’objectif visé dans l’élaboration du programme de traitement
sur calendrier, ou programme de traitement prédéfini, était
surtout d’assurer la protection des cotonniers durant la période
allant du début de la floraison jusqu’à la maturation de la majorité des capsules formées. Il tenait compte du très bas niveau
de technicité des producteurs qui ne savaient pas reconnaître
les ravageurs et gérer les stocks de produits différents.
Types de programmes calendaires
En Afrique de l’Ouest, depuis sa conception, le principe de la
protection de la culture du coton selon le programme calendaire a connu deux variantes. Il s’agit de :
Le programme standard
C’est le programme classique qui est pratiquement abandonné par la grande majorité des producteurs de coton. Il
visait surtout la protection de la phase fructifère des cotonniers. Les interventions démarraient dès l’apparition
des premières fleurs, soit 45 à 50 jours après la levée. En
général, la cadence de traitement recommandée était de 14
jours. Le nombre de traitements se chiffrait en général à
5 - 6 interventions pour les producteurs qui respectaient la
recommandation de la recherche. Toutes les applications
étaient réalisées uniquement avec un mélande de deux
produits (pyréthrinoïde + organophosphoré) ou parfois trois
(un pyréthrinoïde + deux organophosphorés) tout le long
de la période de protection. Malheureusement, cette monotonie s’est soldée par l’apparition de la résistance de certains
ravageurs, notamment Helicoverpa armigera.
Le programme fenêtres
L’élaboration du nouveau programme calendaire dit « programme fenêtres » a été motivée par l’apparition puis le
développement du problème de la résistance de la chenille
des capsules Helicoverpa armigera aux pyréthrinoïdes. Le
principe des interventions sur calendrier à des intervalles
de 14 jours a été maintenu. Les modifications ont été apportées au niveau de la date de démarrage des traitements
et produits appliqués. C’est ainsi que la date de démarrage
des traitements a été ramenée à 30-35 jours après la levée,
ce qui correspond à l’apparition des boutons floraux. Le but
étant le ciblage des jeunes et fragiles chenilles de ce ravageur. Partant sur la base de 6 traitements à réaliser pour la
protection des champs de coton, la grande nouveauté a été
la création des « fenêtres » d’intervention. Les 6 traitements
ont été regroupés en 2 ou 4 interventions successives pour
former une fenêtre. Ainsi sont apparus les programmes 2
fenêtres et 3 fenêtres.
- Programme à 2 fenêtres : selon le principe de ce programme, le 1er et le 2èem traitement forment la première
fenêtre tandis que la seconde fenêtre est constituée par les 4
autres (3 ème, 4 ème, 5 ème et 6 ème traitements).
- Programme à 3 fenêtres : si le 1er et le 2 è traitement forment la première fenêtre, les 3 è et 4 ème traitements donnent
la seconde fenêtre et les 5 è et 6 è traitements constituent la
troisième fenêtre. Il est important de signaler que le choix
des produits à appliquer est fait avec beaucoup de discernement. C’est ainsi que :
49
En première fenêtre, pour les deux types de programme
fenêtre, les traitements de la première fenêtre sont toujours réalisés avec un produit n’appartenant pas à la famille
des pyréthrinoïdes, l’objectif étant la réduction du temps
d’utilisation des molécules de cette famille contre laquelle
H. armigera a développé de la résistance. On peut prendre
comme exemples : le profenofos, l’indoxacarb, le spinosad,
le malathion, l’association flubendiamide-spirotétramate…
En seconde fenêtre (programme 2 fenêtres) ou aux deux autres fenêtres (programme 3 fenêtres), les traitements sont réalisés avec des produits binaires contenant un pyréthrinoïde
en association avec un produit d’autres familles.
Dans le cas du programme 3 fenêtres, on peut intervenir avec
des produits acaricides au niveau de la deuxième fenêtre
puis des produits aphicides et/ou aleurodicides en troisième
fenêtre. Comme exemples de produits on peut citer :
- acaricides : cyperméthrine/ profenofos, deltaméthrine/
triazophos
- aphicides/aleurodicides : lambdacyhalothrine/acétamiprid, alphaméthrine/imidacloprid.
Cette nouvelle stratégie a été largement adoptée dans la
sous-région. Elle a permis de freiner l’aggravation de la résistance de la chenille aux pyréthrinoïdes. En plus, elle a
permis une prise de conscience pour évider l’apparition du
même problème chez d’autres nuisibles de la culture cotonnière.
Le programme sur seuils
Les programmes d’interventions sur seuils constituent une
nouveauté pour la sous-région. Ils sont tout à fait récents.
Leur expansion est encore lente pour plusieurs raisons liées à
l’insuffisance de la connaissance des ravageurs qui constituent, sans aucun doute, l’élément déterminant pour la réussite
de ce programme.
Conception
La détermination des seuils d’infestation des principaux ravageurs est la base de cette technique. En effet le cortège des
ravageurs du cotonnier dans la sous-région ouest africaine est
très riche et varié et la conception de toute stratégie de protection de la culture doit obligatoirement en tenir compte. Partant
d’une approche des résultats de recherche sur le cotonnier et
d’autres cultures provenant d’autres régions du monde, les investigations ont été prioritairement basées sur l’évaluation de
l’importance des dégâts dus aux insectes nuisibles. Les résultats de ces évaluations permettent de prendre la décision de
déclencher les traitements et de contrôler les infestations après
la réalisation des traitements.
Connaissance des insectes et de leurs dégâts
L’évaluation des niveaux d’infestation des populations
d’insectes requiert la connaissance des différentes espèces inféodées au cotonnier et celle de leurs dégâts. Pour cela, il faut
procéder à des prélèvements d’échantillons.
Echantillonnage et prise de décision
Le but de la prise d’échantillons est l’évaluation des populations ou des dégâts dans le champ de coton et par la suite, la
prise de décision.
Les échantillons doivent être prélevés sur les diagonales,
dans une portion homogène, grande et assez représentative du
champ de coton concerné. La taille de l’échantillon varie d’un
pays à un autre et le seuil d’intervention est lié à la taille de
l’échantillon.
Les relevés sont réalisés une fois par semaine à partir du 30è
jour après la levée et se poursuivent jusqu’à la maturation de la
majorité des capsules du champ de coton. Comme principe de
base, il faut effectuer un bon examen systématique des plants
échantillonnés. Dans la sous-région, principalement trois
groupes de ravageurs sont pris en compte dans les évaluations
de niveau de populations et des dégâts. Ce sont les ravageurs
carpophages, les ravageurs phyllophages et les piqueurs-suceurs. Il faut noter que si les interventions sur seuils sont faciles avec les chenilles exocarpiques, la tâche est par contre plus
compliquée avec les endocarpiques. Les traitements sont faits
généralement avec des produits spécifiques en cas d’atteinte
des seuils d’intervention, ou avec des produits binaires quand
la nécessité s’impose. Cela implique une gestion de stocks de
produits de plusieurs familles chimiques, chose qui n’est pas
très aisée pour les producteurs de la sous-région.
Conclusion
La lutte intégrée en Afrique de l’Ouest contre les ravageurs du
cotonnier reste fortement tributaire de la lutte chimique sans
laquelle la productivité ne peut être assurée. Face à la mondialisation, au cours mondial trop fluctuant de la fibre de coton
et aux subventions accordées aux cotonculteurs du nord, la
sous-région ouest africaine doit fournir les efforts pour accroître la productivité au champ en vue de garantir un mieux être
à plus de 20 millions de personnes qui sont concernées par les
filières cotonnières de cette sous-région. Cet accroissement de
la productivité passe par la mise en place de cadre institutionnel plus favorable, l’adoption d’itinéraires techniques plus
performants et une meilleure organisation des producteurs. De
nouvelles technologies comme la production et l’utilisation
de la fumure organique à l’aide d’activeurs, la protection sur
seuils d’intervention et le coton génétiquement modifié peuvent bien rentrer dans ce cadre.
50
Systèmes de production de coton
économiquement viables
Bouré Ouéyé Gaouna
Cotton Breeder, Institut Tchadien de Recherche Agricole pour le Développement, Tchad
Résumé
La culture du cotonnier est la seule dont la filière est organisée au Tchad et dans d’autres pays de l’Afrique Francophone
où elle relativement mieux organisée, mais n’est pas la seule.
