L`Hôpital`s rule practice problems 21
Transcription
L`Hôpital`s rule practice problems 21
L’Hôpital’s rule practice problems 21-121: Integration and Differential Equations Find the following limits. You may use L’Hôpital’s rule where appropriate. Be aware that L’Hôpital’s rule may not apply to every limit, and it may not be helpful even when it does apply. Some limits may be found by other methods. These problems are given in no particular order. (Where appropriate, sources for the problems are given in square brackets under the answer. See the end for an explanation of these references.) 1 ex − x − 1 19. lim x sin Ans. 0. 1. lim Ans. −1. x→0 x→0 cos x − 1 x [ R 4.7 Ex. 4 ] 5 tan 3x Ans. . 20. lim 3 x3 − x2 − 10x − 8 tan 5x 3 x→π/2 Ans. . 2. lim x→−2 5x3 + 12x2 − 2x − 12 5 [ R 4.7.18 ] x−a sec x Ans. a. 3. lim 21. lim Ans. −∞. x→a ln x − ln a x→π/2+ ln sec x [ SSJ 124.29 ] [ M 62.26 ] 1 − cos θ 1 1 4. lim Ans. . Ans. 0. 22. lim csc x − θ→0 θ2 2 x→0 x [ M 62.12 ] 5. lim (sinh x − cosh x) x→∞ 6. tan x ln(2x − π) lim + x→π/2 tanh x x→∞ tan−1 x sin x 8. lim x→0 sinh x x e 1 9. lim − x→0 ex − 1 x 7. lim Ans. 0. 23. Ans. ∞. 24. lim (tan x)sin 2x lim x−3 ex 2 . π 25. lim Ans. 1. 26. lim Ans. 1 . 2 [ S 21.3(b) ] Ans. 0. x→−∞ [ W VIII.2.1 ] Ans. Ans. 1. x→π/2 ln(t + 2) log2 t x→∞ Ans. ln 2. [ R Ch. 7 Rev. 115 ] 1 − ln x x/e − 1 √ √ 1 − tan x − 1 + tan x 27. lim x→π sin 2x x→e [ R Ch. 4 rev. 116 ] 10. lim x→π/2 ln(x − π/2) sec x 14. lim x→∞ 15. lim x→∞ e−x sin x e−x sin x + 2 tan−1 x − π4 16. lim x→1 tan π x − 1 4 17. lim x→−∞ tan−1 x cot−1 x Ans. 0. [ SSJ 122 Ex. 4 ] Ans. 4e4 . [ R 4.7.22 ] Ans. ∞. Ans. √ x→0 [ Sh 9.1.14 ] (π/2) − tan x x−1 √ x + 10 + 3x1/3 29. lim x→−1 4x2 + 3x − 1 sin x − x 30. lim x→0 x3 28. lim x→∞ Ans. 1. [ W VIII.1.3 Ex. H ] 7 . 30 1 Ans. − . 6 Ans. − [ SM 7.6.13 ] 2. [ Sh 9.1.6(b) ] 31. lim x→0 tan x − x x3 Ans. 1 . 3 [ SM 7.6.14 ] Ans. Does not exist. [ H 4.8.18(c) ] 4 32. lim x→2 33. lim 1 Ans. . π x→3π Ans. 0. [ M 62.32 ] 1 + tan(x/4) cos(x/2) Ans. 32(1 − ln 2) . π Ans. 1. [ W VIII.1.2 ] 34. lim x1/(ln x) Ans. e. 35. lim (cos x)csc x Ans. 1. x→∞ [ R 4.7.51 ] 1 Ans. − . 2 x x −4 sin(πx) Ans. 0. [ W VIII.1.7 ] 18. lim sin x ln x 1 Ans. − . 2 −1 2 ex − e4 11. lim x→2 x−2 √ 3 x 12. lim x→∞ ln x ln(tan x) 13. lim x→π/4 sin x − cos x Ans. −1. x→0 36. lim x→π/2− cos x ln tan x 37. lim xsin(1/x) x→∞ Ans. 0. [ SSJ 124.17 ] Ans. 1. 38. h π lim 2 x→π/2 i − x tan x Ans. 1. [ SSJ 124.24 ] sin 3x cot 2x ln cos x 1 cot x 40. lim − x→0 x2 x 39. Ans. −∞. lim x→0+ 55. lim x→∞ 56. lim x→+∞ sin−1 x x→0 x2 csc x πx ln x 42. lim tan x→1 2 Ans. 1. 2 Ans. − . π ? 58. lim x→0 43. 44. x xe − 4 + 2e − 2x 1 + x sin πx + x/2 + 2 sin πx Ans. 2e−2 − 4. √ lim− 1 − x ln ln(1/x) Ans. 0. lim x→−2 x→1 [ W VIII.3.20 ] −1 45. lim (csc x)(cos Ans. e−π/2 . x)/(ln x) x→0+ 2 sin θ − sin 2θ 46. lim θ→0 sin θ − θ cos θ 47. lim x→∞ 48. lim θ→π/2 Ans. 3. [ R Ch. 4 rev. 113 ] ex + x sinh x Ans. 2. 