la theorie des jeux repetes
Transcription
la theorie des jeux repetes
! " # $ "" # "" " ! % ! $ " ! " " " ! "$ / 0 1 -" # % ! ! &' '" -" ! $ . "$ " . " " % $ '" . "$ " ' # "' ( )*+ )**, ! ! #$" ! "$ ! '" " % " ." $&' "# ! # - / " " ! " # %2 ! % 3" 4 " ! "" # / 1% 56 " - " " " ' - ! " ! # ! # ! ' "" " ! 1# " " " ! $ ! -" ! ( )*+, # " " % ! ." ! " " " 7 ! " " % " ( )8 ,% 9 " ! " ! "$ ! " % " " " . $ . " ! " ! " ! ! ! ! ! % "; # " # " . " " " " . " ' !" . " % ! ! % " "$ @" " A ! ! ! ! ! C " . " ! 2 " ! "" ! % " ! " ! % " '" " % #;" ; ; " % %B !" )*+ " # "' ! " "" : " " 4 " " )**% # ! " . "; " " " " " % 3" "; ! ' - ; ! " ! "" " ! ! " " ! - !" " ? % ! " &' "# " : " ( ))>, "" . # % # ! ! "$ # " = $ "! ! - " ' " " " " $ " B < ! "" ! $ " ; " "" " # "' " ! ! "# $! % & " # " / " D " - % 3" $ " ' - . " " $ !# " ! ! "" ." ! " " ! " '" 1 ! 4 ! ! ! $ ! " ! !'!!/ " ! ' ! B % 4 !$ % ! $ % # " ! " " '" : " % % ! % ( % 6 ! " 5! " ! " C % " ! ! ! # ! ! " ! . " ! ! # " ! " # "" # ! ! ! . $ " E 9 "$ "" ! '" $ # "# : % 3" % & ! ! # 5 " " # " " " " # 1 % # # ! % %6 ! " A # "# % ! " # $ C . "$ /E % 1% ' % 4 $ ' ". % '" FG 4 $ ! 3" # ! ! : %% #$ '" " # " !% B ! - " ! '" 1% # " !"""! $ = Χ{ − ≠ "$ } ! $ ! #" % '" ' '" " / = Χ{ ∈ " " . 1% } ! ! . " ! / 5 1 ! $ ! / 5 1 % ! " & & $# !"""! $ ! ≠ ! $ #" ! % !"""! % - % ! ∈ > ' ' # '" ! '(" #∈ ! ' ∈ % 6 # /%1 "! )( C '" " # "" " #$" ' '" ! " ! $ % B % !"""! ! % '" ! ! ! ! " '" ! ! '" !"""! !"""! # ∈ % %6 ! ! :% $ ! $ ! ! ' ! ! " ! ! #$" ! ! . % H% '" / " %%% ! 6 & $# # - ' " 9 5! % ! $ ∈ " " ! ∈ % $ # %9" *! . " " " # " " ! ! *% > F/ %%% " " '" & %%% J1∈& " "→∞ ∈&% Σ " ! * ' ≤ I% 3" $" $∈& > ' I " # " ! λ∈(K , λ 0/ 5λ1 $∈&% ! G "H∈& ! ! ! ! ! "$ # ! " "- " " ! "- % # %B L ! ! " ! 4! # ! # ! # " # "' )!* #+ # " + 6 ! ! $ # "' % "$ # "' 6 " # " " ! " "" % # % !, (4 O ! ∈ " ∈ O " O / 1% O # B$ " # " " ( )):,1% " & #≥ O − & O − ! ! # / 1 % " "; # ! ! ! ! " Γ 6 # . ! # # ! # ! ! # "' 4 " L " %%% " ! "$ % 3" ! ! ! N6 9 ! ! " .! # 6 9 ! ! ! #" B ! 6 9 ! #$"! " ΓF/6 9 1 " '" ! Γ " % % # N "$ 6 '" " # M 6 .> " % ! ! # " E# " "$ - !"""! !"""! # ∈ $ ! '" " Γ ' "" - L % ! "! " #$" " ! " ! ! ! "" ! "$ ' ' ! O # " # " ! "! " ! # ! P% /7 5 ! O % " ; # "' # " ' 5 ! ! 6 - ( )L , " ' " O − . ! % ; ! $ # "' 9 / J - ! .> $ 1 "$ ! - # "' ! $ Q # 6 ! "! 6 % " ! # "$ " #$" 52 $ " # "' $ ! ! ' ." % ! $ " ! 8 ! ! # ! $ " " % " - " 7 "J $ # "' 6 % ! .! # ! % ! " ! "$ '" " " ! .! + ! "" % . " $ ! # " ! " $ $ # "' # ! %%%1% # " "$ ! " ! " / /K1 / 1 %%% / − 11 "$ " 5! ! % / 11 ∈ ! !'!! " /1 / 1 %%% " " " 6 Γ % ! % ! '" " # "" . " $ # ! ! ! " /! 