Putto (1992) notait que la réussite de la culture cotonnière,
c’est non seulement les paysans producteurs, mais c’est aussi
une organisation et une maîtrise en amont, de la définition des
itinéraires techniques, de la création variétale, de la protection
phytosanitaire sur calendrier recommandée par la recherche…
En aval cela concerne la collecte du coton graine par les sociétés cotonnières, la transformation des produits du cotonnier et
la commercialisation. Ainsi, le coton est une source de revenu
monétaire relativement importante pour les cotonculteurs.
Berout (1994) a chiffré de 50 à 60 le pourcentage de coton dans
les exploitations officielles du Tchad par exemple ; il a précisé
que la filière cotonnière est un enjeu vital pour l’économie
du Tchad car la production représente 60% de la recette
d’exploitation et aucun produit agricole n’est aujourd’hui
susceptible de prendre la relève. Sur le plan social, la société cotonnière contribue au développement par les emplois
qu’elle crée, ses activités d’achat de coton graine, d’égrenage,
de transport de fibres et de trituration des graines. La crise
de la filière coton au Tchad, conséquence d’une fluctuation
dramatique du cours mondial du coton, a eu des répercutions
négatives sur la production cotonnière avec des éléments
d’accompagnement en amont comme en aval très affectés :
des enquêtes menées pour comprendre cette situation ont
permis, sur la base d’une analyse comparatives des exploitations du Cameroun et du Tchad, de tirer un certain nombre de
conclusions et de se poser des questions relativement pertinentes sur le rôle que peut jouer la Recherche Agronomique
dans le contrôle de cette crise cotonnière au Tchad. Le travail
s’est déroulé en prenant pour terrains des milieux physiques
aux potentialités analogues. On en arrive à constater que les
cotonculteurs tchadiens abandonnent de plus en plus le coton au bénéfice de l’arachide et les raisons données semblent
claires et logiques. Cette étude met en évidence la précarité
dans laquelle se trouvent de nombreuses exploitations, des
systèmes de production à dominance coton.
Mots clés : Crise de la Filière coton, Tchad, Cameroun, Recherche Agronomique, Systèmes de Production, Enquêtes,
Exploitations agricoles, Viabilité économique.
Introduction
Dans la plupart des zones cotonnières du continent, la petite
agriculture familiale dans les Pays d’Afrique de l’Ouest et
du Centre se pratique très habituellement en système pluvial.
Dans de nombreux cas, le niveau d’intensification est faible :
le travail du sol est souvent inadapté, l’usage de la fumure
organique ou minérale est rare et la maîtrise de l’enherbement
est défaillante. Telle est la description sommaire des exploitations familiales avec un système de production dominé par la
culture du cotonnier.
L’examen de l’historique des rendements de 1992 à 2005 suggère que dans la plus part de ces exploitations les rendements
moyens de coton-graine en agriculture pluviale ne se sont pas
améliorés, contrairement à ce qu’il est observé en culture irriguée, comme en Egypte ou en Afrique du Sud. Il est assez
aisé de noter que les contraintes climatiques et un itinéraire
technique inadapté en système pluvial semblent avoir estompé
les gains de rendement espérés par l’adoption des nouvelles
variétés. Il existe de nombreuses causes à cette situation :
l’aléa pluviométrique est prépondérant dans la conduite de la
culture cotonnière (Crétenet et al., 2006). L’examen des statistiques pluviométriques au Mali et au Bénin (Crétenet, Guibert,
données non publiées) par exemple, révèle 2 types d’incident
climatique fréquents en zone cotonnière : l’irrégularité dans
le démarrage des pluies et la manifestation de périodes de
sécheresse en cours de floraison. Dans ce dernier cas, ces
trous pluviométriques ont pour effet d’induire un stress hydrique pouvant provoquer la perte d’une partie des organes
fructifères (Cognée 1968 ; 1974). On peut facilement étendre
ces constats à d’autres pays où la production cotonnière reste
relativement importante. En plus de ces causes climatiques
et agrotechniques, la crise des filières coton dans les pays
d’Afriques, conséquence d’une fluctuation dramatique du
cours mondial du coton, a eu des répercutions négatives sur la
production cotonnière avec des éléments d’accompagnement
en amont comme en aval très affectés. Dans toutes conditions,
seules les exploitations relativement équipées en matériels
agricoles Traction animale ou mécanique) ou qui ont la possibilité de les louer, semblent capable d’être économiquement
viables.
Cette étude qui rassemble un certain nombre d’informations et
de données, tente de donner une réponse à la question ˝Quels
systèmes de production économiquement viable ?˝
Matériels et méthodes
Ce travail est essentiellement basé sur des enquêtes et recensements :
• Dans les première et deuxième parties nous avons mené des
enquêtes ouvertes auprès des ministères de l’Agriculture,
du Commerce et de l’Industrie, de la Société cotonnière du
Tchad (COTONTCHAD), de l’Institut Tchadien de Recherche Agronomique pour le Développement (ITRAD). Ces
enquêtes ouvertes avaient l’allure d’entretiens permettant
de vérifier un certain nombre d’informations et de situer
les causes éventuelles de la crise de la filière cotonnière au
Tchad ;
51
Sauf au Togo et au Bénin où la production s’effondre (voir
tableau 2), malgré la baisse des revenus ces dernières années, les producteurs de coton ont, en général, maintenu leur
production. Ils disposent de peu de productions alternatives
viables au coton.
• Dans la troisième partie de cette communication, l’étude
s’est déroulée dans le cadre du Pôle Recherche Agronomique
des Savanes d’Afrique Centrale (PRASAC). Les enquêtes,
sous forme de recensements exhaustifs, ont concerné, en
2001, 791 exploitations agricoles du Sud Tchad dans 6 terroirs et 922 exploitations agricoles au Nord Cameroun dans
5 terroirs. Toutes ces exploitations recensées ont été analysées.
Le tableau 3 récapitule l’évolution du prix d’achat du coton graine aux producteurs pour les campagnes 2004-2005
et 2005-2006. Il ne montre que la réduction entre les deux
dernières campagnes.
Résultats : Quelques éléments de discussion
En fait la baisse de prix aux producteurs a été étalée sur plusieurs campagnes et est supérieure à 15 %. En 2003-2004,
L’environnement dans lequel évoluent les différents systèmes le prix était en moyenne à 200 F. CFA le kg dans la région.
de production à dominance coton est décrits par les différents Cet effet de lissage explique, en partie, l’impact modéré de
tableaux ci-dessous.
la baisse des prix sur la production. Par ailleurs, la réduction
du revenu des producteurs aurait été encore plus
Tableau 1 : La superficie, la production et rendement en coton graine de certains
sévère sans les ristournes de la campagne paspays d’Afrique de l’Ouest et du centre pour 2001/02.
sée ou les subventions accordées par plusieurs
Pays
Superficie (ha) Rendement (kg/ha) Production (tonnes) Production coton
pays. Le prix au Burkina Faso de 210 F. CFA en
fibre (tonnes)
2004-2005 correspondait à un prix d’achat de
175 130
415 000
1 196
330 400
Bénin
175 F. CFA et à une ristourne de 35 F. CFA liée
158 179
378 000
1 054
355 900
Burkina-Faso
au bénéfice de 2003-2004. Au Mali de même, les
99 577
240 000
1 141
210 400
Cameroun
210 F. CFA en 2004-2005 correspondaient à un
prix d’achat de 200 F. CFA et à une ristourne de
160 505
370 000
1 298
285 000
Côte d’Ivoire
10 F. CFA liée au bénéfice de 2003—2004. Au
248 111
575 000
1 143
516 300
Mali
Bénin, le prix de 200 F. CFA en 2004-2005 in63 395
155 000
1 033
150 000
Togo
tègre une subvention de l’Etat de 43 F. CFA. Au
67 363
164 546
538
306 110
Tchad
Cameroun en 2005-2006, les 170 F. CFA payés
Source Cotontchad – DAGRIS
au producteur comprennent 150 F payés par la
société cotonnière et 20 F de l’OPCC (OrganisaTableau 2 — Évolution de la production de coton Fibre de certains pays
tion des producteurs de coton du Cameroun).
d’Afrique de l’Ouest et du centre de 2004 à -2006.