2(ecos θ + θ − 1) − π ln sin(−3θ) 2 Ans. − . 9 [ SSJ 124.9 ] x sin(1/x) ln x x→0 x cot x 50. lim+ x e −1 x→0 x ln x 51. lim , + x→0 ln(1 + ax) Ans. 0. 49. lim+ Ans. ∞. a>0 Ans. −∞. [ W VIII.1.10 ] sin x x Ans. 0. [ W VIII.1.5 ] 1/x2 Ans. e−1/6 . [ R 4.7.75(a) ] 1 1 − sin2 x x2 Ans. 1 . 3 [ R 4.7.75(b) ] √ x ln x ln x x √ √ ln x x (ln x) x √ [ R 4.7.26 ] x x10 ex ? 57. lim+ x→0 41. lim Ans. 1. [ W VIII.4.4 ] 10 1 Ans. . 3 [ S 21.1(e) ] tan−1 x − π/2 + x−1 coth−1 x − x−1 ?? 59. lim x→+∞ 60. Compute lim x→0 x2 cos x 2 sin2 12 x Ans. ∞. [ W VIII.4.11 ] by two methods. Ans. 2. [ M 62.10 ] 61. Finding the following limit was the first example that L’Hôpital gave in demonstrating the rule that bears his name. Let a be a positive constant and find √ √ 3 2a3 x − x4 − a a2 x √ lim . 4 x→a a − ax3 Ans. 0. [ Sh 9.1.16 ] 62. Show that L’Hôpital’s rule applies to the x + cos x , but that it is of no limit lim x→∞ x − cos x help. Then evaluate the limit directly. Ans. 1. [ R 4.7.69 ] Ans. 1. ? 63. Without using L’Hôpital’s rule, the limit sin x lim can be evaluated by a rather x→0 x intricate geometric argument. Show that it can be evaluated easily using L’Hôpital’s rule. Then explain why doing so involves circular reasoning. [ R 4.7.72 ] [H] Deborah Hughes-Hallett, Andrew M. Gleason, William G. McCallum, et al. Calculus: Single and Multivariable, second edition. Wiley, 1998. [M] Ross R. Middlemiss. Differential and Integral Calculus, first edition. McGraw-Hill, 1940. [R] Jon Rogawski. Calculus: Early Transcendentals. Freeman, 2008. [S] Ivan S. Sokolnikoff. Advanced Calculus. McGrawHill, 1939. [Sh] Shahriar Shahriari. Approximately Calculus. American Mathematical Society, 2006. [SM] Robert T. Smith and Roland B. Minton. Calculus, second edition. McGraw-Hill, 2002. [SSJ] Edward S. Smith, Meyer Salkover, and Howard K. Justice. Calculus. Wiley, 1938. [W] David V. Widder. Advanced Calculus. PrenticeHall, 1947. sin−1 x 52. lim x→0 x cos−1 x ln x 53. lim+ x→0 cot x 54. lim (ax)b/(cx) , x→∞ 2 Ans. . π Ans. 0. [ SM 7.6.31 ] a, c 6= 0 References:
Documents pareils
Integral Formulas 1. ∫ u du = 1 n + 1 u + c if n
(18) 3. Evaluate the following limits. (Answers may be: No limit exists,
the limit is ∞ , or −∞ , or some specific real number which it is your
task to determine.)
(a) lim
COURSE BOOK 13 Digit ISBN AP ENG 12 THE BEDFORD
AP FRENCH eText, *The online license for this textbook is only
available for purchase through the school. The $33.47 fee should be
paid when schedules are picked up; students will be provided with
...
Recall from Math 141 Integration Basics Fundamental Theorem of
If f is differentiable at x and g is differentiable at f (x), then:
(4) Dx [g(f (x))] = g 0 (f (x)) f 0 (x) .
On this handout, a (∗) means that you do not have to memorize the formula
but should be...