6 ! " 6 ! " " / 1 = / / 1 %%% - ! "$ " ! ' % ! - "" ( )L:, "$ # ! ! <" !J ' ! " - # "' ( )*+,1% # "' " $ 1 ! $ $ # ! /B " ( )L:, 6 ' ! ! ' % B' $ . "$ # # "' " # % - + #! # " 3" 8 O − & " ! ! O O − . " " % . % $ $ # "' 6 %6 "$ # " ' 6 / # "' ! . "$ '" ! ∈ 5 %6 B !, ! " $ ! # " ! - -" σ ! * σ Σ Σ # # " ! "! ! " -" + . #$" " $ , " 6 ! ! ,# F ! " " ! # % $ ! / 1 ) ! " $ ! σ # G ## ,! !"""H ! "$ ! " " ! % FK " ,# 8 $ % ≠ -∈ % " ! ." ! % ! σ #( ,Fσ #( -, $ " "$ # # " /+" 0 σ∈Σ %2 " " ! # Σ ∈ % ." % # " # #!""""# '" " !" ' !" σ ,#! σ #!"""! σ "! ! ! " "$ # /Σ Χ = Σ 1% " * -" ! ! ! # R " . # " "# ! # ! '" " " #!""""# %9Σ ." '" !! ! σ #!"""! σ #! σ σ !"""!σ !"""!σ # " """" 6 &! "$ . "$ σ #!"""!σ #!"""!σ ## " # # ! ." Σ # σ ,#! σ "! # ! " RΣ ! % ! -" ! % σ ." '" σ .! % ! " .! # " -" " K " "$ ! " " % 1 + 4B -" # = Χ/ R " 5 σ # " . - ! "" %6 # " "! 3 " " ! ! # , 1! (2 + # " ' σ #% 6 ! "$ "$ ! -" % "$ ! ! -" σ #( ,≠σ #( -, " " B " -" "$ '" ! # "" 5' !J% " ! % . ;&' ! . ; ! " $ # " 5 ( )*+ )**, % $ / 01 $ ! # $ "" ! . $ ! ! -∈ % ' !" " % -" ' !" ! % ! ! # &" ! ! '" $ / 0 1 -" $ ! % # "" # "' " " !" % - "! 1 '# -( )" B " ! '! " & ! " '" .! # % # . ) 2 $ # "' K " !" 6 " ' !" % B # "' ! $ ! " -" " ! ! " % ' !" !! ! # " ' !" # "' 5 ! " ! " " ! ! # ! % " ! " #$ ! ! ! " # ! " ! "$ $ $ % * $ "$ ?! "$ % !" / " 5 1% ! "$ " " ! $ 5 . ! $ 5 . % B # ! - " "" " $ ! 12 " ! 3 (9 3 3 !"""H R G # # " 3 3 !""! ! " ." # "$ # " ' % 6 Γ ! ! #" G 3! ! ∀ H "; # " ' / #0 ∞= K R $ ! " # "" 6 ! - % '" " " !, - 4 " $ σ / 1 = /σ / 1 %%% σ / 1 %%% σ / 11 σ " % " "" " : '" σ = /σ /K1 σ / 1 %%% σ / 1 %%%1 ∈Σ 9 " -" 4(σ , ∈ - " % " ! R ." 4(σ, = {.(σ,/ 1} = K ∞ ∞ .(σ ,/K1 = /K1 = / /K1 %%% /K1 %%% % " ! . " ! FK% ." " ! -" ' " . " /K11 $ ! . " ≥ % /K1 ∈ " " ! σ/ 1 ! ' .(σ ,/ 1 " # " .(σ ,/ 1 " $ ! "$ /!$ FK1% & " = ( .(σ ,/K1 .(σ ,/ 1 %%% .(σ ,/ − 1) " "# 4 .(σ ,/ 1 = σ / 1( .(σ ,/K1 .(σ ,/ 1 %%% .(σ ,/ − 1) ! . "$ " $ ! ! " -" σ/ 1 " " 5 /σ 1 = : 3" ! > K ! .! # % ' 3 4(σ , # - " δ /.(σ ,/ 11 ∞ =K '" ! . '" % ) " # " ! ! .4 ! !δ" ! ; ! " 6 ! ! ! ! " % " % 5 / 4(σ , 1" 5 " " Γ Γ∞ ! . ! " " ! !Σ!5!δ# RΣ "$ ! ! ! # " ! '" 5 5 !"""!5 !"""!5 # % !, 34B Γ ∞ F/6 Σ < δ1 " " σ; ∈ Σ ∈6 " σ " # "' 6 4 5 σ# ≥ 5 σ6 ! σ$ # B "$ # " ' S " " # "' " 6 - 6 $ ! ! $ ! # "' '" % 5 ! - 6 # ! ! ! '" # " " B 6 #$ ' - "" " 5 ! ! 5 - "; '" ' σ " - # "' $ !$ " "; '" % K # "' # "' / σ = /σ Q σ − 1 " Σ # "$ "$ " 5 " $" . $ % $ # "' '" % ! " '" ! "" ! ! "" # "' ! # $ # "' % "# % ( )8L,% 5 % " # 5 9" # " " # "' % $ 5 " $ ! ! " /% '" ," $ # "' " ! #$" $ # ! + # ! !* #+ $ " ! ! " ! " " 1 σ " 5 ! # !, 44" " σ " # "' !Σ!5!δ# Γ∞ " 4 1σ # "' 6 "; Γ∞ 4 '" 5 σ# ≥ 5 σ6 ! σ$ # 1σ # "' 6 4 5 /σ 1 ≥ 5 /σ ; Q σ − 1 ∈6 " -" ! Γ∞ " 47! ! 