En million de tonnes
Bénin
Burina Faso
Côte d’Ivoire
Guinée
Mali
Sénégal
Togo
Cameroun
République Centrafricaine
Tchad
2004/05
2005/06
Ecart en %
171
264
145
3
239
17
74
125
3
84
82
302
108
3
244
18
32
100
2
82
-52,05
+14,39
-25,52
0,00
+2,09
5,88
-56,76
-20,00
-33,33
-2,38
Source : DAGRIS
Tableau 3 — Évolution des prix aux producteurs de certains pays
d’Afrique de l’Ouest et du centre de 2004 à -2006.
En FCFA/Kg de coton graine
Bénin
Burkina Faso
Côte d’Ivoire
Mali
Sénégal
Togo
Cameroun
Tchad
2004/05
2005/06
Réduction en %
200
210
140
210
195
175
190
190
170
175
140
160
195
160
170
160
15
17
0
24
0
09
11
16
Bien que les cours de la fibre se soient légèrement redressés en 2005/06, leur niveau reste insuffisant pour
rééquilibrer les filières cotonnières de l’Afrique de
l’Ouest et du Centre. Ils restent bien inférieurs à la
moyenne des 25 dernières campagnes qui s’établit à
900 Francs CFA par kg de fibre (voir tableau 4). Cette
baisse des cours s’accompagne d’une baisse du prix
de vente du sous-produit qu’est la graine de coton.
Le Kg passe de 30 F. CFA/Kg à 20 F. CFA/Kg sur les
marchés Ouest-africains.
La situation du coton sur le marché mondial est exacerbé par le fait qu’il fait partie des rares produits
qui mettent les producteurs africains en compétition
directe avec les producteurs du Nord; situation
toutefois renforcé par le rôle stratégique du coton
sur le marché mondial. On estime qu’entre 12 et
16 millions de ménages bénéficient directement ou
indirectement de la culture du coton en Afrique de
l’ouest. La zone CFA produit environ 80% de toute
la production de la région et le coton contribue pour
5 à 10% du PIB des principaux pays producteurs.
En outre, en 2001, le coton a contribué pour 51,4%
dans les recettes d’exportations du Burkina Faso,
37,6% pour le Bénin et 25% pour le Mali (SWAC
2004). Toutefois malgré le fait que ses coûts de
production sont parmi les plus bas au monde, le
52
la production cotonnière. Exportation essentielle
à l’équilibre de la balance des paiements des pays
comme le Burkina Faso et le Bénin pour lesquels
le coton constitue, en année normale, plus des
2/3 des recettes d’exportation. Il faudrait aussi
prendre en compte les pertes de recettes fiscales
évaluées entre 4 et 7 % des recettes totales. (cf.
Les dossiers de FARM, Nicolas Gergely, Le coton
: quels enjeux ?).
Tableau 4 — Évolution des cours du coton de 2004 à 2005
dans les filières cotonnières de l’Afrique de l’Ouest et du Centre
Prix des réalisations des ventes
2005/06 (/Kg de fibre)
%
2004/2005
610FCFA
0.93 67.78
2005/2006
670FCFA
1.02
74.48
Moyenne des 25 dernières années
900FCFA
1.37
100.00
Source : DAGRIS
Tableau 5 — Estimation des baisses de recettes des producteurs de coton
Estimation des revenus
des cotonculteurs million
de tonnes
Bénin
Burkina Faso
Côte d’Ivoire
Mali
Sénégal
Togo
Cameroun
Tchad
2004/05 (en
milliards de FCFA)
2005/06 (en
milliards de FCFA)
Baisse des
revenus
Conclusions
81,429
132,000
48,333
119,500
7,893
30,833
56,548
38,000
33,190
125,833
36,000
92,952
8,357
12,190
40,476
31,238
-48,238
-6,167
-12,333
-26,548
464
-18,643
-16,071
-6,762
I
47,47
28,48
452,70
1 127
467
14,30
II
III
39,04
23,42
423,93
1 109
448
23,70
42,71
25,63
314,32
859
339
24,80
A = exploitation disposant de plus de 2 unités d'attelage et d'équipement
B = exploitation disposant d'une unité d'attelage
C = exploitation disposant d'une unité d'attelade incomplète
D = culture manuelle (Nabukpo, Keita, 2006)
1) Au sein d’un milieu physique aux potentialités analogues, on notera :
• Une superficie travaillée par exploitation plus importante au Tchad ;
• Des rendements, des revenus moins
importants au Tchad ;
• Une sécurité alimentaire mieux assurée
au Cameroun.
3) On peut sans trop de crainte dire la chose suivante :
Type d'exploitation
Description
-59
-5
-26
-22
+6
-60
-28
-18
2) Une désaffection croissante des producteurs tchadiens envers le coton à
l’avantage d’autres cultures comme l’arachide.
Figure 1. Coûts de production et revenus à l'hectare au Mali
de 4 types d'exploitation cotonnière
Coût de protection (USD/ha)
Coût Pyréthrinoïde (USD/ha)
Coût total (USD/ha)
RDT (kg/ha)
Revenu brut (USD/ha)
Profit (USD/ha)
Variation
en %
Figures 1, 2, 3, 4 : typologies comparatives des exploitations/Systèmes de production à dominance cotonnières Tchad
vs Cameroun
IV
14,64
14,64
257,08
621
262
4,40
• Les exploitations de type I et II semblent
s’essouffler aussi bien au Tchad qu’au Cameroun,
surtout si on tien compte d’un environnement
économique de moins en moins favorable pour le
coton africain ;
• Les exploitations/systèmes de production qui
semblent tirer leurs épingles du jeu sont les types
III et IV, c’est à dires celles qui ont la possibilité
d’utiliser les maximum de moyens et matériels agricoles (traction animale ou mécanique, utilisation
d’intrants agricoles, ...). Le tableau 6 confirme, dans une
certaine mesure, cette tendance
coton ouest africain est en crise à cause du niveau particulièrement bas des prix.Le tableau 5 présente une évaluation des
baisses de revenus bruts des producteurs de coton résultant de
la baisse des prix payés et de l’évolution
Tableau 6 : performances des exploitations selon leur taille
de la production. Il ne présente que la conet niveau de mécanisation, zone de la CMDT, Mali
traction du revenu brut des producteurs de
Un seul tracteur
Au moins 2 paires
Une seule paire
coton entre 2004/05 et 2005/06.
L’estimation des pertes des sociétés cotonnières est faite à partir d’un coût forfaitaire
de transformation et de mise à marché
(FOB) estimé à 295 F. CFA par kg de fibre
produite auquel on ajoute le prix d’achat
du coton graine converti en équivalent fibre déduit (taux d’égrenage retenu 42 %)
du prix de vente de la campagne considérée.
Le tableau 5 ne présente que l’impact sur
la balance des paiements de l’évolution de
Nombre de cas étudiés
Nombre de personnes/exploitation
Superficie agricole totale (ha)
Superficie agricole/personne (are)
Total de jours de travail/personne
Total de jours de travail/ha
Revenus financiers de l’agriculture
en FCFA
Revenus financiers de l’agriculture :
FCFA/ha
Revenus financiers de l’agriculture :
FCFA/personne
Revenus financiers de l’agriculture :
FCFA/travail journalier
Main-d’œuvre
de bœufs
de bœufs
25
15
15
17
31,2
34,8
112
88
79
1 018 000
15,3
15,9
104
89
86
436 000
9,9
9,2
93
77
83
312 000
7,9
3,8
48
40
84
71 000
29 000
27 000
34 000
19 000
33 000
29 000
32 000
9 000
372
320
407
223
53
Typologie en 4 classes obtenues
par segmentation
C am ero u n
2 500
53%
Fig. 1
48%
T chad
50%
Fig.Fig.
1 2
35%
40%
31%
30%
20%
11%
10%
9%
7%
8%
C am ero u n
Fig.
