Les levures du vin
Transcription
Les levures du vin
Les levures du vin Vendredi 18 Novembre 2011, 14h à 17h, Amphi ISVV Amparo Quérol, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC. Apartado de Correos 73, E46100 Burjassot, Valencia, Spain. [email protected] Study of the role of Saccharomyces hybrid strains during fermentation processes Philippe Marullo, Institut des Sciences de la Vigne et du Vin Unité de Recherche Oenologie. [email protected] Etude de la variabilité technologique des souches de Saccharomyces cerevisiae, approches génétiques et applications Les levures du vin Vendredi 18 Novembre 2011, 14h à 17h, Amphi ISVV Philippe Marullo, Institut des Sciences de la Vigne et du Vin Unité de Recherche Oenologie. [email protected] Etude de la variabilité technologique des souches de Saccharomyces cerevisiae, approches génétiques et applications La variabilité technologique des souches de levure de l’espèce S. cerevisiae est exploitée depuis des décennies dans l’industrie agroalimentaire. Les levures oenologiques n’échappent pas à cette règle et sont issues de programmes de sélection génétique. Les principales méthodes reposent sur la sélection clonale et le croisement d’individus par des approches de breeding. Depuis une dizaine d’années de nombreux efforts ont été accomplis dans l’identification de variants génétiques responsables de la différence technologique observée entre les souches. La découverte de ces gènes peut être réalisée par des approches comparatives telles que la cartographie de QTL. Une fois identifiés, ces variants génétiques sont utilisés dans des programmes de sélection de souches. Cet exposé tentera de présenter les avancées réalisées dans ce domaine au sein de l’ISVV. Les levures du vin Vendredi 18 Novembre 2011, 14h à 17h, Amphi ISVV Amparo Quérol, [email protected] Instituto de Agroquímica y Tecnología de los Alimentos, CSIC. Apartado de Correos 73, E46100 Burjassot, Valencia, Spain. Study of the role of Saccharomyces hybrid strains during fermentation processes Wine fermentation is a complex ecological and biochemical process involving the sequential development of different yeasts, fungi and bacteria. Although different yeast species and genera are present in musts, only the species of the Saccharomyces genus are responsible of the alcoholic fermentation (Pretorius, 2000). The physiological characterization of industrial Saccharomyces strains showed that, in addition to their high fermentative capabilities, these yeasts produce secondary metabolites, which have an essential influence on the quality of wines. Some of them are, for example, glycerol, of great interest in winemaking, or higher alcohols andesters, main components of the secondary aromas (Fleet & Heard, 1993; Lambrechts & Pretorius, 2000). Although S. cerevisiae is the predominant species responsible of the alcohol fermentation, other closely related species, belonging to the so-called Saccharomyces sensu stricto complex (new Saccharomyces genus according to Kurtzman, 2003), may have an important role during fermentation processes. For instance, S. kudriavzevii specieswas isolated from decayed leaves in Japan (Naumov et al., 2000) and recently from oak barks in Portugal (Sampaio & Gonçalves, 2008) and Spain (Lopes et al.,2010). In spite of not being involved in winemaking, S. kudriavzevii participate in hybridization processes with other Saccharomyces species like S. cerevisiae or Saccharomyces bayanus var. uvarum (Saccharomyces uvarum) (Belloch et al., 2009; Gónzalez et al., 2006; Sipiczki, 2008). Besides, this species produce higher glyceroland lower ethanol amounts than S. cerevisiae (Arroyo-López et al., 2010; Gangl et al., 2009; Gónzalez et al., 2007) and is able to grow at low temperatures (10ºC) andat higher ones (up to 30ºC), however they are not able to tolerate more than 5% of ethanol (Belloch et al., 2008). Contrarily, S. cerevisiae is the most important species involved in winemaking and the closely related species Saccharomyces uvarum can also participate (for a review see Sipiczki, 2002, 2008). From the oenological point ofview, these Saccharomyces species differ in several properties. Comparison between S. uvarum and S. cerevisiae reveals that the former is more cryotolerant, produces smaller acetic acid quantities. Wines produced by S. uvarum strains have a higher aromatic intensity than those produced by S. cerevisiae (Coloretti et al., 2006; Henschke et al., 2000). Our group has described for the first time the presence of S. cerevisiae x S. kudriavzevii hybrids among wine strains, including a triple hybrid S. cerevisiae x S. kudriavzeviix S. bayanus (Gonzalez et al., 2006 and 2008). As we comment before, S. kudriavzevii is a species from natural habitats, never found until now in fermentative processes However, its hybrids are predominant in low temperature fermentations from Central Europe. The enological characterization of several wine hybrids showed that these strains maintained the etanol tolerance and the ability to grow in media containing high levels of sugar from the S. cerevisiae parent and improved growth at lower temperatures from the S. kudriavzevii parent, an interesting property according to the new trends in winemaking. Other interesting winemaking properties of these hybrids are their higher glycerol synthesis, the lower acetic acid production, and the higher release and production of flavors and aromas (CITAS). The DNA chip analyses of yeast gene expression during microvinification (CITAS Mariana y Gamero), indicate that hybrids exhibit a significant higher expression of thegenes involved in the glycerol synthesis (GPP1 y 2); in the adaptation (stress response) to low temperatures due to an over-expression of the genes related with thesynthesis of ergosterol (ERG1 and ERG3, ERG11, ERG26) and of cold-shock genes (TIR1, TIR2, PAU3, PDR5, YHB1and TIP1). In addition, we also detected an overexpressionof some genes encoding amino acid transporters (AGP1, FUR4, RHB1, BAP3). Hybrids contain a complex and redundant genome coming from different parent species. To decipher the genome composition of the hybrids, we performed comparativegenome hybridization with DNA chips. This way, we could observe in the hybrids a series of recombination events between “homeologous” chromososmes (i.e. homologouschromosomes coming from different parent species). These recombination events were confirmed by the analysis of presence/absence of 37 gene regions located at thechromosomal ends of Saccharomyces (CITAS Belloch y Peris). The study of natural hybrids present in fermentation processes opens a new strategy for the development of novel industrial yeasts: the generation of artificial hybrids.Producing hybrids between S. cerevisiae wine strains and other species could be a useful strategy for acquiring yeasts with novel enological characteristics from speciesthat are less suited for grape juice fermentation. For example, crosses between S. cerevisiae strains of high fermentation capabilities and excellent enological propertiesand strains from other Saccharomyces species may generate new strains possessing the enological properties of the S. cerevisiae parent but acquiring, as occurs in naturalhybrids, interesting winemaking characteristics from the other parent (CITA LAURA). The species S. kudriavzevii seems to be very interesting for this purpose because it isadapted to survive in natural habitats (soils and decayed leaves) under conditions not or less suitable for other species of the genus Saccharomyces, which conferredunique physiological properties to this species. Moreover, the main advantage of this method is that it is considered safe and not classified as genetic modification.