4 %2 ! " ! " 4 "; ! " - '" % ! ! '" ?! " " ! ! " "; " 4,! ! # -" ! 4 4 ! %%% $ σ6 ∈ Σ % F : %%% ; # "' ! 4 σ6 ∈ Σ ∈6 " ! " " " ; # "' # ! ! "! " ! ! % ! ! " ! "" ! % ;&' " # "' ! # # -- $ % ' ,# !" " S % "! 1'# $&' " " ! % # ! ' '" " " -" . "! " " % !, 5 4 " " - /4,! 4 !"""!4 1 % 51 ! ! 4, . " " '" # ! ! C51 " -" ! 4 FK% 4, :1 /8 1 $ " 4 -# " " " ! % " ! 4 / FK %% 1% >51 " ; 4 ' 4, : " $ ! " 4% " " # % . " -" % ! ! " ! " "; ! " 4 " %9." " -" ! " " ! ! " " ! / %9 1" . "$ ! % -" ! . " ! ! 3" ! # " ! -" " " ! "" ! ! ! C "; ! C . " ! "" " 8 " ! " ; "" ! " ; # "' # # ! 4 &' F /σ -" # σ # 1% $ # " /σ # '" ! σ ≠1 # $ " $ ! ' ." % " # "" " ! ! " !" $ " ! ! # "$ "$ # " ' ! ." " ! % "" $ " % " %B . !! $ .! # ! % # # : $ " !$ " !" !" ! " % 3" # " " ! " ! " # "" " ! " B - "" " 99σ /σ ,#! σ #! σ #!"""! σ #!"""0 ! " 4 /. τ# 0 τ∞= K 4 ! " /4,! 4 !"""!4 1 0 σ ≥ # $ #( $ #,F . τ# / - " ,F. τ$ # ! σ ≥ # $ #( $ ! 1% "# $ #≠ σ ∃ " σ #( ! $ #( $ ! $ # σ , . τ$ $ #≠ . /τ − 1 * " $ #≠ " ." ≠ , ! " " ." 1% 1 " # ." /τ$ 1 5 " /" ! . . ,#! . #!"""! . τ$ #1 # ! # ! !$ . . τ$ 1 " - " " ! & ! " ! "; - ." " ! - '" " . τ#% " $ ! 4 ." 5 % !" . % " # "" ." ." ! 99 ! . ; % % " - %%% " / 0 1 - ! " ./ %1 ." ! ! ! ." ! ." τ 4 σ /4,! 4 !"""!4 1% /4,! 4 !"""!4 1 0 " ! -" ! . . ." % 99 σ 4,! 4 !"""!4 # / %1 " 4 !"""!4 # " /4 $ 1% ! $ #( $ ! σ #( " ! ∃ ! * ∈ ! ≠* " # #,F . ,# / - " $ ! ." $ #,F. τ# / - " $ τ≤ FK %%% ! ,F. τ$ # σ #( 9# $ #F. τ$ # "$ ' . * /τ − 1 " ! 4 FK σ ,# F., ,#% # " FK %%% " % 3" " # "' 6 ' ! . " 99 σ 4,! 4 !"""!4 # 99σ 4,! 4 !"""!4 # %6 # σ 4 !"""!4 # σ 4 ! ∈6 " % ! " # 4,1% / %1 " " ! #;" ! " " % C " " σ 4 !"""!4 #! # "" ! ?! !" ! " ! " '" " " ! -3 # ' ∞ =K ! " 4 / FK %% 1 ! ! ( " - " 5 /4 Q τ 1 ≥ ! "$ " ! P $ " . τ# ! " " 4 " . " 5 /4 1 = ∞ =K 4 (. / 1) δ ' " τ ! $ ! " 4 [ /. /τ 11 ≤ δ 5 /4 Q τ + 1 − 5 /4 1 " ∞ =K /:1 (. /τ + δ + 1 " ] /:1 ) $ $ " %9! ! P " " " ! $ '" % > " ' !$ " E 5 # % " 4 ! " " /. /τ 11 + δ 5 /4 1 ! 5 /4 Q τ + 1 = $ ! # '" " /. /τ 11 − %9 " $ L .$ % ; ! " / Q .− 1 " { } ! & - . ! " $ ! ' $ # "' /. 1 = ! ! " % # " "" " $ ! % % % ) " . τ Q .− /τ 1 + δ 5 /4 1 % . L ! . { } % $" - " " $ (. /τ + 1) δ > '" $ * " ! P $ . $ $ !." " . 5 /4 Q τ 1 = ! ! ' ! " # " ! " M# 5 4 &τ , # 5 4 # # > "$ " " ! " ! ! " 4% ' ( σ 4,! 4 !"""!4 # + ∈ ! + /. /τ 11 ≤ δ 5 /4 Q τ + 1 − 5 /4 1 ! * # " !." 0 ) ". C# !* #+ '" ," ' , "+# ! ! '" $ ! . $ ' ! $ " " ! % " . "; . # '" # " '" " ! - 4/ ! 19σ ! " - - ." " " ! # ! ; # ! $ $ # $ # " . ! % " # " . ; ! # " ! '" $ " . "$ - C/ ! 1 8% ' " $ # "' % "" . " ! " /C1 σ ! ! 9 #$ ! #$ ! !! N # " # " ! ! ∞ </ ∞1 5 </ 1 FK% $ " '" % 3" "" "$ " ! ! 