2Fig. 3 Fig. 3 Fig. 4 Fig. 4
T ch ad
2 000
Rendements en Kg / Ha
60%
Rendements des cultures
1 500
1 000
500
0%
T yp e I
T y p e II
Femmes chefs
d’exploitation
1.
2.
Non utilisateurs
de TA
T y p e III
Locataires de
TA
T y p e IV
0
Propriétaires de
TA
Un échantillon également réparti
Une répartition analogue des exploitations dominée par
des locataires de traction animale
I
Superficies en hectare
Fig. 2
4,0
C ameroun
3,5
Tchad
Fig. 3
4,1
Fig.
1
3,6
3,0
2,4
2,5
2,0
1,4
1,5
1,0
0,9
1,0
1,3
1,6
I
II
III
IV
S o rg h o
I
II
III
IV
I
II
A ra c h id e
III
IV
M a ïs
Fig. 4 C a m e r o u n
Fig. 2
Fig.
3
Tcha
d
200
Fig. 4
180
160
140
120
100
80
60
40
20
0,5
0,0
IV
Utilisation des engrais
Quantités utilisées en kg
Fig. 1
SU PER FIC IES C U LT IVEES
III
Des rendements toujours supérieurs au Cameroun quelle que soit la
culture considérée
Caractéristiques de surface
4,5
II
C o to n
0
1
Exploitations
de type I
2
Exploitations
de type II
3
Exploitations
de
type III
4
Exploitations
de type IV
Une superficie mise en valeur fonction de l’accessibilité à la traction animale
Des superficies par exploitation plus importantes au Tchad qu’au Cameroun
D’autres facteurs ont aussi eu des incidences sur l’évolution de
l’agriculture familiale au cours des 4 dernières décennies. Premièrement, l’accroissement constant de la population (environ 2,8% par an) a eu pour conséquence une augmentation de
la demande en terres (au Ghana les superficies cultivées sont
passées de 14,5% à 25,5% du territoire national entre 1961
et 1999 alors qu’en Côte, durant la même période les taux
sont respectivement 8,5% et 23,5% (Mortimore2003), ce qui
s’est traduit dans certains, cas par des migrations qui, en plus
d’augmenter la pression foncière se sont souvent traduites par
des conflits. Par ailleurs cette pression a conduit à une diminution de la superficie cultivée par tête. Dans la zone de l’office
du Niger la superficie par personne cultivée en riz d’hivernage
est passée de 0,38 ha à 0,22 ha entre 1987 et 1999 (Bélières
et al . 2002)
Les défis liés à l’environnement constituent une menace potentielle pour une croissance continue de la production agricole,
surtout cotonnière et les exploitations familiales, les exploitations du type I et II, dans nôtre typologie, auront certainement
beaucoup de difficultés pour tenir, vivre, surtout si l’on considère l’adoption des biotechnologies (les fameux Coton Génétiquement modifié, CGM). On peut logiquement s’attendre
à ce que ce soient les « Grandes exploitations », celles qui
ont des moyens pour se procurer des matériels agricoles ou
NPKSB
Ur é e
E xp lo itatio n s
d e typ e I
Une utilisation d’engrais
minéral toujours
supérieure au Cameroun
NPKSB
Ur é e
E xp lo itatio n s
d e typ e II
NPKSB
Ur é e
E xp lo itatio n s
d e typ e III
Cameroun
NPKSB sac/50 kg 12 000 Frs
UREE sac/50 kg
8 500 Frs
NPKSB
Ur é e
E xp lo itatio n s
d e typ e IV
Tchad
15 540 Frs
12 340 Frs
les louer éventuellement, qui soient économiquement viables.
Ces « grandes exploitations correspondraient aux types III et
IV de notre typologie.
Référence
Olina Bassala JP, 2002. Innovations techniques et changements socioéconomiques. Cas du semis ou « labour chimique » au sud du bassin
cotonnier au nord Cameroun. DEA, Université de Toulouse(France),
74p.
54
Vall, E., M. Cathala, P. Marnotte, R. Pirot, J.P. Olina, B. Mathieu,
H. Guibert, K. Naudin, Aboubakary et I. Pabamé Tchinsahbé, 2002.
Pourquoi inciter les les agriculteurs à innover dans les techniques
de désherbage ? in Jamin JY et L Seiny Boukar éds., 2002. Savanes
africaines : des espaces en mutation, des acteurs face à de nouveaux
défis. Mai 2002, Garoua, Cameroun, Ndjaména-Tchad, PRASAC.
Dugue, Patrick, Vall Eric, Cathala Magalie, Mathieu Bertrand, Olina
Jean Paul et Seugue Caroline, 2004. Les paysans innovent, que font
les Agronomes ? Le cas des systèmes de culture en zone cotonnière
du Cameroun. Entretien du Pradel, 2004, Agronome et Innovations.
Montpellier, France.
Rapports d’activités de la Cotontchad : Campagnes Agricoles
2000/2001, 2002/2003, 2003/2004 ; 2002/2005.
Hake, K. 2004. Cotton biotechnology: beyond Bt and herbicide tolerance. In Swanepoel A. (ed.). Proceedings of the world cotton research
conference-3: cotton production for the new millennium. Cape Town,
South Africa, 9–13 March 2003. Pretoria : ARC-IIC, p. 9–13.
Hofs, J.L. et D. Marais. 2004. Effect of basic fertilization on transgenic Bt cotton yields in small-scale dryland farming systems: an
experience in the Makhathini flats, Kwazulu-Natal, South Africa.
Abstract. In CIEC. 15th International symposium of the International
Scientific Centre of Fertilizers, 27-30 September 2004, Pretoria,
South Africa, 22 p.
ICAC. 2002. Cotton world statistics. Washington, DC: ICAC,
140 p.
Bara Guèye. 2006. L’agriculture familiale en Afrique de l’Ouest :
concepts et enjeux actuels.ACB (2005).
Ismael, Y., R. Bennett et S. Morse. 2002. Farm-level economic impact of biotechnology : smallholder bt cotton farmers in South Africa. Outlook Agric. 31, p. 107–111.
A profile of Monsanto in South Africa. African Centre for Biosafety
[online]. <http://www.biosafetyafrica.net/_DOCS/ABC_Monsanto_
Southafrica.pdf> on April 2005, 26 p.
James, C. (2005 a). Preview: Global status of commercialized Biotech/GM crops: 2004. ISAAA Briefs 32. New York: International
Service for the Acquisition of Agri-Biotech Applications, 12 p.
AfricaBio (2005). Tanzania conducts GM field trials. Biolines [online]. http://www.africabio.com/biolines/71.pdf, on [04/03/05], 5 p.
James, C. (2005 b). Executive summary of global status of commercialized Biotech/GM crops: 2005. ISAAA Briefs 34. New York: International Service for the Acquisition of Agri-Biotech Applications,
12 p.
Brévault, T. et J. Achaleke. 2005. Status of pyrethroïd resistance in
the cotton bollworm, Helicoverpa armigera, in Cameroon. Resist.
Pest Manage. Newsl. 15 (1), p. 4–7.
Cognée, M. 1974. Modalité de l’abscission post-florale chez le cotonnier. Liaison avec quelques facteurs internes. Cot. Fib. Trop. 29
(4), p. 447–462.
Elbehri A. et S. MacDonald, 2004. Estimating the impact of transgenic Bt cotton on West and Central Africa: A general equilibrium
approach. World Dev. 32 (12), p. 2049–2064.
Estur, G. 2006. Le marché mondial du coton : évolution et perspectives. Cah. Agric. 15 (1), p. 9–16.
Fok ACM., W. Liang , J. Wang et NY. Xu. 2006. Production cotonnière familiale en chine : forces et faiblesses d’une intégration à
l’économie de marché. Cah. Agric. 15 (1), p. 42–52.
Grain. 2004. GM cotton set to invade West Africa. Time to act!
Grain Francophone Africa. [online]. <htpp://www.grain.org/
briefings/?id=184> on June 2004, 21 p.
Green, W.M., M.C. De Billot, T. Joffe, L. Van Staden, A. BennettNel, Du Toit CLN., L. Van der Westhuizen. 2003. Indigenous plants
and weeds on the Makhathini Flats as refuge hosts to maintain bollworm population susceptibility to transgenic cotton. Afric. Entomol.
11, p. 21–30.
Mendez, del Villar P., L.R.A. Alvez et M.S. Keita. 2006. Facteurs
de performance et de compétitivité des exploitations cotonnières au
Brésil, aux états-Unis et au Mali. Cah. Agric. 15 (1), p. 23–34.
Nubukpo, K. et M.S. Keita. 2006. Prix mondiaux, prix au producteur
et avenir de la filière coton au Mali. Cah. Agric. 15 (1), p. 35–41.
Vaissayre, M., G.O. Ochou , O.S.A. Hema et M. Togola. 2006.
Quelles stratégies pour une gestion durable des ravageurs du cotonnier en Afrique subsaharienne ? Cah. Agric. 15 (1), p. 80–84.
Zhang, H., C. He, G. Shen, J. Yan, D. Auld et E. Blumwald. 2005.
Analysis of transgenic cotton engineered for higher drought and
salt-tolerance in greenhouse and in the field. In Proceedings of the
beltwide cotton conferences, New Orleans, Louisiana, January 4–7,
p. 871–875.
Hofs, Jean-Luc et Fabio Berti, «Les cotonniers (Gossypium hirsutum
L.) génétiquement modifiés, Bt : quel avenir pour la petite agriculture
familiale en Afrique francophone ?». Biotechnol. Agron. Soc. Environ., volume 10 (2006) numéro 4 : Biotechnol. Agron. Soc. Environ.
2006 10(4), p. 335–343. http://popups.ulg.ac.be/Base/document.
php?id=615
55
Risques environnementaux liés à la culture
du cotonnier en Afrique francophone :
Bilan et évolutions en cours
M. Vaissayre et M. Cretenet, CIRAD, Unité de Recherche; Systèmes de Culture Annuels
(Présenté Par Alain Renou, CIRAD)
La production cotonnière de l’Afrique sub-saharienne est, à
quelques exceptions près, le fait de petites exploitations familiales. Le cotonnier y est cultivé sous régime pluvial, dans
des systèmes où il est associé avec des cultures vivrières,
produites à des fins commerciales (Maïs, Niébé) ou pour
l’autosubsistance (Mil, Sorgho).
La surface consacrée à la culture du cotonnier dans la zone CFA
est actuellement comprise entre 2.2 et 2.5 millions d’hectares.
En 2006/07 la production y a atteint son plus bas niveau
depuis le début du siècle, en s’établissant à moins de 800 000
tonnes de fibre (contre une production record de 1.126.000 t
en 2004/05), tandis qu’en Afrique de l’Est et Australe, la production était de l’ordre de 460 000 tonnes de fibre pour une
surface estimée à 2 millions d’hectares (ICAC, 2007).
La plus grande partie de la production Ouest Africaine étant
exportée, ce groupe de pays se place aujourd’hui au 4eme rang
mondial, délogé depuis peu du troisième rang des pays exportateurs par l’Inde, et menacé par le Brésil (ICAC, 2008). La
production de coton reste cependant un secteur clé dans les
programmes de développement de la sous-région.
La culture cotonnière nécessite à la fois l’apport d’engrais (organiques et minéraux) et celui de pesticides, parmi lesquels
les insecticides occupent une bonne place. Au Mali par exemple, c’est plus de 2,6 millions de litres de produits formulés
en concentré émulsifiable qui ont été nécessaires en 1999.
Au Bénin comme au Burkina Faso, les chiffres devraient être
proches ou même supérieurs.
A l’étape actuelle du développement des zones cotonnières,
l’utilisation d’intrants est incontournable pour accroître la
productivité, mais pour conserver à l’agriculture un caractère
durable, la préservation de l’environnement est un enjeu déterminant. Nous allons donc examiner dans ce papier quelles
sont les sources d’atteinte à l’environnement et à la santé humaine, et envisager un certain nombre de mesures pour en
limiter l’impact.
La transformation du paysage
La végétation naturelle de la cotton belt qui travers l’Afrique
du Sénégal au Tchad celui de la savane sahélo-soudanienne
avec Vitellaria paradoxa (karité), Lannea spp., Sclerocarya
birrea, Daniellia oliveri, Parkia biglobosa, Terminalia
macroptera, Khaya senegalensis, Vitex spp., et Prosopis africana. Cette végétation, de part les défrichements dus à une
forte présence humaine, n’est plus guère visible à l’heure actuelle. Les espèces cultivées comprennent principalement le
mil, le sorgho et le coton. Le paysage agricole reproduit les
éléments structuraux constitutifs de l’»Afrique des greniers»
(Pourtier, 2003): alternance champs cultivés/brousse; terroirs
en auréoles; parcs arborés; articulation plus ou moins bien
régulée entre agriculture et élevage. Les paysans y sont confrontés au défi démographique et à la raréfaction des terres:
un développement durable impose désormais le passage à des
systèmes de production plus intensifs et attentifs à un capital
foncier moins abondant qu’autrefois.
La fertilité des sols
Les sols de savanes sont fragiles, et leur teneur en éléments
minéraux et en matière organique et organique souvent faible.
La mise en culture de zones nouvelles n’est qu’une solution à
court terme et le maintien de la fertilité est par conséquent un
défi incontournable pour l’agriculture de ces zones.
L’intégration agriculture-élevage est extrêmement variable
dans la ceinture cotonnière et le rapport des différentes populations à l’élevage permet d’expliquer les différents modes
de culture et de fertilisation du cotonnier. La culture attelée
a permis la diffusion de l’élevage, et il paraît évident que les
pratiques d’élevage intégrées à l’agriculture sont un facteur
d’intensification du système Cette innovation technique a
permis d’accroître les surfaces cultivées, de mieux lutter contre l’enherbement et d’améliorer la fertilité des sols. Mais la
présence de trypanosomiase rend difficile et parfois impossible la pratique de l’élevage et par conséquent de la fumure
organique.
Des doses minima d’engrais chimiques ont été préconisées
pour compenser les exportations des éléments minéraux
nécessaires aux cultures qui entrent dans l’assolement traditionnel. Compte tenu de leur prix d’acquisition, les quantités
épandues n’atteignent que rarement ces doses minimales, et
le bilan minéral reste souvent négatif, d’autant que, du fait
des rotations et des systèmes culturaux, ces apports bénéficient non seulement à la culture du coton mais également aux
productions vivrières entrant dans l’assolement.
Les labours répétés et l’usage exclusif des engrais minéraux
ont tendance, à long terme, à déstructurer et à acidifier le sol.
Aussi, afin de préserver la fertilité et de palier ces inconvénients majeurs, des techniques innovantes et notamment les «
semis sous couvert végétal » ont été proposées et développées,
principalement sur la zone cotonnière du Nord Cameroun et
dans une moindre mesure au Burkina Faso.
Les pesticides
Du fait d’une récolte exclusivement manuelle, la culture cotonnière africaine n’a pas recours aux produits chimiques nécessaires à une récolte mécanique. Elle s’évite ainsi d’importants
56
facteurs de pollution.
D’autre part, l’utilisation d’herbicides est assez peu répandue
en Afrique, où le désherbage sur de nombreuses exploitations
est pratiqué manuellement.
L’essentiel des pesticides utilisés par les petits paysans africains est donc constitué par des insecticides. Toutes les familles
d’insecticides (organochlorés, organophosphorés, carbamates
et pyréthrinoïdes) ont été utilisées sur cotonnier en Afrique,
mais aujourd’hui les produits ciblés par la Convention de Rotterdam ont disparu ou sont en phase d’élimination (comme
l’endosulfan).
Les conditions climatiques, le faciès et la pression parasitaires qui prévalent en Afrique subsaharienne ne permettent
pas d’envisager raisonnablement une culture cotonnière sans
aucun traitement. Les attaques de certains insectes, ravageurs
du cotonnier, peuvent réduire, purement et simplement à néant une production. Aussi, afin de préserver la productivité et
garantir un revenu minimum aux agriculteurs, une protection
phytosanitaire raisonnée a été mise en place sur la base de
matières actives répondant aux normes internationales et d’un
nombre réduit de traitements dont la moyenne se situe aux
alentours de 4,5 applications par an. Les traitements cessent
avant la déhiscence des capsules. De ce fait la fibre produite
est exempte de toute trace de pesticides. Par ailleurs, la récolte
manuelle agresse beaucoup moins la fibre qu’une récolte mécanique et surtout ne nécessite pas l’usage de défoliants qui,
compte tenu du stade auquel ils sont appliqués, polluent la
fibre. La fibre africaine proposée sur le marché est donc exempte de toutes traces de pesticides et autres produits d’aide
à la récolte.