5 σT !σ − # $ 5 σ # ! # $ % σT →∞ /C1 " σ% ! ⇐1 9 "$ - " " ! . σ− % "" '" % 3" $ B " ! "$ σT # /9 + $ " # "$ ! 4" ] '" % ! 8 ' '! " # (5 ,, " $ τ ,! !""" ( ,! !""! [ /. /τ 11 − . " " ε UK /C1 " E! ! " ! # 4 - L M% . "$ " !$ ! . " " ! ' " - "# " ! " ! # $. " # .σ # " " 5 ! 5 σ # σ ." " ! A . εV:% ." # "$ # " - A # !"""! !"""! A # . σT " εV:% $ '" " ! $ # "" :% $ " # " " '" ! σ " - % ! " ! % ! ! " ! . # '" $ $ ' ! . " "# % # ! # " % ; = 4(σ , V σ ∈ Σ 49 " Γ ! ! '" ! # " ! ' " ! " '" % "; '" } " "$ '" % ; ⊂ 9∞ % 9 4∈ ; Γ∞ " " $ # "' !Σ!5!δ#% Γ∞ 4 %9 # Σ ⊂Σ! $ # "' "$ σ% # "' { - ! !" " 6 " . "$ ! " ! $ " ! /C1 ! " " 11 ! % 9 ! " " - ! " !Σ!5!δ# + - .> " " 4 $ # "' <) Σ # "' ! !5#" 43 / 3! 3! """"! 3!"""0 $ " '" " + " % 9 % 6 3 ! 43 " " . 3" " " "! . ! $ ! & Σ " "$ " "$ # " ' " " ! '" - '" % . 6 "$ '" % '" ; ! FK %%% % ! ! $ # "' "$ ! σ 4,!4 !"""!4 # " # 4 43 $ # "' # "' " ! " ! ! ! $ # "' , 4 # " % -4 '! " & -" %&" " $&' " # " " " /=8>1 ! ! " /=8 1% !, 64 ! " " /4 !"""!4 1 /σ 4 !"""!4 #!""!σ 4 !"""!4 #0 R" " 5 ! " σ ! " " ! * " . " % !, 74 # "' ! " 6 !, 84 ! "σ " 5 5 ?σ @" & " σ 4 !"""!4 # " F %%% % " 5 ?σ @F " " /4 !"""!4 1 " 5 ! /5 ?σ@ σ∈ Σ 0 " F %% # "' " - # $ /σ !""!σ 1 " # 4 " " ! " - ! . . 5% 8 % 3" ! ! '" % 6 " " &' "$ " '" " # "' " 4 ! " ! . "$ ' ! " ! ! " . ! " % ' Γ∞ - A 4& !Σ!5!δ#! " '" " " σ ∈Σ 11 3 4 ∈ % 4(σ, ∈ ; σ /.(σ ,/ 11 ≤ δ [5 /4(σ ,Q + 1 − 5 ! " .5 ! %9 !$ " # "$ 5 " " # " % &" ." 5% B 4?σ @ 4 % 6 '" ! ! " 4 # " " # "' ! " /σ 0 ∞= ∈ Σ F %%% " # " 5 σ #! Σ '" % C% " " σ% B " 5 ! - ! />1 # "' " />1 . ' σ ] " % " # "" ! " ( /.(σ ,/ 11 − ! ! 2 " " 4 ∈; % 5 ! ! " 4 5 4# 5% σ " 4 !"""!4 # " " % 9σ $ " $ # "' " " J∈G %%% H τ " # 4 .* τ## $ ! 5 .* τ## $ * ! " 0 .* τ## B δ?5 4*!τ% # $ 5 @ 4 .* τ## B δ?5 4* !τ% # $ 5 @ " /4,!4 !"""!4 1% /4 !"""!4 1 * #; " " B$ - " " σ* ∈ Σ % σ > ! ! ! ' # "' ! " ∈6% C $ $ " " # ! # "$ ! ! " ! " # " % " L ! " " ! ! % ' σ !""!σ # 44 σ ! 4 !""!4 # + " σ ∈ Σ 4 " 4 4 σ# 4 4 σ #∈;8 " $ - " " > 4 [ /. /τ 11 − ] /. /τ 11 ≤ δ 5 /4 Q τ + 1 − 5 τ% ∈6 F %% B$ " -" # σ 4 !""!4 # ! !" % B " ! 5 4 # 5 /4 !""!4 1 ' # "' ! " " " % ! " " ! "; '" ! . " " ' " 54 /9 > ! ! ⇐1 9 # "" "! ! '" % σ !""!σ # 2 . - /. K /τ 11 − 4 % 3" - ∈ ! . ; "C 4,∈ ; τ( [ /. K /τ 11 ≤ δ 5 /4 K Q τ + 1 − 5 ! " " /4 !""!4 1 " ! ] /L1 >% " " # . ! # 4∈ ; ! " " ) σ !""!σ #" " 4 " [ /. /τ 11 − ] /. /τ 11 ≤ δ 5 /4 Q τ + 1 − 5 ∈6 F %% " " "$ ! !" " /L1 " ι% + # σ/4,! 4 !""!4 1 $ # "' Q !$ "# " # 4, . ∈ ; % ! " # " # ! $ # "' " "# ! 1 ! # ." ! ! '! "# ' 1"# # ,1 % ' ! !."# % " # " # % ! # # "$ '" " - " # ,, 1"&1"# ! " % ' 6 4 σ !""!σ # 2 . - " C 4 !""