Cette utilisation modérée des insecticides, même si elle en a
retardé l’échéance, n’a pas empêché le développement de résistances chez quelques ravageurs tels que le puceron Aphis
gossypii, l’aleurode Bemisia tabaci et surtout la noctuelle
Helicoverpa armigera. L’apparition de ces résistances, à
la fin des années 90’ dans le bassin cotonnier le plus ancien
d’Afrique de l’Ouest (Mali-Burkina Faso-Nord Côte d’Ivoire)
(Martin et al., 2002), et au début des années 2000 en Afrique
Centrale (Brevault & Achaleke, 2005), a mobilisé les acteurs
de la filière et la rapide mise en place de mesures de gestion
n’a pas entraîné la surconsommation d’insecticide observée
habituellement dans une telle situation (Martin et al. 2005).
Néanmoins, le coût de la protection chimique a augmenté
du fait de l’usage de molécules alternatives, et les problèmes
sanitaires se sont trouvés momentanément accrus, du fait du
retour de l’endoculfan, redonnant ainsi un intérêt à la recherche de molécules nouvelles et d’approches innovantes.
Le développement de pratiques d’interventions sur seuil dans
plusieurs pays, en particulier au Mali et au Cameroun, après
les développements de la lutte étagée ciblée au Bénin, démontre qu’il est possible de réduire les quantités de pesticides
nécessaires à une production de qualité, pour peu que les paysans en acceptent les risques et y consacrent de leur temps...
Enfin, l’introduction récente du cotonnier Bt au Burkina Faso
pourrait démontrer qu’il existe d’autres approches pour rédu-
ire la consommation d’insecticides, les interventions étant
alors limitées aux infestations d’insectes piqueurs.
Conclusion
La stagnation des rendements dans la zone franc depuis une
vingtaine d’années, autour de 450kg/ha (en culture pluviale
stricte) - contre une moyenne mondiale de 730 kg/ha (en culture à dominante irriguée) - menace la compétitivité du coton africain. Elle est liée à plusieurs facteurs : une maîtrise
différenciée des itinéraires techniques, l’arrivée de nouveaux
cultivateurs moins performants qui produisent en marge de
l’exploitation familiale, une diminution de l’intensification
motivée par la chute des cours mondiaux, et des problèmes de
fertilité des sols dans certaines zones.
Une meilleure gestion des intrants agricoles et une vulgarisation d’itinéraires culturaux innovants permettraient sans doute
d’augmenter sensiblement les rendements. Dans un contexte
mondial d’abondance de l’offre, les efforts de l’Afrique
devraient porter sur la promotion d’un coton de qualité, qui
nécessiterait sans doute des incitations spécifiques (prime à
la qualité).
De ce point de vue, les modes de culture et de récolte pratiqués en Afrique placent les cotons africains parmi ceux qui
présentent le moins de risques pour le producteur et son environnement ainsi que pour le consommateur de fibres. En
effet, tout en maintenant des programmes d’intensification
nécessaires à la compétitivité et à la durabilité de la culture,
les filières africaines ont été en mesure de définir des itinéraires techniques qui tiennent compte des exigences en matière
d’environnement, et, malgré les conditions économiques difficiles que traversent les pays producteurs, développent encore
aujourd’hui de nouvelles techniques dans ce sens. D’autre
part, la culture cotonnière d’Afrique subsaharienne est strictement pluviale et ne fait nullement appel aux eaux de surface
ou aux nappes fossiles, même d’appoint. Si l’on ajoute à cela
la récolte manuelle, et par conséquent l’absence de défoliant,
le développement de techniques d’interventions sur seuil, et
celui de cotonniers Bt qui nécessitent moins d’interventions
chimiques, cet ensemble de pratiques contribue à faire du
coton africain l’une des cultures les plus respectueuses de
l’environnement.
Références
Dejoux, C. (1988). La pollution des eaux continentales africaines
: experience acquise, situation actuelle et perspectives. Collection
travaux et documents n° 123, éditions de l’ORSTOM, Paris : 513
pp.
Djibril, R.B. (2002). Contribution à l’étude d’impacts de l’utilisation
des engrais chimiques et des pesticides sur la qualité des eaux de
surface dans la reserve de biosphere de la Pendjari. Mémoire de fin
de formation pour l’obtention du Diplôme d’Ingénieur des Travaux
(DIT), Département des techniques d’aménagement et protection de
l’environnement (APE, Collège Polytechnique Universitaire (CPU),
Université d’Abomey Calavi, Bénin : 106 pp.
Floquet, A. et R. Mongbo (2004). Etude des effets et des impacts de
la lutte étagée ciblée sur les producteurs – Résultats d’une enquête
socio économique conduite en octobre et novembre 2004 dans 4 com-
57
munes du centre et nord Bénin à la demande du PADSE. Documents
du PADSE, MAEP/AFD/SOFRECO, Cotonou, Bénin : 74 pp.
Hadonou-Yovo, B. (2000). Bilan et caractéristiques des cas
d’intoxication lies aux produits phytosanitaires en république du Bénin Durant la campagne cotonnière 2000/2001 – Rapport de l’enquête
initiée par les sociétés Calliope S.A. et Aventis en collaboration avec
le Ministère du Développement Rural (MDR) et du Ministère de la
Santé, Décembre 2000 : 75 pp.
Matthews, G.A. (1981). Improved systems of pesticide application.
Phil. Trans. R. Soc. Lond., 8 : 163-173.
M’Biandoun M., H. Guibert, J.P. Olina, 2006. Caractérisation de la
fertilité du sol en fonction des mauvaises herbes présentes. Tropicultura, 24 (4) : 247-252.
Pourtier, R. (2003) Les savanes africaines entre local et global: milieux, sociétés, espaces. Cahiers/Agricultures, 12 (4) : 213-218.
Prudent, P., A. Katary et A.C. Djihinto (2003b). La LEC confirme ses
avantages comparatives sur le traitement calendaire. Les échos du
PADSE (MAEP/AFD/SOFRECO) n° 11 : 1-6.
Réduire les coûts de production
Amadou Aly Yattara, Chef du programme coton, Sikasso, Mali.
Introduction
Dans la plupart des pays de l’Afrique de l’Ouest et du centre,
l’économie repose essentiellement sur le secteur rural, et en
particulier sur la culture du coton, principale source de redistribution de revenus dans le monde rural. La production cotonnière de ces pays qui a fortement augmenté ces dernières
années grâce essentiellement l’augmentation du nombre de
producteurs et par le doublement des superficies cultivées en
coton, connaît aujourd’hui une stagnation, voire la baisse des
rendements. L’état actuel de la production cotonnière mérite
un renversement de situation devant le danger d’effondrement
des filières cotonnières, un des piliers de l’économie de nos
pays. Cela est d’autant plus urgent que l’effondrement des prix
mondiaux a eu un effet majeur sur l’économie des pays africains de la zone franc producteurs de coton. Ces pays déjà pénalisés dans les coûts de revient par les frais d’acheminement
du produit vers le client, et dont le prix «bord champ» de la
fibre représente les 2/3 du coût carreau d’usine, et que le prix
de vente de la fibre est devenu largement inférieur au prix de
production. Dans ces conditions, il urge de mettre en route
toute mesure susceptible de permettre une maîtrise des coûts
de production, voire générer des profits.
Quelques généralités sur le coût de
production
Définitions
Le coût de production d’un produit signifie l’ensemble des
charges financières ou non qui rentrent dans le processus de
production d’une unité de ce produit. Pour ce qui concerne le
coton graine, son coût de production se compose de 2 types
de charges :
• les charges incompressibles, qui correspondent à des sorties monétaires, et
• le coût des opérations effectuées par le producteur luimême, assisté des membres de sa famille.