!4 # 9 4 4 σ # σ 4,! 4 !""!4 # 8 ; " ;&' . ! % " ! ! " " ! ! . "; '" "! "; % " " ! " # # " ! ; " - % ;&' ! " # ! %B % 9 "- " % " " ! " $ !! ! ! :K "$ # " " "" # "# # " " ! ! ! # '" ! ! ! # " . % S N 4,∈ ; . " ! # ; " !! ! "; " + ! # ! % 9 B "" " " " " % " ! 9 # " " ( )*+,% # ! $:' $; 6 ! ! % " # . $ !! " " ! ! "$ !! $ "# % . ! * " ! ) # " ! ! # " $ ! ! " " ! % : ( )8 , # % - 8 "#" . F/. !""""!. 1 " # ! ' ! ! 7 π . & .− # R " " $ ! " ! " ! @. % "" ! ! ." ( " ! ! " ! ! ! '! " & ) ! % 6 " " # " ". # $ " &' $ " ! % $ ! ! " "" " " # " % ! " ! ! " " . # " 4 π . # ?8 Σ " " !$ . ! P # $ "" " = .#$ " " # " " " .− ! " ! # % 4 8 "# ! 4 8 ,#B " '4 ! →∞ ! % 8 2# K ?,!C@ "# δ π C&,!"""!,# 0 −δ 2 π 2&,!"""!,#:, " " C $ & ! - C " #$ ! $ ' ' ! "" . C % B ! " ! " " "$ ! ! !" % $ # "' 6 56 %6 ! # " % $ ! '" ! # '" ! " 3% 6 ! % # # # ". $ ! ! ! ! . # # " " # "' " " # # ! # .T 6 " "$ # " ' # "' . "$ # " ' ! ! ! $ 5 # . !"""!. # " :K %6 ! . " # % " # # # !. ' # 2 .T ! . $ $ " ! " ! " - % :: " .C " " " " !# " " # % "! "" %9 . !"""!. # # π 2#" B " :K " π 2# π 2!"""!2# 2% ! "" - $ # "' - 7 ( )8 , " . ! ! . ! ! % # ! "% "" 7 % ! ! " " $ ! " " " #; " ! " ! % ' " " # % # " " !" ! :> % # " " . "$ # " ' ! :: # 7 ! % B- # $ ! "" ! % :C . " $ ! ! "$ # " ' # " ! % . # # ! "" : '" " !" " "! " ! ! # "# $ !! " ! ! . "$ % 9 "$ . - ! "" ! 4" 4 / .T ! .T %%%% .T %%%H ! π /. K 1 B π /.T 1 ! : ! :: :C :> " ! ! # .K ! "" :L # " .T /!$ . π /. K 1 Uπ . # 1% !" ! " 4, / . K . K ! !"""! . K !"""0 ! "" " # " 4 !"""!4 !"""!4 # !" ! ! 4 4 " # F %%% % " σ 4,! " " " $ ! " σ 4,! 4 #" " # !+ % 6 # " # %9" $ $ . ( )*K, # "; 7 !! 7 # " " 7 & " ( )*>,% "" ! . $ " % EB " -" " " " % 3" $ "" % 3" $ " ! - " M& " /( )):, >L1% :L ! # ! "" $ ! . % .! # . # ! # "$ # " ' 6 " # W !" !W ! !" E " " "" -" ' "" ! "" # ' " ! " 7 " ! ! . # "$ # :C " .! # 56 % M ! " # " '" ! ! " π /. K 1 F 6 " G2H "$ ! $ ' " ! "" ! ! !" !% 4 / .T ! .T !""""! .T !"""0 (4 -. 4, / . K . K ! !"""! . K !"""0 = "8 π /. K 1 B π /.T 1 !"""! ! + σ 4,! 4 # + . . ( δ π /. K 1 $ π /. K 1 ≤ 4 9" −δ ? π /. K 1 $ π /.T 1 @ " " " ! $ "" $ " / 1 " / 1 δ≥ π /. K 1 − π /. K 1 π /. K 1 − π /.T 1 ! ! "" # # " # " ! % ! "" % ! ! P/ ! ! " /:1 !"""! " " ! $ ! " , 4 . "$ " % # "" " !" !% 4 8 π /. K 1 B π /.T 1 ! 4 " $ ! 6 " ! " ! ! $ 1% ! ' / 01 $ " " " % '" .K ! "" "$ # " ' " " " "$ " .! $ " " . '" % 3" # $ " ! !"""! - ! '" % 6 # " .−K " 6 5 $ π / 2Q .−K 1 " 4, / . K . K ! !"""! . K !"""0 + !"""! ! σ 4,! 4 # δ: 2 . + :> " . . δ∈?δ! @! # π /. K 1 B π /.T 1 ! 4 δ GH σ 4,! 4 !"""!4 # π /. K 1 − π /. K 1 π /. K 1 − π /.T 1 π /. K 1 − π /. K 1 π /. K 1 − π /.T 1 # "' . δ∈?δ! @! " ! "# % # B 1.! " $ "$ # " ' " C% # " "$ " / ! '" $ ! ! ( S 1+# !'!!= " " " % - " # "+# '" "! !# " % &, 1 - # " ! " " % 3" '? W # # # +> ( )*+, #; "" . ! " 7 &' " : π1 (qc) - ! " ! % π2 (qc) , 1 # " " '" '" < ! / 1 !" ! # % 3" ! 7 ; ! "' # "' % 4 ! - ! " ! " W! # ! ! ! - /" ! :L 1 " " - /" '? 1 # ! " " # " " ! "" " % 3" # ! $ ! " B "" " " ! " '? - " " ! # " .K # " '" ! " " % - 1 # " . ! # " / /. 1 " ! '" /.K1" '" # "" ! "" # ! ! % &' # "$ '" # " ! # # # "$ ! " " ! % # $ "" " ' # . -( /. !.,1 π .# " # " π .# " "" #$ " # 4 / .T ! .T K ! .T K !""0 . 4 !"""!4 # 9 . !.,# 9 + . - 6 . ! %6 # " ' ! .T = /. %%% . 1 " " " " " .T K = /. K %%% . K 1 " '? ! ' G .T ! .T K ! .T K !"""H 4 # " < ." 2 ! 2 9 2 ( ., . " π . # $ π . # δ ? π . # $ π . #@ '# π . # $ π . # ≤ δ ? π . # $ π . #@ )# ., B . π . # $ π . # δ ? π .,# $ π . #@ '-# π .,# $ π .,# δ ? π .,# $ π . #@ )-# ! " % &' $ # /C C$1 # " ! ! ( )*+,% "" ! $ /> ! # :+ $ '" >$1 $ # . " ! P $ ! " ! 9" " ! " ; - . # $ " " ! /C1 />1 " " ! + ! ; />1 / " " " ! "" # " ! ' '" % B " ! !" ' # " /C$1 />$1% .% . < σ 4,! 4 # " #; ! ' ! % B$ " " ! $ ! - " .T K " $ ! σ " $ % " " " ! # " " # " ".S ! # " . ., " # C% " " - #; 1 % " " " " ! " '? " ! ! ! % 6 # . + " " $ ., " C " '" '" - . " /. ! .,1 4 " ! % . " ! ! 4, " " ! . ! " # " # ; 1 1 />$1 &' %B # " " " σ " " 4 / .T ! .T K ! .T K !"""! .T K !"""0 4 " ! # " 4, / .T K ! .T K !"""! .T K !"""0! . " $" ! 341 2 9" ! . /6. 1% 9; " " # # " - " $ π .,# 1 −δ %B " ! "" δ / " '"- ! ! δ: π .,# 1% −δ "- /δπ . # % ! " " " π /. 1 + ! δ −δ π /. K 1 = K ." ! '? % :8 # ! " " . ! " # " ! " '" $ ! " " :+ " "#: "" " ! "$ " " " " # " " " . = $ ! "! " 56 " . ! ! " " " ! ! ! % & - ! "! " ." 6 # / ! % " . /X1F 5 X !% & "$ # " ' $ 1 " ! # " . π = ' " / " Y % + 1Y . F9V: /! # 1% " # !" ! " . :8 # % # % " # "" " # " # $ Z " . " ! :8 ! "" !# " ! + ! "" # '" '" # " " :+ " '? !" !% ! P : # ! " ! " . "" !" ! $ " - ( ,, " ! # '" " " ! '" " ! " M# $ ! " '? % ! ! # " '? # " % " '! " & " ! E" ! ! " 1 '" " . 6 " ! ! % - ! " " # " / 1 " " " # "" " " " ! " :% 4 " ! :* ! " " '" " - " # " - . " % " . &' ( )**,% δ π /. 1 − π /. 1 ≤ ! $ ! " " −δ (π /. ". /L1 # "" # " . '" 4 9 - δ+ = π /. 1 − π /. 1 π /. 1 − π /. 1 " 4 δ+ = / + 1Y / + 1Y + > ' δ≥ /+1 /81 4 A < D + / + 1Y / + 1Y + > . % # ' " ! " ! " ( −/ ' .K = S % $ ) " !" ! " % # δ " " − / − . K 1. K = " 4 δ / − . K 1. K − −δ Y + 1Y / /*1 4 + −δ/ / " :* : 1 + − 1Y − 1/ + + 1Y − δ / .K ! "" ! . $ ! : ! # ! " # "$ # − 1. K + ! ! " ! "" " > 6 " / + 1Y / + 1Y + > .K # < ( !" " % # ! . - ! ! 9 δ< = =δ + "δ+ ! :* ) 1−π π /. K 1 − π /. K 1 = $ ! δ −δ /)1 .! " " (π / . ! K 1−π )% :) # " ! S " $ ! " .K " - # . #! ' ! "" % ' 5 A . + < !. - . 