Les charges incompressibles correspondent à l’ensemble des
charges impliquant une sortie d’argent. Il s’agit du coût des
intrants ; du coût d’entretien et de réparation du matériel ; des
dépenses liées à l’aliment du bétail et aux traitements vétérinaires ; du coût de la main d’œuvre salariée ; du coût correspondant à l’achat du petit outillage : piles, dabas...
Les opérations effectuées par le producteur ont un coût, plus
ou moins élevé selon le niveau auquel la main d’œuvre familiale est valorisée.
Il faut donc en retenir que pour la détermination des coûts de
production, un certain nombre de difficultés sont enregistrées
découlant non seulement des difficultés de la valorisation de
la main d’œuvre familiale, mais aussi de la détermination du
temps des travaux (difficile appréhension au champ des débuts
et des fins des opérations du profil des activités agricoles).
En définitive, le coût de production du coton graine varie selon les zones de production et les types d’exploitations.
Coût de production
Les coûts de production du coton graine au Mali, calculés par
plusieurs auteurs, se basent sur les charges incompressibles et
la rémunération de la main d’œuvre familiale.
L’étude menée par HORUS/SERNES en 2002 donne des
charges incompressibles de l’ordre de 93 FCFA/kg auxquels
s’ajoutent 105 journées de travail de la main d’œuvre familiale. Selon ces auteurs, le coût de production du coton graine
varie entre 141 et 190 FCFA/kg selon que la main d’œuvre
familiale est valorisée à 500 ou 1 000 FCFA/j.
Diakité et Djouara, en 2003, donnent comme coût de production du coton biologique 247 FCFA/kg et 301 FCFA/kg lorsque la main d’œuvre familiale est valorisée respectivement
à 500 FCFA/j et 750 FCFA/j. Les mêmes auteurs, lors de la
même étude, donnent comme coût de production du coton
conventionnel 148 et 172 FCFA/kg selon que la main d’œuvre
familiale est valorisée à 500 ou 750 FCFA/j.
Revue des principaux déterminants du
coût de production et leur impact
Une étude1 menée en 1994 par l’Equipe Système de Production et Gestion des Ressources Naturelle de Sikasso a mon-
1) Brons, J ; Bagayoko, S ; Diarra, S ; Djouara, H. Diversité de gestion de l’exploitation agricole. Etude sur les facteurs d’intensification
agricole au Mali Sud. CRRA, Sikasso, octobre 1994.
58
tré que, dans le seul domaine agronomique, la bonne gestion des exploitations agricoles joue un rôle pertinent dans
l’amélioration de la productivité à travers la maîtrise des techniques culturales. L’application d’autres mesures institutionnelles et politiques pourrait certainement améliorer le bilan de
production cotonnière.
Dans plusieurs études conduites dans le cas particulier du
Mali, et certainement valables pour les autres pays producteurs de la sous-région, il est apparu que, pour engendrer des
profits, du moins, assurer une maîtrise les coûts de production,
les pistes suivantes sont à explorer :
• l’amélioration des rendements au champ à travers
l’adoption de matériels végétaux performants et de technologies innovantes et efficientes,
• l’amélioration de la qualité de la fibre,
• la minimisation des coûts de production à travers la main
d’œuvre et les intrants.
En plus de ces mesures d’impacts directs, d’autres mesures
d’accompagnement peuvent maximiser les profits, voire les
améliorer. Il s’agit en particulier de :
• dynamiser les organisations paysannes,
• renforcer la participation du secteur privé, des producteurs et des collectivités locales décentralisées,
• une meilleure participation des producteurs dans la gestion de la filière coton,
• la libéralisation des secteurs coton et oléagineux.
L’amélioration des rendements au champ
L’amélioration de la productivité au champ est un élément essentiel et central de la maîtrise des coûts. En effet, il est bien
connu que le coût de production du coton correspond au rapport de l’ensemble des charges de production sur le rendement
observé. La question du rendement étant centrale dans la détermination du coût de production, il conviendrait donc de s’y
intéresser particulièrement. Cette amélioration de la productivité passe tout d’abord et nécessairement par l’optimisation
de l’ensemble des pratiques culturales qui concourent à la réalisation2. Il est apparu dans l’étude ci-dessus référenciée que
les dates de semis, de démariage, du 1er sarclage, du 1er traitement insecticide ont un impact significatif pour la réalisation
du potentiel productif en question. Par ailleurs, l’amélioration
des densités de plantation très faibles actuellement (40 à
50 000 plants/ha) s’est avérée avoir un impact important et
devrait être sensiblement améliorée.
Si la maximisation du potentiel de productivité déjà existant
peut être recherchée à travers une meilleure application
des itinéraires techniques déjà disponibles, il n’en demeure
pas moins le besoin de la poursuite de la mise au point
d’innovations techniques pour inverser la baisse des rendements et des revenues. Il s’agit en particulier de la mise au
point de programmes phytosanitaires d’interventions sur
seuils sensu stricto plus économiques et moins polluantes
pour l’environnement ; de variétés mieux adaptées et à fort
rendement égrenage ; de référentiels techniques de gestion de
fertilité des sols et la mise au point des modes de fumures
régionalisées, rentables et de coût réduit. Il est, en effet important d’une part de mieux valoriser les engrais pour diminuer
les coûts de production, mais aussi de donner à la vulgarisation et aux organisations paysannes des éléments clairs sur les
conséquences à moyen et long terme des différents modes de
gestion de la fertilité.
L’amélioration de la qualité de la fibre
Un autre levier et non des moindres pour améliorer les
rentabilités des filières cotonnières dans leur globalité, est
l’amélioration de la qualité de la fibre produite.
La fibre produite, aussi bien pour ce qui concerne sa quantité
que sa qualité, représente non seulement tous les coûts engendrés tant au niveau du développement rural (producteurs
et services d’encadrement) que des unités industrielles, mais
aussi le potentiel quasi-total de valorisation que les sociétés
cotonnières et même les pays peuvent attendre de leur production cotonnière. Il est aisé de comprendre que plus la quantité
de fibre est grande, plus les charges fixes ramenées à la tonne
de fibre produite sont faibles. Aussi, pour espérer une valorisation optimale de la fibre, il conviendrait d’optimiser les
interventions à deux niveaux bien distincts, mais complémentaires.
Tout d’abord, il importe de minimiser les contaminants de
tous ordres, voire les éliminer dans le coton graine. L’apport
des producteurs est de très haute importance à ce niveau.
Une étude3 récente conduite au Mali dans ce sens a montré
que grâce à l’application de certaines pratiques très simples de
gestion de la récolte, il était possible de réduire très sensiblement (77 % au moins) le taux des contaminants. Même si ces
contaminants sont pour l’essentiel d’origine organique et inorganique (végétaux, sables, etc.), donc peu redoutés, la perte
monétaire consentie à l’achat du fait de leur présence dans le
coton graine, au niveau des producteurs, dans une production
de 450 000 T environ de coton graine s’élevait cependant à
près de 1 200 000 000 F CFA.
Le deuxième niveau d’intervention, mais très critique, est les
unités industrielles.
Au jour d’aujourd’hui le rendement égrenage moyen des variétés qui sont mises au point par la recherche dans la sous-région
est de 43 à 44 % environ. Ces mêmes variétés, dans les conditions industrielles donnent en moyenne 42 % et atteignent très
rarement 43 % alors que les écarts tolérés ne devraient guère
dépasser 0,5 point. On peut se rendre aisément compte qu’un
mauvais égrenage peut anéantir du coup l’ensemble du gain de
rendement à l’égrenage, en même temps que la longueur de la
fibre, deux apports essentiels des programmes d’amélioration
variétale de cette dernière décennie.
2) Fok, M.A.C. ; Djouara, H. ; Koné, M. ; Ballo, D. 1999. Diversité des pratiques paysannes en zones cotonnières du Mali ; portée et limites des
gestions d’itinéraires techniques observés. Actes du séminaire « Rôle et place de la recherche pour le développement des filières cotonnières en
évolution en Afrique », Montpellier, 01-02 Septembre 1999, CIRAD-CA.