2 -. 9 ,, " ! " ! @ " % " " # - +> " " ! " '? ! "" " = + ?#" " ! ! " " ! ' ! " δ . . δ+%6 ! " /" '" # " " " 1% 6 A < D " ! '" ! - + = ! < + . - ( . δ≥ / δ≥ / / − 1Y =δ + 1Y & ! ! " # ' . + ! " " " ' . ≥E . / / − 1Y + 1Y " " $&' " / + 1Y / + 1Y + > " . " ! "! " " :E ! !" ! .δ % ' . % X "# " + 1Y =δ " + / " + 1Y + " " '" ! % CK " " " " ! ! δ+ ' ! % & ! " "+#" ( 1'" " ," # ) !# 6 ' ## "! 1"&1"# A # #" " 1 ' #B "! +> - 3 4 5 6 7 (2 -2 (22 7! " δ+ K%L:) K%L8 K%+K) K%+>: K%+8 K%+)L K%8 + K%8L K%*** K%)+: 7! " δ K%:* K%CCC K%C) K%>L K%L K%L+: K%+K> K%++) K%*8L K%)+ $ ! ! " ! " '" " %B ". '? ." # " " # "! " " - '" ! $ ! " " . "$ '" % ' 7 A 9 ! ( δ≥ δ≥ . > / + 1Y / + 1Y >/ − 1Y ' " " :) Z :) . ≥E .+ " ! " " :E & # " ! . # " ' # " % " ! ! # " ! # " # " C " + 1Y / " # " ≥ E% > " '? " . ! "" / + 1Y >/ − 1Y δ < .+ ( )**, # δ > " ! " 9 " '? # ! '? % " - ." ! '" " . ! ." " " " ' ( )*8, K%:* . K% " $ ! " ;&' % 3" # " ! ! " $ " # " ." ! ." ! ! " " '" % ! ! " " " '? M1 # "" # " " " ! $ ! . 9 ', # # 2 9 . " ! /E" ! " ; # ! " % ! ! ! ! . " %B + . " # 9 " " " ! '" " - "" " %B "! " " " " " ! " ! ! "# % 3" " $ ! "" " ! # " "" ! ! . "$ # " ' " ' '" " " $ ' ! ! % ; " " ' ! # $. "$ # " ' " # ." " ! ! % ! ! % "# % " ! ! $" " "! ! . "$ ! . "$ # " ' % "" 9 ' '" "$ !! CK "" ! "" ""-" ! !" " #$" ( )**, ! $ ! " "$ " !" . # " Q !$ ! % B " " ! "" C: ! "" #$ ! "" " . ! ! %2 # " ! % $ . !! - "" "" " " ! "" 5 # $ "" '" % 8 D ' " " " %B ! " '" " ! ! . & '? % !1 #" " #$" 9" # /# # 1 " 6 $ [ /. 1 − π /. 1 = δ [π /. " 7 A," '" - # " % ' ' " K " " ! # " " B " ! ! +> . "$ # " ' " " ! " '? - " " '? " - " " . 9 9 " ! # ) " "! " " ! 4 ] 1 − π /. 1] π /. K 1 − π /. K 1 = δ π /. K 1 − π /. 1 π 6 K A (B !4 π /. K 1 − π /. K 1 = π /. 1 − π /. 1 9! π /. 1 = # [ −/ − 1. ] > : −/ − 1. ) : > & - " ( ! − / − . 1. ! −/ + 1. # " ( = " ) =( : π /. 1 = K − #≥ π /. K 1 − π /. K 1 = π /. 1 − π /. 1 "$ # ( #[ ' −/ . . + .K = + 1. K : + ) −/ − 1. K > 4 : . . + .K CC . ) : − / − . K 1. K " − #[ − 4 # "" " ." # "" .K " ! − " . [ −/ + 1. ) : = δ /. − . K 1 > 9 " " # " # '? ! . . ] $ -" /. − . K 1 − - /& 1 4 ) 4 . = + *δ .K = − *δ " ( '? % : π /. 1 − π /. 1 = δ π /. K 1 − π /. 1 ( " / − + 1Y + / − + 1Y + # " # $ "" ." # − % ! / + 1Y % >/ − 1Y δ< B .K = - " #K − *δ − + 1Y + / 6 . = '" - # " # " / + 1Y / + 1Y > >/ − 1Y + " : + 1Y % /" + 1 ! 6Y 5 +6 0 [ K 1 : / δ< / " ! R 6[+1 ! " + 1Y + R / / + 1Y /!$ >/ − 1Y 6[ +% " ! . δ F / + 1Y %6 + # # " #F / + 1Y >/ − 1Y + 1Y + " δ − . " # " % ! $ ! C> " " '? " ! " " '? .δ 4 π/ − δ 1+ −δ & - ! "! " δ= 4 > + 1Y / + 1Y / + 1Y ≤ >/ − 1Y + " / + 1Y " ! >/ − 1Y - ! ! δ −δ π /. K 1 = " ! −δ !δ −δ " '" ! π /. 1 4 π /. 1 − π /. 1 π /. 1 & - ! "! " δ F / / π /. 1 = K % - 4 4 δ = − " π /. K 1 " π /. 1 = #F "" π /. K 1 = K # 9 " % " /#K # 1 $ ! π /. 1 + 6≥+% " '? '" $ # δ 1=K : ' / &;1 δ≥ π/ ' 4 − 1Y + 1Y CL $ ! " . CC 9 Abreu, D.(1986) «Extremal Equilibria of Oligopolistic Supergames,» Journal of Economic Theory 39, 191-225. Abreu, D.(1988) «On the Theory of Infinitely Repeated Games with Discounting,» Econometrica 56, 383-396. Axelrod, R. (1984) The Evolution of Cooperation, New York, Basic Books. (Traduction française Donnant Donnant, Paris, Odile Jacob, 1992.). Dasgupta, P., & E. Maskin (1986) « The Existence of Equilibrium in Discontinuous Economic Games I : Theory », Review of Economic Studies 53, 1-26. Debreu, G. (1952) « A Social Equilibrium Existence Theorem », Proceedings of the National Academy of Sciences 38, 886-893. Friedman, J.W. (1971) «A Non-Cooperative Equilibrium for Supergames,» Review of Economic Studies 28, 1-12. Friedman, J.W. (1992) «The Interaction between Game Theory and Theoretical Industrial Economics,» Scottish Journal of Political Economy 39, 353-373. Friedman, J.W. (1993) «Repeated Games, Supergames and Oligopoly,» Working Parper, University of North Carolina. Fudenberg, D. & J. Tirole (1991) Game Theory, Cambridge, MIT Press. Glicksberg, I. (1952) « A Further Generalization of the Kakutani Fixed Point Theorem with Application to Nash Equilibrium Points », Proceedings of the American Mathematical Society 3, 170-174. Greif, A., P. Milgrom, & B.R. Weingast (1994) « Coordination, Commitment, and Enforcement : the Case of the Merchant Guild », Journal of Political Economy 102, 745-776. Kakutani, S. (1941) « A Generalization of Brouwer’s Fixed Point Theorem », Duke Mathematical Journal 8, 457-458. Lambson, V. (1987) «Optimal Penal Codes in Price-Setting Supergames with Capacity Constraints,» Review of Economic Studies 54, 385-398. Leonard, R. (1994) « Reading Cournot, Reading Nash : the Creation and Stabilisation of the Nash Equilibrium », Economic Journal 104, 492-511. Myerson, R.B.(1991) Game Theory : Analysis of Conflict, Cambridge, Harvard University Press. Nash, J.F. (1951) « Noncooperative Games », Annals of Mathematics 54, 289-295. Radner, R. (1980) «Collusive Behavior in Non-cooperative Epsilon-Equilibria of Oligopolies with Long but Finite Lives», Journal of Economic Theory 22, 136-154. Segerstrom, P. (1988) « Demons and Repentance », Journal of Economic Theory 45, 32-52. Selten, R. (1975) «Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games,» International Journal of Game Theory 4, 25-55. C+