3) ICAC, 2008. Production et commercialisation de coton non contaminé au Mali.
59
Ces pertes seront d’autant plus dommageables que le rendement de fibre à l’égrenage est une composante essentielle de
la production et de la productivité, alors que la longueur est
une des bases de la tarification de la fibre. En plus de ces deux
caractéristiques, toutes les caractéristiques technologiques de
la fibre, à l’exception du micronaire, sont négativement affectées par un égrenage non adéquat des usines, entraînant ainsi
une baisse de la valeur marchande de la fibre4.
Ainsi, il apparaît que la bonne gestion de l’égrenage (y compris l’efficience de l’énergie utilisée) permet de maximiser les
potentiels des variétés, donc de générer des profits, du moins
de baisser les coûts de production.
Main d’œuvre et intrants
Les coûts du matériel utilisé, de la main d’œuvre (salariée et
familiale) et des intrants sont déterminants sur le coût de production du coton.
Pour la détermination du coût des intrants (engrais et pesticides
chimiques), on valorise les doses effectivement déclarées par
les producteurs en utilisant les prix de crédit court terme. S’il
est quasiment impossible d’agir sur les coûts des intrants déjà
chers et en général sous dosés (sauf l’urée), on peut cependant
rendre leur utilisation plus efficiente à travers un apport localisée et en temps opportun, au semis comme recommandé.
L’utilisation du semoir épandeur5 mis au point par l’Equipe
Systèmes de Production et de Gestion des Ressources Naturelles, Sikasso (Mali) en est une illustration. Les études sur
la modulation des doses d’engrais selon les conditions de la
zone, de l’époque ou de l’objectif économique fixé6 conduites
par le programme coton ont également donné des résultats
probants.
S’agissant de la main d’œuvre, il en existe différents types
et de taux variables de rémunération suivant la période et le
type du travail. La main d’œuvre salariée est sollicitée pour
quelques opérations dans la conduite des itinéraires techniques
du coton. Des enquêtes conduites au Mali ont montré que plus
de 79 % d’utilisation de la main d’œuvre est faite sur la récolte. Même si la main d’œuvre peut être valorisée diversement,
il semble peu évident de réaliser des économies de ce côté-là.
Cependant, l’organisation socio-économique et technique des
exploitations cotonnières (gestion de la main d’œuvre familiale, niveau d’équipement, installation rapide de la culture,
utilisation des désherbants chimiques etc.) permet de minimiser les contraintes d’utilisation de la main d’œuvre salariée,
donc de réduire tant peu soit-il le coût de production.
Les autres mesures organisationnelles et
d’accompagnement
Au nombre de ces mesures, en ces temps de privatisation, il
y a tout d’abord le transfert des compétences et la formation
des nouveaux acteurs pour assurer en toute responsabilité
l’ensemble des actions nécessaires à la pérennité de la filière.
Sont concernées en tout premier lieu les organisations de producteurs qui doivent être formées et dont les capacités doivent
être renforcées afin de mieux négocier et mettre en œuvre les
évolutions institutionnelles de la filière. Les organisations de
producteurs devront assumer certaines fonctions de la filière,
notamment en encourageant l’émergence de structures professionnelles bien gérées reposant sur des bases techniques et
économiques solides.
Des cadres de concertation doivent être mis en place pour partager l’information conjointement aux acteurs de la filière. Ces
cadres de concertation permettront de rassembler, confronter
et valider les données disponibles provenant des organisations
de producteurs, de la recherche, des organismes de financements, des compagnies cotonnières, de tous les opérateurs
économiques évoluant dans la zone cotonnière et des autorités
de tutelle du développement rural afin de suivre les évolutions
techniques et économiques et alimenter les réflexions sur les
actions à mener pour leur développement.
En plus des organisations de producteurs, au nombre les autres acteurs dont l’incidence est prépondérante sur la production cotonnière, il y a sans nul doute les opérateurs du secteur
privé dont les fournisseurs d’intrants (engrais et pesticide), les
transporteurs et les organismes de financement et de crédit.
Tous ces acteurs se retrouvent autour de l’approvisionnement
en intrants qui est une des fonctions les plus critiques de la
production agricole. Des résultats de cet approvisionnement
dépendent en grande partie les résultats de la campagne agricole.
Conclusions et recommandations
Le coton est réellement un produit stratégique dont dépendent
très fortement les économies de nos pays. Dès lors, il faut à
tout prix maintenir la production cotonnière en songeant à
améliorer constamment sa compétitivité. Pour ce faire, il faut
assurer la pérennité de la production en garantissant le niveau
requis de tous les facteurs techniques de production qui méritent cependant d’être utilisés avec beaucoup plus d’efficience
afin de minimiser les coûts de production. Dans ce domaine,
les espoirs sont grands vis-à-vis de la recherche. L’enjeu étant
de passer des recommandations de technologies passe-partout
qui sont prônées à toute une zone, à des recommandations de
technologies pour des conditions agro climatiques et même
socio-économiques bien ciblées avec en plus des espérances
de productions assez précises. Il faut en plus, la participation
effective de tous les partenaires.
Un autre pan très important pour mieux valoriser le produit
coton est l’amélioration continue de la qualité des produits
attendus, la fibre essentiellement. En effet, la plupart des caractéristiques sur la base desquelles sont vendues la fibre sont
d’ordre génétique en dépit d’une très grande incidence des
4) Alidou Amadou SOULE. L’utilisation des analyses technologiques pour le suivi de l’égrenage : expérience du Bénin. Présentation à l’atelier
de formation des égreneurs des pays C4 et du Sénégal, Ségou, Mali. 13 – 18 octobre 2008
5) Sanogo J.L. Zana, Djouara Hamady, Doucouré Aminata, 2005. Mise au point d’un semoir-épandeur d’engrais. Rapport de recherche. IER/
CRRA/ESPGRN – Sikasso, Mali.
6) CRRA, Sikasso. 2006. Etude de l’évolution et stratégies de gestion de la fertilité des sols sous systèmes de culture à base de cotonnier. 59
pages.
60
conditions du milieu sur elles. De ce fait, il est très important
de mettre sur le marché une fibre reconnue pour la constance
de ces caractéristiques technologiques. Pour atteindre cet objectif, une action concertée de tous les acteurs de la filière est
nécessaire. Aussi, il est nécessaire de tendre vers la généralisation des mesures sur chaîne de mesures intégrées pour une
meilleure valorisation de la fibre produite.
Référence :
Soule, Alidou Amadou. L’utilisation des analyses technologiques
pour le suivi de l’égrenage : expérience du Bénin. Présentation à
l’atelier de formation des égreneurs des pays C4 et du Sénégal, Ségou, Mali. 13 – 18 octobre 2008
Brons, J, S. Bagayoko, S. Diarra et H. Djouara. Diversité de gestion
de l’exploitation agricole. Etude sur les facteurs d’intensification agricole au Mali Sud. CRRA, Sikasso, octobre 1994.
CRRA, Sikasso. 2006. Etude de l’évolution et stratégies de gestion
de la fertilité des sols sous systèmes de culture à base de cotonnier.
59 pages.
Diakité, Lamissa et Hamady Djouara. 2003. Etude socio-économique
de la production du coton biologique au Mali. Ministère de
l’Agriculture de l’Elevage et de Pêche, IER, ECOFIL, HELVETAS.
61p.
Fok, M.A.C., H. Djouara, M. Koné et D. Ballo. 1999. Diversité des
pratiques paysannes en zones cotonnières du Mali ; portée et limites
des gestions d’itinéraires techniques observés. Actes du séminaire
« Rôle et place de la recherche pour le développement des filières
cotonnières en évolution en Afrique », Montpellier, 01-02 Septembre
1999, CIRAD-CA.
HORUS-Entreprise, SERNES. 2002. Etude d’un mécanisme de détermination du prix du coton graine aux producteurs. Rapport Final.
115p.
ICAC, 2008. Production et commercialisation de coton non contaminé au Mali.
Sanogo J.L. Zana, Hamady Djouara et Aminata Doucouré, 2005.
Mise au point d’un semoir-épandeur d’engrais. Rapport de recherche. IER/CRRA/ESPGRN – Sikasso, Mali.